JP3893552B2 - Dielectric film for capacitors and capacitors - Google Patents

Dielectric film for capacitors and capacitors Download PDF

Info

Publication number
JP3893552B2
JP3893552B2 JP29774797A JP29774797A JP3893552B2 JP 3893552 B2 JP3893552 B2 JP 3893552B2 JP 29774797 A JP29774797 A JP 29774797A JP 29774797 A JP29774797 A JP 29774797A JP 3893552 B2 JP3893552 B2 JP 3893552B2
Authority
JP
Japan
Prior art keywords
capacitor
film
dielectric film
resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29774797A
Other languages
Japanese (ja)
Other versions
JPH11121268A (en
Inventor
勝也 小川
徹 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Film Co Ltd
Original Assignee
Toray Advanced Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Advanced Film Co Ltd filed Critical Toray Advanced Film Co Ltd
Priority to JP29774797A priority Critical patent/JP3893552B2/en
Publication of JPH11121268A publication Critical patent/JPH11121268A/en
Application granted granted Critical
Publication of JP3893552B2 publication Critical patent/JP3893552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はコンデンサ用誘電体フイルムと、これを誘電体として用いたコンデンサに関するものである。
【0002】
【従来の技術】
従来より、誘電体フイルムに熱加塑性樹脂層を設けたコンデンサ用誘電体フイルム及びそれを用いた巻回し型コンデンサが、例えば特公平3−12447号公報で知られている。
【0003】
該公報には、熱加塑性樹脂層を塗着した誘電体フイルムと蒸着金属が、互いに接するように交互に積層または巻回して、熱加塑性樹脂層の融点又は軟化点より高い温度で加熱密着する技術が開示されている。この熱加塑性樹脂層と電極となる蒸着金属が密着することで、コンデンサの破壊を防止し、コンデンサ寿命を延ばすとともに、信頼性を向上させる効果が得られると教示している。また、既知技術として、誘電体と電極が密着、すなわち、2層間に空気などが存在しないようにすることで、内部放電の発生を抑制して、コンデンサ性能が向上することが一般的に知られている。
【0004】
しかしながら従来技術では、誘電体フイルムと蒸着金属とを密着する際、加熱温度を高くしなければ充分な密着力を得ることができず、このため基材のプラスチックフイルムが熱変形を起して、コンデンサ容量が低下する欠点があり、また積層体にプレス加工を施して誘電体フイルムと蒸着金属の密着力を向上させようと、プレス圧力を強くしても密着力の向上には限界があり、また、強い圧力で電極金属がストレスを受けて、コンデンサ性能を低下させる欠点があった。
【0005】
【発明が解決しようとする課題】
本発明はかかる問題を解決し、特にコンデンサ製造時の熱処理工程で誘電体フイルムの熱変形量が小さく、製造ロット内のコンデンサ容量のバラツキが少ない優れたコンデンサ用誘電体フイルムと、かかるコンデンサ用誘電体フイルムを用いて、特に高温下での課電時にコンデンサ容量の低下が少ない優れたコンデンサを提供することを目的とする。
【0006】
【課題を解決するための手段】
この目的に沿う本発明のコンデンサ用誘電体フイルムと、かかるコンデンサ用誘電体フイルムを用いてなるコンデンサは、次の構成からなる。
【0007】
[1]厚さが1〜50μmの範囲であるポリエステルフイルムの少なくとも片面に、厚さが0.2〜10μmの範囲であるガラス転移点が0〜90℃の樹脂塗膜層が形成されてなり、かつ該フイルムの長さ方向(以下MDと略称する)の熱収開始温度が90〜150℃の範囲であることを特徴とするコンデンサ用誘電体フイルム。
【0008】
[2]ポリエステルフイルムのMDと幅方向(以下TDと略称する)の熱収開始温度の差が50℃未満であることを特徴とする上記[1]記載のコンデンサ用誘電体フイルム。
【0010】
]上記[1]または[2]に記載のコンデンサ用誘電体フイルムの樹脂塗膜面と電極金属が接するように対向してなり、かつ該コンデンサ用誘電体フイルムと電極金属が積層又は巻回してなるコンデンサ。
【0011】
【発明の実施の形態】
本発明のフイルムは、コンデンサとしたときの誘電特性や、工業的利用性からポリエステルフイルムである。特に、エチレンテレフタレ−ト構成単位が80%以上のポリエチレンテレフタレ−トフイルムが好ましい。
【0012】
かかるポリエステルフイルムは、MDの熱収開始温度が90〜150℃の範囲であることが必要である。MDの熱収開始温度が90℃未満の場合、コンデンサ素子製造時の熱処理工程や、素子が外的条件で高温にさらされた場合、ポリエステルフイルムが熱変形を起こして、コンデンサ容量が低下す。一方、MDの熱収開始温度が150℃を越えると、コンデンサ素子製造時の熱処理工程や、素子が外的条件で高温にさらされた場合、コンデンサ素子内部の空気がエア−抜け不良を起こし、このため課電時に内部放電が発生して、コンデンサ性能著しく低下させる。MDの熱収開始温度が90〜150℃の範囲であり、この範囲であれば好ましいコンデンサを供給することができる。
【0013】
また、かかるポリエステルフイルムのMDとTDの熱収開始温度の差が50℃未満であることが好ましい。MDとTDの熱収開始温度の差が50℃以上の場合、コンデンサ素子製造時の熱処理工程や、素子が外的条件で高温にさらされた場合、フイルムのMDとTDの熱収差によ歪が生じて、コンデンサ素子内部にシワやエア−すじが発生して、このため課電時に内部放電が発生して、コンデンサ性能を低下させる傾向がある。更に好ましくはMDとTDの熱収開始温度の差は、30℃未満が望ましい。
【0014】
また本発明に用いるポリエステルフイルムの厚さは、1〜50μmの範囲であることが必要である。ポリエステルフイルムの厚さが1μm未満の場合、加工時のフイルム破れや、その取扱い性に問題があり、50μmを越えると充分なコンデンサ容量を得るために、コンデンサ素子が大きくなりすぎるという不具合が生じる。更に好ましくは、ポリエステルフイルムの厚が3〜25μmが望ましい。
【0015】
また本発明にもちいるポリエステルフイルムの製法は、特に限定されるものではなく、得られるフイルムの厚みの均一性や、機械特性に優れている点で二軸延伸法が好ましいが、一軸延伸法によるものであってもかまわない。もちろん、インフレ−ション法、ステンタ−法のいずれでもかまわない。ただし、本発明に用いるプラスチックフイルムの熱収開始温度を90〜150℃の範囲にすることで、発明の効果を得ることができる。MDの熱収開始温度を前記の範囲にする方法としては、フイルム製膜時の延伸倍率と熱処理温度、またフイルムに樹脂塗膜層を施す塗工時の張力と加工温度で適宣選択することができる。
【0016】
次に、本発明に用いるポリエステルフイルムの製造方法の一例について説明する。
【0017】
テレフタル酸とエチレングリコ−ルの共重合からなる重量平均分子量が35000〜40000で、融点が260〜270℃、ガラス転移点が67〜71℃のペレット状のポリエチレンテレフタレ−ト樹脂を十分に乾燥して、押出機に供給する。供給されたペレットを270〜290℃に加熱溶融し、2000〜4000poiseの粘度を持つ溶融流体とする。溶融流体はフィルタ−で濾過され、スリットを施したTダイよりシ−ト状に押し出して、40〜68℃のチルロ−ルで冷却固化されて未延伸シ−トになる。次に、この未延伸シ−トを80〜100℃の温度でMDに2.5〜5.0倍に延伸する。MDに延伸後は一端40〜68℃の温度まで冷却後、ステンタ−に送り込み、更に90〜130℃の温度でTDに3.0〜6.0倍に延伸する。このようにして二軸延伸されたフイルムは、そのまま同じステンタ−内の熱処理ゾ−ンへ送り込まれ、ここで180〜240℃の温度で1〜30秒間熱処理される。この熱処理でフイルムの結晶化度が大幅に上がり、熱収開始温度が大幅に向上するばかりか、フイルムの強度や寸法安定性も同時に向上することができる。ステンタ−内で熱処理されたフイルムは、ステンタ−アウト後ほぼ常温まで冷却され、巻取機で巻き取られる。ここで巻き上げられたフイルムロ−ルをスリッタ−にかけて、必要な幅、巻き長さに切断し巻き上げる。
【0018】
本発明のコンデンサ用誘電体フイルムの樹脂塗膜層を形成する樹脂は特に制限はないが、例えばポリエステル系樹脂、ポリオレフィン系樹脂、ウレタン系樹脂、およびアクリル系樹脂がこのましく、なかでも電気的特性や工業的利用性からポリエステル系樹脂が好ましい。ポリエステル系樹脂は、例えばテレフタル酸やイソフタル酸などの多価カルボン酸とエチレングリコ−ルや1,2−プロピレングリコ−ルなどの多価ヒドロキシ化合物の常法の重合反応などによって、工業的に合成することができる。また、樹脂のガラス転移点は0〜90℃の範囲であることが必要である。ガラス点移転が0℃未満の樹脂を用いた場合、フイルムにベタツキ感が生じてフイルムの滑り性が悪くなり、巻取ジワが起こりやすくなる。特に高速巻取加工時に十分な対応ができなくなる。また、ガラス転移点が90℃以上の樹脂を用いてコンデンサを作成した場合、樹脂と電極金属との層間に空気などが残留しやすくなり、このため課電時に内部放電が発生してコンデンサ性能を著しく低下させる。更に好ましくは、ガラス転移点が15〜70℃の範囲にあるのが望ましい。また、樹脂塗膜層を形成する場合、1種類のポリエステル樹脂の単独使でも、2種類以上のポリエステル樹脂の混合や多層複合であってもかまわない。
【0019】
樹脂塗膜層の厚さは、0.2〜10μmの範囲であることが必要である。樹脂塗膜層の厚さが0.2μm未満の場合、コンデンサ素子製造時の熱処理工程で、樹脂と電極金属との密着性が劣るばかりか、均一な樹脂塗膜層が得にくいため塗膜むらが生じて、製品の品質のバラツキが大きくなる。また樹脂塗膜層の厚が10μmを越えると、密着力が飽和するばかりか、ブロッキングが発生しやすい。更に好ましくは樹脂塗膜層の厚さが、0.3〜5μmの範囲が望ましい。
【0020】
本発明のコンデンサ用誘電体フイルムの樹脂塗膜層を形成する方法としては、特に限定はないが、既知のコ−ティング方式、例えば、リバ−スロ−ルコ−タ−、グラビアコ−タ−、ロッドコ−タ−、エアドクタ−コタ−などが挙げられるが、これ以外の塗工装置であってもかまわない。また、塗布液を塗布する場合、フイルムの製造工程内、フイルムの製造工程外いずれであってもかまわない。
【0021】
本発明のコンデンサに用いる金属電極は、特に制限はなく、常法の真空蒸着法などにより、フイルムに金属蒸着層を施した金属化フイルムや、箔巻きコンデンサによく用いられる金属箔であってもかまわない。また、金属電極を構成する金属も特に制限はなく、例えばAl、Zn、Cu、Cr、Sn、Ag、Niなどからなり、1種類の金属の単独、または2種以上の金属の合金や多層複合であってもかまわない。
【0022】
本発明はコンデンサ用誘電体フイルムの樹脂塗膜面と電極金属が接するように対向し、積層又は巻回してコンデンサとする。かかるコンデンサ素子は積層又は巻回し後、常法に従って、例えば熱プレス、メタリコン、リ−ド線取り付け、電圧処理、外装樹脂加工などの工程を経てコンデンサとなるが、これに限定されるものではない。
【0023】
次ぎに本発明における実施例中の測定方法、評価方法について説明する。
【0024】
(1)樹脂のガラス転移点(TG)
繊維、高分子測定法の技術(繊維学会偏)に準じて示差走査熱量計(DSC)を用いて測定した。
【0025】
(2)熱収開始温度(℃)
SINKU−RIKO(ULVAC)社製、TM9300型を用いて、
下記の条件で測定した。
【0026】
試験片幅 : 5mm
試験片長さ:100mm
初期加重 : 1g
昇温速度 : 10℃/分
図1に本発明のコンデンサ用誘電体フイルムの測定チャ−トの一例を示した。
【0027】
(3)初期コンデンサ容量(μF)
課電前のコンデンサ素子を、安藤電気製LCRメ−タ−(タイプAG− 4311)を用いて、25℃の雰囲気中で、電圧1V、周波数1KHz の条件で容量を測定した。
【0028】
(4)課電コンデンサ容量(μF)
コンデンサ素子を110℃の高温中で7KvDCの電圧を1000時間 課電し、初期コンデンサ容量測定時と同様に安藤電気製LCRメ−タ− で、課電後の容量を測定した。
【0029】
(5)容量変化率(%)
容量変化率は、次式で求めた。
【0030】
【数1】

Figure 0003893552
(6)誘電正接(%)
コンデンサ容量測定時と同様に安藤電気製LCRメ−タ−で、誘電正接 を測定した。
【0031】
(7)コンデンサ製造時の容量バラツキ(μF)
コンデンサ素子100個を製造して、課電前のコンデンサ容量を前記(3)の通り測定し、次式にて製造時のコンデンサ容量の標準偏差(σn-1 )を求めた。
【0032】
【数2】
Figure 0003893552
(8)ブロッキング性
2枚のコンデンサ用誘電体フイルムを、表裏面が向かい合い接するう重 ねて50mm角にカットし、これを1つの試験片として1サンプルにつ き10片の試験片を用意する。試験片どうしが密着しないように、試験 片と試験片の間に離型紙を挿入して重ね合わせ、凹凸のない滑らかなガ ラス板の上から40g/cm2 加重して、40℃×85%RHの条件下 で7日間放置する。その後、試験片の剥離強度を引張り試験機にて、9 0度の剥離角度で引張り速度200mm/分の条件で剥離強度を求める。
【0033】
ブロッキング性の判定
○ : 剥離強度が2g/cm未満
△ : 剥離強度が2〜10g/cm
× : 剥離強度が10g/cm以上
以下、実施例及び比較例により具体的かつ詳細に説明する。ただし、本発明はこれに限定するものではい。
【0034】
【実施例】
参考例1]
テレフタル酸とエチレングリコ−ルの共重合からなる重量平均分子量が38000〜40000で、融点が268℃、ガラス転移点が69℃のペレット状のポリエチレンテレフタレ−ト樹脂を十分に乾燥して押出機に供給する。供給したペレットを270℃からシリンダ−内で順に290℃まで加熱し溶融し溶融流体とする。溶融流体はフィルタ−で濾過し、スリットを施したTダイよりシ−ト状に押し出して、50℃のチルロ−ルで冷却固化し未延伸シ−トとする。次に、この未延伸シ−トを100℃の温度でMDに5.0倍に延伸する。こらを一端45℃の温度まで冷却後、ステンタ−に送り込み、更に125℃の温度でTDに5.5倍に延伸する。このようにして厚さが12μmの二軸延伸フイルムとした。このフイルムをそのまま同じステンタ−内の熱処理ゾ−ンへ送り込み、ここで200℃の温度で5秒間熱処理する。ステンタ−内で熱処理したフイルムを、ステンタ−アウト後ほぼ常温まで冷却し、巻取機で巻き取る。ここで巻き上げられたロ−ルをスリッタ−にかけて、幅1000mmに切断し、巻き長さ4000mで巻き上げた。
【0035】
このフイルムの片面に、ガラス転移点が35〜40℃のポリエステル樹脂の固形分濃度が15%となるようにエチルメチルケトン:メチルベンゼン=8:2の混合液で希釈し、この溶液に粒径0.02〜0.05μmのSiO2 をポリエステル樹脂の固形分に対して1%添加し、グラビア法にて塗工する。その後、5Kg/m幅の張力を掛ながら、130℃の温度で5秒間トンネルオ−ブンで乾燥し、乾燥後の塗布厚みを0.5〜0.7μmとする。さらにその後、チルゾ−ンで冷却後、常温で巻き取る。この塗布原反を製品スリッタ−で40mm幅に狭幅スリットし、誘電体フイルムリ−ルサンプルとした。一方、厚さ6μmのポリエステルフイルムの片面に、主成分がALで膜抵抗が1.5Ω/□の蒸着金属を施した金属化フイルムを1ペア(2リ−ル)を用意した。前記の誘電体フイルム2枚と金属化フイルム2枚が、互いに誘電体フイルムの樹脂塗布面と金属化フイルムの蒸着面が向かい合うように交互に積層してコンデンサ容量が1μFとなるように巻き回した。この巻き回したものを、40℃、3×10-3Torrの減圧下で5時間フイルム層間の空気の排除処理を行い、さらに120℃で5Kg/cm2 の圧力で1時間熱プレスする。これを常温まで冷却し、さらにメタリコン、リ−ド線取り付け、電圧処理、樹脂外装をしてコンデンサとした。
【0036】
参考例2]
製膜時の熱処理温度を100℃とした以外は、参考例1と同様にコンデンサを作成した。
【0037】
[実施例
樹脂塗布加工の際、トンネルオ−ブンでの乾燥温度を160℃とした以外は、参考例1と同様にコンデンサを作成した。
【0038】
参考例3
製膜でのフイルム厚さを25μmした以外は、参考例1と同様にコンデンサを作成した。
【0039】
参考例4
製膜でのフイルム厚さを3μmした以外は、参考例1と同様にコンデンサを作成した。
【0040】
参考例5
樹脂塗布加工の際、塗布厚みを8μmとした以外は、参考例1と同様にコンデンサを作成した。
【0041】
参考例6
樹脂塗布加工でポリエステル樹脂のガラス転移点が75℃のものを用いた以外は、参考例1と同様にコンデンサを作成した。
【0042】
[比較例1]
製膜時のMDの延伸倍率を2.0倍とした以外は、参考例1と同様にコンデンサを作成した。
【0043】
[比較例2]
製膜時のMDの延伸倍率を2.0倍、TDの延伸倍率を2.5倍とし、熱処理温度を100℃とした以外は、参考例1と同様にコンデンサを作成した。
【0044】
[比較例3]
製膜でのフイルム厚さを75μmした以外は、参考例1と同様にコンデンサを作成した。
【0045】
[比較例4]
製膜でのフイルム厚さを0.8μmした以外は、参考例1と同様にコンデンサを作成した。
【0046】
[比較例5]
樹脂塗布加工での塗布厚みを15μmとした以外は、参考例1と同様にコンデンサを作成した。
【0047】
[比較例6]
樹脂塗布加工での塗布厚みを0.1μmとした以外は、参考例1と同様にコンデンサを作成した。
【0048】
[比較例7]
樹脂塗布加工で樹脂のガラス転移点が−5℃のものを用いた以外は、参考例1と同様にコンデンサを作成した。
【0049】
[比較例8]
樹脂塗布加工で樹脂のガラス転移点が120℃のものを用いた以外は、参考例1と同様にコンデンサを作成した。
【0050】
[比較例9]
フイルムに樹脂塗布加工せずに、参考例1と同様にコンデンサを作成した。
【0051】
実施例、参考例、比較例の結果を表1および表2に示した。
【0052】
【表1】
Figure 0003893552
【0053】
【表2】
Figure 0003893552
【0054】
【発明の効果】
本発明により、コンデンサ製造時の熱処理工程で誘電体フイルムの熱変形量が小さく、製造ロット内のコンデンサ容量のバラツキが少ない優れたコンデンサ用誘電体フイルムと、かかるコンデンサ用誘電体フイルムを用いて、特に高温下での課電時にコンデンサ容量の低下が少ない優れたコンデンサを得ることができる。
【0055】
また本発明は、コンデンサ性能が優れていることは勿論であるが、素子巻きなどの作業性や、耐ブロッキング性も良好である。
【図面の簡単な説明】
【図1】:本発明のコンデンサ用誘電体フイルムの熱収開始温度の測定チャ−トの一例である。
【符号の説明】
A点:測定開始温度(℃)
B点:最大伸び温度(℃)
C点:熱収開始温度(℃)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric film for a capacitor and a capacitor using the dielectric film as a dielectric.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a capacitor dielectric film in which a heat-plastic resin layer is provided on a dielectric film and a wound capacitor using the same are known, for example, in Japanese Patent Publication No. 3-12447.
[0003]
In this publication, a dielectric film coated with a heat-plastic resin layer and a deposited metal are alternately laminated or wound so as to be in contact with each other, and are heated and adhered at a temperature higher than the melting point or softening point of the heat-plastic resin layer. Techniques to do this are disclosed. It teaches that the adhesion between the heat-plastic resin layer and the vapor-deposited metal serving as an electrode prevents the destruction of the capacitor, extends the capacitor life, and improves the reliability. In addition, as a known technique, it is generally known that the dielectric and the electrode are in close contact, that is, air is not present between the two layers, thereby suppressing the occurrence of internal discharge and improving the capacitor performance. ing.
[0004]
However, in the prior art, when the dielectric film and the deposited metal are in close contact with each other, sufficient adhesion cannot be obtained unless the heating temperature is increased. For this reason, the plastic film of the base material undergoes thermal deformation, There is a disadvantage that the capacity of the capacitor is reduced, and there is a limit to improving the adhesion even if the press pressure is increased, so that the laminate is pressed to improve the adhesion between the dielectric film and the deposited metal. In addition, the electrode metal is stressed by a strong pressure, resulting in a disadvantage that the capacitor performance is deteriorated.
[0005]
[Problems to be solved by the invention]
The present invention solves such a problem, and in particular, an excellent capacitor dielectric film in which the amount of thermal deformation of the dielectric film is small in the heat treatment process during capacitor manufacturing and the capacitance of the capacitor in the manufacturing lot is small, and the capacitor dielectric. An object of the present invention is to provide an excellent capacitor using a body film, in which a decrease in the capacitance of the capacitor is small particularly when applying electricity at a high temperature.
[0006]
[Means for Solving the Problems]
A capacitor dielectric film of the present invention that meets this object and a capacitor using such a capacitor dielectric film have the following configuration.
[0007]
[1] A resin coating layer having a glass transition point of 0 to 90 ° C. having a thickness of 0.2 to 10 μm is formed on at least one surface of a polyester film having a thickness of 1 to 50 μm. A dielectric film for a capacitor, wherein a heat-start temperature in the length direction (hereinafter abbreviated as MD) of the film is in the range of 90 to 150 ° C.
[0008]
[2] The dielectric film for a capacitor as described in [1] above, wherein a difference in heat recovery start temperature between the MD of the polyester film and the width direction (hereinafter abbreviated as TD) is less than 50 ° C.
[0010]
[ 3 ] The capacitor dielectric film according to the above [1] or [2] is opposed so that the resin coating film surface is in contact with the electrode metal, and the capacitor dielectric film and the electrode metal are laminated or wound. A rotating capacitor.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Off Ilm of the present invention is the dielectric properties or, a polyester film from the industrial use of when the capacitor. In particular, a polyethylene terephthalate film having an ethylene terephthalate structural unit of 80% or more is preferable.
[0012]
Such a polyester film is required to have a heat yield starting temperature of MD in the range of 90 to 150 ° C. If NetsuOsamu starting temperature of MD is less than 90 ° C., and a heat treatment step during capacitor device production, if the element is exposed to a high temperature in external conditions, polyester fill-beam is caused thermal deformation, to decrease capacitance The On the other hand, if the heat yield starting temperature of the MD exceeds 150 ° C., the heat inside the capacitor element manufacturing process, or when the element is exposed to high temperature under external conditions, the air inside the capacitor element will cause air-out defects, For this reason, an internal discharge is generated at the time of power application, and the capacitor performance is remarkably deteriorated . It ranges NetsuOsamu starting temperature of 90 to 150 ° C. of M D, it is possible to supply a good Masui capacitor Within this range.
[0013]
Moreover, it is preferable that the difference of the heat | fever start temperature of MD and TD of this polyester film is less than 50 degreeC. If the difference NetsuOsamu starting temperature of MD and TD is not less than 50 ° C., and a heat treatment step during capacitor device production, if the element is exposed to a high temperature in external conditions, Ru good thermal aberration of the film in the MD and TD Distortion occurs, and wrinkles and air lines are generated inside the capacitor element. For this reason, internal discharge is generated during power application, and the capacitor performance tends to be deteriorated. More preferably, the difference between the heat yield starting temperatures of MD and TD is preferably less than 30 ° C.
[0014]
Moreover, the thickness of the polyester film used for this invention needs to be the range of 1-50 micrometers. If the thickness of the polyester film is less than 1 μm, there is a problem in film breakage during processing and handling properties, and if it exceeds 50 μm, the capacitor element becomes too large to obtain a sufficient capacitor capacity. More preferably, the thickness of the polyester film is 3 to 25 μm.
[0015]
In addition, the production method of the polyester film used in the present invention is not particularly limited, and the biaxial stretching method is preferable in terms of the uniformity of the thickness of the obtained film and the excellent mechanical properties, but by the uniaxial stretching method. It does not matter if it is a thing. Of course, either the inflation method or the stenter method may be used. However, the effect of the invention can be obtained by setting the heat yield starting temperature of the plastic film used in the present invention in the range of 90 to 150 ° C. As a method for setting the heat yield starting temperature of MD within the above range, the stretching ratio and heat treatment temperature during film formation, and the tension and processing temperature during coating for applying a resin coating layer to the film should be selected appropriately. Can do.
[0016]
Next, an example of the manufacturing method of the polyester film used for this invention is demonstrated.
[0017]
Pelletized polyethylene terephthalate resin with a weight average molecular weight of 35,000 to 40,000 consisting of a copolymer of terephthalic acid and ethylene glycol, melting point of 260 to 270 ° C. and glass transition point of 67 to 71 ° C. is sufficiently dried. Then, it is supplied to the extruder. The supplied pellet is heated and melted at 270 to 290 ° C. to obtain a molten fluid having a viscosity of 2000 to 4000 poise. The molten fluid is filtered through a filter, extruded through a slit-shaped T die, and cooled and solidified with a chill roll at 40 to 68 ° C. to become an unstretched sheet. Next, this unstretched sheet is stretched 2.5 to 5.0 times in the MD at a temperature of 80 to 100 ° C. After stretching to MD, it is cooled to a temperature of 40 to 68 ° C. at one end, sent to a stenter, and further stretched to 3.0 to 6.0 times TD at a temperature of 90 to 130 ° C. The film biaxially stretched in this way is sent as it is to the heat treatment zone in the same stenter, where it is heat treated at a temperature of 180 to 240 ° C. for 1 to 30 seconds. By this heat treatment, the crystallinity of the film is greatly increased, the heat recovery starting temperature is greatly improved, and the strength and dimensional stability of the film can be simultaneously improved. The film heat-treated in the stenter is cooled to approximately room temperature after being out of the stenter and wound up by a winder. The film roll wound up here is applied to a slitter, cut into a necessary width and winding length, and wound up.
[0018]
The resin for forming the resin film layer of the dielectric film for capacitors of the present invention is not particularly limited. For example, polyester resins, polyolefin resins, urethane resins, and acrylic resins are preferable. Polyester resins are preferred because of their properties and industrial applicability. Polyester resins are industrially synthesized by, for example, conventional polymerization reactions of polyvalent carboxylic acids such as terephthalic acid and isophthalic acid and polyvalent hydroxy compounds such as ethylene glycol and 1,2-propylene glycol. can do. Moreover, the glass transition point of resin needs to be the range of 0-90 degreeC. When a resin having a glass point transfer of less than 0 ° C. is used, the film has a sticky feeling, the film becomes less slippery and wrinkles tend to occur. In particular, a sufficient response cannot be achieved during high-speed winding processing. In addition, when a capacitor is made using a resin having a glass transition point of 90 ° C. or higher, air or the like tends to remain between the resin and the electrode metal, which causes internal discharge during power application, resulting in improved capacitor performance. Reduce significantly. More preferably, the glass transition point is in the range of 15 to 70 ° C. When the resin coating layer is formed, one type of polyester resin may be used alone, or a mixture of two or more types of polyester resins or a multilayer composite may be used.
[0019]
The thickness of the resin coating layer needs to be in the range of 0.2 to 10 μm. When the thickness of the resin coating layer is less than 0.2 μm, the adhesion between the resin and the electrode metal is inferior in the heat treatment process at the time of manufacturing the capacitor element, and it is difficult to obtain a uniform resin coating layer. As a result, variations in product quality increase. On the other hand, when the thickness of the resin coating layer exceeds 10 μm, not only the adhesion is saturated but also blocking is likely to occur. More preferably, the resin coating layer has a thickness of 0.3 to 5 μm.
[0020]
The method for forming the resin film layer of the dielectric film for a capacitor of the present invention is not particularly limited, but known coating methods such as a reverse roll coater, a gravure coater, Although a rod coater, an air doctor coater, etc. are mentioned, other coating apparatuses may be used. Moreover, when apply | coating a coating liquid, it does not matter in the manufacturing process of a film, and the manufacturing process of a film.
[0021]
The metal electrode used in the capacitor of the present invention is not particularly limited, and may be a metallized film obtained by applying a metal vapor deposition layer to a film by a conventional vacuum vapor deposition method, or a metal foil often used for a foil wound capacitor. It doesn't matter. Further, the metal constituting the metal electrode is not particularly limited, and is made of, for example, Al, Zn, Cu, Cr, Sn, Ag, Ni, etc., one kind of metal alone, or an alloy or multilayer composite of two or more kinds of metals. It doesn't matter.
[0022]
In the present invention, a resin film surface of a dielectric film for a capacitor and the electrode metal face each other so that they are in contact with each other, and are laminated or wound to form a capacitor. Such a capacitor element becomes a capacitor through steps such as heat pressing, metallicon, lead wire attachment, voltage treatment, exterior resin processing, etc. in accordance with a conventional method after being laminated or wound, but is not limited thereto. .
[0023]
Next, measurement methods and evaluation methods in the examples of the present invention will be described.
[0024]
(1) Glass transition point (TG) of resin
It measured using the differential scanning calorimeter (DSC) according to the technique of the fiber and polymer | macromolecule measuring method (textile society bias).
[0025]
(2) Heat recovery start temperature (℃)
Using TM9300 type made by SINKU-RIKO (ULVAC),
The measurement was performed under the following conditions.
[0026]
Test piece width: 5 mm
Test piece length: 100 mm
Initial weight: 1g
Temperature rising rate: 10 ° C./minute FIG. 1 shows an example of a measurement chart of the capacitor dielectric film of the present invention.
[0027]
(3) Initial capacitor capacity (μF)
The capacitance of the capacitor element before charging was measured under the conditions of a voltage of 1 V and a frequency of 1 KHz in an atmosphere of 25 ° C. using an LCR meter (type AG-4311) manufactured by Ando Electric.
[0028]
(4) Charging capacitor capacity (μF)
The capacitor element was applied with a voltage of 7 KvDC at a high temperature of 110 ° C. for 1000 hours, and the capacitance after the application was measured with an LCR meter manufactured by Ando Electric in the same manner as the initial capacitor capacity measurement.
[0029]
(5) Capacity change rate (%)
The capacity change rate was obtained by the following equation.
[0030]
[Expression 1]
Figure 0003893552
(6) Dissipation factor (%)
The dielectric loss tangent was measured with an LCR meter manufactured by Ando Electric in the same manner as when measuring the capacitor capacity.
[0031]
(7) Capacitance variation (μF) during capacitor manufacturing
100 capacitor elements were manufactured, and the capacitor capacity before power application was measured as described in (3) above, and the standard deviation (σ n-1 ) of the capacitor capacity at the time of manufacture was determined by the following equation.
[0032]
[Expression 2]
Figure 0003893552
(8) Blocking properties Two dielectric films for capacitors are cut into 50mm squares, with the front and back facing each other, and 10 test pieces are prepared for each sample. . Insert the release paper between the test pieces so that the test pieces do not adhere to each other, overlap them, apply 40 g / cm 2 on the smooth glass plate without irregularities, and apply 40 ° C x 85%. Leave for 7 days under RH conditions. Thereafter, the peel strength of the test piece is obtained with a tensile tester at a peel angle of 90 degrees and a pulling speed of 200 mm / min.
[0033]
Determination of blocking property ○: Peel strength is less than 2 g / cm Δ: Peel strength is 2 to 10 g / cm
X: Peel strength is 10 g / cm or more and will be described specifically and in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to this.
[0034]
【Example】
[ Reference Example 1]
Extruder by sufficiently drying pellet-like polyethylene terephthalate resin having a weight average molecular weight of 38000 to 40,000 consisting of copolymer of terephthalic acid and ethylene glycol, melting point of 268 ° C. and glass transition point of 69 ° C. To supply. The supplied pellets are heated in order from 270 ° C. to 290 ° C. in a cylinder and melted to obtain a molten fluid. The molten fluid is filtered through a filter, extruded through a slit-shaped T die, and cooled and solidified with a chill roll at 50 ° C. to obtain an unstretched sheet. Next, this unstretched sheet is stretched 5.0 times in MD at a temperature of 100 ° C. After cooling this was found to a temperature end 45 ° C., stenter - the infeed and further stretched 5.5 times in the TD at a temperature of 125 ° C.. A biaxially stretched film having a thickness of 12 μm was thus obtained. This film is sent as it is to a heat treatment zone in the same stenter, where it is heat treated at a temperature of 200 ° C. for 5 seconds. The film heat-treated in the stenter is cooled to approximately room temperature after the stenter out, and is wound up by a winder. The roll wound up here was applied to a slitter, cut into a width of 1000 mm, and wound up at a winding length of 4000 m.
[0035]
On one side of the film, the polyester resin having a glass transition point of 35 to 40 ° C. is diluted with a mixed solution of ethyl methyl ketone: methylbenzene = 8: 2 so that the solid content concentration is 15%. 1% of 0.02 to 0.05 μm of SiO 2 is added to the solid content of the polyester resin, and coating is performed by a gravure method. Thereafter, while applying a tension of 5 kg / m width, the film is dried with a tunnel oven at a temperature of 130 ° C. for 5 seconds, and the coating thickness after drying is set to 0.5 to 0.7 μm. Further, after cooling with chill zone, it is wound at room temperature. The coating raw material was slit into a width of 40 mm with a product slitter to obtain a dielectric film reel sample. On the other hand, one pair (2 reels) of a metallized film prepared by applying a vapor deposition metal having a main component of AL and a film resistance of 1.5Ω / □ on one side of a 6 μm thick polyester film was prepared. The two dielectric films and the two metallized films were alternately laminated so that the resin-coated surface of the dielectric film and the vapor-deposited surface of the metallized film face each other, and were wound so that the capacitor capacity became 1 μF. . The wound material is subjected to air exclusion treatment at 40 ° C. under a reduced pressure of 3 × 10 −3 Torr for 5 hours, and further hot-pressed at 120 ° C. under a pressure of 5 kg / cm 2 for 1 hour. This was cooled to room temperature, and further a metallicon, lead wire attachment, voltage treatment, and resin sheathing were used to obtain a capacitor.
[0036]
[ Reference Example 2]
A capacitor was prepared in the same manner as in Reference Example 1 except that the heat treatment temperature during film formation was 100 ° C.
[0037]
[Example 1 ]
A capacitor was prepared in the same manner as in Reference Example 1 except that the drying temperature in the tunnel oven was 160 ° C. during the resin coating process.
[0038]
[ Reference Example 3 ]
Except that the film thickness at film and 25μm were prepared capacitors in the same manner as in Reference Example 1.
[0039]
[ Reference Example 4 ]
Except that the film thickness at film and 3μm was that capacitor in the same manner as in Reference Example 1.
[0040]
[ Reference Example 5 ]
A capacitor was prepared in the same manner as in Reference Example 1 except that the coating thickness was 8 μm during the resin coating process.
[0041]
[ Reference Example 6 ]
A capacitor was prepared in the same manner as in Reference Example 1 except that the glass transition point of the polyester resin was 75 ° C. in the resin coating process.
[0042]
[Comparative Example 1]
A capacitor was prepared in the same manner as in Reference Example 1 except that the draw ratio of MD during film formation was 2.0.
[0043]
[Comparative Example 2]
A capacitor was prepared in the same manner as in Reference Example 1 except that the MD draw ratio during film formation was 2.0 times, the TD draw ratio was 2.5 times, and the heat treatment temperature was 100 ° C.
[0044]
[Comparative Example 3]
Except that the film thickness at film and 75μm were prepared capacitors in the same manner as in Reference Example 1.
[0045]
[Comparative Example 4]
Except that the film thickness at film and 0.8μm have created a capacitor in the same manner as in Reference Example 1.
[0046]
[Comparative Example 5]
A capacitor was prepared in the same manner as in Reference Example 1 except that the coating thickness in the resin coating process was 15 μm.
[0047]
[Comparative Example 6]
A capacitor was prepared in the same manner as in Reference Example 1 except that the coating thickness in the resin coating process was 0.1 μm.
[0048]
[Comparative Example 7]
A capacitor was prepared in the same manner as in Reference Example 1 except that a resin having a glass transition point of −5 ° C. was used in the resin coating process.
[0049]
[Comparative Example 8]
A capacitor was prepared in the same manner as in Reference Example 1 except that a resin having a glass transition point of 120 ° C. was used in the resin coating process.
[0050]
[Comparative Example 9]
A capacitor was prepared in the same manner as in Reference Example 1 without applying resin to the film.
[0051]
The results of Examples, Reference Examples, and Comparative Examples are shown in Tables 1 and 2.
[0052]
[Table 1]
Figure 0003893552
[0053]
[Table 2]
Figure 0003893552
[0054]
【The invention's effect】
According to the present invention, by using the excellent dielectric film for a capacitor with a small amount of thermal deformation of the dielectric film in the heat treatment process at the time of manufacturing the capacitor and less variation in the capacity of the capacitor in the production lot, and such a dielectric film for a capacitor, In particular, it is possible to obtain an excellent capacitor with little decrease in the capacitance of the capacitor during power application at high temperatures.
[0055]
In addition, the present invention is excellent in capacitor performance, but also has good workability such as element winding and blocking resistance.
[Brief description of the drawings]
FIG. 1 is an example of a chart for measuring a heat recovery start temperature of a dielectric film for a capacitor according to the present invention.
[Explanation of symbols]
Point A: Measurement start temperature (° C)
Point B: Maximum elongation temperature (° C)
Point C: Heat yield starting temperature (° C)

Claims (3)

厚さが1〜50μmの範囲であるポリエステルフイルムの少なくとも片面に、厚さが0.2〜10μmの範囲であるガラス転移点が0〜90℃の樹脂塗膜層が形成されてなり、かつ該フイルムの長さ方向の熱収開始温度が90〜150℃の範囲であることを特徴とするコンデンサ用誘電体フイルム。A resin coating layer having a glass transition point of 0 to 90 ° C. having a thickness of 0.2 to 10 μm is formed on at least one surface of the polyester film having a thickness of 1 to 50 μm, and A dielectric film for a capacitor, characterized in that a heat recovery starting temperature in a length direction of the film is in a range of 90 to 150 ° C. ポリエステルフイルムの長さ方向と幅方向の熱収開始温度の差が50℃未満であることを特徴とする請求項1記載のコンデンサ用誘電体フイルム。 2. The dielectric film for a capacitor according to claim 1, wherein the difference between the heat recovery start temperatures in the length direction and the width direction of the polyester film is less than 50.degree. 請求項1または2に記載のコンデンサ用誘電体フイルムの樹脂塗膜面と電極金属が接するように対向してなり、かつ該コンデンサ用誘電体フイルムと電極金属が積層又は巻回してなるコンデンサ。A capacitor formed by opposing the resin coating surface of the dielectric film for capacitors according to claim 1 or 2 and the electrode metal so as to contact each other and by laminating or winding the capacitor dielectric film and the electrode metal.
JP29774797A 1997-10-15 1997-10-15 Dielectric film for capacitors and capacitors Expired - Fee Related JP3893552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29774797A JP3893552B2 (en) 1997-10-15 1997-10-15 Dielectric film for capacitors and capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29774797A JP3893552B2 (en) 1997-10-15 1997-10-15 Dielectric film for capacitors and capacitors

Publications (2)

Publication Number Publication Date
JPH11121268A JPH11121268A (en) 1999-04-30
JP3893552B2 true JP3893552B2 (en) 2007-03-14

Family

ID=17850661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29774797A Expired - Fee Related JP3893552B2 (en) 1997-10-15 1997-10-15 Dielectric film for capacitors and capacitors

Country Status (1)

Country Link
JP (1) JP3893552B2 (en)

Also Published As

Publication number Publication date
JPH11121268A (en) 1999-04-30

Similar Documents

Publication Publication Date Title
JPH0373341A (en) Film for thermocompression-bonded printed laminate
JP5915542B2 (en) Laminated polyester film and method for producing the same
JP3893552B2 (en) Dielectric film for capacitors and capacitors
JPH03197136A (en) Biaxially oriented plastic film and capacitor used thereof
JP2019094475A (en) Polyester film
JP3931310B2 (en) Dielectric film for capacitors and capacitors
JPH11273990A (en) Polypropylene film for heat-resistant capacitor
JPH11283861A (en) Dielectric film for capacitor and capacitor
JPH05261868A (en) Release laminated sheet and use thereof
JPH10156938A (en) Polypropylene film and capacitor using the same as dielectric
JP3018543B2 (en) Polyphenylene sulfide laminated film and capacitor using the same
JP2000218738A (en) Biaxially oriented polyphenylene sulfide laminated film and capacitor using the same
JPH0388118A (en) Magnetic recording medium
JP2002020508A (en) Polyphenylene sulfide film and capacitor
JP2000106318A (en) Polyester film for capacitor and the capacitor
JPH0399845A (en) Laminated polyphenylene sulfide film
JPH06134948A (en) Biaxially oriented multilayer composite film
JPS6131236A (en) Manufacture of superthin film
JP2000218740A (en) Polyphenylene sulfide laminated film and capacitor using the film
JPH0462136A (en) Biaxially oriented film
JPS63239810A (en) Manufacture of capacitor element
JPH03202345A (en) Polyester laminated film
KR100193688B1 (en) Manufacturing method of polyester film
JP3010690B2 (en) Laminated film
JPH0456308A (en) Manufacture of capacitor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees