JP3892259B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3892259B2
JP3892259B2 JP2001279062A JP2001279062A JP3892259B2 JP 3892259 B2 JP3892259 B2 JP 3892259B2 JP 2001279062 A JP2001279062 A JP 2001279062A JP 2001279062 A JP2001279062 A JP 2001279062A JP 3892259 B2 JP3892259 B2 JP 3892259B2
Authority
JP
Japan
Prior art keywords
substrate
rigid
rigid substrate
flexible
collective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001279062A
Other languages
Japanese (ja)
Other versions
JP2003086761A (en
Inventor
伊和男 田原
祐司 根岸
伸治 脇坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Oki Electric Industry Co Ltd
Original Assignee
Casio Computer Co Ltd
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd, Oki Electric Industry Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2001279062A priority Critical patent/JP3892259B2/en
Publication of JP2003086761A publication Critical patent/JP2003086761A/en
Application granted granted Critical
Publication of JP3892259B2 publication Critical patent/JP3892259B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01067Holmium [Ho]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数の半導体チップを高密度実装する半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
近年、中間基板を用いて複数の半導体チップを高密度実装するマルチチップモジュールが知られている。この種の技術として、例えば特開2000−307037号公報には、図10(イ)〜(ハ)に図示するように、可撓性を有するフレキシブル基板100上に、バンプ101を介して2つの半導体チップ102,102をフリップチップ実装し、その後にフレキシブル基板100を屈曲させて両チップ102,102の背面同士を当接させた状態で接着固定して積層し、屈曲させたフレキシブル基板100の接続パッド103に形成されるハンダボール104を介して配線基板に接続するようにしたマルチチップモジュールが開示されている。
【0003】
【発明が解決しようとする課題】
ところで、こうしたマルチチップモジュール構造の半導体装置では、可撓性のフレキシブル基板100を使用しているので、当該基板100に撓みや捩れが生じ易い。この為、汎用のチップマウンタや基板搬送システムに適用し難い弊害や、とりわけ半導体チップ102をフェイスダウンで実装する際に位置ずれが起こり易くなる結果、製造歩留りの低下を招致するという問題がある。
【0004】
また、上述のモジュール構造では、フレキシブル基板100の屈曲により積層される半導体チップ102の裏面同士が接着固定されるだけであって、さらにチップ周辺は露出状態にあるから耐湿性に欠け、信頼性低下を招致するという問題もある。
【0005】
そこで本発明は、このような事情に鑑みてなされたもので、汎用のチップマウンタや基板搬送システムに適用できる上、製造歩留りの低下や信頼性を損うこと無く高密度実装することができる半導体装置およびその製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
【0014】
請求項1に記載の発明では、屈曲自在なフレキシブル基板と、このフレキシブル基板の1つの第1の領域の両面を挟み込む2枚のリジッド基板を備える第1のリジッド基板部と、前記フレキシブル基板の少なくとも1つの第2の領域の、少なくとも一方の面上に配設されるリジッド基板を備える第2のリジッド基板部とから構成されるリジッドフレックス基板を複数連結したシート状の集合基板を用い、前記集合基板の前記各リジッドフレックス基板における、前記第1のリジッド基板部の、前記第2のリジッド基板部における前記リジッド基板と同じ側の一方のリジッド基板上に、少なくとも1つの第1の半導体チップを実装するとともに、前記第2のリジッド基板部の前記リジッド基板に、少なくとも1つの第2の半導体チップを実装する半導体チップ実装工程と、前記集合基板の前記各リジッドフレックス基板における、前記第1のリジッド基板部の、他方のリジッド基板上に外部接続端子を形成する外部接続端子形成工程と、前記半導体チップ実装工程および前記外部接続端子形成工程後、前記集合基板上の前記各リジッドフレックス基板において、前記第1のリジッド基板部を集合基板に連結させたまま、前記第2のリジッド基板部の前記リジッド基板を当該集合基板から裁断して分離する分離工程と、前記各リジッドフレックス基板の前記第1のリジッド基板部と前記第2のリジッド基板部間の前記フレキシブル基板を可撓部として、前記第2のリジッド基板部が前記集合基板から分離された状態の前記各リジッドフレックス基板を、前記可撓部でそれぞれ屈曲させて前記各リジッド基板に実装される前記各半導体チップを積層し、その状態で上下に対向する半導体チップ同士を接着固定してなるモジュールを一括して樹脂モールドした後、前記第1のリジッド基板部の前記各リジット基板を集合基板から裁断してモジュール単位に個片化するモジュール形成工程と、を具備することを特徴とする。
【0015】
上記請求項1に従属する請求項2に記載の発明では、前記各リジッド基板にそれぞれ実装される各半導体チップは、突起電極を介して接続されるウェハレベルCSP構造を有することを特徴とする。
【0016】
上記請求項1に従属する請求項3に記載の発明によれば、前記モジュール形成工程では、上下に対向する半導体チップ同士が接着固定された複数のモジュールを個々に覆う金型を用い、これにより全モジュールを一括して樹脂モールドすることを特徴とする。
【0017】
本発明による半導体装置では、リジッドフレックス基板をフレキシブル基板からなる可撓部で屈曲させて各リジッド基板にそれぞれ実装される各半導体チップを積層させて樹脂封止する。これにより、積層された各半導体チップが固定保持されつつ気密封止される為、耐湿性に優れた信頼性の高い半導体装置を実現でき、しかもリジッドフレックス基板を用いたことで、基板の撓みや捩れがなくなる為、半導体チップ実装時の位置ずれを防ぐことができる結果、製造歩留りの低下を回避し得る。
【0018】
また、本発明による半導体装置の製造方法では、リジッドフレックス基板を複数連結したシート状の集合基板を使用しているので、撓みや捩れが発生せず、これ故、汎用のチップマウンタや基板搬送システムに適用でき、しかも実装時の位置ずれも回避し得る結果、製造歩留りの低下を防ぐ。
さらに、集合基板には複数のリジッドフレックス基板が配設される為、それら複数のリジッドフレックス基板に一括して半導体チップ実装、端子形成および樹脂封止するバッチ処理が実現し得、特別な実装プロセスを用いずとも効率良くモジュール構造の半導体装置を製造することができ、製品コスト低減に寄与し得るようになっている。
【0019】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態について説明する。
(1)第1実施例
▲1▼半導体装置10の構造
図1(イ)は第1実施例による半導体装置10の構造を示す断面図である。この図において、1はフレキシブル基板1aとリジッド基板1bとから形成されるリジッドフレックス基板である。リジッドフレックス基板1は、同図(ロ)に図示するように、フレキシブル基板1aと複数のリジッド基板1bを備え、フレキシブル基板1aの上下両面をリジッド基板1bで挟んだ所謂サンドイッチ構造を成した部分と、フレキシブル基板1aが露出された部分(可撓部)1cを有する複合基板である。
【0020】
すなわち、リジッドフレックス基板1は、フレキシブル基板1aが露出する可撓部1cで屈曲自在となり、また可撓部1cを境にして、両側にリジッド基板1bが上下両面に配設され、4面のリジッド基板1bを具備する。そして、可撓部1cを境にした一方側の、リジッド基板1bが上下両面に配設される部分(第1のリジッド基板部11)の一方のリジッド基板1bには、例えばウェハレベルCSP構造の半導体チップ2がフェイスダウンによりフリップチップ実装され、他方のリジッド基板1bには格子状にハンダボール3aを配設して外部接続端子3が形成される。また、可撓部1cを境にした他方側の、リジッド基板1bが上下両面に配設される部分(第2のリジッド基板部12)の各リジッド基板1bには、同様に、例えばウェハレベルCSP構造の半導体チップ2がフリップチップ実装される。
【0021】
また、後述するように、第1のリジッド基板部11の、一方の半導体チップ2がフリップチップ実装される側のリジッド基板1b、及び第2のリジッド基板部12の各リジッド基板1bには、半導体チップ実装用の接続端子パッド、配線パターン及びフレキシブル基板1aに形成される配線パターンに接続されるスルーホール等が形成され、第1のリジッド基板部11の、他方の外部接続端子3が形成されるリジッド基板1bには、外部接続端子形成用の端子パッド及び配線パターン及びスルーホール等が形成される。
【0022】
一方、フレキシブル基板1aには、リジッド基板1bに接続される配線パターンやスルーホール(あるいはビアホール)等が形成され、これらにより各リジッド基板1bの端子パッドおよび接続端子パッドがフレキシブル基板1aの配線パターンを介して相互に電気的に接続されるように構成されている。
【0023】
なお、ここで半導体チップ2をウェハレベルCSP構造によるものとしたが、このウェハレベルCSP構造は、ウェハ状態で半導体チップ上に絶縁層を形成した後、再配線層を形成し、次いで突起電極(ポスト端子)による接続用電極端子を形成した後、チップ毎に個片化して形成したものであり、半導体チップとほぼ同じ大きさで、且つ突起電極(ポスト端子)による接続用電極端子の配置を比較的自由に設定可能としたものである。
従って、半導体チップ2をウェハレベルCSP構造とした場合、後述する図2に示すように、リジッド基板1bに形成される半導体チップ実装用の接続端子パッドをマトリクス状に配置することができ、リジッド基板1bの大きさを小さくすることができる。ただし、本発明における各実施形態において、半導体チップ2の構成はこのウェハレベルCSP構造に限定されるものではなく、突起電極が形成された種々の構造による半導体チップを用いることができる。
【0024】
こうしてチップ実装および端子形成されたリジッドフレックス基板1は、可撓部1cで屈曲されることによって、各半導体チップ2を積層状態にする。この状態で上下に対向する半導体チップ2同士を接着固定してから、リジッド基板1bとの接合部を覆うようにリジッド基板1bに実装される各半導体チップ2を封止樹脂5にて気密封止する構造を有する。
【0025】
このようなモジュール構造にすると、積層状態の各半導体チップ2を固定保持しつつ気密封止し得る為、耐湿性に優れた信頼性の高い半導体装置10を実現できる。しかも、リジッドフレックス基板1を用いたことで、基板の撓みや捩れが大きく低減され、殆どなくなる為、チップ実装時の位置ずれを防ぐことができる結果、製造歩留りを向上させることができる。
また、リジッドフレックス基板1を用いると、半導体チップ2をフリップチップ実装する面が3面となり、フレキシブル基板100を用いた従来例(図10参照)に比べ、より高密度実装し得るようになる。
【0026】
なお、上記構成では、リジッドフレックス基板1における第2のリジッド基板部もリジッド基板1bが上下両面に配設される構成としたが、これに限るものではなく、少なくとも第1のリジッド基板部において半導体チップ2がフリップチップ実装される側のリジッド基板1bと同じ側にのみリジッド基板1bを配設する構成とし、そこに半導体チップ2をフリップチップ実装するようにしてもよい。
【0027】
▲2▼半導体装置10の製造方法
次に、図2〜図5を参照して上記構造による半導体装置10の製造方法について説明する。第1実施例による製造方法では、複数のリジッドフレックス基板1が連設して形成されたシート状の集合基板20を用いる。図2(イ)(ロ)に集合基板20の構成の一例を示す。この図に示す集合基板20は、フレキシブル基板からなるシート状基材21に4行3列のリジッドフレックス基板1を一体的に連設して形成したものであり、図2(イ)は集合基板20の平面形状を示し、図2(ロ)は集合基板20の、リジッドフレックス基板1が形成された部分を含む、A−A面での断面形状の要部を示す。
【0028】
図に示す如く、複数のリジッドフレックス基板1が形成される箇所においては、基材21をフレキシブル基板1aとして用い、これをリジッド基板1bで上下に挟んで、上下のリジット基板1bとフレキシブル基板1aとが一体化されるとともに、2つのリジット基板1b配設領域間のフレキシブル基板1aを可撓部1cとする、前記図1におけるリジッドフレックス基板1と同様の構成が複数連結して形成される。各連結部分には、予め開口部(以下、ミシン目)22が、各リジッドフレックス基板1形成箇所の周囲に設けられている。これにより、後述するように、このミシン目22に沿って連結部分を裁断することで、容易に各リジッドフレックス基板1を個片化し得るようになっている。
【0029】
図2(ロ)に示す各リジッドフレックス基板1において、図面上、右側のリジット基板1bとフレキシブル基板1aが一体化された部分を第1のリジッド基板部11、左側のリジット基板1bとフレキシブル基板1aが一体化された部分を第2のリジッド基板部12とした場合、ウェハレベルCSP構造による半導体チップが実装される、第1のリジッド基板部11の一方のリジッド基板1b、及び第2のリジッド基板部12の各リジッド基板1bには、例えば図2(イ)に示すようなマトリクス状の接続端子パッド1dや配線パターン、及び図2(ロ)に示すようなスルーホール1eが形成され、また、外部接続端子3が形成される、第1のリジッド基板部11の他方のリジッド基板1bには、外部接続端子形成用の端子パッド1fや配線パターン及びスルーホール1eが形成される。
【0030】
また、フレキシブル基板1aには配線パターン1gが形成される。これらにより各リジッド基板1bの接続端子パッド1dおよび端子パッド1fがフレキシブル基板1aの配線パターン1gを介して相互に電気的に接続されるように構成されている。
また、図2(イ)に示すように、基材21のリジッドフレックス基板1形成領域外の周辺部分には、例えば銅箔からなるダミーパターン23が形成されている。このダミーパターン23は、フレキシブル基板からなる基材21の剛性を向上させ、撓みや捻れ等の変形を抑制して、製造工程において汎用のチップマウンタや汎用の基板搬送システムを用いることができるようにするために設けられているものである。但し、フレキシブル基板からなる基材21のみで撓みや捻れ等が問題とならない場合は、ダミーパターン23を設けないようにしてもよい。
【0031】
さて、このような集合基板20を用いて半導体装置10を製造する工程を以下に説明する。なお、以下の各工程説明図においては、便宜上、第1のリジッド基板部11及び第2のリジッド基板部12を斜線部として、単純化して示している。
第1実施例の製造工程においては、まず図3(イ)に図示するように、集合基板20の一面側にメタルマスクMMを載置し、その上にクリームハンダ21を供給して、スキージ22により印刷することにより、同図(ロ)に示すように、各リジッド基板1bの必要箇所(接続端子パッド1d上)にクリームハンダ21を印刷する。
【0032】
次いで、図4(イ)に示すように、ハンダ印刷された箇所(接続端子パッド1d)に、図示しないチップマウンターにより、ウェハレベルCSP構造の半導体チップ2を搭載する。次に、この状態で集合基板20をリフロー炉へ搬送してリフロー処理する。これにより、半導体チップ2がリジッド基板1bの各接続端子パッド1dにハンダ接合される。
【0033】
ここで、本発明による集合基板20は、フレキシブル基板からなるものであるが、上記のように多くのリジッド基板1bが載置された部分を備えるため、従来のフレキシブル基板のように撓みや捩れが発生することが大幅に抑制される。この結果、汎用のチップマウンタを用いて半導体チップ2をフェイスダウンで位置決め搭載したり、汎用の基板搬送システムにてリフロー炉に搬送し得るようになる。
【0034】
次いで、集合基板20に配設される各リジッドフレックス基板1の一面側に搭載された半導体チップ2についてリフローし終えた後、図4(ロ)に示すように、集合基板20の向きを反転させ、第2のリジッド基板部12の他面側のリジット基板1bの必要箇所(接続端子パッド1d上)に、前記図3(イ)と同様にしてハンダ印刷を施し、そこに半導体チップ2を搭載した後、リフロー処理する。続いて、図4(ハ)に示すように、第1のリジッド基板部11の他面側の、外部接続端子3が形成されるリジット基板1bに設けられた外部接続端子形成用の端子パッド1fにフラックスを、例えばピンにより転写して塗布した後、フラックスが塗布された各端子パッドにハンダボール3を搭載する。この後、リフロー処理して外部接続端子3を形成する。
【0035】
こうして半導体チップ2の実装および外部接続端子3の形成が完了すると、同図(ニ)に示すように、基材21の各リジッドフレックス基板1形成箇所の周囲に設けられているミシン目22(図2(イ)参照)に沿って基材21を裁断する。これにより、各リジッドフレックス基板1は、集合基板20からモジュール単位で個片化される。なお、裁断には、例えばNCルーター4を用いる。
【0036】
次に、図5(イ)に図示するように、モジュール単位に個片化されたリジッドフレックス基板1の第1のリジッド基板部11における、ハンダボール3に対向する側のリジット基板1bにフリップチップ実装される半導体チップ2上に、接着剤Sを塗布した後、同図(ロ)に示すように、フレキシブル基板による可撓部1cを屈曲させて各半導体チップ2を積層状態とする。この状態で上下に対向する半導体チップ2同士を接着固定する。
【0037】
そして、上下に対向する半導体チップ2同士が接着固定された後、同図(ハ)に示すように、リジッド基板1bに実装される各半導体チップ2に封止樹脂5(例えばエポキシ樹脂)を、各半導体チップ2が完全に覆われるまで塗布する。
この際、例えばディスペンサを用いてリジッド基板1bと半導体チップ2との接合部分にも封止樹脂5が充填されるようポッティングする。この後、封止樹脂5を熱硬化させる。これにより、図1に図示した構造の半導体装置10が製造される。
【0038】
このように、第1実施例による製造方法によれば、フレキシブル基板からなるシート状の基材21に複数のリジッド基板1bが載置された複数のリジッドフレックス基板1を一体的に連設した集合基板20を使用しているので、従来のフレキシブル基板単体を用いた場合のように撓みや捩れが発生することが大幅に抑制され、殆どなくなる為、リジッド基板を用いる場合と同様の汎用のチップマウンタや基板搬送システムを用いることができる。
しかも、半導体チップをフェイスダウンでリジッド基板にフリップチップ実装する形態として、リジッド基板はフレキシブル基板に比し、搭載部の平坦度、寸法の安定性に優れるため、実装時の位置ずれも回避し得る結果、製造歩留りを向上させることができる。
【0039】
さらに、集合基板20には複数のリジッドフレックス基板1が配設される為、それら複数のリジッドフレックス基板1に一括してチップ実装および端子形成するバッチ処理が実現し、特別な実装プロセスを用いずとも効率良くモジュール構造の半導体装置10を製造することができ、製品コスト低減に寄与し得る、という効果も奏する。
【0040】
(2)第2実施例
次に、図6〜図7を参照して第2実施例について説明する。なお、これらの図において、上述した第1実施例と共通する要素には同一の番号を付している。
上述の第1実施例では、集合基板20の基材21をミシン目22に沿って裁断して、形成された各リジッドフレックス基板1をモジュール単位に個片化し、個片化されたリジッドフレックス基板1を可撓部1cで屈曲させて各半導体チップ2を積層し、その状態で上下に対向する半導体チップ2同士を接着固定してからディスペンサによるポッティングにより各半導体チップ2に樹脂封止する態様とした。
【0041】
これに対し、第2実施例では、集合基板20に形成された各リジッドフレックス基板1において、一方の第1のリジッド基板部11を集合基板20の基材21に連結させたまま、他方の第2のリジッド基板部12をミシン目22で裁断して基材21から分離し、可撓部1cを屈曲させて各半導体チップ2を積層し、上下に対向する半導体チップ2同士を接着固定してから各半導体チップ2を一括して樹脂モールドした後、個片化することを特徴としている。
【0042】
すなわち、図6(イ)に図示するように、上述の第1実施例と同様の実装プロセスによって集合基板20に配設される各リジッドフレックス基板1に半導体チップ2を実装するとともに、外部接続端子3を形成する。
次いで、同図(ロ)に示すように、各リジッドフレックス基板部1の一方の、外部接続端子3が形成される側の第1のリジッド基板部11を集合基板20の基材21に連結させたまま、他方の第2のリジッド基板部12の周囲を、例えばNCルーター4によりミシン目22で裁断して集合基板20の基材21から分離する。
次いで、同図(ハ)に示すように、可撓部1cを屈曲させて各半導体チップ2を積層し、その状態で上下に対向する半導体チップ2同士を接着固定する。
【0043】
この後、同図(ニ)に示すように、トランファモールド用の金型7を集合基板20上に装着し、エポキシ等のモールド樹脂材6を金型7のキャビティ部7cに注入する。注入したモールド樹脂材を熱硬化させた後、金型7を取り外すと、同図(ホ)に示すように、各モジュールが一括して樹脂モールドされる。
そして、各リジッドフレックス基板1において、集合基板20の基材21に連結させたままの第1のリジッド基板部11の周囲をミシン目22に沿って裁断することで図7に図示する構造の半導体装置10が形成される。
【0044】
以上のように、第2実施例による製造方法では、上述の第1実施例と同様、汎用のチップマウンタや基板搬送システムに適用可能であり、製造歩留りの低下も防ぐことが出来る上、集合基板20上に形成される複数のモジュールを一括して樹脂モールドする為、効率良くモジュール構造の半導体装置10を製造し得るようになり、製品コスト低減に寄与し得る。
【0045】
なお、本実施例では、可撓部1cの屈曲に応じて上下に対向し、下部側となる第1のリジッド基板部11の各リジット基板1bと上部側となる第2のリジッド基板部11の各リジッド基板1bの寸法、形状を同一のものとしていたが、これに替えて、下部側の各リジット基板1bの大きさを上部側のそれより大きくするようにしてもよい。このように、下部側のリジット基板1bを上部側より大きくすると、トランスファーモールドに用いる金型7の形状を簡略化でき、しかも集合基板20への金型装着が容易になる、という利点が得られる。
【0046】
(3)変形例
次に、図8〜図9を参照して変形例について説明する。上述した第1および第2実施例では、屈曲自在な可撓部1cを隔てて両側に1つの第1のリジッド基板部11と1つの第2のリジッド基板部12を具備するリジッドフレックス基板1を用いてマルチチップモジュールを形成する構造例について言及したが、これに限らず、1つの第1のリジッド基板部11を備えるとともに、複数の第2のリジッド基板部12を複数の可撓部1cを介して連結したリジッドフレックス基板1を用いてマルチチップモジュールを形成することもできる。
【0047】
例えば、図8(イ)に図示するように、下面に外部接続端子3が形成される1つの第1のリジッド基板部11と、3つの可撓部1c−1〜1c−3を介して縦続的に連結した3つの第2のリジッド基板部12を備えるリジッドフレックス基板1を用い、これら可撓部1c−1〜1c−3を順番に屈曲させれば、同図(ロ)に示すように、各リジット基板1bにフリップチップ実装される半導体チップ2が順次折畳まれるように積層され、モールド樹脂材6で封止された、7層構造のマルチチップモジュールを形成することができる。
【0048】
また、図9(イ)および、そのB−B面での断面図を示す同図(ロ)に図示するように、下面に外部接続端子3が形成される第1のリジッド基板部11の周囲4辺に可撓部1c−1〜1c−4を介して第2のリジッド基板部12−1〜12−4を連結したリジッドフレックス基板1を用い、これら可撓部1c−1〜1c−4を順番に屈曲させれば、同図(ハ)に示すように、各リジッド基板1bにフリップチップ実装される各半導体チップ2が順次折畳まれるように積層され、モールド樹脂材6で封止された、9層構造のマルチチップモジュールを形成することができる。
【0049】
この場合、第2のリジッド基板部12−1〜12−4の各リジッド基板1bに実装される各半導体チップ2と外部接続端子3との間の、可撓部を介する配線長を短縮することができるため、電気的特性を向上させることができる。
また、上記各実施形態においては、積層された各半導体チップ2を接着剤で固定し、その後、封止樹脂5またはモールド樹脂6により封止を行う構成としたが、これに限らず、例えば、積層された各半導体チップ2を仮止め冶具でクリップして仮止めし、封止樹脂5またはモールド樹脂6の硬化後、これを取り外すようにしてもよい。
さらに高密度実装する場合には、例えば図8および図9に図示した折畳み形態を組合せる等、様々なアレンジが可能であることは言うまでもない。
【0050】
【発明の効果】
請求項1に記載の発明によれば、マルチチップモジュールの製造工程において、リジッドフレックス基板を複数連結したシート状の集合基板を使用しているので、撓みや捩れが発生せず、これ故、汎用のチップマウンタや基板搬送システムに適用でき、しかも実装時の位置ずれも回避し得る結果、製造歩留りを向上させることができる。さらに、集合基板には複数のリジッドフレックス基板が配設される為、それら複数のリジッドフレックス基板に一括してチップ実装、端子形成および樹脂封止するバッチ処理を実現し得、特別な実装プロセスを用いずとも効率良くモジュール構造の半導体装置を製造することができ、製品コスト低減に寄与することができる。請求項3に記載の発明によれば、上下に対向する半導体チップ同士が接着固定された複数のモジュールを個々に覆う金型を用い、これにより全モジュールを一括して樹脂モールドするので、効率良くモジュール構造の半導体装置を製造し得るようになり、製品コスト低減に寄与することができる。
【図面の簡単な説明】
【図1】第1実施例による半導体装置10の構造を示す断面図である。
【図2】集合基板20の一例を示す平面図である。
【図3】第1実施例による半導体装置の製造工程を説明するための断面図である。
【図4】図3に続く製造工程を説明するための断面図である。
【図5】図4に続く製造工程を説明するための断面図である。
【図6】第2実施例による半導体装置の製造工程を説明するための断面図である。
【図7】第2実施例による半導体装置10の構造を示す断面図である。
【図8】変形例を示す図である。
【図9】変形例を示す図である。
【図10】従来例を示す断面図である。
【符号の説明】
1 リジッドフレックス基板
1a フレキシブル基板
1b リジッド基板
1c 可撓部
2 半導体チップ
3 ハンダボール
5 封止樹脂
6 モールド樹脂材
7 金型
20 集合基板
21 リジッド基材
22 ミシン目
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device for mounting a plurality of semiconductor chips at high density and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, multi-chip modules are known in which a plurality of semiconductor chips are mounted with high density using an intermediate substrate. As this type of technology, for example, in Japanese Patent Laid-Open No. 2000-307037, as shown in FIGS. 10 (a) to 10 (c), two flexible bumps 101 are provided on a flexible substrate 100 having flexibility. The semiconductor chips 102 and 102 are flip-chip mounted, and then the flexible substrate 100 is bent and bonded and fixed in a state where the back surfaces of both the chips 102 and 102 are in contact with each other, and the bent flexible substrate 100 is connected. A multi-chip module is disclosed that is connected to a wiring board via solder balls 104 formed on the pads 103.
[0003]
[Problems to be solved by the invention]
By the way, in such a semiconductor device having a multi-chip module structure, since the flexible substrate 100 is used, the substrate 100 is likely to be bent or twisted. For this reason, there is a problem that it is difficult to apply to a general-purpose chip mounter or a substrate transfer system, and in particular, when the semiconductor chip 102 is mounted face down, misalignment is likely to occur, resulting in a decrease in manufacturing yield.
[0004]
Further, in the above-described module structure, the back surfaces of the semiconductor chips 102 stacked by bending the flexible substrate 100 are merely bonded and fixed, and further, the chip periphery is in an exposed state, so that moisture resistance is lacking and reliability is lowered. There is also a problem of inviting.
[0005]
Therefore, the present invention has been made in view of such circumstances, and can be applied to a general-purpose chip mounter or a substrate transfer system, and can be mounted at a high density without deteriorating the manufacturing yield or impairing the reliability. An object is to provide an apparatus and a method for manufacturing the same.
[0006]
[Means for Solving the Problems]
[0014]
According to the first aspect of the present invention, a flexible substrate that can be bent, a first rigid substrate portion including two rigid substrates that sandwich both surfaces of one first region of the flexible substrate, and at least the flexible substrate. Using the sheet-like collective substrate in which a plurality of rigid flex substrates each composed of a second rigid substrate portion including a rigid substrate disposed on at least one surface of one second region is used, At least one first semiconductor chip is mounted on one rigid substrate on the same side as the rigid substrate in the second rigid substrate portion of the first rigid substrate portion in each rigid flex substrate of the substrate. And mounting at least one second semiconductor chip on the rigid substrate of the second rigid substrate portion. Semiconductor chip mounting step, external connection terminal forming step of forming an external connection terminal on the other rigid substrate of the first rigid substrate portion in each of the rigid flex substrates of the collective substrate, and the semiconductor chip mounting step And after the external connection terminal forming step, in each of the rigid flex substrates on the collective substrate, the rigid substrate of the second rigid substrate portion is connected to the collective substrate while the first rigid substrate portion is connected to the collective substrate. A separation step of cutting and separating from the collective substrate, and the second rigid substrate using the flexible substrate between the first rigid substrate portion and the second rigid substrate portion of each rigid flex substrate as a flexible portion. Each rigid flex substrate in a state where the portion is separated from the collective substrate is bent by the flexible portion, After laminating the respective semiconductor chips mounted on each rigid substrate and then collectively resin-molding a module formed by bonding and fixing the semiconductor chips facing each other up and down in that state, the first rigid substrate portion of the first rigid substrate portion And a module forming step of cutting each rigid substrate from the collective substrate into individual modules.
[0015]
According to a second aspect of the present invention, which is dependent on the first aspect, each semiconductor chip mounted on each rigid substrate has a wafer level CSP structure connected via a protruding electrode.
[0016]
According to the invention of claim 3 that is dependent on claim 1, the module forming step uses a mold that individually covers a plurality of modules in which semiconductor chips facing each other are bonded and fixed. It is characterized by resin molding all modules at once.
[0017]
In the semiconductor device according to the present invention, the rigid flex substrate is bent by a flexible portion made of a flexible substrate, and each semiconductor chip mounted on each rigid substrate is laminated and resin-sealed. As a result, each stacked semiconductor chip is hermetically sealed while being fixedly held, so that it is possible to realize a highly reliable semiconductor device with excellent moisture resistance, and by using a rigid flex substrate, bending of the substrate and Since there is no twisting, it is possible to prevent the positional deviation when mounting the semiconductor chip, so that it is possible to avoid a decrease in manufacturing yield.
[0018]
Further, in the method of manufacturing a semiconductor device according to the present invention, since a sheet-like collective substrate in which a plurality of rigid flex substrates are connected is used, no bending or twisting occurs, and therefore a general-purpose chip mounter or substrate transport system is used. As a result, it is possible to avoid misalignment during mounting, thereby preventing a decrease in manufacturing yield.
In addition, since multiple rigid flex substrates are arranged on the collective substrate, batch processing for batch mounting of semiconductor chips, terminal formation, and resin sealing can be realized on these multiple rigid flex substrates, and a special mounting process A semiconductor device having a module structure can be efficiently manufactured without using a material, and can contribute to a reduction in product cost.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
(1) First embodiment
(1) Structure of the semiconductor device 10
FIG. 1A is a sectional view showing the structure of the semiconductor device 10 according to the first embodiment. In this figure, reference numeral 1 denotes a rigid flex substrate formed of a flexible substrate 1a and a rigid substrate 1b. The rigid flex substrate 1 includes a flexible substrate 1a and a plurality of rigid substrates 1b, and a portion having a so-called sandwich structure in which the upper and lower surfaces of the flexible substrate 1a are sandwiched between the rigid substrates 1b as shown in FIG. The composite substrate has a portion (flexible portion) 1c where the flexible substrate 1a is exposed.
[0020]
In other words, the rigid flex substrate 1 can be bent at the flexible portion 1c from which the flexible substrate 1a is exposed, and the rigid substrate 1b is disposed on both sides of the flexible portion 1c on both sides. A substrate 1b is provided. One rigid substrate 1b of the portion (first rigid substrate portion 11) on one side of the flexible portion 1c where the rigid substrate 1b is disposed on both the upper and lower surfaces is, for example, a wafer level CSP structure. The semiconductor chip 2 is flip-chip mounted by face-down, and the external connection terminals 3 are formed by disposing solder balls 3a in a lattice shape on the other rigid substrate 1b. Similarly, each rigid substrate 1b of the portion (second rigid substrate portion 12) on the other side of the flexible portion 1c where the rigid substrate 1b is disposed on both the upper and lower surfaces is similarly, for example, a wafer level CSP. A semiconductor chip 2 having a structure is flip-chip mounted.
[0021]
In addition, as will be described later, the rigid substrate 1b on the side where one semiconductor chip 2 of the first rigid substrate unit 11 is flip-chip mounted and each rigid substrate 1b of the second rigid substrate unit 12 include a semiconductor. Chip mounting connection terminal pads, wiring patterns, through holes connected to the wiring patterns formed on the flexible substrate 1a, and the like are formed, and the other external connection terminals 3 of the first rigid board portion 11 are formed. Terminal pads for forming external connection terminals, wiring patterns, through holes, and the like are formed on the rigid substrate 1b.
[0022]
On the other hand, the flexible substrate 1a is formed with wiring patterns and through holes (or via holes) connected to the rigid substrate 1b, so that the terminal pads and connection terminal pads of each rigid substrate 1b change the wiring pattern of the flexible substrate 1a. And are electrically connected to each other.
[0023]
Here, the semiconductor chip 2 has a wafer level CSP structure. In this wafer level CSP structure, an insulating layer is formed on a semiconductor chip in a wafer state, a rewiring layer is formed, and then a protruding electrode ( After forming the connection electrode terminal by the post terminal), it is formed by dividing into individual chips, and the arrangement of the connection electrode terminal by the protruding electrode (post terminal) is almost the same size as the semiconductor chip. It can be set relatively freely.
Therefore, when the semiconductor chip 2 has a wafer level CSP structure, as shown in FIG. 2 to be described later, the connection terminal pads for mounting the semiconductor chip formed on the rigid substrate 1b can be arranged in a matrix. The size of 1b can be reduced. However, in each embodiment of the present invention, the configuration of the semiconductor chip 2 is not limited to this wafer level CSP structure, and semiconductor chips having various structures in which protruding electrodes are formed can be used.
[0024]
The rigid flex substrate 1 on which the chip is mounted and the terminals are formed is bent at the flexible portion 1c, thereby bringing the semiconductor chips 2 into a stacked state. In this state, the semiconductor chips 2 facing each other vertically are bonded and fixed, and then each semiconductor chip 2 mounted on the rigid substrate 1b is hermetically sealed with a sealing resin 5 so as to cover the joint portion with the rigid substrate 1b. It has the structure to do.
[0025]
With such a module structure, each semiconductor chip 2 in the stacked state can be hermetically sealed while being fixedly held, so that the highly reliable semiconductor device 10 having excellent moisture resistance can be realized. In addition, since the rigid flex substrate 1 is used, the bending and twisting of the substrate are greatly reduced and almost eliminated, so that it is possible to prevent misalignment during chip mounting, thereby improving the manufacturing yield.
Further, when the rigid flex substrate 1 is used, the surface on which the semiconductor chip 2 is flip-chip mounted becomes three surfaces, and can be mounted at a higher density than the conventional example using the flexible substrate 100 (see FIG. 10).
[0026]
In the above configuration, the second rigid substrate portion of the rigid flex substrate 1 is also configured such that the rigid substrate 1b is disposed on both the upper and lower surfaces. However, the present invention is not limited to this, and at least the first rigid substrate portion includes a semiconductor. The rigid substrate 1b may be disposed only on the same side as the rigid substrate 1b on which the chip 2 is flip-chip mounted, and the semiconductor chip 2 may be flip-chip mounted thereon.
[0027]
(2) Manufacturing method of semiconductor device 10
Next, a method for manufacturing the semiconductor device 10 having the above structure will be described with reference to FIGS. In the manufacturing method according to the first embodiment, a sheet-like collective substrate 20 formed by connecting a plurality of rigid flex substrates 1 is used. An example of the configuration of the collective substrate 20 is shown in FIGS. The collective substrate 20 shown in this figure is formed by integrally connecting a rigid flex substrate 1 of 4 rows and 3 columns to a sheet-like base material 21 made of a flexible substrate. FIG. FIG. 2B shows the main part of the cross-sectional shape along the AA plane including the portion of the collective substrate 20 where the rigid flex substrate 1 is formed.
[0028]
As shown in the figure, in a place where a plurality of rigid flex substrates 1 are formed, a base material 21 is used as a flexible substrate 1a, which is sandwiched vertically by a rigid substrate 1b, and the upper and lower rigid substrates 1b and flexible substrates 1a. Are integrated, and the flexible substrate 1a between the two rigid substrate 1b arrangement regions is a flexible portion 1c, and a plurality of the same configurations as those of the rigid flex substrate 1 in FIG. Each connection portion is provided with an opening (hereinafter referred to as perforation) 22 in advance around each rigid flex substrate 1 formation portion. Thus, as described later, each rigid flex substrate 1 can be easily separated by cutting the connecting portion along the perforation 22.
[0029]
In each rigid flex board 1 shown in FIG. 2 (b), the right rigid board 1b and the flexible board 1a in the drawing are integrated into the first rigid board portion 11, the left rigid board 1b and the flexible board 1a. When the second rigid substrate portion 12 is used as the integrated portion, the one rigid substrate 1b of the first rigid substrate portion 11 and the second rigid substrate on which the semiconductor chip having the wafer level CSP structure is mounted. Each rigid substrate 1b of the section 12 is formed with, for example, a matrix-like connection terminal pad 1d and a wiring pattern as shown in FIG. 2 (a) and a through hole 1e as shown in FIG. 2 (b). On the other rigid substrate 1b of the first rigid substrate portion 11 where the external connection terminals 3 are formed, terminal pads 1f for forming external connection terminals and wirings are provided. Turn and through-hole 1e is formed.
[0030]
A wiring pattern 1g is formed on the flexible substrate 1a. Thus, the connection terminal pad 1d and the terminal pad 1f of each rigid substrate 1b are configured to be electrically connected to each other via the wiring pattern 1g of the flexible substrate 1a.
Further, as shown in FIG. 2A, a dummy pattern 23 made of, for example, copper foil is formed in the peripheral portion of the base material 21 outside the region where the rigid flex substrate 1 is formed. The dummy pattern 23 improves the rigidity of the base material 21 made of a flexible substrate and suppresses deformation such as bending and twisting so that a general-purpose chip mounter or a general-purpose substrate transport system can be used in the manufacturing process. It is provided to do. However, the dummy pattern 23 may not be provided if bending or twisting is not a problem only with the base material 21 made of a flexible substrate.
[0031]
Now, a process for manufacturing the semiconductor device 10 using such a collective substrate 20 will be described below. In the following process explanatory diagrams, for the sake of convenience, the first rigid substrate portion 11 and the second rigid substrate portion 12 are simply shown as hatched portions.
In the manufacturing process of the first embodiment, first, as shown in FIG. 3A, a metal mask MM is placed on one side of the collective substrate 20, and cream solder 21 is supplied on the metal mask MM. As shown in FIG. 5B, the cream solder 21 is printed on the necessary portion (on the connection terminal pad 1d) of each rigid substrate 1b.
[0032]
Next, as shown in FIG. 4A, a semiconductor chip 2 having a wafer level CSP structure is mounted on a solder printed portion (connection terminal pad 1d) by a chip mounter (not shown). Next, in this state, the collective substrate 20 is transferred to a reflow furnace and subjected to a reflow process. As a result, the semiconductor chip 2 is soldered to each connection terminal pad 1d of the rigid substrate 1b.
[0033]
Here, the collective substrate 20 according to the present invention is made of a flexible substrate, but has a portion on which many rigid substrates 1b are placed as described above, so that it is not bent or twisted like a conventional flexible substrate. Occurrence is greatly suppressed. As a result, the semiconductor chip 2 can be positioned and mounted face-down using a general-purpose chip mounter, or can be transferred to a reflow furnace by a general-purpose substrate transfer system.
[0034]
Next, after the reflow of the semiconductor chips 2 mounted on one surface side of each rigid flex substrate 1 disposed on the collective substrate 20 is finished, the direction of the collective substrate 20 is reversed as shown in FIG. Then, solder printing is performed on the necessary portion (on the connection terminal pad 1d) of the rigid substrate 1b on the other surface side of the second rigid substrate portion 12 in the same manner as in FIG. 3A, and the semiconductor chip 2 is mounted thereon. After that, reflow processing is performed. Subsequently, as shown in FIG. 4C, the external connection terminal forming terminal pad 1f provided on the rigid substrate 1b on the other surface side of the first rigid substrate portion 11 on which the external connection terminals 3 are formed. After the flux is transferred to and coated on the pins, for example, solder balls 3 are mounted on the respective terminal pads to which the flux has been applied. Thereafter, the external connection terminal 3 is formed by reflow processing.
[0035]
When the mounting of the semiconductor chip 2 and the formation of the external connection terminals 3 are completed in this way, as shown in FIG. 4D, the perforations 22 (see FIG. 2 (see (a)), the base material 21 is cut. As a result, each rigid flex board 1 is separated into individual modules from the collective board 20. For cutting, for example, an NC router 4 is used.
[0036]
Next, as shown in FIG. 5A, flip chip is attached to the rigid substrate 1b facing the solder ball 3 in the first rigid substrate portion 11 of the rigid flex substrate 1 separated into modules. After the adhesive S is applied on the semiconductor chip 2 to be mounted, as shown in FIG. 2B, the flexible part 1c by the flexible substrate is bent to make each semiconductor chip 2 in a laminated state. In this state, the semiconductor chips 2 facing vertically are bonded and fixed together.
[0037]
Then, after the semiconductor chips 2 that are vertically opposed to each other are bonded and fixed, as shown in FIG. 3C, the sealing resin 5 (for example, epoxy resin) is applied to each semiconductor chip 2 mounted on the rigid substrate 1b. Application is performed until each semiconductor chip 2 is completely covered.
At this time, for example, using a dispenser, potting is performed so that the sealing resin 5 is also filled in the joint portion between the rigid substrate 1 b and the semiconductor chip 2. Thereafter, the sealing resin 5 is thermoset. Thereby, the semiconductor device 10 having the structure shown in FIG. 1 is manufactured.
[0038]
As described above, according to the manufacturing method according to the first embodiment, a plurality of rigid flex substrates 1 on which a plurality of rigid substrates 1b are placed on a sheet-like base material 21 made of a flexible substrate are integrally connected. Since the substrate 20 is used, the occurrence of bending and twisting as in the case of using a conventional flexible substrate alone is greatly suppressed and almost eliminated, so that the same general-purpose chip mounter as in the case of using a rigid substrate is used. Or a substrate transfer system.
Moreover, as a form in which the semiconductor chip is flip-chip mounted on the rigid substrate face-down, the rigid substrate is superior in flatness and dimensional stability to the mounting portion compared to the flexible substrate, so that misalignment during mounting can also be avoided. As a result, the manufacturing yield can be improved.
[0039]
Further, since the plurality of rigid flex substrates 1 are disposed on the collective substrate 20, batch processing for collectively mounting chips and forming terminals on the plurality of rigid flex substrates 1 is realized without using a special mounting process. In addition, the semiconductor device 10 having a module structure can be efficiently manufactured, and the effect that the product cost can be reduced is also achieved.
[0040]
(2) Second embodiment
Next, a second embodiment will be described with reference to FIGS. In these drawings, the same reference numerals are given to elements common to the above-described first embodiment.
In the first embodiment described above, the base 21 of the collective substrate 20 is cut along the perforations 22, and each of the formed rigid flex substrates 1 is separated into modules, and the individual rigid flex substrates are separated. 1 is bent by a flexible portion 1c, and the respective semiconductor chips 2 are stacked, and in this state, the semiconductor chips 2 that are vertically opposed to each other are bonded and fixed, and then resin-sealed to each semiconductor chip 2 by potting with a dispenser. did.
[0041]
In contrast, in the second embodiment, in each rigid flex substrate 1 formed on the collective substrate 20, one of the first rigid substrate portions 11 is connected to the base material 21 of the collective substrate 20, while the other first flex substrate 1 is connected. 2 rigid substrate part 12 is cut from perforation 22 and separated from base material 21, flexible part 1 c is bent to stack each semiconductor chip 2, and upper and lower semiconductor chips 2 are bonded and fixed together. The semiconductor chips 2 are collectively molded by resin molding and then separated into individual pieces.
[0042]
That is, as shown in FIG. 6A, the semiconductor chip 2 is mounted on each rigid flex substrate 1 disposed on the collective substrate 20 by the same mounting process as in the first embodiment, and the external connection terminals 3 is formed.
Next, as shown in FIG. 5B, one rigid flex board part 1 of each rigid flex board part 1 on the side where the external connection terminals 3 are formed is connected to the base material 21 of the collective board 20. As it is, the periphery of the other second rigid substrate portion 12 is cut by the perforation 22 by the NC router 4, for example, and separated from the base material 21 of the collective substrate 20.
Next, as shown in FIG. 3C, the flexible portion 1c is bent to stack the semiconductor chips 2, and in this state, the semiconductor chips 2 facing vertically are bonded and fixed together.
[0043]
Thereafter, as shown in FIG. 4D, the transfer mold die 7 is mounted on the collective substrate 20, and a mold resin material 6 such as epoxy is injected into the cavity portion 7 c of the die 7. When the mold 7 is removed after the injected mold resin material is thermally cured, the modules are collectively resin-molded as shown in FIG.
Then, in each rigid flex substrate 1, the periphery of the first rigid substrate portion 11 that is connected to the base material 21 of the collective substrate 20 is cut along the perforation 22 to thereby form a semiconductor having a structure illustrated in FIG. 7. A device 10 is formed.
[0044]
As described above, the manufacturing method according to the second embodiment can be applied to a general-purpose chip mounter and a substrate transfer system, as in the first embodiment, and can prevent a decrease in manufacturing yield. Since a plurality of modules formed on 20 are collectively resin-molded, the semiconductor device 10 having a module structure can be efficiently manufactured, which can contribute to a reduction in product cost.
[0045]
In the present embodiment, each of the rigid substrates 1b of the first rigid substrate portion 11 which is opposed to the upper and lower sides according to the bending of the flexible portion 1c and which is the lower side, and the second rigid substrate portion 11 which is the upper side. Although each rigid substrate 1b has the same size and shape, the size of each rigid substrate 1b on the lower side may be made larger than that on the upper side. Thus, if the lower rigid substrate 1b is made larger than the upper side, the shape of the mold 7 used for transfer molding can be simplified, and the mold can be easily mounted on the collective substrate 20. .
[0046]
(3) Modification
Next, a modification will be described with reference to FIGS. In the first and second embodiments described above, the rigid flex substrate 1 having one first rigid substrate portion 11 and one second rigid substrate portion 12 on both sides with a bendable flexible portion 1c is provided. Although an example of a structure in which a multichip module is formed using the above-described structure is not limited thereto, the first rigid substrate portion 11 is provided, and the plurality of second rigid substrate portions 12 are provided with the plurality of flexible portions 1c. A multi-chip module can also be formed using the rigid flex substrate 1 connected through the vias.
[0047]
For example, as shown in FIG. 8 (a), it is cascaded via one first rigid board portion 11 having an external connection terminal 3 formed on the lower surface and three flexible portions 1c-1 to 1c-3. If the rigid flex board 1 provided with the three second rigid board parts 12 connected in general is used and these flexible parts 1c-1 to 1c-3 are bent in order, as shown in FIG. A multi-chip module having a 7-layer structure in which the semiconductor chips 2 flip-chip mounted on each rigid substrate 1b are stacked so as to be sequentially folded and sealed with the mold resin material 6 can be formed.
[0048]
Further, as shown in FIG. 9 (A) and FIG. 9 (B) showing a cross-sectional view along the B-B plane, the periphery of the first rigid board portion 11 in which the external connection terminals 3 are formed on the lower surface. Using the rigid flex board 1 in which the second rigid board parts 12-1 to 12-4 are connected to the four sides via the flexible parts 1c-1 to 1c-4, these flexible parts 1c-1 to 1c-4 are used. Are sequentially laminated, each semiconductor chip 2 flip-chip mounted on each rigid substrate 1b is sequentially folded and sealed with a mold resin material 6, as shown in FIG. Thus, a multi-chip module having a 9-layer structure can be formed.
[0049]
In this case, the wiring length through the flexible portion between each semiconductor chip 2 and the external connection terminal 3 mounted on each rigid substrate 1b of the second rigid substrate portions 12-1 to 12-4 is shortened. Therefore, electrical characteristics can be improved.
Moreover, in each said embodiment, it was set as the structure which fixes each semiconductor chip 2 laminated | stacked with the adhesive agent, and seals by sealing resin 5 or the mold resin 6 after that, but it is not restricted to this, For example, Each stacked semiconductor chip 2 may be clipped and temporarily fixed with a temporary fixing jig, and removed after the sealing resin 5 or the mold resin 6 is cured.
Needless to say, in the case of mounting at higher density, various arrangements are possible, for example, by combining the folding forms shown in FIGS.
[0050]
【The invention's effect】
According to the first aspect of the present invention, in the manufacturing process of the multichip module, since a sheet-like collective substrate in which a plurality of rigid flex substrates are connected is used, there is no occurrence of bending or twisting. As a result, the manufacturing yield can be improved as a result of being able to avoid misalignment during mounting. In addition, since multiple rigid flex boards are arranged on the collective board, batch processing can be realized in which chip mounting, terminal formation and resin sealing are collectively performed on these multiple rigid flex boards. Even if it is not used, a semiconductor device having a module structure can be manufactured efficiently, which can contribute to a reduction in product cost. According to the third aspect of the present invention, since the molds that individually cover the plurality of modules in which the semiconductor chips facing each other in the vertical direction are individually fixed are used, and all the modules are collectively resin-molded, it is efficient. A module-structured semiconductor device can be manufactured, which can contribute to a reduction in product cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure of a semiconductor device 10 according to a first embodiment.
FIG. 2 is a plan view showing an example of a collective substrate 20. FIG.
FIG. 3 is a cross-sectional view for explaining a manufacturing step of the semiconductor device according to the first embodiment;
4 is a cross-sectional view for illustrating a manufacturing step subsequent to FIG. 3. FIG.
FIG. 5 is a cross-sectional view for illustrating a manufacturing step subsequent to FIG. 4;
FIG. 6 is a cross-sectional view for illustrating a manufacturing step of the semiconductor device according to the second embodiment.
FIG. 7 is a cross-sectional view showing a structure of a semiconductor device 10 according to a second embodiment.
FIG. 8 is a diagram showing a modification.
FIG. 9 is a diagram showing a modification.
FIG. 10 is a cross-sectional view showing a conventional example.
[Explanation of symbols]
1 Rigid flex board
1a Flexible substrate
1b Rigid board
1c Flexible part
2 Semiconductor chip
3 Solder balls
5 Sealing resin
6 Mold resin material
7 Mold
20 Assembly board
21 Rigid base material
22 Perforation

Claims (3)

屈曲自在なフレキシブル基板と、このフレキシブル基板の1つの第1の領域の両面を挟み込む2枚のリジッド基板を備える第1のリジッド基板部と、前記フレキシブル基板の少なくとも1つの第2の領域の、少なくとも一方の面上に配設されるリジッド基板を備える第2のリジッド基板部とから構成されるリジッドフレックス基板を複数連結したシート状の集合基板を用い、
前記集合基板の前記各リジッドフレックス基板における、前記第1のリジッド基板部の、前記第2のリジッド基板部における前記リジッド基板と同じ側の一方のリジッド基板上に、少なくとも1つの第1の半導体チップを実装するとともに、前記第2のリジッド基板部の前記リジッド基板に、少なくとも1つの第2の半導体チップを実装する半導体チップ実装工程と、
前記集合基板の前記各リジッドフレックス基板における、前記第1のリジッド基板部の、他方のリジッド基板上に外部接続端子を形成する外部接続端子形成工程と、
前記半導体チップ実装工程および前記外部接続端子形成工程後、前記集合基板上の前記各リジッドフレックス基板において、前記第1のリジッド基板部を集合基板に連結させたまま、前記第2のリジッド基板部の前記リジッド基板を当該集合基板から裁断して分離する分離工程と、
前記各リジッドフレックス基板の前記第1のリジッド基板部と前記第2のリジッド基板部間の前記フレキシブル基板を可撓部として、前記第2のリジッド基板部が前記集合基板から分離された状態の前記各リジッドフレックス基板を、前記可撓部でそれぞれ屈曲させて前記各リジッド基板に実装される前記各半導体チップを積層し、その状態で上下に対向する半導体チップ同士を接着固定してなるモジュールを一括して樹脂モールドした後、前記第1のリジッド基板部の前記各リジット基板を集合基板から裁断してモジュール単位に個片化するモジュール形成工程と、
を具備することを特徴とする半導体装置の製造方法。
At least one of a flexible substrate, a first rigid substrate portion including two rigid substrates sandwiching both surfaces of one first region of the flexible substrate, and at least one second region of the flexible substrate. Using a sheet-like collective substrate in which a plurality of rigid flex substrates composed of a second rigid substrate portion including a rigid substrate disposed on one surface is connected,
At least one first semiconductor chip on one rigid substrate on the same side as the rigid substrate in the second rigid substrate portion of the first rigid substrate portion in each rigid flex substrate of the collective substrate. A semiconductor chip mounting step of mounting at least one second semiconductor chip on the rigid substrate of the second rigid substrate portion;
An external connection terminal forming step of forming an external connection terminal on the other rigid substrate of the first rigid substrate portion in each of the rigid flex substrates of the aggregate substrate;
After the semiconductor chip mounting step and the external connection terminal forming step, in each of the rigid flex substrates on the collective substrate, the first rigid substrate portion is connected to the collective substrate while the second rigid substrate portion is connected. A separation step of cutting and separating the rigid substrate from the aggregate substrate;
The flexible substrate between the first rigid substrate portion and the second rigid substrate portion of each rigid flex substrate is defined as a flexible portion, and the second rigid substrate portion is separated from the collective substrate. Each rigid flex substrate is bent at the flexible portion, and the semiconductor chips mounted on the rigid substrate are stacked, and in this state, a module is formed by bonding and fixing the semiconductor chips facing each other vertically. Then, after the resin molding, a module forming step of cutting each rigid substrate of the first rigid substrate portion from a collective substrate into individual modules, and
A method for manufacturing a semiconductor device, comprising:
前記各リジッド基板にそれぞれ実装される各半導体チップは、突起電極を介して接続されるウェハレベルCSP構造を有することを特徴とする請求項1記載の半導体装置の製造方法。  2. The method of manufacturing a semiconductor device according to claim 1, wherein each semiconductor chip mounted on each rigid substrate has a wafer level CSP structure connected through a protruding electrode. 前記モジュール形成工程では、上下に対向する半導体チップ同士が接着固定された複数のモジュールを個々に覆う金型を用い、これにより全モジュールを一括して樹脂モールドすることを特徴とする請求項1記載の半導体装置の製造方法。  2. The module forming step according to claim 1, wherein a mold is used to individually cover a plurality of modules in which semiconductor chips facing each other in the vertical direction are bonded and fixed, and thereby all the modules are collectively resin-molded. Manufacturing method of the semiconductor device.
JP2001279062A 2001-09-14 2001-09-14 Manufacturing method of semiconductor device Expired - Lifetime JP3892259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001279062A JP3892259B2 (en) 2001-09-14 2001-09-14 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001279062A JP3892259B2 (en) 2001-09-14 2001-09-14 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2003086761A JP2003086761A (en) 2003-03-20
JP3892259B2 true JP3892259B2 (en) 2007-03-14

Family

ID=19103321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001279062A Expired - Lifetime JP3892259B2 (en) 2001-09-14 2001-09-14 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3892259B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070599A1 (en) * 2013-11-12 2015-05-21 中国科学院微电子研究所 Flexible-substrate-based three-dimensional packaging structure and method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340891A (en) 2003-05-19 2004-12-02 Mitsubishi Electric Corp Pressure sensor device
JP2005051144A (en) 2003-07-31 2005-02-24 Shinko Electric Ind Co Ltd Manufacturing method for semiconductor device
US7254036B2 (en) 2004-04-09 2007-08-07 Netlist, Inc. High density memory module using stacked printed circuit boards
US7760513B2 (en) 2004-09-03 2010-07-20 Entorian Technologies Lp Modified core for circuit module system and method
JP4191167B2 (en) 2005-05-16 2008-12-03 エルピーダメモリ株式会社 Manufacturing method of memory module
US7442050B1 (en) 2005-08-29 2008-10-28 Netlist, Inc. Circuit card with flexible connection for memory module with heat spreader
KR100661297B1 (en) 2005-09-14 2006-12-26 삼성전기주식회사 Rigid-flexible printed circuit board for package on package, and manufacturing method
JP4830493B2 (en) * 2006-01-11 2011-12-07 日本電気株式会社 Semiconductor device, mounting structure thereof, and mounting method thereof
US7619893B1 (en) 2006-02-17 2009-11-17 Netlist, Inc. Heat spreader for electronic modules
US8018723B1 (en) 2008-04-30 2011-09-13 Netlist, Inc. Heat dissipation for electronic modules
JP5097006B2 (en) * 2008-05-14 2012-12-12 株式会社フジクラ Printed wiring board and manufacturing method thereof
WO2010013366A1 (en) * 2008-07-30 2010-02-04 イビデン株式会社 Flex-rigid wiring board and method for manufacturing the same
EP2333831B1 (en) * 2009-12-10 2016-03-02 ST-Ericsson SA Method for packaging an electronic device
KR102464126B1 (en) * 2018-09-12 2022-11-07 삼성전자주식회사 Apparatus for combining printed circuit boards

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015070599A1 (en) * 2013-11-12 2015-05-21 中国科学院微电子研究所 Flexible-substrate-based three-dimensional packaging structure and method
US9997493B2 (en) 2013-11-12 2018-06-12 Institute of Microelectronics, Chinese Academy of Sciences Flexible-substrate-based three-dimensional packaging structure and method

Also Published As

Publication number Publication date
JP2003086761A (en) 2003-03-20

Similar Documents

Publication Publication Date Title
JP5425584B2 (en) Manufacturing method of semiconductor device
US8786102B2 (en) Semiconductor device and method of manufacturing the same
KR100493063B1 (en) BGA package with stacked semiconductor chips and manufacturing method thereof
US7335970B2 (en) Semiconductor device having a chip-size package
US8076770B2 (en) Semiconductor device including a first land on the wiring substrate and a second land on the sealing portion
JP3916854B2 (en) Wiring board, semiconductor device, and package stack semiconductor device
KR100204753B1 (en) Loc type stacked chip package
US7618849B2 (en) Integrated circuit package with etched leadframe for package-on-package interconnects
US7459778B2 (en) Chip on board leadframe for semiconductor components having area array
JP2011040602A (en) Electronic device and manufacturing method therefor
JP3892259B2 (en) Manufacturing method of semiconductor device
KR20100069589A (en) Semiconductor device
JP2003332508A (en) Semiconductor device and its manufacturing method
JP2002110718A (en) Manufacturing method of semiconductor device
JP2004349316A (en) Semiconductor device and its manufacturing method
US20050098869A1 (en) Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
EP1369919A1 (en) Flip chip package
JP4030363B2 (en) Semiconductor device
JP2003133480A (en) Semiconductor device, multilayer semiconductor device, method for manufacturing semiconductor device, and method for manufacturing multilayer semiconductor device
JP3398556B2 (en) Method for manufacturing semiconductor device
KR100520443B1 (en) Chip scale package and its manufacturing method
JP2004327652A (en) Semiconductor device and its manufacturing method
KR19990006141A (en) Stacked ball grid array package and its manufacturing method
JPH0897347A (en) Lead member, semiconductor device, its manufacture and semiconductor module
JP2002334892A (en) System and method for producing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061206

R150 Certificate of patent or registration of utility model

Ref document number: 3892259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term