JP3891991B2 - Seismic / vibration-proof method and seismic / vibration-proof structure - Google Patents

Seismic / vibration-proof method and seismic / vibration-proof structure Download PDF

Info

Publication number
JP3891991B2
JP3891991B2 JP2004055580A JP2004055580A JP3891991B2 JP 3891991 B2 JP3891991 B2 JP 3891991B2 JP 2004055580 A JP2004055580 A JP 2004055580A JP 2004055580 A JP2004055580 A JP 2004055580A JP 3891991 B2 JP3891991 B2 JP 3891991B2
Authority
JP
Japan
Prior art keywords
vibration
ground
seismic
ground improvement
proof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004055580A
Other languages
Japanese (ja)
Other versions
JP2005240520A (en
Inventor
宏和 竹宮
圭輔 笹島
潤 平井
元悦 石井
靖夫 尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004055580A priority Critical patent/JP3891991B2/en
Publication of JP2005240520A publication Critical patent/JP2005240520A/en
Application granted granted Critical
Publication of JP3891991B2 publication Critical patent/JP3891991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Description

本発明は、構造物の耐震・防振方法および耐震・防振構造に関する。   The present invention relates to a seismic / vibration-proof method and a seismic / vibration-proof structure for a structure.

構造物の耐震・防振を図る方法としては、例えばラーメン構造の場合、上下の梁と隣り合う柱とで構成される架構内にブレースや壁を組み込み、架構の剛性を高めて変形を抑える方法や、同架構内の上下の梁の層間変位を利用して振動エネルギーを吸収する機構を設置し、同機構によって振動エネルギーを吸収して架構の変形を抑える方法等がある。また、構造物の固有の振動周期を長期化することで地震による応答そのものを小さくする方法がある(例えば、下記の特許文献1、2)。
特開平7−3829号公報 特開2003−90386号公報
For example, in the case of a rigid frame structure, as a method of seismic / vibration-proofing a structure, a brace or wall is built in a frame composed of upper and lower beams and adjacent columns to increase the rigidity of the frame and suppress deformation. In addition, there is a method of installing a mechanism that absorbs vibration energy by utilizing the interlayer displacement between the upper and lower beams in the frame and absorbing the vibration energy by the mechanism to suppress the deformation of the frame. In addition, there is a method of reducing the response itself due to an earthquake by extending the inherent vibration period of the structure (for example, Patent Documents 1 and 2 below).
JP-A-7-3829 JP 2003-90386 A

上記のような耐震・防振方法では、ブレースや壁、層間変位を利用したエネルギー吸収機構を設置することにより、上下の梁と隣り合う柱とで構成される架構の主要な空間を塞いでしまうことになるので、構造物内部の機能的な利用が制限されたり、景観が損なわれたりする。また、構造物の固有の振動周期を長期化するためには、構造物の基礎に長周期化対策用の部材の設置が必要になり、既設の構造物に対しての適用が極めて困難である。   In the earthquake-proof / vibration-proof method described above, the main space of the frame composed of the upper and lower beams and the adjacent columns is blocked by installing an energy absorption mechanism using braces, walls, and interlayer displacement. As a result, functional use inside the structure is restricted or the landscape is damaged. In addition, in order to prolong the inherent vibration period of the structure, it is necessary to install a member for countermeasures for increasing the period on the foundation of the structure, and it is extremely difficult to apply to existing structures. .

本発明は上記の事情に鑑みてなされたものであり、架構の主要な空間を塞いでしまうことなく、既設の構造物に対しても適用が可能な構造物の耐震・防振方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a seismic / vibration isolation method for a structure that can be applied to an existing structure without blocking the main space of the frame. For the purpose.

上記の課題を解決するための手段として、次のような構成の地盤の振動を低減する方法およびシステムを採用する。
すなわち本発明の請求項1記載の構造物の耐震・防振方法は、構造物の周囲の地盤に、前記構造物を取り囲むように、周辺の地盤よりも剛性の高い地盤改良部を形成し、前記地盤改良部に、減衰率が100%以上の減衰部材と、該減衰部材を取り囲むようにそれぞれが連結された複数の杭とによって構成される区画を、複数連続して構成することを特徴とする。
As means for solving the above-mentioned problems, a method and system for reducing the vibration of the ground having the following configuration is adopted.
That is, in the earthquake-proof / vibration-proof method for a structure according to claim 1 of the present invention, a ground improvement portion having higher rigidity than the surrounding ground is formed on the ground around the structure so as to surround the structure, In the ground improvement part, a plurality of sections constituted by a damping member having a damping rate of 100% or more and a plurality of piles connected to each other so as to surround the damping member are continuously formed. To do.

また、本発明の請求項2記載の構造物の耐震・防振構造は、構造物の周囲の地盤に、前記構造物を取り囲むように、周辺の地盤よりも剛性の高い地盤改良部を備え、前記地盤改良部には、減衰率が100%以上の減衰部材と、該減衰部材を取り囲むようにそれぞれが連結された複数の杭とによって構成される区画が、複数連続して構成されていることを特徴とする。 In addition, the earthquake-proof / vibration-proof structure of the structure according to claim 2 of the present invention includes a ground improvement portion having higher rigidity than the surrounding ground so as to surround the structure on the ground around the structure, In the ground improvement portion, a plurality of sections each including a damping member having a damping rate of 100% or more and a plurality of piles connected to each other so as to surround the damping member are configured in succession. It is characterized by.

本発明においては、大規模な地震が発生した場合、周辺の地盤よりも剛性の高い地盤改良部が、破壊もしくは塑性変形することにより、振動エネルギーが吸収されるので、構造物に作用する振動エネルギーが低減される。地震の規模がさほど大規模ではない場合は、断面がハニカム状になっていること、および波板状になっていることを特徴とする構造のため、高い剛性を有し、内部の減衰部材によって振動エネルギーが減衰されるので、構造物に作用する振動エネルギーが低減される。   In the present invention, when a large-scale earthquake occurs, the ground improvement portion having higher rigidity than the surrounding ground is destroyed or plastically deformed to absorb the vibration energy, so that the vibration energy acting on the structure Is reduced. When the magnitude of the earthquake is not so large, the structure is characterized by a honeycomb-shaped cross section and a corrugated plate-like structure. Since the vibration energy is attenuated, the vibration energy acting on the structure is reduced.

本発明によれば、地震の規模によらず、高い耐震・防振効果を発揮して、構造物への被害を最小限に食い止めることができる。また、構造物自体に手を加えないので、既設の構造物に対しての適用も容易である。   According to the present invention, regardless of the scale of an earthquake, it is possible to exhibit a high seismic / vibration-proof effect and to prevent damage to a structure to a minimum. In addition, since the structure itself is not modified, it can be easily applied to existing structures.

本発明の実施の形態を、図1から図4に示して説明する。
図1に示すように、構造物1の周囲の地盤には、構造物1を取り囲むように、周辺の地盤よりも剛性の高い地盤改良部2が形成されている。地盤改良部2は、図2に示すように、複数のコンクリート杭3を、上方から見ると六角形のハニカム状をなすように配列して打設し、杭の打設後に、六角形のすべての区画内の土砂を取り除き、代わりにアスファルト等の減衰部材4を充填することによって構成されている。隣り合うコンクリート杭3はすべて連結されており、実質的には地中に連続するコンクリートの壁部が構築されたものと見なせる。
An embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1, a ground improvement portion 2 having higher rigidity than the surrounding ground is formed on the ground around the structure 1 so as to surround the structure 1. As shown in FIG. 2, the ground improvement part 2 arranges a plurality of concrete piles 3 so as to form a hexagonal honeycomb shape when viewed from above, and after placing the piles, The earth and sand in the section is removed and, instead, a damping member 4 such as asphalt is filled. All the adjacent concrete piles 3 are connected to each other, and it can be regarded that a continuous concrete wall portion is constructed in the ground.

上記のような耐震施工がなされた構造物においては、中小規模の地震が発生した場合、地盤改良部2の外側から作用する地盤振動のエネルギーが、複数のコンクリート杭3によって構築された六角形の区画を押しつぶす方向に、周期的に力を生じさせ、区画内に充填された減衰部材4を繰り返し変形させる。減衰部材4は、繰り返し変形されることによって地盤振動のエネルギーを吸収する。これにより、地盤改良部2を越えて内側に作用する振動エネルギーが低減されるので、構造物1には地震の被害が及び難い。   In the structure subjected to the earthquake-proof construction as described above, when a small and medium-scale earthquake occurs, the energy of ground vibration acting from the outside of the ground improvement part 2 is a hexagonal shape constructed by a plurality of concrete piles 3. A force is periodically generated in the direction of crushing the compartment, and the damping member 4 filled in the compartment is repeatedly deformed. The damping member 4 absorbs the energy of ground vibration by being repeatedly deformed. As a result, the vibration energy acting on the inside beyond the ground improvement portion 2 is reduced, and the structure 1 is unlikely to be damaged by an earthquake.

大規模な地震が発生した場合は、地盤改良部2の外側から作用する地盤振動のエネルギーが、複数のコンクリート杭3自体を破壊する。コンクリート杭3の破壊によって吸収される地盤振動のエネルギーは、減衰部材4の変形による場合よりも遙かに大きいので、地震の規模が甚大である場合も、構造物1には地震の被害が及び難い。
しかも、地盤改良部2は、構造物自体に手を加えずに施工できるので、既設の構造物に対しての適用も容易である。
When a large-scale earthquake occurs, the energy of ground vibration acting from the outside of the ground improvement part 2 destroys the plurality of concrete piles 3 themselves. Since the energy of ground vibration absorbed by the destruction of the concrete pile 3 is much larger than that due to the deformation of the damping member 4, even if the magnitude of the earthquake is enormous, the structure 1 is damaged by the earthquake. hard.
In addition, since the ground improvement unit 2 can be constructed without modifying the structure itself, it can be easily applied to existing structures.

本実施形態においては、コンクリート杭3と減衰部材4とを組み合わせて、あらゆる規模の地震にも対応するように構成したが、大規模地震のみへの対策とするならば、コンクリート杭3のみで地盤改良部2を形成したものであってもよい。
なお、コンクリート杭3ではなく、鋼板杭を連設して地中に鋼板の壁部を構築したものであってもよい。
また、コンクリート杭3によって構築される区画の形状は、ハニカム状に限らず、例えば構造物1を中心として施工された二重の同心円状の壁部に挟まれた円環状の区画等、それ以外の形状であっても構わない。
In the present embodiment, the concrete pile 3 and the damping member 4 are combined so as to cope with earthquakes of any scale. However, if only a large-scale earthquake is taken as a countermeasure, only the concrete pile 3 is used for the ground. The improvement part 2 may be formed.
In addition, not the concrete pile 3 but the steel plate wall may be constructed by connecting steel plate piles in the ground.
Further, the shape of the section constructed by the concrete pile 3 is not limited to the honeycomb shape, for example, an annular section sandwiched between double concentric walls constructed around the structure 1, etc. It may be a shape.

本実施形態においては、減衰部材4にアスファルトを使用しているが、これ以外に同様の性状を示す瀝青材や保冷材などの高減衰ゲルを使用してもよい。また、粘弾性体にかえてオイルダンパを使用して機械的にエネルギーを吸収する構造を採用してもよい。   In the present embodiment, asphalt is used for the damping member 4, but a high damping gel such as bituminous material or cold insulation material exhibiting similar properties may be used. Moreover, you may employ | adopt the structure which absorbs energy mechanically using an oil damper instead of a viscoelastic body.

図4には、図3に示すように、構造物の中心に設定した基点Aから8〜13メートル離れた範囲に、減衰部材4に廃タイヤのシュレッド(廃タイヤが細かく裁断されたもの、減衰率30%)を使用した地盤改良部2を5メートルの幅で設置した場合と、同範囲に、減衰部材4にアスファルト(減衰率100%)を使用した地盤改良部2を設置した場合とで、基点Aから0メートルの地点(すなわち基点A)、および基点から5メートルの地点Bにおいてどの程度の振動低減効果が得られるかを比較したグラフである。
基点Aにおいては、廃タイヤを使用した地盤改良部2を設置した場合よりも、アスファルトを使用した地盤改良部2を設置した場合のほうが、主要な周波数域(0〜3Hz)の全域において加速度が低減しており、振動低減効果が現れている。
地点Bにおいても、廃タイヤを使用した地盤改良部2を設置した場合よりも、アスファルトを使用した地盤改良部2を設置した場合のほうが、主要な周波数域(0〜3Hz)の全域において加速度が低減しており、しかもその効果がより顕著に現れている。
In FIG. 4, as shown in FIG. 3, a shred of a waste tire (a waste tire is finely cut, attenuating in a range of 8 to 13 meters away from a base point A set at the center of the structure) When the ground improvement part 2 using a rate of 30%) is installed with a width of 5 meters, and when the ground improvement part 2 using asphalt (attenuation rate 100%) is installed on the damping member 4 in the same range 4 is a graph comparing how much vibration reduction effect can be obtained at a point 0 meters from the base point A (that is, the base point A) and a point B 5 meters from the base point.
At the base point A, the acceleration in the main frequency range (0 to 3 Hz) is greater when the ground improvement portion 2 using asphalt is installed than when the ground improvement portion 2 using waste tires is installed. The vibration reduction effect appears.
Even at the point B, the acceleration in the entire main frequency range (0 to 3 Hz) is greater when the ground improvement unit 2 using asphalt is installed than when the ground improvement unit 2 using waste tires is installed. In addition, the effect is more prominent.

本発明の実施の形態を示す図であって、構造物の周囲の地盤に地盤改良部を施工した状態を示す断面図である。It is a figure which shows embodiment of this invention, Comprising: It is sectional drawing which shows the state which constructed the ground improvement part in the ground around a structure. 地盤改良部を上方から見た図である。It is the figure which looked at the ground improvement part from the upper part. 構造物の周囲の地盤に地盤改良部を施工したモデル図である。It is the model figure which constructed the ground improvement part in the ground around a structure. 減衰部材に廃タイヤのシュレッドを使用した地盤改良部を設置した場合と、減衰部材にアスファルトを使用した地盤改良部を設置した場合とで、基点Aおよび地点Bにおいてどの程度の振動低減効果が得られるかを比較したグラフである。How much vibration reduction effect is obtained at the base point A and the point B when the ground improvement part using the shred of waste tire is installed as the damping member and when the ground improvement part using asphalt is installed as the damping member It is the graph which compared whether it is possible.

符号の説明Explanation of symbols

1 構造物
2 地盤改良部
3 コンクリート杭
4 減衰部材
DESCRIPTION OF SYMBOLS 1 Structure 2 Ground improvement part 3 Concrete pile 4 Damping member

Claims (2)

構造物の周囲の地盤に、前記構造物を取り囲むように、周辺の地盤よりも剛性の高い地盤改良部を形成し、
前記地盤改良部に、減衰率が100%以上の減衰部材と、該減衰部材を取り囲むようにそれぞれが連結された複数の杭とによって構成される区画を、複数連続して構成することを特徴とする構造物の耐震・防振方法。
In the ground around the structure, so as to surround the structure, a ground improvement portion having higher rigidity than the surrounding ground is formed,
In the ground improvement part, a plurality of sections constituted by a damping member having a damping rate of 100% or more and a plurality of piles connected to each other so as to surround the damping member are continuously formed. Seismic and vibration isolation methods for structures
構造物の周囲の地盤に、前記構造物を取り囲むように、周辺の地盤よりも剛性の高い地盤改良部を備え、
前記地盤改良部には、減衰率が100%以上の減衰部材と、該減衰部材を取り囲むようにそれぞれが連結された複数の杭とによって構成される区画が、複数連続して構成されていることを特徴とする構造物の耐震・防振構造。
The ground around the structure is provided with a ground improvement portion having higher rigidity than the surrounding ground so as to surround the structure,
In the ground improvement portion, a plurality of sections each including a damping member having a damping rate of 100% or more and a plurality of piles connected to each other so as to surround the damping member are configured in succession. Seismic and vibration-proof structure for structures characterized by
JP2004055580A 2004-02-27 2004-02-27 Seismic / vibration-proof method and seismic / vibration-proof structure Expired - Fee Related JP3891991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055580A JP3891991B2 (en) 2004-02-27 2004-02-27 Seismic / vibration-proof method and seismic / vibration-proof structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055580A JP3891991B2 (en) 2004-02-27 2004-02-27 Seismic / vibration-proof method and seismic / vibration-proof structure

Publications (2)

Publication Number Publication Date
JP2005240520A JP2005240520A (en) 2005-09-08
JP3891991B2 true JP3891991B2 (en) 2007-03-14

Family

ID=35022539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055580A Expired - Fee Related JP3891991B2 (en) 2004-02-27 2004-02-27 Seismic / vibration-proof method and seismic / vibration-proof structure

Country Status (1)

Country Link
JP (1) JP3891991B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105951894A (en) * 2015-07-14 2016-09-21 胡荣梁 Construction method for building earthquake-proof foundation

Also Published As

Publication number Publication date
JP2005240520A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
KR100952232B1 (en) Stable friction damper for lintel beam
Li et al. Advances in structural control in civil engineering in China
KR101478654B1 (en) Seismic Retrofit Technology using Diagrid Frames
CN106593464A (en) Tunnel axial damping and energy absorbing device and tunnel lining structure with same
Dicleli Supplemental elastic stiffness to reduce isolator displacements for seismic-isolated bridges in near-fault zones
US6581340B2 (en) Modular anti-seismic protection device to be used in buildings and similar constructions
KR101321416B1 (en) Damping device for structure
JP3891991B2 (en) Seismic / vibration-proof method and seismic / vibration-proof structure
JP5747458B2 (en) Ground displacement absorption isolation structure
Mehrparvar et al. Performance-based semi-active control algorithm for protecting base isolated buildings from near-fault earthquakes
Iravani et al. An Investigation to the Seismic Performance of Base Isolator-Equipped Moment Frame Steel Structures
JP2012031665A (en) Vibration isolation wall
CN203129677U (en) Shock absorption house
CN113605548B (en) Rail transit upper cover structure with multistage vibration reduction and defense lines and design method thereof
JP2733917B2 (en) Damping device
KR20200025362A (en) Seismic reinforcement concrete structure using steel braces with dampers
Liu et al. Seismic response mitigation of prefabricated industrial equipment structural frames through a hybrid isolation system
JP2009197398A (en) Seismic control structure
Lee et al. Base isolation: An historical development, and the influence of higher mode responses
KR101418652B1 (en) Device for decreasing blasting noise
JP2013155559A (en) Liquefaction damage reducing structure for construction
JP2000054506A (en) Uplift prevention device for base isolated building and base isolated construction for light-weight building provided therewith
JP6692665B2 (en) Impact reduction device and power plant
JP2002201816A (en) Base isolation foundation structure of building
KR102612434B1 (en) module type damping device for shock absorbing of concrete structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees