JP3890115B2 - Heat exchanger and manufacturing method thereof - Google Patents

Heat exchanger and manufacturing method thereof Download PDF

Info

Publication number
JP3890115B2
JP3890115B2 JP17534997A JP17534997A JP3890115B2 JP 3890115 B2 JP3890115 B2 JP 3890115B2 JP 17534997 A JP17534997 A JP 17534997A JP 17534997 A JP17534997 A JP 17534997A JP 3890115 B2 JP3890115 B2 JP 3890115B2
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
fin
fitting
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17534997A
Other languages
Japanese (ja)
Other versions
JPH10306986A (en
Inventor
淑二 赤木
茂男 丸笠
明男 栗原
一裕 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP17534997A priority Critical patent/JP3890115B2/en
Publication of JPH10306986A publication Critical patent/JPH10306986A/en
Application granted granted Critical
Publication of JP3890115B2 publication Critical patent/JP3890115B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫用エバポレータ等の冷凍サイクルで使用する熱交換器及びその製造方法に係り、特にコルゲート状に曲げたフィンに冷媒チューブを嵌め込むことにより形成される熱交換器及びその製造方法に関する。
【0002】
【従来の技術】
一般に、コルゲート状に曲げられた複数のコルゲートフィンにチューブ嵌め込み用の溝を設け、この複数のコルゲートフィンに冷媒チューブを嵌め込むことにより製造される熱交換器は知られている。この種の熱交換器を例えば冷蔵庫用エバポレータとして使用する場合、チューブ嵌め込み用の溝が外側に向くようにコルゲートフィンを二重に重ねた熱交換器を製造し、二重に重ねた熱交換器を冷蔵庫の背面の熱交換用空気の流路に収納するようにしている。
【0003】
【発明が解決しようとする課題】
しかしながら、熱交換用空気の流路に熱交換器を設置する場合、この熱交換器を設置した後に前記流路を形成する庫壁内部にウレタン等の発泡材を注入するのが一般的である。このような場合にウレタン等の発泡材の発泡圧(外圧)に耐えられず、前記コルゲートフィン及び庫壁が変形するという問題がある。
【0004】
そこで、本発明の目的は、発泡圧(外圧)が作用したとしてもコルゲートフィン及び庫壁の変形を抑制することができる熱交換器を提供することにある。
【0005】
【課題を解決するための手段】
請求項1記載の発明は、コルゲート状に折り曲げたフィンエレメントにチューブ嵌め込み用の溝を設け、このチューブ嵌め込み用の溝にサーペンタイン状に曲げたチューブエレメントを嵌め込んで複数のコアエレメントを形成し、これら複数のコアエレメントを前記チューブ嵌め込み用の溝が内側に向くように重ね合わせて形成したことを特徴とするものである。この場合、フィンエレメントの空気流入側フィンピッチが空気流出側フィンピッチよりも疎に形成されていてもよい。また、フィンエレメントに設けられたチューブ嵌め込み用の溝の深さが交互に異なり、深さの異なる溝内に各チューブエレメントが嵌め込まれていてもよい。複数のコアエレメントはチューブ嵌め込み用の溝が内側に向くように重ね合わせられ、各コアエレメントの対向面には切り起こしが設けられていてもよい。フィンエレメントのフィン素材に、Al−Mn系の合金であって、Mnを1.0〜1.5%またはさらにMgを0.8〜1.3%添加した合金を用いてもよい。フィンエレメントがアルミニウム製であり、冷媒チューブが銅製であってもよい。請求項1ないし6のいずれかに記載の熱交換器を用いた冷蔵庫でもよい。請求項1ないし6のいずれかに記載の熱交換器を用いた冷凍サイクルでもよい。
【0006】
この発明によれば、例えば熱交換用の空気の流路に熱交換器を設置したときに、その流路を形成する壁面に対して与える力学的な負荷が均等になり、且つ接触面積が広くなるため、庫壁からの圧力に対する強度が向上する。
【0007】
請求項2記載の発明は、チューブ嵌め込み用の溝を有するコルゲート状に折り曲げた複数のフィンエレメントを並置すると共に、複数のフィンエレメントの前記チューブ嵌め込み用の各溝にチューブ折曲げ部を介して接続されるサーペンタイン状に曲げたチューブエレメントを嵌め込んでチューブ折曲げ部を介して接続される複数のコアエレメントを形成し、前記チューブ折曲げ部を折り曲げて複数のコアエレメントを前記チューブ嵌め込み用の溝が内側に向くように重ね合わせて形成することを特徴とするものである。
【0008】
この発明によれば、例えば熱交換用の空気の流路に熱交換器を設置したときに、その流路を形成する壁面に対して与える力学的な負荷が均等になり、且つ接触面積が広くなるため、庫壁からの圧力に対する強度が向上する。
【0009】
また、この発明によれば、先ずチューブ折曲げ部を介して接続される複数のコアエレメントが形成され、次にチューブ折曲げ部を折り曲げるだけで、チューブ嵌め込み用の溝が内側に向くように複数のコアエレメントが重ね合わせられるので、この熱交換器の製造は容易に行われる。
【0010】
【発明の実施の形態】
以下、本発明の一実施形態について図面を参照して説明する。尚、この明細書において、以下「アルミニウム」の語は「純アルミニウム」のほかに「アルミニウム合金」を含むものとする。
【0011】
図1A及びBは本発明の一実施形態による熱交換器(以下「エバポレータ」という。)の正面及び側面をそれぞれ示している。このエバポレータ1は、先ずコルゲート状に折り曲げたフィンエレメント3A,3Bにチューブ嵌め込み用の溝7A,7Bを設け、次にチューブ嵌め込み用の各溝7A,7Bにサーペンタイン状に曲げたチューブエレメント5A,5Bを嵌め込んで複数のコアエレメント2A,2Bを形成し、複数のコアエレメント2A,2Bをチューブ嵌め込み用の溝7A,7Bが内側に向くように間隙Lをあけて重ね合わせて形成される。
【0012】
各フィンエレメント3A,3Bにおいては、図1Aに示すように空気流入側フィンピッチが空気流出側フィンピッチよりも疎に形成される。一般にこの種のエバポレータ1に着霜する場合には空気流入側に着霜し易いことが知られる。着霜するとフィンピッチ間にいわゆるブリッジが形成されるので熱交換用空気の通りが悪くなり熱交換効率が低下する。従って空気流入側のフィンピッチを疎に形成することにより上記ブリッジの形成が阻止される。
【0013】
チューブ嵌め込み用の溝7A,7Bは交互に深さが異なり、この深さの異なる溝7A,7B内に前記各チューブエレメント5A,5Bは嵌め込まれる。これによれば、熱交換用空気の通り道に各チューブエレメント5A,5Bが千鳥状に突出するので、エバポレータ1の熱交換効率は向上する。
【0014】
複数のコアエレメント2A,2Bはチューブ嵌め込み用の溝7A,7Bが内側に向くように重ね合わせられるが、各コアエレメント2A,2Bの対向面には切り起こし9(図5)が設けられる。この切り起こし9によって空気が案内され、各チューブエレメント5A,5Bには積極的に空気が当てられる。
【0015】
尚、この実施形態ではフィンの強度を高めるためにフィンエレメント3Aのフィン素材に、例えばAl−Mn系の合金(Mnを1.0〜1.5%またはさらにMgを0.8〜1.3%添加した合金)が用いられる。
【0016】
次に、熱交換器の製造手順を説明する。図2A〜Cは本発明の一実施形態による熱交換器の製造手順を説明する概略図である。
【0017】
まず図2Aを参照してフィンエレメントは一枚のアルミニウム製板材をコルゲート状に折り曲げることにより形成される。即ち、ロール状に巻かれたフィン素材11を、間欠移送手段(図示せず)を用いて一定の速度で間欠的に送り出しながら、金型(図示せず)を用いてチューブ嵌め込み用の溝7及びフィンピッチを疎にするための溝13を形成するとともに上下一対の金型15及び17を用いてフィン素材11をコルゲート状に折り曲げる(図2A)。
【0018】
この実施形態ではフィンエレメント3A,3Bは二個形成されこれらは図示のようにチューブ嵌め込み用の溝7A,7Bを上にして並置される(図2B)。
【0019】
次に、銅製の冷媒チューブ5を準備する。この冷媒チューブ5は一本の長い銅製のチューブを加工したものであり、冷媒チューブ5はチューブ折曲げ部5Cの両側にサーペンタイン状に曲げたチューブエレメント5A,5Bを備えて構成される。サーペンタイン状に曲げたチューブエレメント5A,5Bは二個のフィンエレメント3A,3Bのチューブ嵌め込み用の溝7A,7Bにそれぞれ押し込み治具(図示せず)を用いて嵌め込まれる。これによれば、ほぼ等しい形状をした二個のコアエレメント2A,2Bが形成される(図2C)
図3はチューブ嵌め込み用の溝7A,7Bにチューブエレメント5A,5Bを嵌め込んだ状態を示す平面図である。
【0020】
最後の工程では、チューブ折曲げ部5Cを基準として、例えば図中右側のコアエレメント2Bを持ち上げるように、即ちコアエレメント2A及び2Bのそれぞれのチューブ嵌め込み用の溝7A,7Bが対向するように間隙L(図1)をあけて折り曲げて図1に示すエバポレータ1が形成される。
【0021】
このエバポレータ1は、図4に示すように冷蔵庫の背面内部にある熱交換用空気の流路100に設置される。この流路100は庫壁23により囲われるが、一般に庫壁23の内部にはウレタン等の発泡材が注入される。注入された発泡材が発泡すればエバポレータ1に対して発泡圧がかかる。従来であればチューブ嵌め込み用の溝7が庫壁23に対向するので、仮に発泡圧が作用するとフィンエレメント3A,3B及び庫壁23に変形が生じる等の不都合がある。
【0022】
この実施形態によれば、コアエレメント2A,2Bのそれぞれのチューブ嵌め込み用の溝7は対向し、従来のように庫壁23には対向しないので庫壁23に対して与える力学的な負荷は均等であり且つ庫壁23への接触面積は広いので、庫壁23の圧力に対する強度は向上し、仮に発泡圧が作用したとしてもフィンエレメント3A,3B及び庫壁23の変形は抑制される。
【0023】
コアエレメント2A,2Bは前述のように溝7A,7Bが内側に向くように間隙L(図1)をあけて重ね合わせられる。従って、チューブ折曲げ部5Cのスプリングバック等によりコアエレメント2A,2Bは庫壁23へ圧接される。これによれば、コアエレメント2A,2Bと庫壁23との間を通る空気はほとんどなくなり、全ての空気はフィンエレメント3A,3Bに安定的に導かれるので、熱交換効率を向上させることができる。
【0024】
以上、本発明に係る一実施形態について説明したが、本発明はこれに限定されるものではない。例えば二個のコアエレメント2A,2Bを重ね合わせる例について説明したが本発明はチューブ嵌め込み用の溝が内側に向くように重ね合わせる限り、三個以上のコアエレメントを重ね合わせるものにも適用が可能である。また切り起こし9の形状はこれに限定されない。
【0025】
【発明の効果】
請求項1〜8に記載の発明によれば、チューブ嵌め込み用の溝が内側に向くように重ね合わせたので、例えば熱交換用の空気の流路に設置する場合、庫壁圧力(発泡圧)に起因するコルゲートフィン及び庫壁の変形は抑制される。
請求項9に記載の発明によれば、上記発明の効果に加えて、本熱交換器を簡単に製造できる等の効果を奏する。
【0026】
請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、本熱交換器を簡単に製造できる等の効果を奏する。
【図面の簡単な説明】
【図1】図1A及びBは本発明の一実施形態による熱交換器の正面及び側面をそれぞれ示す図である。
【図2】本発明の一実施形態による熱交換器の製造手順を説明する概略図である。
【図3】コアエレメントを重ね合わせる前の熱交換器の平面図である。
【図4】冷蔵庫の庫壁内部に設置された熱交換器を示す図である。
【図5】コアエレメントを重ね合わせる前の熱交換器の一部を示す斜視図である。
【符号の説明】
1 エバポレータ(熱交換器)
2A及び2B コアエレメント
3A及び3B フィンエレメント
5A及び5B チューブエレメント
7A及び7B チューブ嵌め込み用の溝
9 切り起こし
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger used in a refrigeration cycle such as an evaporator for a refrigerator and a manufacturing method thereof, and more particularly to a heat exchanger formed by fitting a refrigerant tube into a fin bent in a corrugated shape and a manufacturing method thereof. .
[0002]
[Prior art]
Generally, a heat exchanger manufactured by providing a tube fitting groove in a plurality of corrugated fins bent into a corrugated shape and fitting a refrigerant tube into the plurality of corrugated fins is known. When this type of heat exchanger is used as an evaporator for a refrigerator, for example, a heat exchanger in which corrugated fins are double stacked so that the tube fitting groove faces outward is manufactured, and the double heat exchanger Is stored in the heat exchange air flow path on the back of the refrigerator.
[0003]
[Problems to be solved by the invention]
However, when installing a heat exchanger in the flow path of heat exchange air, it is common to inject a foaming material such as urethane into the warehouse wall that forms the flow path after the installation of this heat exchanger. . In such a case, there is a problem that the corrugated fins and the storage wall are deformed because they cannot withstand the foaming pressure (external pressure) of a foamed material such as urethane.
[0004]
Then, the objective of this invention is providing the heat exchanger which can suppress a deformation | transformation of a corrugated fin and a warehouse wall, even if foaming pressure (external pressure) acts.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 is provided with a groove for fitting a tube in a fin element bent into a corrugated shape, and a plurality of core elements are formed by fitting the tube element bent into a serpentine shape into the groove for fitting the tube, The plurality of core elements are formed by being overlapped so that the tube fitting groove faces inward. In this case, the air inflow side fin pitch of the fin element may be formed sparser than the air outflow side fin pitch. Moreover, the depth of the groove | channel for tube fitting provided in the fin element may differ alternately, and each tube element may be engage | inserted in the groove | channel where depth differs. The plurality of core elements may be overlapped so that the tube fitting groove faces inward, and a cut-and-raised portion may be provided on the facing surface of each core element. As the fin material of the fin element, an Al—Mn alloy that is 1.0 to 1.5% Mn or further 0.8 to 1.3% Mg may be used. The fin element may be made of aluminum and the refrigerant tube may be made of copper. A refrigerator using the heat exchanger according to any one of claims 1 to 6 may be used. A refrigeration cycle using the heat exchanger according to any one of claims 1 to 6 may be used.
[0006]
According to the present invention, for example, when a heat exchanger is installed in the air flow path for heat exchange, the mechanical load applied to the wall surface forming the flow path becomes uniform, and the contact area is wide. Therefore, the strength against the pressure from the warehouse wall is improved.
[0007]
In the invention according to claim 2, a plurality of fin elements bent into a corrugated shape having a tube fitting groove are juxtaposed and connected to the respective tube fitting grooves of the plurality of fin elements via a tube bending portion. A plurality of core elements connected to each other through tube bent portions by fitting the tube elements bent into a serpentine shape, and bending the tube bent portions to form the plurality of core elements into the tube fitting grooves It is characterized by being formed so as to be directed inward.
[0008]
According to the present invention, for example, when a heat exchanger is installed in the air flow path for heat exchange, the mechanical load applied to the wall surface forming the flow path becomes uniform, and the contact area is wide. Therefore, the strength against the pressure from the warehouse wall is improved.
[0009]
In addition, according to the present invention, first, a plurality of core elements to be connected via the tube bent portion are formed, and then a plurality of the tube fitting grooves are directed inward by simply bending the tube bent portion. Since the core elements are superposed, the heat exchanger is easily manufactured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the present specification, the term “aluminum” includes “aluminum alloy” in addition to “pure aluminum”.
[0011]
1A and 1B respectively show a front surface and a side surface of a heat exchanger (hereinafter referred to as “evaporator”) according to an embodiment of the present invention. In the evaporator 1, first, the fin elements 3A and 3B bent in the corrugated shape are provided with the grooves 7A and 7B for fitting the tubes, and then the tube elements 5A and 5B bent in the serpentine shape in the respective grooves 7A and 7B for fitting the tubes. Are formed to form a plurality of core elements 2A and 2B, and the plurality of core elements 2A and 2B are overlapped with a gap L so that the grooves 7A and 7B for fitting the tubes face inward.
[0012]
In each fin element 3A, 3B, as shown in FIG. 1A, the air inflow side fin pitch is formed sparser than the air outflow side fin pitch. In general, it is known that when this type of evaporator 1 is frosted, it tends to frost on the air inflow side. When frosting occurs, so-called bridges are formed between the fin pitches, so that the air for heat exchange becomes poor and the heat exchange efficiency is lowered. Therefore, the formation of the bridge is prevented by forming the fin pitch on the air inflow side sparsely.
[0013]
The tube fitting grooves 7A and 7B are alternately different in depth, and the tube elements 5A and 5B are fitted into the grooves 7A and 7B having different depths. According to this, since each tube element 5A, 5B protrudes in a zigzag shape on the passage of heat exchange air, the heat exchange efficiency of the evaporator 1 is improved.
[0014]
The plurality of core elements 2A and 2B are overlapped so that the grooves 7A and 7B for fitting the tubes face inward, but a cut and raised 9 (FIG. 5) is provided on the opposing surface of each core element 2A and 2B. Air is guided by the cut-and-raised portion 9, and air is positively applied to the tube elements 5A and 5B.
[0015]
In this embodiment, in order to increase the strength of the fin, for example, an Al-Mn alloy (Mn is 1.0 to 1.5% or Mg is 0.8 to 1.3) is added to the fin material of the fin element 3A. % Added alloy).
[0016]
Next, the manufacturing procedure of the heat exchanger will be described. 2A to 2C are schematic views illustrating a manufacturing procedure of a heat exchanger according to an embodiment of the present invention.
[0017]
First, referring to FIG. 2A, the fin element is formed by bending a single aluminum plate into a corrugated shape. That is, while the fin material 11 wound in a roll shape is intermittently delivered at a constant speed using an intermittent transfer means (not shown), a tube fitting groove 7 using a die (not shown). And the groove | channel 13 for making a fin pitch sparse is formed, and the fin raw material 11 is bend | folded in a corrugated shape using a pair of upper and lower metal mold | dies 15 and 17 (FIG. 2A).
[0018]
In this embodiment, two fin elements 3A and 3B are formed, and they are juxtaposed with the tube-inserting grooves 7A and 7B facing upward as shown (FIG. 2B).
[0019]
Next, a copper refrigerant tube 5 is prepared. The refrigerant tube 5 is obtained by processing a single long copper tube, and the refrigerant tube 5 includes tube elements 5A and 5B bent in a serpentine shape on both sides of the tube bent portion 5C. The tube elements 5A and 5B bent into a serpentine shape are fitted into the tube fitting grooves 7A and 7B of the two fin elements 3A and 3B, respectively, using a pushing jig (not shown). According to this, two core elements 2A and 2B having substantially the same shape are formed (FIG. 2C).
FIG. 3 is a plan view showing a state in which the tube elements 5A and 5B are fitted in the grooves 7A and 7B for fitting the tubes.
[0020]
In the last step, with reference to the tube bent portion 5C, for example, the right core element 2B in the figure is lifted, that is, the tube fitting grooves 7A and 7B of the core elements 2A and 2B are opposed to each other. L (FIG. 1) is opened and bent to form the evaporator 1 shown in FIG.
[0021]
As shown in FIG. 4, the evaporator 1 is installed in a heat exchange air flow path 100 inside the refrigerator. Although the flow path 100 is surrounded by the storage wall 23, generally, foam material such as urethane is injected into the storage wall 23. If the injected foam material is foamed, foaming pressure is applied to the evaporator 1. Conventionally, since the tube fitting groove 7 faces the storage wall 23, there is a disadvantage that the foam elements 3A and 3B and the storage wall 23 are deformed if foaming pressure is applied.
[0022]
According to this embodiment, since the tube fitting grooves 7 of the core elements 2A and 2B are opposed to each other and do not face the warehouse wall 23 as in the prior art, the mechanical load applied to the warehouse wall 23 is equal. In addition, since the contact area with the warehouse wall 23 is wide, the strength of the warehouse wall 23 against pressure is improved, and even if foaming pressure is applied, the deformation of the fin elements 3A and 3B and the warehouse wall 23 is suppressed.
[0023]
As described above, the core elements 2A and 2B are overlapped with a gap L (FIG. 1) so that the grooves 7A and 7B face inward. Therefore, the core elements 2A and 2B are pressed against the warehouse wall 23 by the spring back of the tube bent portion 5C. According to this, almost no air passes between the core elements 2A, 2B and the warehouse wall 23, and all the air is stably guided to the fin elements 3A, 3B, so that the heat exchange efficiency can be improved. .
[0024]
As mentioned above, although one embodiment concerning the present invention was described, the present invention is not limited to this. For example, an example in which two core elements 2A and 2B are overlapped has been described, but the present invention can also be applied to a structure in which three or more core elements are overlapped as long as they are overlapped so that the tube fitting groove faces inward. It is. Further, the shape of the cut and raised 9 is not limited to this.
[0025]
【The invention's effect】
According to the first to eighth aspects of the invention, since the tube fitting grooves are overlapped so as to face inward, for example, when installed in a heat exchange air flow path, the warehouse wall pressure (foaming pressure) The deformation of the corrugated fin and the storage wall caused by the is suppressed.
According to invention of Claim 9, in addition to the effect of the said invention, there exist effects, such as being able to manufacture this heat exchanger easily.
[0026]
According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, there is an effect that the present heat exchanger can be easily manufactured.
[Brief description of the drawings]
FIGS. 1A and 1B are views showing a front surface and a side surface of a heat exchanger according to an embodiment of the present invention, respectively.
FIG. 2 is a schematic diagram illustrating a manufacturing procedure of a heat exchanger according to an embodiment of the present invention.
FIG. 3 is a plan view of the heat exchanger before the core elements are overlaid.
FIG. 4 is a view showing a heat exchanger installed inside a refrigerator wall.
FIG. 5 is a perspective view showing a part of the heat exchanger before the core elements are overlaid.
[Explanation of symbols]
1 Evaporator (heat exchanger)
2A and 2B Core elements 3A and 3B Fin elements 5A and 5B Tube elements 7A and 7B Groove 9 for tube insertion Cut and raised

Claims (9)

コルゲート状に折り曲げたフィンエレメントにチューブ嵌め込み用の溝を設け、このチューブ嵌め込み用の溝にサーペンタイン状に曲げたチューブエレメントを嵌め込んで複数のコアエレメントを形成し、これら複数のコアエレメントを前記チューブ嵌め込み用の溝が内側に向くように重ね合わせて形成したことを特徴とする熱交換器。  A groove for fitting a tube is provided in a corrugated fin element, and a plurality of core elements are formed by fitting a tube element bent in a serpentine shape into the groove for fitting the tube. A heat exchanger, wherein the grooves for fitting are overlapped so as to face inward. フィンエレメントの空気流入側フィンピッチが空気流出側フィンピッチよりも疎に形成されていることを特徴とする請求項1に記載の熱交換器。The heat exchanger according to claim 1, wherein the fin pitch of the air inflow side of the fin element is formed sparser than the fin pitch of the air outflow side. フィンエレメントに設けられたチューブ嵌め込み用の溝の深さが交互に異なり、深さの異なる溝内に各チューブエレメントが嵌め込まれていることを特徴とする請求項1または2に記載の熱交換器。3. The heat exchanger according to claim 1, wherein the tube fitting grooves provided in the fin elements have different depths alternately, and the tube elements are fitted in the grooves having different depths. . 複数のコアエレメントはチューブ嵌め込み用の溝が内側に向くように重ね合わせられ、各コアエレメントの対向面には切り起こしが設けられていることを特徴とする請求項1ないし3のいずれかに記載の熱交換器。The plurality of core elements are overlapped so that a groove for fitting a tube faces inward, and a cut-and-raised portion is provided on an opposing surface of each core element. Heat exchanger. フィンエレメントのフィン素材に、Al−Mn系の合金であって、Mnを1.0〜1.5%またはさらにMgを0.8〜1.3%添加した合金を用いたことを特徴とする請求項1ないし4のいずれかに記載の熱交換器。The fin material of the fin element is an Al-Mn alloy that is 1.0 to 1.5% Mn or 0.8 to 1.3% Mg added. The heat exchanger according to any one of claims 1 to 4. フィンエレメントがアルミニウム製であり、冷媒チューブが銅製であることを特徴とする請求項1ないし5のいずれかに記載の熱交換器。The heat exchanger according to any one of claims 1 to 5, wherein the fin element is made of aluminum and the refrigerant tube is made of copper. 請求項1ないし6のいずれかに記載の熱交換器を用いた冷蔵庫。A refrigerator using the heat exchanger according to any one of claims 1 to 6. 請求項1ないし6のいずれかに記載の熱交換器を用いた冷凍サイクル。A refrigeration cycle using the heat exchanger according to any one of claims 1 to 6. チューブ嵌め込み用の溝を有するコルゲート状に折り曲げた複数のフィンエレメントを並置すると共に、複数のフィンエレメントの前記チューブ嵌め込み用の各溝にチューブ折曲げ部を介して接続されるサーペンタイン状に曲げたチューブエレメントを嵌め込んでチューブ折曲げ部を介して接続される複数のコアエレメントを形成し、前記チューブ折曲げ部を折り曲げて複数のコアエレメントを前記チューブ嵌め込み用の溝が内側に向くように重ね合わせて形成することを特徴とする熱交換器の製造方法。A tube bent in a serpentine shape, in which a plurality of fin elements bent into a corrugated shape having a tube fitting groove are juxtaposed and connected to each of the tube fitting grooves of the plurality of fin elements via a tube bending portion. Forming a plurality of core elements that are connected via tube bending portions by fitting the elements, and bending the tube bending portions so that the plurality of core elements are overlapped so that the groove for tube fitting faces inward. A method of manufacturing a heat exchanger, characterized by comprising:
JP17534997A 1997-05-07 1997-05-07 Heat exchanger and manufacturing method thereof Expired - Fee Related JP3890115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17534997A JP3890115B2 (en) 1997-05-07 1997-05-07 Heat exchanger and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17534997A JP3890115B2 (en) 1997-05-07 1997-05-07 Heat exchanger and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10306986A JPH10306986A (en) 1998-11-17
JP3890115B2 true JP3890115B2 (en) 2007-03-07

Family

ID=15994524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17534997A Expired - Fee Related JP3890115B2 (en) 1997-05-07 1997-05-07 Heat exchanger and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3890115B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079418A1 (en) * 2014-11-20 2016-05-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Compact exchanger for indirect-injection cryogenic transportation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016079418A1 (en) * 2014-11-20 2016-05-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Compact exchanger for indirect-injection cryogenic transportation
FR3028930A1 (en) * 2014-11-20 2016-05-27 Air Liquide COMPACT EXCHANGER FOR CRYOGENIC TRANSPORT IN INDIRECT INJECTION
US10744856B2 (en) 2014-11-20 2020-08-18 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Compact exchanger for indirect-injection cyrogenic transportation

Also Published As

Publication number Publication date
JPH10306986A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
US7749609B2 (en) Metal plate for producing flat tube, flat tube and process for producing the flat tube
JP4099513B2 (en) Metal plate for flat tube manufacturing, flat tube and flat tube manufacturing method
EP0881449A2 (en) Refrigerant tubes for heat exchangers
US20060175047A1 (en) Heat exchanger, method of manufacturing heat exchanger and plate-shaped fin for heat exchanger
JP3064055B2 (en) Heat exchanger manufacturing method
JP2007046869A (en) Evaporator
JP4751662B2 (en) Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger
JP3890115B2 (en) Heat exchanger and manufacturing method thereof
US5797448A (en) Humped plate fin heat exchanger
WO2020095797A1 (en) Heat exchanger and method for manufacturing heat exchanger
JPH11320005A (en) Heat exchanger and its production
JP6636110B1 (en) Air conditioner equipped with heat exchanger, pipe expansion member, and heat exchanger
JP2001311593A (en) Heat exchanger
JP4423096B2 (en) Manufacturing method of heat exchanger
JP2811601B2 (en) Heat exchanger
US5881457A (en) Method of making refrigerant tubes for heat exchangers
JPH1071463A (en) Manufacture of flat heat exchanger tube
JP2009264664A (en) Heat exchanger
JP5250210B2 (en) Flat tubes and heat exchangers
JP2005291693A (en) Plate-shaped body for manufacturing flat tube, flat tube, heat exchanger and method of manufacturing heat exchanger
JPH09303986A (en) Method and structure for fitting-in between plate fin for heat-exchanger and pipe
JPS6093295A (en) Side plate for heat exchanger
JP2001263976A (en) Heat exchanger
JPH09178380A (en) Heat exchanger and its manufacture
JP2001330380A (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees