JP3888893B2 - Liquid-filled vibration isolator - Google Patents

Liquid-filled vibration isolator Download PDF

Info

Publication number
JP3888893B2
JP3888893B2 JP2001386993A JP2001386993A JP3888893B2 JP 3888893 B2 JP3888893 B2 JP 3888893B2 JP 2001386993 A JP2001386993 A JP 2001386993A JP 2001386993 A JP2001386993 A JP 2001386993A JP 3888893 B2 JP3888893 B2 JP 3888893B2
Authority
JP
Japan
Prior art keywords
liquid chamber
groove
inner cylinder
vibration
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001386993A
Other languages
Japanese (ja)
Other versions
JP2003184940A (en
Inventor
明彦 加藤
秀夫 ▲但▼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2001386993A priority Critical patent/JP3888893B2/en
Publication of JP2003184940A publication Critical patent/JP2003184940A/en
Application granted granted Critical
Publication of JP3888893B2 publication Critical patent/JP3888893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車のデファレンシャルやエンジンの支持機構、あるいはサスペンション機構等の一部に組み込まれて、車体側に伝達される振動を減衰するための液封入式防振装置に関するものである。
【0002】
【従来の技術】
一般に、自動車のデファレンシャルやエンジンの支持機構、あるいはサスペンション機構等の一部には、車体側に伝達される振動を減衰するため、液封入式防振装置が組み込まれることがある。図10に液封入式防振装置の一例を示す。
【0003】
この液封入式防振装置は、鋼製の内筒101の周囲に鋼製の中間筒102が配置されて、内筒101と中間筒102との間にゴム状弾性体からなる防振基体103が加硫成形され、中間筒102の外周側に鋼製の外筒104が固定された構造とされ、内筒101と外筒104とがそれぞれ別の部材に取り付けられて、両部材を防振的に連結するようになっている。
【0004】
中間筒102の内筒101を挟んで両側には、開口部105が形成され、この開口105から防振基体103に凹設された空間が外筒104で囲まれて主液室106及び副液室107とされる。
【0005】
中間筒102の外周部には、ゴム状弾性体で内筒101の軸方向に蛇行状のオリフィス溝108が形成され、このオリフィス溝108と外筒104とで囲まれた空間が、主液室106及び副液室107を連通するオリフィスとされる。このオリフィスは、振動時に、両液室106、107内の液が往復して、内外筒101、104間の相対的な振動を減衰するようになっている。
【0006】
両液室106、107を仕切る防振基体103の厚さは、中間筒102の両開口部105間の周方向幅に等しく設定され、この防振基体103とオリフィス溝108とは、軸方向両端部を覆う端型と外周部を覆う中型とからなる加硫成形型を用いて加硫成形される。
【0007】
加硫成形型の中型は2分割型とされ、そのパーティングラインを開口部105の中央部に設定して、オリフィス溝108の外方に型抜きし、オリフィス溝108が対応する中型の壁部に引っ掛かって欠け落ちないようにしている。このように、中型を2分割にすることにより、中型を4分割型にする場合よりも加硫成形型の部品点数を少なくして、加硫成形型の組立作業時間を短くすると共に、加硫成形型のコスト及びその組立コストを安くしている。
【0008】
【発明が解決しようとする課題】
ところで、防振基体のばね定数を小さく設定し、液の流動効果による減衰を高く設定するときには、防振基体の厚さを薄くすると共に、中間筒の両開口部間の幅を所望の大きさにして、蛇行状のオリフィスに所定の流路長を確保する必要があり、防振基体の厚さが中間筒の両開口部間の幅よりも薄くなることがある。
【0009】
この場合、2分割型の中型のパーティングラインを中間筒開口部の中央部に設定したときには、中型が中間筒の両開口部間に引っ掛かって型抜きすることができない。一方、2分割型の中型のパーティングラインをオリフィス溝の周方向の中央位置に設定したときには、型抜き時にオリフィス溝が対応する中型の壁部に引っ掛かって欠け落ちる恐れがある。
【0010】
本発明は、加硫成形型に二分割型の中型を用いることができる液封入式防振装置を提供することにより、加硫成形型の部品点数を削減して、そのコストを縮減すると共に、液封入式防振装置の生産性を向上させることを目的とする。
【0011】
【課題を解決するための手段】
上記目的を達成するため、本発明は、内筒の周囲に加硫成形されるゴム状弾性体からなる防振基体と、該防振基体の内筒を挟んだ両側に形成された主液室及び副液室と、該主液室と副液室とを連通させるよう前記防振基体の外周部に内筒の軸方向に蛇行状に形成されたオリフィス溝とを備えた液封入式防振装置において、前記オリフィス溝の周方向の略中央位置で内筒の軸方向に防振基体の加硫成形型のパーティングラインが設定され、前記オリフィス溝は、前記成形型の軸直角方向への型抜きが可能な溝深さに設定されると共に、その蛇行状折曲部の主液室側溝壁及び副液室側溝壁がテーパ状に形成されたことを特徴とする液封入式防振装置を提供するものである。
【0012】
この構成によると、防振基体の外周部に、両液室を連通させるオリフィス溝を内筒の軸方向に蛇行状に形成した液封入式防振装置を前提として、オリフィス溝の蛇行状折曲部の両液室側溝壁をテーパ状に形成するので、オリフィス溝の略中央位置にパーティングラインを設定した加硫成形型を軸直角方向に型抜きするときに、この加硫成形型がオリフィス溝の両液室側溝壁に引っ掛からないようにして、オリフィス溝壁の欠け落ちを防止することができる。
【0013】
ここで、「軸方向」とは、内筒の中央孔の中心を通る軸線の方向をいい、「軸直角方向」とは、軸方向に直交する方向をいう。これらの定義は、以下の説明において同じ意味で使用する。また、内筒の軸方向に蛇行状に形成されたオリフィス溝とは、周方向に往復しながら内筒軸方向一側から他側に進行し、主液室の一側及び副液室の他側に形成された両オリフィス出入口を接続するオリフィス溝のことである。また、蛇行状折曲部とは、オリフィス溝が周方向に往復するように、その向きを変える部分であり、内筒軸方向に進行する部分の溝壁を液室側溝壁としている。
【0014】
また、上記の液封入式防振装置とほぼ同じ構成のものとして、内筒の周囲に中間筒を配置して、内筒と中間筒との間に防振基体を加硫成形してもよい。この場合、中間筒に開口部を設けて主液室及び副液室を形成し、ゴム状弾性体により中間筒の外周部に、両液室を連通させるオリフィス溝を形成する。
【0015】
すなわち、内筒とその周囲に配置された中間筒との間に加硫成形されたゴム状弾性体からなる防振基体と、内筒を挟んだ中間筒の両側開口部に形成された主液室及び副液室と、前記中間筒の外周部において前記主液室と副液室とを連通させるようゴム状弾性体により内筒の軸方向に蛇行状に形成されたオリフィス溝とを備えた液封入式防振装置において、前記オリフィス溝の周方向の略中央位置で内筒の軸方向に防振基体の加硫成形型のパーティングラインが設定され、前記オリフィス溝は、前記成形型の軸直角方向への型抜きが可能な溝深さに設定されると共に、その蛇行状折曲部の主液室側溝壁及び副液室側溝壁が溝底から外方に拡がるテーパ状に形成された液封入式防振装置としてもよい。
【0016】
上記の液封入式防振装置の防振基体及びオリフィス溝を2分割型の加硫成形型により加硫成形すれば、本発明の好適な態様を提供することができる。つまり、加硫成形型のパーティングラインをオリフィス溝の周方向の略中央位置とその反対側の2箇所に設定して、2分割型の加硫成形型で加硫成形することにより、加硫成形型の部品点数を少なくすることができる。
【0017】
上記の液封入式防振装置のオリフィス溝を、パーティングラインに直交する溝壁とパーティングラインに平行な溝壁とが連続する蛇行状にして、折曲部における平行な溝壁をテーパ状に形成すれば、パーティングラインに直交する部分の溝幅を狭くすると共に、加硫成形型の形状を簡単にすることができる。
【0018】
上記の液封入式防振装置の防振基体及びオリフィス溝の外周側に円筒状の外筒を配設し、オリフィス溝と外筒で囲まれた空間部を主液室と副液室とを連通させるオリフィスとすれば、一方の取付部材に取り付けるための外筒で、オリフィスの壁面の一部を構成することができる。
【0019】
また、本発明は、内筒の周囲に加硫成形されるゴム状弾性体からなる防振基体と、該防振基体の内筒を挟んだ両側に形成された主液室及び副液室と、該主液室と副液室とを連通させるよう前記防振基体の外周部に内筒の軸方向に蛇行状に形成されたオリフィス溝とを備えた液封入式防振装置の製造方法を提供する。
【0020】
すなわち、一対の金型からなる2分割型の加硫成形型におけるパーティングラインをオリフィス溝の周方向の略中央部分に設定し、オリフィス溝の蛇行状折曲部の溝壁がテーパ状になるよう、金型の対応部位を傾斜面に設定し、ゴム状弾性体の加硫成形時に金型をオリフィス溝のテーパ面に沿わせて型抜きすればよい。ここで、テーパ面とは、テーパ状の溝壁の壁面のうち、溝底に直交する面に対して傾斜した面をいう。
【0021】
この製造方法は、内筒とその周囲に配置された中間筒との間に加硫成形されたゴム状弾性体からなる防振基体と、内筒を挟んだ中間筒の両側開口部に形成された主液室及び副液室と、前記中間筒の外周部において前記主液室と副液室とを連通させるようゴム状弾性体により内筒の軸方向に蛇行状に形成されたオリフィス溝とを備えた液封入式防振装置の製造方法としてもよい。
【0022】
【発明の実施の形態】
以下、本発明に係る実施の形態について、図面を用いて説明する。図1は本発明に係る液封入式防振装置の実施形態を示す分解斜視図、図2は隔壁の斜視図、図3は加硫成形型の中型の組立を示す図、図4は外筒取付前の状態を示す側面図、図5はそのA−A断面図、図6は外筒取付後の状態を示す正面図、図7はその側面図、図8はそのB−B断面図、図9はそのC−C断面図である。
【0023】
この液封入式防振装置は、円筒状の内筒1の周囲に中間筒2が配置されて、内筒1と中間筒2との間にゴム状弾性体からなる防振基体3が加硫成形され、中間筒2の外周側に円筒状の外筒4が固定された構造とされており、内筒1及び外筒4がそれぞれ別の取付部材に取り付けられて、液封入式防振装置が両取付部材を防振的に連結するようになっている。
【0024】
内筒1は、例えば鋼製とされて、その内部を挿通する軸部材によって一方の取付部材に固定される。この内筒1の軸方向中央部の外周面には、後述する主液室7内及び副液室8内に突出するストッパ5が固着されている。このストッパ5は、例えば合成樹脂製とされ、その表面を防振基体と連続するゴム状弾性体で覆われて、内外筒1、4の相対的な変位が大きくなったときに外筒4の内周面に当接してその変位を規制する。
【0025】
中間筒2は、例えば鋼製の略円筒状とされ、その軸方向中央部で内筒1を挟んだ両側には、略長方形の開口部6が形成されており、この開口部6から防振基体3に凹設された空間が、外筒4で囲まれて主液室7及び副液室8とされる。両液室7、8は、両開口部6間の内面側におよぶ深さとされ、両液室7、8を仕切る防振基体3の厚さが両開口部6間の周方向幅よりも薄くされている。
【0026】
中間筒2の軸方向中央部で両開口部6間は、軸直角方向内方に折曲され、その外周部と外筒4の内周面との間に所定の大きさの隙間が形成されている。中間筒2の一方の外周部には、外筒4との隙間に収まる深さのオリフィス溝9が形成され、このオリフィス溝9と外筒4とで囲まれた空間が、両液室7、8を連通させるオリフィス10とされる。
【0027】
オリフィス溝9は、中間筒2の外周面とゴム状弾性体製の溝壁11とで囲まれてなり、溝壁11は、周方向溝壁12と主液室側溝壁13と副液室側溝壁14とからなる。周方向溝壁12と主液室側溝壁13、及び周方向溝壁12と副液室側溝壁14とは互いに連続して直交するように形成され、オリフィス10が周方向に1往復半して両液室7、8を連通させるように、オリフィス溝9が軸方向に蛇行状に形成されている。なお、オリフィス10の往復数は1往復半に限らず、2往復半や3往復半等のように、両液室7、8を連通させるものであればいくつであってもよい。
【0028】
オリフィス溝9の蛇行状折曲部の主液室側溝壁13及び副液室側溝壁14は、溝底から液室7、8側に拡がるテーパ状に形成され、後述する加硫成形型の中型16を液室7、8外方に向けて型抜きするときに、オリフィス溝9に対応する中型16の壁部18が引っ掛からないようになっている。
【0029】
中間筒2の他方の外周部には、外筒4との隙間に収まる高さの隔壁15が軸方向に向けて形成され、両液室7、8間を遮断している。なお、一方にオリフィス溝9を形成し、他方に隔壁15を形成するだけでなく、両方にオリフィス溝9を形成してもよい。
【0030】
次に、この液封入式防振装置の製造方法について説明する。まず、内筒1の軸方向中央部の外周面にストッパ5を固着して、その周囲に中間筒2を配置する。このとき、その開口部6の向きはストッパ5の向きと合わせておく。
【0031】
内筒1及び中間筒2間に設ける防振基体3と、中間筒2の一方の外周面上に設けるオリフィス溝9と、中間筒2の他方の外周面上に設ける隔壁15とを構成するゴム状弾性体を加硫成形する。この加硫成形には、軸方向両端部を覆う端型と外周側を覆う2分割型の中型16とからなる加硫成形型を用いる。
【0032】
中型16は、オリフィス溝9の蛇行状折曲部の主液室側溝壁13及び副液室側溝壁14がテーパ状になるよう、オリフィス溝9に対応する中型16の壁部18に傾斜面18aを設定しておく。中型16のパーティングライン17は、周方向でオリフィス溝9の略中央位置に、内筒1の軸方向に向けて設定する。中型16の型抜きは、その壁部18の傾斜面18aがオリフィス溝9のテーパ面13a、14aに沿うように、液室7、8の外方に向けて型抜きする。
【0033】
ゴム状弾性体の加硫成形が完了した後、例えば中間筒2に縮径加工を施して、その後、中間筒2の外方に例えば鋼製で円筒状の外筒4を配置し、この外筒4を液槽内で縮径して液室7、8内に液を封入する。このとき、中間筒2の軸方向両端部の外周面に外筒4の内周面を圧接し、外筒4の両端部を内向きにかしめて軸方向への抜け出しを防止して、液封入式防振装置が完成する。
【0034】
内筒1の内部に軸部材を挿通させて一方の取付部材に固定し、外筒4を他方の取付部材の開口部に圧入固定して、両取付部材を連結する。内外筒1、4が軸直角方向のうちの液室7、8の方向に相対的に振動するとき、両液室7、8内の液がオリフィス10内を往復し、その摩擦抵抗等によって内外筒1、4の振動を減衰する。
【0035】
なお、本発明は、上記の実施の形態に限定されるものではなく、本発明の範囲内において、適宜変更を加えることができる。例えば、中間筒2を設けずに、防振基体3の外周側に直接外筒4を固定してもよい。この場合、例えば外筒4の内周面に、防振基体3のずれを規制する突起を形成しておけばよい。
【0036】
その防振基体3の外周部には、内筒1の軸方向に蛇行状のオリフィス溝9を所定の溝深さで形成し、主液室7と副液室8とを連通させる。このオリフィス溝9は、その蛇行状折曲部の主液室側溝壁13及び副液室側溝壁14を溝底から液室7、8側に向かって拡がるテーパ状に形成する。また、加硫成形中型のパーティングライン17は、周方向でオリフィス溝9の略中央位置に、内筒1の軸方向に向けて設定する。
【0037】
また、本発明を例えば連結ロッドの連結部等に適用する場合には、外筒4を設けずに、液槽内で、一方の取付部材の開口部に中間筒2又は防振基体3を圧入固定してもよい。
【0038】
また、主液室側溝壁13及び副液室側溝壁14は、周方向溝壁12に直交する直線状に形成するだけでなく、曲線状に形成してもよい。この場合も、溝底から液室7、8側に向けて拡がるテーパ面を形成しておけばよい。
【0039】
【発明の効果】
以上の説明から明らかな通り、本発明では、加硫成形型の中型のパーティングラインをオリフィス溝の略中央位置に設定して、オリフィス溝の蛇行状折曲部の両液室側溝壁をテーパ状に形成している。そのため、中型を型抜きするときに、中型の壁部が対応するオリフィス溝の両液室側溝壁に引っ掛からないようにすることができ、型抜き時のオリフィス溝壁の欠け落ちを防止できる。
【0040】
その結果、防振基体の厚さがオリフィス溝を形成する部分の周方向幅よりも厚い場合であっても、その加硫成形型に二分割型の中型を用いることができ、加硫成形型の部品点数を削減して、そのコストを縮減すると共に、液封入式防振装置の生産性を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係る液封入式防振装置の実施形態を示す分解斜視図
【図2】隔壁の斜視図
【図3】加硫成形型の中型の組立を示す図
【図4】外筒取付前の状態を示す側面図
【図5】そのA−A断面図
【図6】外筒取付後の状態を示す正面図
【図7】その側面図
【図8】そのB−B断面図
【図9】そのC−C断面図
【図10】従来の液封入式防振装置の分解斜視図
【符号の説明】
1 内筒
2 中間筒
3 防振基体
4 外筒
6 開口部
7 主液室
8 副液室
9 オリフィス溝
13 主液室側溝壁
14 副液室側溝壁
16 中型
17 パーティングライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid-filled vibration damping device that is incorporated in a part of, for example, an automobile differential, an engine support mechanism, a suspension mechanism, or the like to attenuate vibration transmitted to a vehicle body.
[0002]
[Prior art]
In general, a liquid-filled vibration isolator is sometimes incorporated in a part of an automobile differential, an engine support mechanism, a suspension mechanism, or the like in order to attenuate vibration transmitted to the vehicle body. FIG. 10 shows an example of a liquid-filled vibration isolator.
[0003]
In this liquid-filled vibration isolator, a steel intermediate cylinder 102 is disposed around a steel inner cylinder 101, and a vibration isolation base 103 made of a rubber-like elastic body is provided between the inner cylinder 101 and the intermediate cylinder 102. Is vulcanized and has a structure in which an outer cylinder 104 made of steel is fixed to the outer peripheral side of the intermediate cylinder 102. The inner cylinder 101 and the outer cylinder 104 are attached to different members, and both members are vibration-proof. Are connected to each other.
[0004]
Openings 105 are formed on both sides of the inner cylinder 101 of the intermediate cylinder 102, and a space recessed from the opening 105 in the vibration isolation base 103 is surrounded by the outer cylinder 104 and the main liquid chamber 106 and the auxiliary liquid A chamber 107 is formed.
[0005]
On the outer periphery of the intermediate cylinder 102, a rubber-like elastic body is formed with a meandering orifice groove 108 in the axial direction of the inner cylinder 101. A space surrounded by the orifice groove 108 and the outer cylinder 104 is a main liquid chamber. The orifice communicates with 106 and the auxiliary liquid chamber 107. When the orifice vibrates, the liquid in both the liquid chambers 106 and 107 reciprocates to attenuate the relative vibration between the inner and outer cylinders 101 and 104.
[0006]
The thickness of the anti-vibration base 103 that partitions both the liquid chambers 106 and 107 is set to be equal to the circumferential width between both openings 105 of the intermediate cylinder 102. The anti-vibration base 103 and the orifice groove 108 are formed at both ends in the axial direction. Vulcanization molding is performed using a vulcanization molding die that includes an end mold that covers the portion and a middle mold that covers the outer periphery.
[0007]
The middle mold of the vulcanization mold is a two-part mold, the parting line is set at the center of the opening 105, the mold is cut out of the orifice groove 108, and the wall of the middle mold to which the orifice groove 108 corresponds. So that it won't fall out. Thus, by dividing the middle mold into two parts, the number of parts of the vulcanization mold is reduced compared with the case where the middle mold is divided into four parts, the assembly time of the vulcanization mold is shortened, and the vulcanization is performed. The cost of the mold and its assembly cost are reduced.
[0008]
[Problems to be solved by the invention]
By the way, when the spring constant of the vibration isolating base is set small and the attenuation due to the fluid flow effect is set high, the thickness of the vibration isolating base is reduced and the width between both openings of the intermediate cylinder is set to a desired size. Thus, it is necessary to secure a predetermined flow path length in the meandering orifice, and the thickness of the vibration-proof base may be thinner than the width between both openings of the intermediate cylinder.
[0009]
In this case, when the two-part divided middle mold parting line is set at the center of the middle cylinder opening, the middle mold is caught between both openings of the middle cylinder and cannot be removed. On the other hand, when the two-part divided middle parting line is set at the center position in the circumferential direction of the orifice groove, the orifice groove may be caught by the corresponding middle mold wall part during die cutting.
[0010]
The present invention provides a liquid-filled vibration isolator capable of using a two-part type middle mold for the vulcanization mold, thereby reducing the number of parts of the vulcanization mold and reducing its cost. The purpose is to improve the productivity of the liquid-filled vibration isolator.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a vibration isolating base made of a rubber-like elastic body that is vulcanized and molded around the inner cylinder, and a main liquid chamber formed on both sides of the inner cylinder of the vibration isolating base. And a sub-liquid chamber, and a liquid-filled vibration-proof vibration device provided with an orifice groove formed in a meandering manner in the axial direction of the inner cylinder in the outer peripheral portion of the vibration-proof substrate so as to communicate the main liquid chamber and the sub-liquid chamber In the apparatus, a parting line for the vulcanization mold of the vibration-proof base is set in the axial direction of the inner cylinder at a substantially central position in the circumferential direction of the orifice groove, and the orifice groove is formed in a direction perpendicular to the axis of the mold. A liquid-filled vibration isolator having a groove depth that can be removed from the die and a tapered wall formed on the main liquid chamber side groove wall and the sub liquid chamber side groove wall of the meandering bent portion. Is to provide.
[0012]
According to this configuration, on the premise of a liquid-filled vibration isolator in which an orifice groove communicating with both liquid chambers is formed in a meandering manner in the axial direction of the inner cylinder on the outer periphery of the vibration isolating base, the meandering bending of the orifice groove is performed. Since both the liquid chamber side groove walls are tapered, when the vulcanization mold with a parting line set at the approximate center position of the orifice groove is punched in the direction perpendicular to the axis, this vulcanization mold is used as an orifice. It is possible to prevent the orifice groove wall from falling off without being caught by the groove walls on both liquid chamber sides of the groove.
[0013]
Here, the “axial direction” refers to the direction of the axis passing through the center of the center hole of the inner cylinder, and the “axial perpendicular direction” refers to the direction orthogonal to the axial direction. These definitions are used interchangeably in the following description. Further, the orifice groove formed in a meandering shape in the axial direction of the inner cylinder advances from one side to the other side in the inner cylinder axial direction while reciprocating in the circumferential direction. It is an orifice groove that connects both orifice inlets and outlets formed on the side. The meandering bent portion is a portion that changes its direction so that the orifice groove reciprocates in the circumferential direction, and the groove wall of the portion that advances in the inner cylinder axis direction is the liquid chamber side groove wall.
[0014]
Further, as an apparatus having substantially the same configuration as the liquid-filled vibration isolator, an intermediate cylinder may be disposed around the inner cylinder, and the vibration isolation base may be vulcanized between the inner cylinder and the intermediate cylinder. . In this case, an opening is provided in the intermediate cylinder to form a main liquid chamber and a secondary liquid chamber, and an orifice groove for communicating the two liquid chambers is formed in the outer peripheral portion of the intermediate cylinder by a rubber-like elastic body.
[0015]
That is, the main liquid formed in the vibration-isolating base made of a rubber-like elastic body vulcanized between the inner cylinder and the intermediate cylinder disposed around the inner cylinder, and on both side openings of the intermediate cylinder sandwiching the inner cylinder And an orifice groove formed in a meandering manner in the axial direction of the inner cylinder by a rubber-like elastic body so as to communicate the main liquid chamber and the auxiliary liquid chamber in the outer peripheral portion of the intermediate cylinder. In the liquid-filled vibration isolator, a parting line for the vulcanization molding die of the vibration isolating base is set in the axial direction of the inner cylinder at a substantially central position in the circumferential direction of the orifice groove. The groove depth is set such that the die can be removed in a direction perpendicular to the axis, and the main liquid chamber side groove wall and the sub liquid chamber side groove wall of the meandering bent portion are formed in a taper shape extending outward from the groove bottom. Alternatively, a liquid-filled vibration isolator may be used.
[0016]
If the vibration-proof base and the orifice groove of the liquid-filled vibration-proof device are vulcanized with a two-part vulcanization mold, a preferred embodiment of the present invention can be provided. In other words, by setting the parting line of the vulcanization mold at approximately the center position in the circumferential direction of the orifice groove and two places on the opposite side, vulcanization molding is performed with a two-part vulcanization mold. The number of parts of the mold can be reduced.
[0017]
The orifice groove of the above-mentioned liquid-filled vibration isolator has a meandering shape in which the groove wall perpendicular to the parting line and the groove wall parallel to the parting line are continuous, and the parallel groove wall at the bent portion is tapered. If it forms, it can narrow the groove width of the part orthogonal to a parting line, and can simplify the shape of a vulcanization mold.
[0018]
A cylindrical outer cylinder is disposed on the outer peripheral side of the vibration isolating base and the orifice groove of the liquid-filled vibration isolator, and the space surrounded by the orifice groove and the outer cylinder is divided into a main liquid chamber and a sub liquid chamber. If the orifice is made to communicate, a part of the wall surface of the orifice can be constituted by an outer cylinder that is attached to one attachment member.
[0019]
The present invention also provides a vibration isolating base made of a rubber-like elastic body that is vulcanized around the inner cylinder, and a main liquid chamber and a sub liquid chamber formed on both sides of the inner cylinder of the vibration isolating base. And a manufacturing method of a liquid-filled vibration isolator comprising an orifice groove formed in a meandering shape in the axial direction of the inner cylinder in the outer peripheral portion of the vibration isolating base so that the main liquid chamber and the sub liquid chamber communicate with each other. provide.
[0020]
That is, a parting line in a two-part vulcanization molding die comprising a pair of molds is set at a substantially central portion in the circumferential direction of the orifice groove, and the groove wall of the meandering bent portion of the orifice groove is tapered. Thus, the corresponding part of the mold may be set to an inclined surface, and the mold may be punched along the tapered surface of the orifice groove at the time of vulcanization molding of the rubber-like elastic body. Here, a taper surface means the surface inclined with respect to the surface orthogonal to a groove bottom among the wall surfaces of a taper-shaped groove wall.
[0021]
This manufacturing method is formed in a vibration isolating base made of a rubber-like elastic body vulcanized between an inner cylinder and an intermediate cylinder disposed around the inner cylinder, and on both side openings of the intermediate cylinder sandwiching the inner cylinder. A main liquid chamber and a sub liquid chamber, and an orifice groove formed in a meandering manner in the axial direction of the inner cylinder by a rubber-like elastic body so as to communicate the main liquid chamber and the sub liquid chamber at the outer peripheral portion of the intermediate cylinder. It is good also as a manufacturing method of a liquid enclosure type vibration isolator provided with.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below with reference to the drawings. 1 is an exploded perspective view showing an embodiment of a liquid-filled vibration isolator according to the present invention, FIG. 2 is a perspective view of a partition wall, FIG. 3 is a view showing assembly of a middle mold of a vulcanization mold, and FIG. FIG. 5 is a sectional view taken along the line AA, FIG. 6 is a front view showing the state after the outer cylinder is attached, FIG. 7 is a side view, and FIG. 8 is a sectional view taken along the line BB. FIG. 9 is a sectional view taken along the line CC.
[0023]
In this liquid-filled vibration isolator, an intermediate cylinder 2 is arranged around a cylindrical inner cylinder 1, and a vibration isolating base 3 made of a rubber-like elastic body is vulcanized between the inner cylinder 1 and the intermediate cylinder 2. A molded outer cylinder 4 is fixed to the outer peripheral side of the intermediate cylinder 2, and the inner cylinder 1 and the outer cylinder 4 are attached to separate mounting members, respectively. However, both mounting members are connected in a vibration-proof manner.
[0024]
The inner cylinder 1 is made of steel, for example, and is fixed to one mounting member by a shaft member that passes through the inner cylinder 1. A stopper 5 that protrudes into a main liquid chamber 7 and a sub liquid chamber 8 to be described later is fixed to the outer peripheral surface of the central portion in the axial direction of the inner cylinder 1. The stopper 5 is made of, for example, a synthetic resin, and its surface is covered with a rubber-like elastic body that is continuous with the vibration-proof base, and when the relative displacement of the inner and outer cylinders 1 and 4 increases, It abuts against the inner peripheral surface and regulates its displacement.
[0025]
The intermediate cylinder 2 has a substantially cylindrical shape made of, for example, steel, and substantially rectangular openings 6 are formed on both sides of the inner cylinder 1 at the center in the axial direction. A space recessed in the base 3 is surrounded by the outer cylinder 4 to be a main liquid chamber 7 and a sub liquid chamber 8. Both the liquid chambers 7 and 8 have a depth extending to the inner surface side between the two openings 6, and the thickness of the vibration-proof substrate 3 that partitions the two liquid chambers 7 and 8 is thinner than the circumferential width between the two openings 6. Has been.
[0026]
Between the openings 6 at the axially central portion of the intermediate cylinder 2 is bent inward in the direction perpendicular to the axis, and a gap of a predetermined size is formed between the outer peripheral portion and the inner peripheral surface of the outer cylinder 4. ing. An orifice groove 9 having a depth that fits in a gap with the outer cylinder 4 is formed on one outer peripheral portion of the intermediate cylinder 2, and a space surrounded by the orifice groove 9 and the outer cylinder 4 is formed between the two liquid chambers 7, 8 is an orifice 10 communicating with the orifice 8.
[0027]
The orifice groove 9 is surrounded by an outer peripheral surface of the intermediate cylinder 2 and a groove wall 11 made of a rubber-like elastic body. The groove wall 11 includes a circumferential groove wall 12, a main liquid chamber side groove wall 13, and a sub liquid chamber side groove. It consists of a wall 14. The circumferential groove wall 12 and the main liquid chamber side groove wall 13 and the circumferential groove wall 12 and the sub liquid chamber side groove wall 14 are formed so as to be continuously orthogonal to each other, and the orifice 10 is reciprocated once and half in the circumferential direction. An orifice groove 9 is formed in a meandering shape in the axial direction so that both liquid chambers 7 and 8 communicate with each other. The number of reciprocations of the orifice 10 is not limited to one and a half, and any number may be used as long as the two liquid chambers 7 and 8 are communicated, such as two and a half and three and a half.
[0028]
The main liquid chamber side groove wall 13 and the sub liquid chamber side groove wall 14 of the meandering bent portion of the orifice groove 9 are formed in a taper shape extending from the groove bottom toward the liquid chambers 7 and 8, and are a middle mold of a vulcanization molding die described later. When the die 16 is punched outwardly from the liquid chambers 7 and 8, the wall portion 18 of the middle die 16 corresponding to the orifice groove 9 is not caught.
[0029]
On the other outer peripheral portion of the intermediate cylinder 2, a partition wall 15 having a height that fits in a gap with the outer cylinder 4 is formed in the axial direction, and the space between the liquid chambers 7 and 8 is blocked. Not only the orifice groove 9 is formed on one side and the partition wall 15 is formed on the other side, but the orifice groove 9 may be formed on both.
[0030]
Next, a method for manufacturing this liquid-filled vibration isolator will be described. First, the stopper 5 is fixed to the outer peripheral surface of the central portion of the inner cylinder 1 in the axial direction, and the intermediate cylinder 2 is disposed around the stopper 5. At this time, the direction of the opening 6 is matched with the direction of the stopper 5.
[0031]
Rubber constituting an anti-vibration base 3 provided between the inner cylinder 1 and the intermediate cylinder 2, an orifice groove 9 provided on one outer peripheral surface of the intermediate cylinder 2, and a partition wall 15 provided on the other outer peripheral surface of the intermediate cylinder 2. The elastic body is vulcanized. In this vulcanization molding, a vulcanization molding die comprising an end mold that covers both ends in the axial direction and a two-part mold middle mold 16 that covers the outer peripheral side is used.
[0032]
The middle die 16 has an inclined surface 18a on the wall portion 18 of the middle die 16 corresponding to the orifice groove 9 so that the main liquid chamber side groove wall 13 and the sub liquid chamber side groove wall 14 of the meandering bent portion of the orifice groove 9 are tapered. Is set in advance. The parting line 17 of the middle mold 16 is set at the approximate center position of the orifice groove 9 in the circumferential direction toward the axial direction of the inner cylinder 1. The middle die 16 is die-cut toward the outside of the liquid chambers 7 and 8 so that the inclined surface 18 a of the wall portion 18 is along the tapered surfaces 13 a and 14 a of the orifice groove 9.
[0033]
After the vulcanization molding of the rubber-like elastic body is completed, for example, the intermediate cylinder 2 is subjected to diameter reduction processing, and then, for example, a steel-made cylindrical outer cylinder 4 is disposed outside the intermediate cylinder 2. The cylinder 4 is reduced in diameter in the liquid tank, and the liquid is sealed in the liquid chambers 7 and 8. At this time, the inner peripheral surface of the outer cylinder 4 is pressed against the outer peripheral surface of both ends of the intermediate cylinder 2 in the axial direction, and both ends of the outer cylinder 4 are caulked inward to prevent the liquid from being discharged in the axial direction. Type vibration isolator is completed.
[0034]
The shaft member is inserted into the inner cylinder 1 and fixed to one mounting member, and the outer cylinder 4 is press-fitted and fixed to the opening of the other mounting member to connect the both mounting members. When the inner and outer cylinders 1, 4 relatively vibrate in the direction of the liquid chambers 7, 8 in the direction perpendicular to the axis, the liquid in both the liquid chambers 7, 8 reciprocates in the orifice 10, so The vibration of the cylinders 1 and 4 is attenuated.
[0035]
In addition, this invention is not limited to said embodiment, A change can be suitably added within the scope of the present invention. For example, the outer cylinder 4 may be directly fixed to the outer peripheral side of the vibration isolation base 3 without providing the intermediate cylinder 2. In this case, for example, a protrusion for restricting the displacement of the vibration isolating base 3 may be formed on the inner peripheral surface of the outer cylinder 4.
[0036]
A serpentine orifice groove 9 is formed at a predetermined groove depth in the axial direction of the inner cylinder 1 on the outer peripheral portion of the vibration isolating base 3 so that the main liquid chamber 7 and the sub liquid chamber 8 communicate with each other. The orifice groove 9 is formed such that the main liquid chamber side groove wall 13 and the sub liquid chamber side groove wall 14 of the meandering bent portion are tapered so as to expand from the groove bottom toward the liquid chambers 7 and 8. Further, the parting line 17 of the middle mold of the vulcanization molding is set at the approximate center position of the orifice groove 9 in the circumferential direction toward the axial direction of the inner cylinder 1.
[0037]
Further, when the present invention is applied to, for example, a connecting portion of a connecting rod, the intermediate tube 2 or the vibration isolating base 3 is press-fitted into the opening of one mounting member in the liquid tank without providing the outer tube 4. It may be fixed.
[0038]
The main liquid chamber side groove wall 13 and the sub liquid chamber side groove wall 14 may be formed not only in a straight line perpendicular to the circumferential groove wall 12 but also in a curved line shape. In this case, a tapered surface that extends from the groove bottom toward the liquid chambers 7 and 8 may be formed.
[0039]
【The invention's effect】
As is apparent from the above description, in the present invention, the middle parting line of the vulcanization mold is set at the substantially central position of the orifice groove, and the groove walls on both the liquid chambers of the meandering bent portion of the orifice groove are tapered. It is formed in a shape. Therefore, when the middle mold is punched, it is possible to prevent the wall of the middle mold from being caught on both the liquid chamber side groove walls of the corresponding orifice groove, and it is possible to prevent the orifice groove wall from falling off during the punching.
[0040]
As a result, even if the thickness of the vibration-proof substrate is thicker than the circumferential width of the portion where the orifice groove is formed, the bisected mold can be used as a bisected mold. The number of parts can be reduced, the cost can be reduced, and the productivity of the liquid filled type vibration isolator can be improved.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an embodiment of a liquid-filled vibration isolator according to the present invention. FIG. 2 is a perspective view of a partition wall. FIG. 3 is a view showing assembly of a middle mold of a vulcanization mold. Side view showing the state before mounting the cylinder [FIG. 5] AA sectional view thereof [FIG. 6] Front view showing the state after mounting the outer cylinder [FIG. 7] Side view thereof [FIG. FIG. 9 is a sectional view taken along the line C-C. FIG. 10 is an exploded perspective view of a conventional liquid-filled vibration isolator.
DESCRIPTION OF SYMBOLS 1 Inner cylinder 2 Intermediate cylinder 3 Anti-vibration base | substrate 4 Outer cylinder 6 Opening part 7 Main liquid chamber 8 Sub liquid chamber 9 Orifice groove 13 Main liquid chamber side groove wall 14 Sub liquid chamber side groove wall 16 Medium type 17 Parting line

Claims (7)

内筒の周囲に加硫成形されるゴム状弾性体からなる防振基体と、該防振基体の内筒を挟んだ両側に形成された主液室及び副液室と、該主液室と副液室とを連通させるよう前記防振基体の外周部に形成されたオリフィス溝とを備えた液封入式防振装置において、
前記オリフィス溝の周方向の略中央位置で内筒の軸方向に防振基体の加硫成形型のパーティングラインが設定され、
前記オリフィス溝は、1往復半、2往復半及び3往復半のうちのいずれかの往復数で周方向に往復するよう内筒の軸方向に蛇行状に形成され、前記成形型の軸直角方向への型抜きが可能な溝深さに設定されると共に、その蛇行状折曲部の主液室側溝壁及び副液室側溝壁がテーパ状に形成されたことを特徴とする液封入式防振装置。
An anti-vibration base made of a rubber-like elastic body that is vulcanized and molded around the inner cylinder, a main liquid chamber and an auxiliary liquid chamber formed on both sides of the inner cylinder of the anti-vibration base, and the main liquid chamber; in hydraulic antivibration device comprising a shape made orifice groove on the outer peripheral portion of the vibration isolating base body so as to communicate the auxiliary liquid chamber,
A parting line for the vulcanization mold of the vibration-proof base is set in the axial direction of the inner cylinder at a substantially central position in the circumferential direction of the orifice groove,
The orifice groove, one reciprocation half, is formed in two round trips a half and 3 form meanders in the axial direction of the inner cylinder to reciprocate in the circumferential direction in a reciprocating speed of any of the reciprocating half, perpendicular to the axis direction of the mold The liquid-filled type prevention is characterized in that the groove depth is set so that the die can be removed and the main liquid chamber side groove wall and the sub liquid chamber side groove wall of the meandering bent portion are tapered. Shaker.
内筒とその周囲に配置された中間筒との間に加硫成形されたゴム状弾性体からなる防振基体と、内筒を挟んだ中間筒の両側開口部に形成された主液室及び副液室と、前記中間筒の外周部において前記主液室と副液室とを連通させるようゴム状弾性体により形成されたオリフィス溝とを備えた液封入式防振装置において、
前記オリフィス溝の周方向の略中央位置で内筒の軸方向に防振基体の加硫成形型のパーティングラインが設定され、
前記オリフィス溝は、1往復半、2往復半及び3往復半のうちのいずれかの往復数で周方向に往復するよう内筒の軸方向に蛇行状に形成され、前記成形型の軸直角方向への型抜きが可能な溝深さに設定されると共に、その蛇行状折曲部の主液室側溝壁及び副液室側溝壁が溝底から外方に拡がるテーパ状に形成されたことを特徴とする液封入式防振装置。
A vibration isolating base made of a rubber-like elastic body formed by vulcanization between the inner cylinder and an intermediate cylinder disposed around the inner cylinder; a main liquid chamber formed at both side openings of the intermediate cylinder sandwiching the inner cylinder; and the sub liquid chamber, in the intermediate cylinder hydraulic antivibration device comprising a Rikatachi by the rubber-like elastic body made orifice groove so as to communicate with said main liquid chamber and the auxiliary liquid chamber at the outer periphery of,
A parting line for the vulcanization mold of the vibration-proof base is set in the axial direction of the inner cylinder at a substantially central position in the circumferential direction of the orifice groove,
The orifice groove is formed in a meandering shape in the axial direction of the inner cylinder so as to reciprocate in the circumferential direction at any number of reciprocating halves , 1 reciprocating half, 3 reciprocating halves, and perpendicular to the axis of the mold The groove depth is set so that the die can be removed, and the main liquid chamber side groove wall and the sub liquid chamber side groove wall of the meandering bent portion are formed in a tapered shape extending outward from the groove bottom. A liquid-sealed anti-vibration device.
前記防振基体及びオリフィス溝は、2分割型の加硫成形型により加硫成形されたことを特徴とする請求項1又は2記載の液封入式防振装置。  3. The liquid filled type vibration damping device according to claim 1, wherein the vibration damping base and the orifice groove are vulcanized by a two-part vulcanization mold. 前記オリフィス溝は、前記パーティングラインに直交する溝壁とパーティングラインに平行な溝壁とが連続する蛇行状とされ、前記折曲部における平行な溝壁がテーパ状に形成されたことを特徴とする請求項1、2又は3に記載の液封入式防振装置。  The orifice groove has a meandering shape in which a groove wall orthogonal to the parting line and a groove wall parallel to the parting line are continuous, and the parallel groove wall in the bent portion is formed in a taper shape. The liquid-filled vibration isolator according to claim 1, 2 or 3. 前記防振基体及びオリフィス溝の外周側に円筒状の外筒が配設され、前記オリフィス溝と外筒で囲まれた空間部が主液室と副液室とを連通させるオリフィスとされたことを特徴とする請求項1〜4のいずれかに記載の液封入式防振装置。  A cylindrical outer cylinder is disposed on the outer peripheral side of the vibration isolating base and the orifice groove, and a space surrounded by the orifice groove and the outer cylinder is an orifice for communicating the main liquid chamber and the sub liquid chamber. The liquid-filled vibration isolator according to any one of claims 1 to 4. 内筒の周囲に加硫成形されるゴム状弾性体からなる防振基体と、該防振基体の内筒を挟んだ両側に形成された主液室及び副液室と、該主液室と副液室とを連通させるよう前記防振基体の外周部に1往復半、2往復半及び3往復半のうちのいずれかの往復数で周方向に往復するよう内筒の軸方向に蛇行状に形成されたオリフィス溝とを備えた液封入式防振装置の製造方法であって、一対の金型からなる2分割型の加硫成形型におけるパーティングラインをオリフィス溝の周方向の略中央部分になるように設定し、オリフィス溝の蛇行状折曲部の溝壁がテーパ状になるよう、金型の対応部位を傾斜面に設定し、ゴム状弾性体の加硫成形時に金型をオリフィス溝のテーパ面に沿って型抜きすることを特徴とする液封入式防振装置の製造方法。An anti-vibration base made of a rubber-like elastic body that is vulcanized and molded around the inner cylinder, a main liquid chamber and an auxiliary liquid chamber formed on both sides of the inner cylinder of the anti-vibration base, and the main liquid chamber; In a meandering manner in the axial direction of the inner cylinder so as to reciprocate in the circumferential direction at any number of reciprocating half, two reciprocating halves, and three reciprocating halves to the outer periphery of the anti-vibration base so as to communicate with the auxiliary liquid chamber A liquid-filled vibration isolator having an orifice groove formed on the outer periphery of the orifice groove, the parting line in a two-part vulcanization molding die comprising a pair of molds at a substantially center in the circumferential direction of the orifice groove Set the corresponding part of the mold to an inclined surface so that the groove wall of the meandering bent portion of the orifice groove is tapered, and the mold is used when vulcanizing the rubber-like elastic body A method for manufacturing a liquid-sealed vibration isolator, wherein the die is cut along a tapered surface of an orifice groove. 内筒とその周囲に配置された中間筒との間に加硫成形されたゴム状弾性体からなる防振基体と、内筒を挟んだ中間筒の両側開口部に形成された主液室及び副液室と、前記中間筒の外周部において前記主液室と副液室とを連通させるようゴム状弾性体により1往復半、2往復半及び3往復半のうちのいずれかの往復数で周方向に往復するよう内筒の軸方向に蛇行状に形成されたオリフィス溝とを備えた液封入式防振装置の製造方法であって、一対の金型からなる2分割型の加硫成形型におけるパーティングラインをオリフィス溝の周方向の略中央部分になるように設定し、オリフィス溝の蛇行状折曲部の溝壁がテーパ状になるよう、金型の対応部位を傾斜面に設定し、ゴム状弾性体の加硫成形時に金型をオリフィス溝のテーパ面に沿って型抜きすることを特徴とする液封入式防振装置の製造方法。A vibration isolating base made of a rubber-like elastic body formed by vulcanization between the inner cylinder and an intermediate cylinder disposed around the inner cylinder; a main liquid chamber formed at both side openings of the intermediate cylinder sandwiching the inner cylinder; and the sub liquid chamber, one round and a half by said main liquid chamber and the rubber-like elastic body so as to communicate the auxiliary liquid chamber at the outer periphery of the intermediate cylinder, two round trips a half and three reciprocal number of one of the reciprocating and a half A method for manufacturing a liquid-filled vibration isolator having an orifice groove formed in a meandering manner in the axial direction of an inner cylinder so as to reciprocate in the circumferential direction, and a two-part vulcanization molding comprising a pair of molds The parting line in the mold is set to be approximately the center in the circumferential direction of the orifice groove, and the corresponding part of the mold is set to be inclined so that the groove wall of the meandering bent portion of the orifice groove is tapered. Then, the mold is removed along the taper surface of the orifice groove during the vulcanization molding of the rubber-like elastic body. Method of manufacturing a hydraulic antivibration device according to claim Rukoto.
JP2001386993A 2001-12-20 2001-12-20 Liquid-filled vibration isolator Expired - Fee Related JP3888893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001386993A JP3888893B2 (en) 2001-12-20 2001-12-20 Liquid-filled vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001386993A JP3888893B2 (en) 2001-12-20 2001-12-20 Liquid-filled vibration isolator

Publications (2)

Publication Number Publication Date
JP2003184940A JP2003184940A (en) 2003-07-03
JP3888893B2 true JP3888893B2 (en) 2007-03-07

Family

ID=27595959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001386993A Expired - Fee Related JP3888893B2 (en) 2001-12-20 2001-12-20 Liquid-filled vibration isolator

Country Status (1)

Country Link
JP (1) JP3888893B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016183139A1 (en) * 2015-05-11 2016-11-17 Lord Corporation Damping devices, systems and methods for hollow shafts, struts, and beams with bending modes

Also Published As

Publication number Publication date
JP2003184940A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
US4871152A (en) Fluid-filled resilient bushing structure with radial vanes
EP1870613B1 (en) Vibration isolator
US4749174A (en) Fluid-filled resilient bushing having damping means within fluid chambers
US5088703A (en) Vibration isolating apparatus
JP3446668B2 (en) Liquid filled type vibration damping device
JP3888893B2 (en) Liquid-filled vibration isolator
JPH02300539A (en) Vibration isolating device
JP7350629B2 (en) Vibration isolator
GB2239507A (en) Damping device
JPS63289349A (en) Fluid sealing type vibrationproof bush
JPH01126451A (en) Fluid sealed-in vibration isolator
JP4528661B2 (en) Vibration isolator
JP7349325B2 (en) Vibration isolator
JP2006144817A (en) Vibration damper
US20050077662A1 (en) Intergrated channel plate and decoupler assembly for vibration isolator
JP2005282780A (en) Liquid sealed cylindrical vibration absorbing device
JPH07243482A (en) Damper
JPH0369015B2 (en)
JPH07167198A (en) Vibration control device
JPH08233022A (en) Vibration control device
JP2002227913A (en) Vibration control equipment
JP2007093010A (en) Vibration-proofing bush
JP2000002286A (en) Liquid sealing vibration isolation device
JP2005098484A (en) Fluid sealed cylindrical vibration damper
JPS63111335A (en) Cylindrical fluid-sealed type mounting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3888893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151208

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350