JP4528661B2 - Vibration isolator - Google Patents

Vibration isolator Download PDF

Info

Publication number
JP4528661B2
JP4528661B2 JP2005109513A JP2005109513A JP4528661B2 JP 4528661 B2 JP4528661 B2 JP 4528661B2 JP 2005109513 A JP2005109513 A JP 2005109513A JP 2005109513 A JP2005109513 A JP 2005109513A JP 4528661 B2 JP4528661 B2 JP 4528661B2
Authority
JP
Japan
Prior art keywords
vibration
sub
mounting member
pressure receiving
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005109513A
Other languages
Japanese (ja)
Other versions
JP2006291990A (en
Inventor
義貴 大坪
宏 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005109513A priority Critical patent/JP4528661B2/en
Publication of JP2006291990A publication Critical patent/JP2006291990A/en
Application granted granted Critical
Publication of JP4528661B2 publication Critical patent/JP4528661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combined Devices Of Dampers And Springs (AREA)

Description

本発明は、一般産業機械、自動車におけるエンジンマウント等として用いられ、エンジン等の振動発生部からの振動を吸収して車体等の振動受部への振動伝達を防止する液体封入式の防振装置に関するものである。   The present invention is used as an engine mount or the like in general industrial machines and automobiles, and absorbs vibration from a vibration generating part of an engine or the like to prevent vibration transmission to a vibration receiving part of a vehicle body or the like. It is about.

例えば、車両の振動発生部となるエンジンと振動受部となる車体との間にはエンジンマウントとしての防振装置が配設されており、この防振装置はエンジンが発生する振動を吸収し、車体側への振動伝達を抑制する。このような防振装置としては、装置内部に弾性体及び受圧液室及び副液室が設けられると共に、これらの液室が制限通路を通して互いに連通した液体封入式のものが知られている。このような防振装置によれば、搭載されたエンジンが作動して振動が発生した場合には、弾性体の吸振作用及び、一対の液室間を連通するオリフィス内を流通する液体の粘性抵抗等で振動を吸収し、車体側への振動伝達を抑制する。   For example, an anti-vibration device as an engine mount is disposed between an engine that is a vibration generation unit of a vehicle and a vehicle body that is a vibration receiving unit, and the anti-vibration device absorbs vibration generated by the engine, Suppresses vibration transmission to the vehicle body. As such a vibration isolator, an elastic body, a pressure receiving liquid chamber and a sub liquid chamber are provided inside the apparatus, and a liquid sealed type in which these liquid chambers communicate with each other through a restriction passage is known. According to such a vibration isolator, when vibration is generated by operating the mounted engine, the vibration absorbing action of the elastic body and the viscous resistance of the liquid flowing through the orifice communicating between the pair of liquid chambers The vibration is absorbed by, for example, and vibration transmission to the vehicle body side is suppressed.

従来の液体封入式の防振装置としては、例えば、特許文献1に示されるようなものがある。この特許文献1記載の防振装置は、筒状金具と、この筒状金具の内周側に配置される取付金具と、この取付金具を筒状金具に弾性的に連結する弾性体とを有している。この防振装置には、弾性体を内壁の一部とする上液室とダイヤフラムを隔壁の一部とする下液室と、これら液室を互いに連通する第1オリフィスとが設けられると共に、筒状金具と弾性体との間に周方向に沿って配置され、それぞれ弾性体を内壁の一部とする4個の周液室C1、C2、D1、D2と、これら4個の周液室のうち互いに隣接する2個(1組)の周液室C1、D1を連通する第2オリフィスと、他の1組の周液室C2、D2とを連通する第3オリフィスとが設けられている。   As a conventional liquid-filled vibration isolator, for example, there is one as shown in Patent Document 1. The vibration isolator described in Patent Document 1 includes a cylindrical metal fitting, a mounting metal fitting disposed on the inner peripheral side of the cylindrical metal fitting, and an elastic body that elastically connects the mounting metal fitting to the cylindrical metal fitting. is doing. The vibration isolator is provided with an upper liquid chamber having an elastic body as a part of an inner wall, a lower liquid chamber having a diaphragm as a part of a partition wall, and a first orifice for communicating the liquid chambers with each other. The four peripheral liquid chambers C1, C2, D1, and D2 that are arranged along the circumferential direction between the metal fitting and the elastic body, each of which has the elastic body as a part of the inner wall, and the four peripheral liquid chambers. Among them, there are provided a second orifice that communicates two (one set) adjacent peripheral fluid chambers C1 and D1, and a third orifice that communicates another set of peripheral fluid chambers C2 and D2.

上記のように構成された防振装置では、第1オリフィスにより互いに連通した上液室と下液室に加え、筒状金具と弾性体との間に4個の周液室C1、C2、D1、D2が設けられ、周液室C1、D1が第2オリフィスにより互いに連通されると共に、周液室C2、D2が第3オリフィスにより互いに連通されていることから、車両のエンジンの防振装置として適用した場合、上下方向の振動の入力時に、この振動を弾性体の内部摩擦や液体の粘性抵抗等により減衰吸収できることに加え、車両の左右方向又は前後方向に沿った振動も弾性体の内部摩擦や、第2及び第3オリフィスを流通する液体の粘性抵抗等により効果的に減衰吸収できる。
特開2004−68938号公報
In the vibration isolator configured as described above, in addition to the upper liquid chamber and the lower liquid chamber communicated with each other by the first orifice, four peripheral liquid chambers C1, C2, and D1 are provided between the cylindrical metal fitting and the elastic body. , D2 and the peripheral fluid chambers C1 and D1 communicate with each other through the second orifice, and the peripheral fluid chambers C2 and D2 communicate with each other through the third orifice. When applied, when vibration in the vertical direction is input, this vibration can be absorbed and absorbed by the internal friction of the elastic body or the viscous resistance of the liquid. In addition, it can be effectively attenuated and absorbed by the viscous resistance of the liquid flowing through the second and third orifices.
JP 2004-68938 A

しかしながら、上記特許文献1の防振装置では、複数の周液室の内容積をそれぞれ十分に大きいものにしようとすると、これらの周液室間を区画する弾性体の隔壁部分の厚さが薄いものとなり、この隔壁部分に形成されるオリフィス路長を十分に長いものとすることが困難になる。このため、特許文献1の防振装置では、装置サイズを大型化しなければ、周液室を連通するオリフィスの路長を低い周波数(例えば、10Hz以下)の振動に適合するようにチューニングすることが難しくなり、車両の左右方向又は前後方向に沿って入力する振動が低い周波数である場合には、このような振動を効果的に減衰吸収できないという問題が生じる。   However, in the vibration isolator of Patent Document 1, if the internal volumes of the plurality of peripheral fluid chambers are made sufficiently large, the partition wall portion of the elastic body that partitions these peripheral fluid chambers is thin. It becomes difficult to make the length of the orifice path formed in the partition wall sufficiently long. For this reason, in the vibration isolator of Patent Document 1, unless the size of the apparatus is increased, the path length of the orifice communicating with the peripheral fluid chamber can be tuned so as to be adapted to vibration of a low frequency (for example, 10 Hz or less). When the vibration input along the left-right direction or the front-rear direction of the vehicle has a low frequency, there arises a problem that such vibration cannot be effectively attenuated and absorbed.

本発明の目的は、上記事実を考慮して、装置サイズの大型化を抑制しつつ、装置の軸方向に沿って入力する振動を効果的に減衰吸収できることに加え、軸方向に略直交する第1及び第2副振幅方向に沿って入力する振動の周波数が低い場合でも、この振動を効果的に減衰吸収できる防振装置を提供することにある。   In view of the above facts, the object of the present invention is to effectively attenuate and absorb vibrations input along the axial direction of the apparatus while suppressing an increase in the size of the apparatus. An object of the present invention is to provide a vibration isolator capable of effectively attenuating and absorbing vibration even when the frequency of vibration input along the first and second sub-amplitude directions is low.

上記目的を達成するため、本発明の請求項1に係る防振装置は、振動発生部及び振動受部の一方に連結され、略筒状に形成された第1取付部材と、振動発生部及び振動受部の他方に連結され、前記第1取付部材の内周側に配置された第2取付部材と、前記第1取付部材と前記第2取付部材との間に配置され、第1取付部材と第2取付部材とを弾性的に連結したゴム製の弾性体と、前記第1取付部材の内周側であって、前記第2取付部材の軸方向外部に設けられると共に、内壁の少なくとも一部が前記弾性体により形成され、液体が充填された第1受圧液室と、液体が充填されると共に、隔壁の一部がダイヤフラムにより形成され液圧変化に応じて内容積が拡縮可能とされた副液室と、前記第1受圧液室と前記副液室とを互いに連通させる第1制限通路と、前記軸方向と直交する第1副振幅方向に沿って前記第2取付部材を間に挟むように前記第1取付部材の内周側に設けられると共に、内壁の少なくとも一部が前記弾性体により形成され、液体が充填された一対の第2受圧液室と、一対の前記第2受圧液室をそれぞれ前記副液室に連通させる一対の第2制限通路と、前記軸方向及び前記第1副振幅方向と直交する第2副振幅方向に沿って前記第2取付部材を間に挟むように前記第1取付部材の内周側に設けられると共に、内壁の少なくとも一部が前記弾性体により形成され、液体が充填された一対の第3受圧液室と、一対の前記第3受圧液室をそれぞれ前記副液室に連通させる一対の第3制限通路と、を有することを特徴とする。 In order to achieve the above object, a vibration isolator according to claim 1 of the present invention is connected to one of a vibration generating portion and a vibration receiving portion, and includes a first mounting member formed in a substantially cylindrical shape, a vibration generating portion, A second mounting member connected to the other of the vibration receiving portions and disposed on the inner peripheral side of the first mounting member, and disposed between the first mounting member and the second mounting member. And an elastic body made of rubber that elastically connects the second mounting member and an inner peripheral side of the first mounting member that is provided outside in the axial direction of the second mounting member and at least one of the inner walls. The first pressure receiving liquid chamber is formed of the elastic body and filled with the liquid, and the liquid is filled, and a part of the partition is formed by the diaphragm so that the internal volume can be expanded and contracted according to the change in the liquid pressure. A first liquid chamber, a first pressure receiving liquid chamber, and a second liquid chamber communicating with each other. A limit passage and a first sub-amplitude direction orthogonal to the axial direction are provided on the inner peripheral side of the first mounting member so as to sandwich the second mounting member therebetween, and at least a part of an inner wall is A pair of second pressure receiving liquid chambers formed of an elastic body and filled with a liquid; a pair of second restriction passages that respectively connect the pair of second pressure receiving liquid chambers to the sub liquid chamber; A second sub-amplitude direction orthogonal to the first sub-amplitude direction is provided on the inner peripheral side of the first mounting member so as to sandwich the second mounting member therebetween, and at least a part of an inner wall is the elastic body And a pair of third pressure receiving liquid chambers filled with liquid, and a pair of third restriction passages that respectively connect the pair of third pressure receiving liquid chambers to the sub liquid chamber. .

本発明の請求項1に係る防振装置の作用を以下に説明する。   The operation of the vibration isolator according to claim 1 of the present invention will be described below.

請求項1の防振装置では、第1及び第2取付部材の何れか一方に振動発生部側から振動が入力すると、この入力振動により第1取付部材と第2取付部材との間に配置された弾性体が弾性変形し、この弾性体の内部摩擦等に基づく減衰作用によって振動が吸収され、振動受け部側へ伝達される振動が低減される。このとき、入力振動が装置の軸方向と略一致する主振幅方向の振動であっても、この主振幅方向と略直交する方向(第1及び第2副振幅方向)の振動であっても弾性体の減衰作用により、その一部が吸収される。   In the vibration isolator according to claim 1, when vibration is input to one of the first and second mounting members from the vibration generating unit side, the vibration is disposed between the first mounting member and the second mounting member due to the input vibration. The elastic body is elastically deformed, the vibration is absorbed by the damping action based on the internal friction of the elastic body, and the vibration transmitted to the vibration receiving portion side is reduced. At this time, even if the input vibration is a vibration in the main amplitude direction substantially coincident with the axial direction of the apparatus, even if the vibration is in a direction (first and second sub-amplitude directions) substantially orthogonal to the main amplitude direction Part of it is absorbed by the body's damping action.

また請求項1の防振装置では、第1取付部材の内周側であって、第2取付部材の軸方向外部に配設された第1受圧液室が、第1制限通路を通して副液室に連通することにより、第1取付部材又は第2取付部材に主振幅方向に沿った振動が入力すると、弾性体が主振幅方向に沿って弾性変形すると共に、第1受圧液室の内容積を拡縮させるので、第1制限通路を通して第1受圧液室と副液室とを液体が相互に流通する。このとき、第1制限通路における路長及び断面積、すなわち液体の流通抵抗を主振幅方向に沿って入力する振動周波数に適合するように設定(チューニング)しておけば、第1制限通路を通して第1受圧液室と副液室との間を、入力振動に同期して第1受圧液室と副液室との間を相互に流通する液体に共振現象が生じるので、この液体の共振現象に伴う圧力変化及び粘性抵抗によって主振幅方向に沿った入力振動を効果的に吸収できる。 Further, in the vibration isolator according to claim 1, the first pressure receiving liquid chamber disposed on the inner peripheral side of the first mounting member and outside the second mounting member in the axial direction passes through the first restricting passage, and the sub liquid chamber. When the vibration along the main amplitude direction is input to the first mounting member or the second mounting member, the elastic body is elastically deformed along the main amplitude direction, and the internal volume of the first pressure receiving liquid chamber is reduced. Since the expansion and contraction occur, the liquid flows through the first pressure receiving liquid chamber and the sub liquid chamber through the first restriction passage. At this time, if the path length and the cross-sectional area in the first restriction passage, that is, the flow resistance of the liquid is set (tuned) so as to match the vibration frequency input along the main amplitude direction, the first restriction passage will pass through the first restriction passage. A resonance phenomenon occurs in the liquid that flows between the first pressure receiving liquid chamber and the sub liquid chamber between the first pressure receiving liquid chamber and the sub liquid chamber in synchronization with the input vibration. Input vibration along the main amplitude direction can be effectively absorbed by the accompanying pressure change and viscous resistance.

また請求項1の防振装置では、軸方向に直交する第1副振幅方向に沿って第2取付部材を間に挟むように第1取付部材の内周側に設けられた一対の第2受圧液室が、一対の第2制限通路を通して副液室にそれぞれ連通することにより、第1取付部材又は第2取付部材に第1副振幅方向に沿った振動が入力すると、弾性体が第1副振幅方向に沿って弾性変形すると共に、一対の第2受圧液室の内容積をそれぞれ拡縮させるので、一対の第2受圧液室と副液室との間を、一対の第2制限通路を通して液体が相互に流通する。このとき、一対の第2制限通路における路長及び断面積、すなわち液体の流通抵抗を第1副振幅方向に沿って入力する振動周波数に適合するように設定(チューニング)しておけば、第2制限通路を通して第2受圧液室と副液室との間を入力振動に同期して相互に流通する液体に共振現象(液柱共振)が生じるので、この液柱共振に伴う液体の圧力変化及び粘性抵抗によって第1副振幅方向に沿った入力振動を効果的に吸収できる。   In the vibration isolator according to claim 1, the pair of second pressure receiving members provided on the inner peripheral side of the first mounting member so as to sandwich the second mounting member along the first sub-amplitude direction orthogonal to the axial direction. When the liquid chamber communicates with the sub liquid chamber through the pair of second restricting passages, when the vibration along the first sub amplitude direction is input to the first mounting member or the second mounting member, the elastic body is While elastically deforming along the amplitude direction and expanding and contracting the internal volumes of the pair of second pressure receiving liquid chambers, the liquid between the pair of second pressure receiving liquid chambers and the sub liquid chamber passes through the pair of second restriction passages. Circulate mutually. At this time, if the path length and the cross-sectional area of the pair of second restriction passages, that is, the flow resistance of the liquid is set (tuned) so as to match the vibration frequency input along the first sub-amplitude direction, Since a resonance phenomenon (liquid column resonance) occurs in the liquid flowing between the second pressure receiving liquid chamber and the sub liquid chamber through the restriction passage in synchronization with the input vibration, the pressure change of the liquid accompanying the liquid column resonance and The input vibration along the first sub-amplitude direction can be effectively absorbed by the viscous resistance.

また請求項1の防振装置では、軸方向及び第1副振幅方向に直交する第2副振幅方向に沿って第2取付部材を間に挟むように第1取付部材の内周側に設けられた一対の第3受圧液室が、一対の第3制限通路を通して副液室にそれぞれ連通することにより、第1取付部材又は第2取付部材に第2副振幅方向に沿った振動が入力すると、弾性体が第2副振幅方向に沿って弾性変形すると共に、一対の第3受圧液室の内容積をそれぞれ拡縮させるので、一対の第3受圧液室と副液室との間を、一対の第3制限通路を通して液体が相互に流通する。このとき、一対の第3制限通路における路長及び断面積、すなわち液体の流通抵抗を第2副振幅方向に沿って入力する振動周波数に適合するように設定(チューニング)しておけば、第3制限通路を通して第3受圧液室と副液室との間を入力振動に同期して相互に流通する液体に共振現象(液柱共振)が生じるので、この液柱共振に伴う液体の圧力変化及び粘性抵抗によって第2副振幅方向に沿った入力振動を効果的に吸収できる。   In the vibration isolator according to the first aspect, the second mounting member is provided on the inner peripheral side of the first mounting member so as to sandwich the second mounting member along the second sub-amplitude direction orthogonal to the axial direction and the first sub-amplitude direction. When the vibration along the second sub-amplitude direction is input to the first mounting member or the second mounting member by connecting the pair of third pressure receiving liquid chambers to the sub liquid chamber through the pair of third restriction passages, The elastic body elastically deforms along the second sub-amplitude direction and expands / contracts the internal volumes of the pair of third pressure receiving liquid chambers. Therefore, the pair of third pressure receiving liquid chambers and the sub liquid chambers are paired with each other. The liquid flows through the third restriction passage. At this time, if the path length and the cross-sectional area of the pair of third restriction passages, that is, the flow resistance of the liquid is set (tuned) so as to match the vibration frequency input along the second sub-amplitude direction, Since a resonance phenomenon (liquid column resonance) occurs in the liquid flowing between the third pressure receiving liquid chamber and the sub liquid chamber through the restriction passage in synchronization with the input vibration, the pressure change of the liquid accompanying the liquid column resonance and The input vibration along the second sub-amplitude direction can be effectively absorbed by the viscous resistance.

また請求項1に係る防振装置では、一対の第2受圧液室及び一対の第3受圧液室が第2取付部材を間に挟むように第1取付部材の内周側に設けられると共に、一対の第2受圧液室及び一対の第3受圧液室の内壁の少なくとも一部が弾性体により形成されるが、副液室については、その配置が第1及び第2受圧液室のように制限されることなく、弾性体から離隔した位置にも配置できることから、第2受圧液室及び第3受圧液室と副液室との間隔を十分に広くし、第2受圧液室及び第3受圧液室と副液室とをそれぞれ連通する第2制限通路の路長及び第3制限通路の路長をそれぞれ十分に長いものにできる。この結果、請求項1に係る防振装置によれば、装置サイズの拡大を抑制しつつ、第2制限通路の路長及び第3制限通路の路長を低周波数域の振動に適合するように容易にチューニングできる。   In the vibration isolator according to claim 1, the pair of second pressure receiving liquid chambers and the pair of third pressure receiving liquid chambers are provided on the inner peripheral side of the first mounting member so as to sandwich the second mounting member therebetween, At least a part of the inner walls of the pair of second pressure receiving liquid chambers and the pair of third pressure receiving liquid chambers is formed by an elastic body, but the arrangement of the sub liquid chambers is similar to that of the first and second pressure receiving liquid chambers. Since it can be arranged at a position separated from the elastic body without being limited, the intervals between the second pressure receiving liquid chamber and the third pressure receiving liquid chamber and the sub liquid chamber are sufficiently widened, and the second pressure receiving liquid chamber and the third pressure receiving liquid chamber The length of the second restriction passage and the length of the third restriction passage that communicate with the pressure receiving liquid chamber and the sub liquid chamber can be made sufficiently long. As a result, according to the vibration isolator according to claim 1, the path length of the second restricted passage and the length of the third restricted passage are adapted to the vibration in the low frequency range while suppressing the enlargement of the device size. Can be tuned easily.

また本発明の請求項2に係る防振装置は、請求項1記載の防振装置において、前記第1取付部材の内周側に、前記複数の第2受圧液室と前記副液室とを区画すると共に、前記第2制限通路及び前記第3制限通路がそれぞれ形成された仕切部材を配設したことを特徴とする。   A vibration isolator according to claim 2 of the present invention is the vibration isolator according to claim 1, wherein the plurality of second pressure receiving liquid chambers and the sub liquid chambers are provided on the inner peripheral side of the first mounting member. In addition to partitioning, partition members each having the second restriction passage and the third restriction passage are provided.

また本発明の請求項3に係る防振装置は、請求項1又は2記載の防振装置において、前記弾性体は、前記第1取付部材又は前記第2取付部材への前記軸方向と略一致する主振幅方向に沿った振動の入力により弾性変形すると、該主振幅方向に沿った弾性変形により主として前記第1受圧液室の内容積を拡縮させることを特徴とする。   The vibration isolator according to claim 3 of the present invention is the vibration isolator according to claim 1 or 2, wherein the elastic body substantially coincides with the axial direction to the first mounting member or the second mounting member. When elastically deformed by the input of vibration along the main amplitude direction, the internal volume of the first pressure receiving liquid chamber is mainly expanded or contracted by elastic deformation along the main amplitude direction.

また本発明の請求項4に係る防振装置は、請求項1乃至3の何れか1項記載の防振装置において、前記弾性体は、前記第1取付部材又は前記第2取付部材への前記第1副振幅方向に沿った振動の入力により弾性変形すると、該第1副振幅方向に沿った弾性変形により主として前記第2受圧液室の内容積を拡縮させることを特徴とする。
また本発明の請求項5に係る防振装置は、請求項1乃至4の何れか1項記載の防振装置において、前記弾性体は、前記第1取付部材又は前記第2取付部材への前記第2副振幅方向に沿った振動の入力により弾性変形すると、該第2副振幅方向に沿った弾性変形により主として前記第2受圧液室の内容積を拡縮させることを特徴とする。
The vibration isolator according to claim 4 of the present invention is the vibration isolator according to any one of claims 1 to 3, wherein the elastic body is attached to the first attachment member or the second attachment member. When elastically deformed by the input of vibration along the first sub-amplitude direction, the internal volume of the second pressure receiving liquid chamber is mainly expanded or contracted by elastic deformation along the first sub-amplitude direction.
The vibration isolator according to claim 5 of the present invention is the vibration isolator according to any one of claims 1 to 4, wherein the elastic body is attached to the first attachment member or the second attachment member. When elastically deforming by the input of vibration along the second sub-amplitude direction, the internal volume of the second pressure receiving liquid chamber is mainly expanded or contracted by elastic deformation along the second sub-amplitude direction.

以上説明したように本発明の防振装置によれば、装置サイズの大型化を抑制しつつ、装置の軸方向に沿って入力する振動を効果的に減衰吸収できることに加え、軸方向に略直交する第1及び第2副振幅方向に沿って入力する振動の周波数が低い場合でも、この振動を効果的に減衰吸収できる防振装置を提供することにある。   As described above, according to the vibration isolator of the present invention, it is possible to effectively attenuate and absorb vibration input along the axial direction of the apparatus while suppressing increase in the size of the apparatus, and substantially orthogonal to the axial direction. An object of the present invention is to provide a vibration isolator capable of effectively attenuating and absorbing this vibration even when the frequency of vibration input along the first and second sub-amplitude directions is low.

以下、本発明の実施形態に係る防振装置について図面を参照して説明する。   Hereinafter, a vibration isolator according to an embodiment of the present invention will be described with reference to the drawings.

図1には本発明の実施形態に係る防振装置が示されている。この防振装置10は、例えば、自動車におけるエンジンマウントとして用いられるものであり、振動受部である車体上に振動発生部となるエンジンを支持する。なお、図中、符号Sは装置の軸心を示しており、この軸心Sに沿った方向を装置の軸方向として以下の説明を行う。   FIG. 1 shows a vibration isolator according to an embodiment of the present invention. The vibration isolator 10 is used, for example, as an engine mount in an automobile, and supports an engine serving as a vibration generating unit on a vehicle body serving as a vibration receiving unit. In the figure, symbol S indicates the axial center of the apparatus, and the following description will be given with the direction along the axial center S as the axial direction of the apparatus.

図1に示されるように、防振装置10は、略円柱状に形成された装置本体12と、この装置本体12を車体側へ連結固定するためのブラケット14とを備えている。ブラケット14には、上部側に円筒状のホルダ部16が形成されると共に、このホルダ部16の下端部から径方向へ延出する一対の脚部18が一体的に形成されている。これら一対の脚部18の先端部には、それぞれ車体連結用の取付穴19がそれぞれ軸方向へ貫通している。またホルダ部16の下端部には、内周側へ屈曲された段差部20が一体的に形成されている。   As shown in FIG. 1, the vibration isolator 10 includes a device main body 12 formed in a substantially cylindrical shape, and a bracket 14 for connecting and fixing the device main body 12 to the vehicle body side. A cylindrical holder portion 16 is formed on the bracket 14 on the upper side, and a pair of leg portions 18 extending in a radial direction from the lower end portion of the holder portion 16 are integrally formed. At the tip end portions of the pair of leg portions 18, mounting holes 19 for connecting the vehicle bodies respectively penetrate in the axial direction. Further, a stepped portion 20 that is bent toward the inner peripheral side is integrally formed at the lower end portion of the holder portion 16.

装置本体12には、その外周側に軸方向両端部がそれぞれ開口した薄肉円筒状の外筒24が設けられると共に、この外筒24の内周側に略円柱状に形成された取付金具26が略同軸的に配置されている。外筒24の下端部には、内周側に屈曲された段差部28が形成されると共に、この段差部28を介して上部側よりも小径の円筒状とされた小径部30が一体的に形成されている。外筒24は、その段差部28がホルダ部16の段差部20へ当接するようにホルダ部16内に嵌挿されている。このとき、ホルダ部16全体又は上端部付近が内周側へかしめられることにより、ブラケット14内における所定位置に外筒24を含む装置本体12が固定される。   The apparatus main body 12 is provided with a thin cylindrical outer cylinder 24 having both axial ends opened on the outer peripheral side thereof, and a mounting bracket 26 formed in a substantially columnar shape on the inner peripheral side of the outer cylinder 24. It is arranged substantially coaxially. A stepped portion 28 that is bent toward the inner peripheral side is formed at the lower end portion of the outer cylinder 24, and a small diameter portion 30 that has a smaller diameter than the upper side is integrally formed through the stepped portion 28. Is formed. The outer cylinder 24 is fitted into the holder portion 16 so that the stepped portion 28 contacts the stepped portion 20 of the holder portion 16. At this time, the entire holder part 16 or the vicinity of the upper end part is caulked to the inner peripheral side, whereby the apparatus main body 12 including the outer cylinder 24 is fixed at a predetermined position in the bracket 14.

ここで、防振装置10を車体側へ連結する際には、一対の脚部18の取付穴19にそれぞれボルト(図示省略)を挿入し、その先端部を車体側に設けられたボルト穴へねじ込むことより、防振装置10がブラケット14を介して車体側へ締結固定される。また取付金具26には、その上面部分に軸心Sに沿って上方へ突出するボルト軸32が立設されており、このボルト軸32を介して取付金具26が車両のエンジン側に連結固定される。   Here, when connecting the vibration isolator 10 to the vehicle body side, bolts (not shown) are respectively inserted into the mounting holes 19 of the pair of leg portions 18 and the tip portions thereof are inserted into the bolt holes provided on the vehicle body side. By screwing, the vibration isolator 10 is fastened and fixed to the vehicle body via the bracket 14. Further, a bolt shaft 32 that protrudes upward along the axis S is provided on the upper surface of the mounting bracket 26, and the mounting bracket 26 is connected and fixed to the engine side of the vehicle via the bolt shaft 32. The

防振装置10には、外筒24の内周面に薄膜状に形成されたゴム製の被覆部34が加硫接着されると共に、小径部30内の下端側を閉止するようにゴム製のダイヤフラム36が被覆部34と一体成形されている。ダイヤフラム36は、上方へ向って凸状に湾曲した椀状に形成されており、後述する副液室72内に充填された液体の圧力変化に応じて副液室72の内容積を拡縮するように軸方向に沿って弾性変形可能とされている。   In the vibration isolator 10, a rubber covering portion 34 formed in a thin film shape is vulcanized and bonded to the inner peripheral surface of the outer cylinder 24, and a rubber made portion is closed so that the lower end side in the small diameter portion 30 is closed. A diaphragm 36 is integrally formed with the covering portion 34. The diaphragm 36 is formed in a bowl shape that is convexly convex upward, and expands or contracts the internal volume of the sub liquid chamber 72 in accordance with a pressure change of the liquid filled in the sub liquid chamber 72 described later. It can be elastically deformed along the axial direction.

防振装置10には、外筒24の内周側に下端側から上端側へ向って順に、スペーサ部材38、第1仕切部材40、第2仕切部材42及び中間筒44がそれぞれ嵌挿されている。また防振装置10には、中間筒44と取付金具26との間にゴム製のゴム弾性体22が設けられている。このゴム弾性体22は、全体として略肉厚円筒状に形成されており、その内周面及び外周面が中間筒44の内周面及び取付金具26の外周面にそれぞれ加硫接着されている。これにより、取付金具26と中間筒44とはゴム弾性体22により弾性的に連結される。   In the vibration isolator 10, a spacer member 38, a first partition member 40, a second partition member 42, and an intermediate cylinder 44 are respectively inserted into the inner peripheral side of the outer cylinder 24 from the lower end side toward the upper end side. Yes. The vibration isolator 10 is provided with a rubber elastic body 22 made of rubber between the intermediate cylinder 44 and the mounting bracket 26. The rubber elastic body 22 is formed in a substantially thick cylindrical shape as a whole, and its inner peripheral surface and outer peripheral surface are vulcanized and bonded to the inner peripheral surface of the intermediate tube 44 and the outer peripheral surface of the mounting bracket 26, respectively. . Thereby, the mounting bracket 26 and the intermediate cylinder 44 are elastically connected by the rubber elastic body 22.

スペーサ部材38は、外筒24の内径に対応する外径を有する薄肉円筒状に形成されており、被覆部34を介して外筒24の内周側へ嵌挿され、その下端部が外筒24の段差部28へ突き当てられている。外筒24内には、スペーサ部材38の上側に第1仕切部材40が嵌挿されている。第1仕切部材40は、内周側が外周側よりも肉厚とされた円板状に形成されており、その外周面下端部には、外周側へ延出するフランジ状の延出部50が一体的に形成されている。第1仕切部材40は内周側が肉厚円板状のオリフィス形成部52とされており、このオリフィス形成部52の上面部分には、軸心Sを中心とする周方向に沿って環状の溝部54が1周近くに亘って形成されている。この溝部54の一端部には、オリフィス形成部52の下面まで貫通する連通穴56が穿設されている。   The spacer member 38 is formed in a thin cylindrical shape having an outer diameter corresponding to the inner diameter of the outer cylinder 24, and is fitted into the inner peripheral side of the outer cylinder 24 through the covering portion 34, and the lower end portion thereof is the outer cylinder. It is abutted against the 24 step portions 28. A first partition member 40 is fitted into the outer cylinder 24 above the spacer member 38. The first partition member 40 is formed in a disc shape whose inner peripheral side is thicker than the outer peripheral side, and a flange-like extension portion 50 extending to the outer peripheral side is formed at the lower end portion of the outer peripheral surface. It is integrally formed. The first partition member 40 is an orifice forming portion 52 having a thick disk shape on the inner peripheral side, and an annular groove portion is formed on the upper surface portion of the orifice forming portion 52 along the circumferential direction centering on the axis S. 54 is formed over nearly one circumference. A communication hole 56 that penetrates to the lower surface of the orifice forming portion 52 is formed in one end portion of the groove portion 54.

オリフィス形成部52には、溝部54の内周側に円形の凹部58が形成されており、この凹部58の底板部には、オリフィス形成部52の下面まで貫通する複数の開口部60が形成されている。第1仕切部材40には、オリフィス形成部52の上面部分に固着される円板状の閉止板62が設けられており、この閉止板62は、溝部54及び収納室70の上面側から閉止するようにオリフィス形成部52に接着、ねじ止め等により固着されている。また閉止板62には、溝部54の他端部に対向する部位に連通穴64が穿設されると共に、凹部58に面する部位に複数の開口部65が形成されている。   In the orifice forming portion 52, a circular recess 58 is formed on the inner peripheral side of the groove portion 54, and a plurality of openings 60 penetrating to the lower surface of the orifice forming portion 52 are formed in the bottom plate portion of the recess 58. ing. The first partition member 40 is provided with a disc-shaped closing plate 62 fixed to the upper surface portion of the orifice forming portion 52, and the closing plate 62 is closed from the upper surface side of the groove portion 54 and the storage chamber 70. In this way, it is fixed to the orifice forming portion 52 by bonding, screwing or the like. The stop plate 62 has a communication hole 64 formed at a portion facing the other end of the groove portion 54, and a plurality of openings 65 formed at a portion facing the recess 58.

ここで、オリフィス形成部52における連通穴56及び溝部54と閉止板62の連通穴64は、後述する第1受圧液室76と副液室72とを連通させる制限通路である第1オリフィス66を形成している。また、閉止板62により上面側が閉止されたオリフィス形成部52の凹部58は、ゴム製の可動板68を収納する収納室70として構成されている。可動板68は、肉厚一定の円板状に形成されており、その肉厚が収納室70の軸方向に沿った幅よりも所定長だけ短くされると共に、外径が収納室70の内径よりも若干短されている。これにより、可動板68は、その肉厚と収納室70の厚さとの差の範囲で軸方向に沿って移動(振動)可能となる。   Here, the communication hole 56 and the groove 54 in the orifice forming part 52 and the communication hole 64 of the closing plate 62 define a first orifice 66 that is a restricting passage for communicating a first pressure receiving liquid chamber 76 and a sub liquid chamber 72 described later. Forming. Further, the recess 58 of the orifice forming portion 52 whose upper surface is closed by the closing plate 62 is configured as a storage chamber 70 for storing the movable plate 68 made of rubber. The movable plate 68 is formed in a disk shape with a constant thickness, the thickness of which is shorter than the width along the axial direction of the storage chamber 70 by a predetermined length, and the outer diameter is smaller than the inner diameter of the storage chamber 70. Also slightly shorter. Thereby, the movable plate 68 can move (vibrate) along the axial direction within the range of the difference between the thickness of the movable plate 68 and the thickness of the storage chamber 70.

第1仕切部材40は、延出部50の下面外周部をスペーサ部材38の上端部へ当接させている。これにより、外筒24内の下部側には、ダイヤフラム36及び第1仕切部材40により外部から区画された空間が形成され、この空間はエチレングリコール、シリコンオイル等の液体が満たされた副液室72とされる。   The first partition member 40 makes the lower surface outer peripheral portion of the extending portion 50 abut on the upper end portion of the spacer member 38. As a result, a space partitioned from the outside by the diaphragm 36 and the first partition member 40 is formed on the lower side in the outer cylinder 24, and this space is filled with a liquid such as ethylene glycol or silicon oil. 72.

一方、ゴム弾性体22の下面中央部には、軸方向に沿った断面が略円錐台状とされた凹部74が形成されており、この凹部74内には、下面側からオリフィス形成部52が挿入されている。またゴム弾性体22下面における凹部58の周縁部には、第1仕切部材40の延出部50が全周に亘って圧接している。これにより、第1仕切部材40は、凹部74内の下面側を閉止して凹部74内に外部から区画された空間を形成する。この空間はエチレングリコール、シリコンオイル等の液体が満たされた第1受圧液室76とされる。この第1受圧液室76と副液室72とは、オリフィス形成部52の第1オリフィス66により互いに連通し、この第1オリフィス66を通して、第1受圧液室76と副液室72との間では液体が相互に流通可能となる。ここで、第1オリフィス66は、その路長及び断面積が低周波振動であるシェイク振動(例えば、周波数が8〜12Hz)に適合するようにチューニングされている。   On the other hand, a concave portion 74 having a substantially frustoconical cross section along the axial direction is formed in the central portion of the lower surface of the rubber elastic body 22, and an orifice forming portion 52 is formed in the concave portion 74 from the lower surface side. Has been inserted. Further, the extended portion 50 of the first partition member 40 is in pressure contact with the peripheral edge of the recess 58 on the lower surface of the rubber elastic body 22 over the entire circumference. Thereby, the first partition member 40 closes the lower surface side in the recess 74 and forms a space partitioned from the outside in the recess 74. This space is a first pressure receiving liquid chamber 76 filled with a liquid such as ethylene glycol or silicon oil. The first pressure receiving liquid chamber 76 and the sub liquid chamber 72 communicate with each other through the first orifice 66 of the orifice forming portion 52, and the first pressure receiving liquid chamber 76 and the sub liquid chamber 72 pass through the first orifice 66. Then liquids can circulate each other. Here, the 1st orifice 66 is tuned so that the path length and cross-sectional area may adapt to the shake vibration (for example, frequency is 8-12 Hz) which is a low frequency vibration.

外筒24内には、第1仕切部材40の延出部50の上側に第2仕切部材42が嵌挿されている。図2及び3に示されるように、第2仕切部材42は肉厚円筒状に形成されており、その外径が外筒24の内径に対応する寸法とされている。外筒24内へ嵌挿された第2仕切部材42は、図1に示されるように、その下面部を第1仕切部材40の延出部50上面側へ当接させると共に、被覆部34を介して外周面を外筒24の内周面へ圧接させる。   A second partition member 42 is fitted into the outer cylinder 24 on the upper side of the extending portion 50 of the first partition member 40. As shown in FIGS. 2 and 3, the second partition member 42 is formed in a thick cylindrical shape, and its outer diameter is a dimension corresponding to the inner diameter of the outer cylinder 24. As shown in FIG. 1, the second partition member 42 inserted and inserted into the outer cylinder 24 abuts its lower surface portion on the upper surface side of the extended portion 50 of the first partition member 40, and the covering portion 34. The outer peripheral surface is brought into pressure contact with the inner peripheral surface of the outer cylinder 24.

図3(B)、(C)及び(D)に示されるように、第2仕切部材42には、その外周面に略1/2周近くに亘ってクランク状に延在するように第1外周溝80が形成されると共に、この第1外周溝80とは位相が180°異なる部位にも略1/2周近くに亘ってクランク状に延在するように第1外周溝82が形成されている。また図3(A)、(C)及び(E)に示されるように、第2仕切部材42には、その外周面における第1外周溝80とは位相が90°異なる部位に略1/2周近くに亘ってクランク状に延在するように第2外周溝84が形成されると共に、この第2外周溝84とは位相が180°異なる部位に略1/2周近くに亘ってクランク状に延在するように第2外周溝86が形成されている。   As shown in FIGS. 3 (B), (C) and (D), the second partition member 42 has a first crank so as to extend in the form of a crank over the outer circumferential surface of the second partition member 42. An outer circumferential groove 80 is formed, and a first outer circumferential groove 82 is formed so as to extend in a crank shape over almost half a circumference even at a portion 180 degrees out of phase with the first outer circumferential groove 80. ing. As shown in FIGS. 3A, 3C, and 3E, the second partition member 42 is substantially ½ at a portion that is 90 ° out of phase with the first outer circumferential groove 80 on the outer circumferential surface. A second outer circumferential groove 84 is formed so as to extend in a crank shape over the circumference, and a crank shape is provided over a nearly ½ circumference at a portion that is 180 ° out of phase with the second outer circumferential groove 84. A second outer peripheral groove 86 is formed so as to extend in the vertical direction.

図3に示されるように、第1外周溝80及び第1外周溝82には、その一端部に第2仕切部材42の上面まで貫通する上側連通口87及び上側連通口88がそれぞれ形成されると共に、他端部に第2仕切部材42の下面まで貫通する下側連通口90及び下側連通口92がそれぞれ形成されている。また第2外周溝84及び第2外周溝86にも、その一端部に第2仕切部材42の上面まで貫通する上側連通口94及び上側連通口96がそれぞれ形成されると共に、他端部に第2仕切部材42の下面まで貫通する下側連通口98及び下側連通口100が形成されている。   As shown in FIG. 3, the first outer circumferential groove 80 and the first outer circumferential groove 82 are respectively formed with an upper communication port 87 and an upper communication port 88 penetrating to the upper surface of the second partition member 42 at one end thereof. At the other end, a lower communication port 90 and a lower communication port 92 that penetrate to the lower surface of the second partition member 42 are formed. The second outer circumferential groove 84 and the second outer circumferential groove 86 are also formed with an upper communication port 94 and an upper communication port 96 penetrating to the upper surface of the second partition member 42 at one end thereof, respectively, A lower communication port 98 and a lower communication port 100 penetrating to the lower surface of the two partition member 42 are formed.

図3(A)、(B)、(D)及び(E)に示されるように、第1仕切部材40の延出部50には、下側連通口90,92にそれぞれ対向する部位に下側切欠部102,104が形成されると共に、下側連通口98,100にそれぞれ対向する部位に下側切欠部106,108が形成されている。下側切欠部102,104は、それぞれ下側連通口90,92を副液室72に連通させ、下側切欠部106,108は、それぞれ下側連通口98,100を副液室72に連通させている。   As shown in FIGS. 3A, 3 </ b> B, 3 </ b> D, and 3 </ b> E, the extended portion 50 of the first partition member 40 has a lower portion at a portion that faces the lower communication ports 90 and 92. The side notches 102 and 104 are formed, and the lower notches 106 and 108 are formed at portions facing the lower communication ports 98 and 100, respectively. The lower notches 102 and 104 communicate the lower communication ports 90 and 92 with the auxiliary liquid chamber 72, respectively, and the lower notches 106 and 108 communicate the lower communication ports 98 and 100 with the auxiliary liquid chamber 72, respectively. I am letting.

図1に示されるように、中間筒44には、上部側に大径の円筒状の大径部110が形成されると共に、下部側に大径部110の下端部から内周側へ延出する段差部112を介して大径部110よりも小径の円筒状の小径部114が一体的に形成されている。ここで、大径部110は外筒24の内径に対応する外径を有しており、小径部114は第2仕切部材42の内径に対応する外径を有している。中間筒44は、小径部114の外周面を第2仕切部材42の内周面に当接させると共に、被覆部34を介して大径部110の外周面を外筒24の内周面上端部へ圧接させている。また中間筒44は、段差部112を第2仕切部材42の上面部に当接させている。これにより、第2仕切部材42は、段差部112とで第1仕切部材40の延出部50とにより挟まれて軸方向への移動が拘束される。   As shown in FIG. 1, the intermediate cylinder 44 has a large-diameter cylindrical large-diameter portion 110 formed on the upper side, and extends from the lower end of the large-diameter portion 110 to the inner peripheral side on the lower side. A cylindrical small-diameter portion 114 having a smaller diameter than the large-diameter portion 110 is integrally formed through a stepped portion 112. Here, the large diameter portion 110 has an outer diameter corresponding to the inner diameter of the outer cylinder 24, and the small diameter portion 114 has an outer diameter corresponding to the inner diameter of the second partition member 42. The intermediate cylinder 44 abuts the outer peripheral surface of the small-diameter portion 114 on the inner peripheral surface of the second partition member 42, and the outer peripheral surface of the large-diameter portion 110 is connected to the upper end portion of the inner peripheral surface of the outer cylinder 24 via the covering portion 34. Pressure contact. In addition, the intermediate cylinder 44 makes the stepped portion 112 abut on the upper surface portion of the second partition member 42. Accordingly, the second partition member 42 is sandwiched between the stepped portion 112 and the extending portion 50 of the first partition member 40, and the movement in the axial direction is restricted.

図3(A)、(B)、(D)及び(E)に示されるように、中間筒44の段差部112には、上側連通口87,88にそれぞれ面して上側切欠部140,142が形成されると共に、上側連通口94,96にそれぞれ面して上側切欠部144,146が形成されている。上側切欠部140,142は、それぞれ上側連通口87,88を、後述する第2受圧液室132A,132Bに連通させ、また上側切欠部144,146は、それぞれ上側連通口94,96を、後述する第3受圧液室136A,136Bに連通させている。   As shown in FIGS. 3A, 3 </ b> B, 3 </ b> D, and 3 </ b> E, the stepped portion 112 of the intermediate cylinder 44 faces the upper communication ports 87 and 88, respectively, and the upper notch portions 140 and 142. Are formed, and upper cutout portions 144 and 146 are formed facing the upper communication ports 94 and 96, respectively. The upper notches 140 and 142 allow the upper communication ports 87 and 88 to communicate with second pressure receiving liquid chambers 132A and 132B, which will be described later, and the upper notches 144 and 146 respectively connect the upper communication ports 94 and 96 to the later description. The third pressure receiving liquid chambers 136A and 136B communicate with each other.

図4に示されるように、ゴム弾性体22には、中間筒44における大径部110の内周側の部分に一対の第1空洞部116,118及び一対の第2空洞部120,122が外周側面から内周側へ向って凹状に形成されている。ここで、一対の第1空洞部116,118は、軸方向に直交する径方向である第1副振幅方向(矢印H1方向)に沿って取付金具26を間に挟むように配置されており、また一対の第2空洞部120,122は、軸方向及び第1副振幅方向に直交する第2副振幅方向(矢印H2方向)に沿って取付金具26を間に挟むように配置されている。一対の第1空洞部116,118は、図1に示されるように、その軸方向に沿った断面形状がそれぞれ外周側から内周側へ向って幅が狭くなるような略V字状とされており、一対の第2空洞部120,122も、その軸方向に沿った断面形状が一対の第1空洞部116,118の断面形状と略同一形状とされている。   As shown in FIG. 4, the rubber elastic body 22 has a pair of first cavities 116 and 118 and a pair of second cavities 120 and 122 in the inner peripheral side portion of the large diameter portion 110 in the intermediate cylinder 44. It is formed in a concave shape from the outer peripheral side toward the inner peripheral side. Here, the pair of first cavities 116 and 118 are arranged so as to sandwich the mounting bracket 26 along the first sub-amplitude direction (arrow H1 direction) which is a radial direction orthogonal to the axial direction. The pair of second cavities 120 and 122 are disposed so as to sandwich the mounting bracket 26 along the second sub-amplitude direction (arrow H2 direction) orthogonal to the axial direction and the first sub-amplitude direction. As shown in FIG. 1, the pair of first cavities 116 and 118 have a substantially V-shaped cross-sectional shape that decreases in width from the outer peripheral side toward the inner peripheral side. The pair of second cavities 120 and 122 also have a cross-sectional shape along the axial direction substantially the same as the cross-sectional shape of the pair of first cavities 116 and 118.

図4に示されるように、一対の第1空洞部116,118及び一対の第2空洞部120,122は、その径方向に沿った断面形状がそれぞれ内周側から外周側へ向って幅広となる略扇状に形成されており、ゴム弾性体22には、第1空洞部116,118と第2空洞部120,122との間にそれぞれ内周側から外周側へ向って幅広となる略扇状の断面を有する4枚の隔壁部124,125,126,127が形成されている。これらの隔壁部124,125,126,127の外周面は、大径部110の内周面に加硫接着により固着されている。また中間筒44の大径部110には、一対の第1空洞部116,118及び第2空洞部120,122にそれぞれ面して略矩形状の第1開口部128及び第2開口部130が形成されている。   As shown in FIG. 4, the pair of first cavities 116 and 118 and the pair of second cavities 120 and 122 each have a cross-sectional shape along the radial direction that is wider from the inner peripheral side to the outer peripheral side. The rubber elastic body 22 has a substantially fan-like shape that is wide between the first cavity 116 and 118 and the second cavity 120 and 122 from the inner circumference side toward the outer circumference side. Four partition wall portions 124, 125, 126, and 127 having the cross section are formed. The outer peripheral surfaces of these partition wall portions 124, 125, 126, and 127 are fixed to the inner peripheral surface of the large diameter portion 110 by vulcanization adhesion. In addition, the large-diameter portion 110 of the intermediate cylinder 44 has a first opening 128 and a second opening 130 that are substantially rectangular and face the pair of first cavities 116 and 118 and the second cavities 120 and 122, respectively. Is formed.

一対の第1空洞部116,118及び一対の第2空洞部120,122は、それぞれ外周側が被覆部34を介して外筒24の内周面により閉塞される。これにより、一対の第1空洞部116,118及び一対の第2空洞部120,122内には、それぞれ外部から区画された空間が形成されることとなり、一対の第1空洞部116,118内の空間は、それぞれエチレングリコール、シリコンオイル等の液体が満たされた第2受圧液室132A,132Bとされ、また一対の第2空洞部120,122内の空間は、それぞれエチレングリコール、シリコンオイル等の液体が満たされた第3受圧液室136A,136Bとされる。   The pair of first cavities 116, 118 and the pair of second cavities 120, 122 are each closed on the outer peripheral side by the inner peripheral surface of the outer cylinder 24 via the covering portion 34. Thereby, spaces partitioned from the outside are formed in the pair of first cavities 116 and 118 and the pair of second cavities 120 and 122, respectively. Are the second pressure receiving liquid chambers 132A and 132B filled with a liquid such as ethylene glycol and silicone oil, and the spaces in the pair of second cavities 120 and 122 are respectively ethylene glycol and silicone oil. The third pressure receiving liquid chambers 136A and 136B are filled with the liquid.

ここで、図1に示されるように、第2仕切部材42における一対の第1外周溝80,82(図3参照)は、その外周側が被覆部34を介して外筒24の内周面により閉塞される。この外周側が閉塞された一対の第1外周溝80,82は、一対の第2受圧液室132A,132Bをそれぞれ副液室72に連通させる第2オリフィス134A,134Bを構成する。また第2仕切部材42における一対の第2外周溝84,86(図3参照)も、その外周側が被覆部34を介して外筒24の内周面により閉塞される。この外周側が閉塞された一対の第2外周溝84,86は、一対の第3受圧液室136A,136Bをそれぞれ副液室72に連通させる第3オリフィス138A,138Bを構成する。これらの第2オリフィス134A,134B及び第3オリフィス138A,138Bは、その路長及び断面積がシェイク振動よりも若干、低い周波数(例えば、6〜10Hz)の振動に適合するようにチューニングされている。   Here, as shown in FIG. 1, the pair of first outer peripheral grooves 80, 82 (see FIG. 3) in the second partition member 42 is formed on the outer peripheral side of the inner peripheral surface of the outer cylinder 24 via the covering portion 34. Blocked. The pair of first outer peripheral grooves 80 and 82 whose outer peripheral sides are closed constitute second orifices 134A and 134B for communicating the pair of second pressure receiving liquid chambers 132A and 132B with the sub liquid chamber 72, respectively. The pair of second outer peripheral grooves 84 and 86 (see FIG. 3) in the second partition member 42 are also closed on the outer peripheral side by the inner peripheral surface of the outer cylinder 24 via the covering portion 34. The pair of second outer peripheral grooves 84 and 86 whose outer peripheral sides are closed constitute third orifices 138A and 138B that allow the pair of third pressure receiving liquid chambers 136A and 136B to communicate with the sub liquid chamber 72, respectively. These second orifices 134A, 134B and third orifices 138A, 138B are tuned so that their path lengths and cross-sectional areas are adapted to vibrations of slightly lower frequencies (eg, 6 to 10 Hz) than shake vibrations. .

上記のように構成された防振装置10では、ゴム弾性体22が取付金具26を介して及び第2受圧液室132Bが配列された方向(第1副振幅方向、図4の矢印H1方向)へ弾性変形すると、主として第2受圧液室132A及び第2受圧液室132Bの内容積がそれぞれ拡縮する。また防振装置10では、ゴム弾性体22が取付金具26を介して第3受圧液室136A及び第3受圧液室136Bが配列された方向(第2副振幅方向、図4の矢印H2方向)へ弾性変形すると、主として第3受圧液室136A及び第3受圧液室136Bの内容積がそれぞれ拡縮する。なお、本実施形態の防振装置10は、エンジンマウントとして車両に装着された状態で、前記第1副振幅方向が車両の前後方向と略一致し、前記第2副振幅方向が車両の後述する副振幅方向と実質的に一致するように取付方向が設定される。   In the vibration isolator 10 configured as described above, the rubber elastic body 22 is arranged in the direction in which the second pressure receiving liquid chamber 132B is arranged via the mounting bracket 26 (first sub-amplitude direction, arrow H1 direction in FIG. 4). When elastically deforming, the internal volumes of the second pressure receiving fluid chamber 132A and the second pressure receiving fluid chamber 132B mainly expand and contract. Further, in the vibration isolator 10, the rubber elastic body 22 is arranged in the direction in which the third pressure receiving liquid chamber 136A and the third pressure receiving liquid chamber 136B are arranged via the mounting bracket 26 (second sub-amplitude direction, arrow H2 direction in FIG. 4). When elastically deformed, the internal volumes of the third pressure receiving fluid chamber 136A and the third pressure receiving fluid chamber 136B mainly expand and contract, respectively. In the vibration isolator 10 of the present embodiment, the first sub-amplitude direction substantially coincides with the vehicle front-rear direction when the engine mount is mounted on the vehicle, and the second sub-amplitude direction is described later on the vehicle. The mounting direction is set so as to substantially coincide with the sub-amplitude direction.

防振装置10では、スペーサ部材38、第1仕切部材40、第2仕切部材42及び、ゴム弾性体22により連結された取付金具26と中間筒44が外筒24内における所定位置に嵌挿されると、外筒24全体を内周側へかしめることにより、スペーサ部材38、第1仕切部材40、第2仕切部材42及び中間筒44が外筒24内で固定される。これにより、装置本体12の組立てが完了し、この装置本体12は、前述したようにブラケット14のホルダ部16内へ嵌挿され、ホルダ部16が内周側へかしめられることによりブラケット14に固定される。   In the vibration isolator 10, the spacer member 38, the first partition member 40, the second partition member 42, and the mounting bracket 26 and the intermediate cylinder 44 connected by the rubber elastic body 22 are inserted into predetermined positions in the outer cylinder 24. The spacer member 38, the first partition member 40, the second partition member 42, and the intermediate tube 44 are fixed in the outer tube 24 by caulking the entire outer tube 24 toward the inner peripheral side. As a result, the assembly of the apparatus main body 12 is completed, and the apparatus main body 12 is inserted into the holder portion 16 of the bracket 14 as described above, and is fixed to the bracket 14 by caulking the holder portion 16 toward the inner peripheral side. Is done.

次に、上記のように構成された本実施形態に係る防振装置10の作用を説明する。防振装置10では、取付金具26に連結されたエンジンが作動すると、エンジンからの振動が取付金具26を介してゴム弾性体22に伝達される。このとき、ゴム弾性体22は吸振主体として作用し、ゴム弾性体22の変形に伴った内部摩擦等による減衰作用により入力振動が吸収される。   Next, the operation of the vibration isolator 10 according to the present embodiment configured as described above will be described. In the vibration isolator 10, when the engine connected to the mounting bracket 26 operates, vibration from the engine is transmitted to the rubber elastic body 22 via the mounting bracket 26. At this time, the rubber elastic body 22 acts as a vibration absorber, and the input vibration is absorbed by a damping action due to internal friction or the like accompanying the deformation of the rubber elastic body 22.

このとき、エンジンから入力する主要な振動としては、エンジン内のピストンがシリンダ内で往復移動することにより発生する振動(主振動)と、エンジン内のクランクシャフトの回転速度が変化することにより生じる振動(副振動)とが挙げられる。エンジンが直列型の場合には、前記主振動は、その振幅方向(主振幅方向)が車両の上下方向と略一致するものとなり、前記副振動は、その振幅方向が、直列エンジンが横置きの場合には主振動の振幅方向とは直交する車両の前後方向(第1副振幅方向)となり、また直列エンジンが縦置きの場合には車両の左右方向(第2副振幅方向)と略一致するものになる。ここで、ゴム弾性体22は、入力振動が主振幅方向に沿った主振動であっても、第1副振幅方向又は第2副振幅方向に沿った副振動であっても、その内部摩擦等による減衰作用により吸収可能である。   At this time, main vibrations input from the engine include vibrations (main vibrations) generated by the reciprocating movement of pistons in the engine within the cylinders, and vibrations generated by changes in the rotational speed of the crankshaft in the engine. (Sub-vibration). When the engine is a series type, the main vibration has an amplitude direction (main amplitude direction) that substantially coincides with the vertical direction of the vehicle, and the sub-vibration has an amplitude direction in which the series engine is placed horizontally. In this case, it is the longitudinal direction of the vehicle (first sub-amplitude direction) orthogonal to the amplitude direction of the main vibration, and substantially coincides with the left-right direction of the vehicle (second sub-amplitude direction) when the series engine is installed vertically. Become a thing. Here, the rubber elastic body 22 has an internal friction or the like regardless of whether the input vibration is a main vibration along the main amplitude direction or a sub vibration along the first sub-amplitude direction or the second sub-amplitude direction. It can be absorbed by the damping action.

また防振装置10では、第1受圧液室76が外筒24の内周側であって、取付金具26の軸方向下側に配設されると共に、この第1受圧液室76が第1オリフィス66を通して副液室72に連通することにより、取付金具26にエンジン側から軸方向(主振幅方向)に沿った主振動が入力すると、ゴム弾性体22が主振幅方向に沿って弾性変形すると共に、第1受圧液室76の内容積を拡縮させるので、第1オリフィス66を通して第1受圧液室76と副液室72とを液体が相互に流通する。この結果、防振装置10によれば、第1オリフィス66における路長及び断面積がシェイク振動に適合するように設定(チューニング)されていることから、主振動がシェイク振動である場合には、第1オリフィス66を通して第1受圧液室76と副液室72との間を、入力振動に同期して相互に流通する液体に共振現象(液柱共振)が生じるので、この液柱共振に伴う液体の圧力変化及び粘性抵抗によって主振幅方向に沿って入力するシェイク振動を特に効果的に吸収できる。   In the vibration isolator 10, the first pressure receiving liquid chamber 76 is disposed on the inner peripheral side of the outer cylinder 24 and on the lower side in the axial direction of the mounting bracket 26, and the first pressure receiving liquid chamber 76 is the first. By communicating with the auxiliary liquid chamber 72 through the orifice 66, when the main vibration along the axial direction (main amplitude direction) is input from the engine side to the mounting bracket 26, the rubber elastic body 22 is elastically deformed along the main amplitude direction. At the same time, since the internal volume of the first pressure receiving liquid chamber 76 is expanded and contracted, the liquid flows through the first pressure receiving liquid chamber 76 and the sub liquid chamber 72 through the first orifice 66. As a result, according to the vibration isolator 10, since the path length and the cross-sectional area of the first orifice 66 are set (tuned) to match the shake vibration, when the main vibration is the shake vibration, A resonance phenomenon (liquid column resonance) occurs in the liquid flowing between the first pressure receiving liquid chamber 76 and the sub liquid chamber 72 through the first orifice 66 in synchronization with the input vibration. Shake vibration input along the main amplitude direction can be absorbed particularly effectively by the pressure change and viscous resistance of the liquid.

また防振装置10では、入力する主振動の周波数がシェイク振動の周波数よりも高く、その振幅が小さい場合、例えば、入力振動がアイドル振動(例えば、20〜30Hz)で、その振幅が0.1mm〜0.2mm程度の場合には、シェイク振動に適合するようにチューニングされた第1オリフィス66が目詰まり状態となり、第1オリフィス66には液体が流れ難くなるが、可動板68が収納室70内で入力振動に同期して軸方向に沿って振動することにより、収納室70の内壁面と可動板68との隙間及び開口部60,65を通って第1受圧液室76と副液室72との間で液体が流通するので、第1受圧液室76内の液圧上昇に伴う動ばね定数の上昇を抑えることができ、このような高周波振動の入力時もゴム弾性体22の動ばね定数を低く維持し、このゴム弾性体22により高周波振動も効果的に吸収できる。   In the vibration isolator 10, when the frequency of the main vibration to be input is higher than the frequency of the shake vibration and the amplitude is small, for example, the input vibration is idle vibration (for example, 20 to 30 Hz) and the amplitude is 0.1 mm. In the case of about ˜0.2 mm, the first orifice 66 tuned to match the shake vibration is clogged, and it is difficult for the liquid to flow through the first orifice 66, but the movable plate 68 is accommodated in the storage chamber 70. The first pressure receiving liquid chamber 76 and the auxiliary liquid chamber pass through the gap between the inner wall surface of the storage chamber 70 and the movable plate 68 and the openings 60 and 65 by vibrating in the axial direction in synchronization with the input vibration. Since the liquid flows between the first and second pressure receiving liquid chambers 76, the increase in the dynamic spring constant accompanying the increase in the hydraulic pressure in the first pressure receiving liquid chamber 76 can be suppressed. Spring constant Ku maintained, high-frequency vibration can be effectively absorbed by the rubber elastic body 22.

また防振装置10では、一対の第2受圧液室132A,132Bが主振幅方向と直交する第1副振幅方向に沿って取付金具26を間に挟むように前記第1取付部材の内周側に設けられ、これら一対の第2受圧液室132A,132Bがそれぞれ一対の第2オリフィス134A,134Bを通して副液室72にそれぞれ連通することにより、外筒24又は取付金具26にエンジン側から車両前後方向(第1副振幅方向)に沿った振動が入力すると、ゴム弾性体22が第1副振幅方向に沿って弾性変形すると共に、ゴム弾性体22が主として、一対の第2受圧液室132A,132Bの内容積をそれぞれ拡縮させるので、一対の第2受圧液室132A,132Bと副液室72との間を、一対の第2オリフィス134A,134Bを通してそれぞれ液体が相互に流通する。このとき、2本の第2オリフィス134A,134Bにおける路長及び断面積が低周波振動(例えば、6Hz〜10Hz)に適合するようにチューニングされているので、入力する副振動が低周波振動である場合には、入力する副振動に同期して、2本の第2オリフィス134A,134Bを通して2個の第2受圧液室132A,132Bと副液室72との間を相互に流通する液体に共振現象(液柱共振)が生じるので、この液柱共振に伴う液体の圧力変化、粘性抵抗等によって副振幅方向に沿って入力する低周波振動を特に効果的に吸収できる。   Further, in the vibration isolator 10, the pair of second pressure receiving liquid chambers 132A and 132B are arranged on the inner peripheral side of the first mounting member so that the mounting bracket 26 is sandwiched along the first sub-amplitude direction orthogonal to the main amplitude direction. The pair of second pressure receiving fluid chambers 132A and 132B communicate with the auxiliary fluid chamber 72 through the pair of second orifices 134A and 134B, respectively, so that the outer cylinder 24 or the mounting bracket 26 is connected to the front and rear of the vehicle from the engine side. When vibration along the direction (first sub-amplitude direction) is input, the rubber elastic body 22 is elastically deformed along the first sub-amplitude direction, and the rubber elastic body 22 mainly includes the pair of second pressure receiving liquid chambers 132A, Since the internal volume of 132B is expanded and contracted, the space between the pair of second pressure receiving liquid chambers 132A and 132B and the sub liquid chamber 72 is respectively passed through the pair of second orifices 134A and 134B. Body flows with each other. At this time, the path length and the cross-sectional area of the two second orifices 134A and 134B are tuned so as to be compatible with low-frequency vibration (for example, 6 Hz to 10 Hz), so that the input secondary vibration is low-frequency vibration. In this case, in synchronization with the input sub-vibration, resonance occurs with the liquid flowing between the two second pressure receiving liquid chambers 132A and 132B and the sub liquid chamber 72 through the two second orifices 134A and 134B. Since a phenomenon (liquid column resonance) occurs, low-frequency vibrations input along the sub-amplitude direction can be particularly effectively absorbed by a change in pressure of the liquid accompanying the liquid column resonance, viscous resistance, and the like.

ここで、第1副振幅方向に沿って取付金具26を間に挟むように2個の第2受圧液室132A,132Bが外筒24内に配列されているので、取付金具26と外筒24との間に1個の第2受圧液室のみが設けられている場合と比較し、第1副振幅方向に沿って入力する振動に対する液柱共振により得られる減衰力を約2倍に増加できるので、第1副振幅方向に沿って入力する振動を効率的に減衰吸収できる。   Here, since the two second pressure receiving liquid chambers 132A and 132B are arranged in the outer cylinder 24 so as to sandwich the mounting bracket 26 in the first sub-amplitude direction, the mounting bracket 26 and the outer cylinder 24 are arranged. As compared with the case where only one second pressure receiving liquid chamber is provided between the first and second pressure chambers, the damping force obtained by the liquid column resonance with respect to the vibration input along the first sub-amplitude direction can be increased approximately twice. Therefore, it is possible to efficiently attenuate and absorb the vibration input along the first sub-amplitude direction.

なお、本実施形態に係る防振装置10では、第2オリフィス134A及び第2オリフィス134Bの双方が共通の振動周波数域(例えば、6Hz〜10Hz)に適合するようにチューニングされていたが、一方の第2オリフィス134Aが適合する振動周波数と他方の第2オリフィス134Bが適合する振動周波数とを異なるものにしても良い。   In the vibration isolator 10 according to the present embodiment, both the second orifice 134A and the second orifice 134B are tuned so as to conform to a common vibration frequency range (for example, 6 Hz to 10 Hz). The vibration frequency to which the second orifice 134A is adapted may be different from the vibration frequency to which the other second orifice 134B is adapted.

また防振装置10では、一対の第3受圧液室136A,136Bが主振幅方向及び第1副振幅方向と直交する第2副振幅方向に沿って取付金具26を間に挟むように外筒24の内周側に設けられ、これら一対の第3受圧液室136A,136Bがそれぞれ一対の第3オリフィス138A,138Bを通して副液室72にそれぞれ連通することにより、外筒24又は取付金具26に車両左右方向(第2副振幅方向)に沿った振動が入力すると、ゴム弾性体22が第2副振幅方向に沿って弾性変形すると共に、ゴム弾性体22が主として一対の第3受圧液室136A,136Bの内容積をそれぞれ拡縮させるので、一対の第3受圧液室136A,136Bと副液室72との間を、一対の第3オリフィス138A,138Bを通してそれぞれ液体が相互に流通する。このとき、2本の第3オリフィス138A,138Bにおける路長及び断面積が低周波振動(例えば、6Hz〜10Hz)に適合するようにチューニングされているので、入力する副振動が低周波振動である場合には、入力する副振動に同期して、2本の第3オリフィス138A,138Bを通して2個の第3受圧液室136A,136Bと副液室72との間を流通する液体に共振現象(液柱共振)が生じるので、この液柱共振に伴う液体の圧力変化、粘性抵抗等によって第2副振幅方向に沿って入力する低周波振動を特に効果的に吸収できる。   Further, in the vibration isolator 10, the outer cylinder 24 is arranged such that the pair of third pressure receiving liquid chambers 136A and 136B sandwich the mounting bracket 26 along the main amplitude direction and the second sub-amplitude direction orthogonal to the first sub-amplitude direction. The pair of third pressure receiving liquid chambers 136A and 136B communicate with the auxiliary liquid chamber 72 through the pair of third orifices 138A and 138B, respectively, so that the vehicle is connected to the outer cylinder 24 or the mounting bracket 26. When vibration along the left-right direction (second sub-amplitude direction) is input, the rubber elastic body 22 is elastically deformed along the second sub-amplitude direction, and the rubber elastic body 22 mainly includes a pair of third pressure receiving liquid chambers 136A, Since the internal volume of 136B is expanded and contracted, the liquid flows between the pair of third pressure receiving liquid chambers 136A and 136B and the sub liquid chamber 72 through the pair of third orifices 138A and 138B. Each other to distribution. At this time, the path length and the cross-sectional area of the two third orifices 138A and 138B are tuned so as to be compatible with low-frequency vibration (for example, 6 Hz to 10 Hz), so the input secondary vibration is low-frequency vibration. In this case, a resonance phenomenon occurs in the liquid flowing between the two third pressure receiving liquid chambers 136A and 136B and the sub liquid chamber 72 through the two third orifices 138A and 138B in synchronization with the input sub vibration. (Liquid column resonance) occurs, and therefore, low-frequency vibrations input along the second sub-amplitude direction can be particularly effectively absorbed by the pressure change of the liquid accompanying the liquid column resonance, viscous resistance, and the like.

ここで、第2副振幅方向に沿って取付金具26を間に挟むように2個の第3受圧液室136A,136Bが外筒24内に配置されているので、取付金具26と外筒24との間に1個の第3受圧液室のみが設けられている場合と比較し、第2副振幅方向に沿って入力する振動に対する液柱共振により得られる減衰力を約2倍にできるので、第2副振幅方向に沿って入力する振動を効率的に減衰吸収できる。   Here, since the two third pressure receiving liquid chambers 136A and 136B are arranged in the outer cylinder 24 so as to sandwich the mounting bracket 26 along the second sub-amplitude direction, the mounting bracket 26 and the outer cylinder 24 are arranged. As compared with the case where only one third pressure receiving liquid chamber is provided between the two, the damping force obtained by the liquid column resonance with respect to the vibration input along the second sub-amplitude direction can be approximately doubled. The vibration input along the second sub-amplitude direction can be efficiently attenuated and absorbed.

なお、本実施形態に係る防振装置10では、第3オリフィス138A及び第3オリフィス138Bの双方が共通の振動周波数域(例えば、6Hz〜10Hz)に適合するようにチューニングされていたが、一方の第3オリフィス138Aが適合する振動周波数域と他方の第3オリフィス138Bが適合する振動周波数域とをそれぞれ異なるものにしても良い。   In the vibration isolator 10 according to the present embodiment, both the third orifice 138A and the third orifice 138B are tuned so as to conform to a common vibration frequency range (for example, 6 Hz to 10 Hz). The vibration frequency region in which the third orifice 138A is compatible may be different from the vibration frequency region in which the other third orifice 138B is compatible.

以上説明したように本実施形態に係る防振装置10によれば、車両上下方向(主振幅方向)に沿った振動の入力時には、第1オリフィス66を通して第1受圧液室76と副液室72との間で液柱共振が生じることにより、主振幅方向に沿った振動を効率的に吸収でき、車両前後方向(第1副振幅方向)に沿った振動の入力時には、2本の第2オリフィス134A,134Bを通して2個の第2受圧液室132A,132Bと副液室72との間で液柱共振が生じることにより、第1副振幅方向に沿った振動を効率的に吸収でき、車両左右方向(第2副振幅方向)に沿った振動の入力時には、2本の第3オリフィス138A,138Bを通して2個の第3受圧液室136A,136Bと副液室72との間で液柱共振が生じることにより、第2副振幅方向に沿った振動を効率的に吸収できる。   As described above, according to the vibration isolator 10 according to the present embodiment, the first pressure receiving liquid chamber 76 and the sub liquid chamber 72 are passed through the first orifice 66 when inputting vibration along the vehicle vertical direction (main amplitude direction). The vibration along the main amplitude direction can be efficiently absorbed by the liquid column resonance between the two and the two second orifices when the vibration along the vehicle longitudinal direction (first sub-amplitude direction) is input. The liquid column resonance occurs between the two second pressure receiving liquid chambers 132A and 132B and the sub liquid chamber 72 through 134A and 134B, so that vibration along the first sub amplitude direction can be efficiently absorbed, and the vehicle left and right When the vibration along the direction (second sub-amplitude direction) is input, liquid column resonance occurs between the two third pressure receiving liquid chambers 136A and 136B and the sub liquid chamber 72 through the two third orifices 138A and 138B. The second side vibration Vibration along the direction can be efficiently absorbed.

なお、防振装置10では、主振幅方向に沿った振動の入力時にも、ゴム弾性体22の変形により第2受圧液室132A,132Bの内容積及び第3受圧液室136A,136Bの内容積がそれぞれ付随的に拡縮することにより、第2受圧液室132A,132B及び第3受圧液室136A,136Bと副液室72との間でも液体共振が生じるので、この液柱共振によっても第1受圧液室76と副液室72との間の液柱共振により得られる減衰力とは異なる周波数域で減衰力が得られる。   In the vibration isolator 10, the internal volume of the second pressure receiving liquid chambers 132A and 132B and the internal volume of the third pressure receiving liquid chambers 136A and 136B are also deformed by the deformation of the rubber elastic body 22 even when vibrations along the main amplitude direction are input. , The liquid resonance also occurs between the second pressure receiving liquid chambers 132A and 132B, the third pressure receiving liquid chambers 136A and 136B, and the sub liquid chamber 72. A damping force is obtained in a frequency range different from the damping force obtained by the liquid column resonance between the pressure receiving liquid chamber 76 and the sub liquid chamber 72.

同様に、防振装置10では、第1副振幅方向に沿った振動の入力時にも、ゴム弾性体22の変形により第3受圧液室136A,136Bの内容積が付随的に拡縮することにより、第3受圧液室136A,136Bと副液室72との間でも液体共振が生じので、この液柱共振によって第2受圧液室132A,132Bと副液室72との間の液柱共振により得られる減衰力とは異なる周波数域で減衰力が得られ、また第2副振幅方向に沿った振動の入力時にも、ゴム弾性体22の変形により第2受圧液室132A,132Bの内容積が付随的に拡縮することにより、第3受圧液室136A,136Bと副液室72との間でも液体共振が生じので、この液柱共振によっても第3受圧液室136A,136Bと副液室72との間の液柱共振により得られる減衰力とは異なる周波数域で減衰力が得られる。   Similarly, in the vibration isolator 10, when the vibration along the first sub-amplitude direction is input, the internal volumes of the third pressure receiving fluid chambers 136A and 136B are incidentally expanded and contracted due to the deformation of the rubber elastic body 22. Since liquid resonance also occurs between the third pressure receiving liquid chambers 136A and 136B and the sub liquid chamber 72, this liquid column resonance is obtained by liquid column resonance between the second pressure receiving liquid chambers 132A and 132B and the sub liquid chamber 72. The damping force is obtained in a frequency range different from the damping force to be generated, and the internal volume of the second pressure receiving liquid chambers 132A and 132B is accompanied by deformation of the rubber elastic body 22 even when vibration is input along the second sub-amplitude direction. As a result of the expansion and contraction, liquid resonance occurs between the third pressure receiving liquid chambers 136A and 136B and the sub liquid chamber 72, and the third pressure receiving liquid chambers 136A and 136B and the sub liquid chamber 72 are also affected by this liquid column resonance. Obtained by liquid column resonance between That the damping force at a different frequency range is obtained and the damping force.

また防振装置10では、外筒24の内周側に、第2受圧液室132A,132B及び第3受圧液室136A,136Bと副液室72とを区画すると共に、第2オリフィス134A,134B及び第3オリフィス138A,138Bが形成された第2仕切部材42が配設されていることにより、第2受圧液室132A,132B及び第3受圧液室136A,136Bと副液室72との間隔を必要に応じて十分に広くし、第2オリフィス134A,134Bの路長及び第3オリフィス138A,138Bの路長をそれぞれ十分に長いものにできるので、従来のようにゴム弾性体をそれぞれ内壁の一部とする複数の液室を設け、これらの液室を連通するオリフィスをゴム弾性体に形成する場合と比較し、装置サイズの拡大を抑制しつつ、第2オリフィス134A,134Bの路長及び第3オリフィス138A,138Bの路長をそれぞれ低周波数域(例えば、6Hz〜20Hz以下)の振動に適合するように容易にチューニングできる。   Further, in the vibration isolator 10, the second pressure receiving liquid chambers 132A and 132B, the third pressure receiving liquid chambers 136A and 136B, and the auxiliary liquid chamber 72 are partitioned on the inner peripheral side of the outer cylinder 24, and the second orifices 134A and 134B. And the second partition member 42 in which the third orifices 138A and 138B are formed, the interval between the second pressure receiving liquid chambers 132A and 132B and the third pressure receiving liquid chambers 136A and 136B and the sub liquid chamber 72 is provided. Can be made sufficiently wide as necessary, and the path lengths of the second orifices 134A and 134B and the path lengths of the third orifices 138A and 138B can be made sufficiently long. Compared with the case where a plurality of liquid chambers are provided and orifices communicating with these liquid chambers are formed in a rubber elastic body, the second orientation is suppressed while suppressing the expansion of the apparatus size. Scan 134A, the path length of 134B, and a third orifice 138A, respectively low frequencies the path length of 138B (e.g., 6Hz~20Hz below) can be easily tuned to fit the vibration of.

なお、本実施形態に係る防振装置10では、ブラケット14を介して外筒24を車体側へ連結すると共に、取付金具26をエンジン側に連結していたが、これとは逆に、外筒24をエンジン側へ連結すると共に、取付金具26を車体側に連結するようにしても良い。   In the vibration isolator 10 according to the present embodiment, the outer cylinder 24 is connected to the vehicle body side via the bracket 14 and the mounting bracket 26 is connected to the engine side. 24 may be connected to the engine side, and the mounting bracket 26 may be connected to the vehicle body side.

本発明の実施形態に係る防振装置の構成を示す側面断面図である。It is side surface sectional drawing which shows the structure of the vibration isolator which concerns on embodiment of this invention. 図1に示されるように防振装置における第2仕切部材の構成を示す斜視図である。It is a perspective view which shows the structure of the 2nd partition member in a vibration isolator as FIG. 1 shows. (A)、(B)、(D)及び(E)は図1に示される第2仕切部材を90°ずつ異なる角度から見た側面図、(C)は図1に示される第2仕切部材の平面図である。(A), (B), (D) and (E) are side views of the second partition member shown in FIG. 1 as viewed from different angles by 90 °, and (C) is the second partition member shown in FIG. FIG. 図1に示される装置本体のIV−IV切断線に沿った断面図である。It is sectional drawing along the IV-IV cutting line of the apparatus main body shown by FIG.

符号の説明Explanation of symbols

10 防振装置
22 ゴム弾性体
24 外筒(第1取付部材)
26 取付金具(第2取付部材)
36 ダイヤフラム
42 第2仕切部材(仕切部材)
52 オリフィス形成部
66 第1オリフィス(第1制限通路)
72 副液室
76 第1受圧液室
132A、132B 第2受圧液室
134A、134B 第2オリフィス(第2制限通路)
136A、136B 第3受圧液室
138A、138B 第3オリフィス(第3制限通路)
10 Vibration isolator 22 Rubber elastic body 24 Outer cylinder (first mounting member)
26 Mounting bracket (second mounting member)
36 Diaphragm 42 Second partition member (partition member)
52 Orifice formation portion 66 First orifice (first restriction passage)
72 Sub liquid chamber 76 First pressure liquid chamber 132A, 132B Second pressure liquid chamber 134A, 134B Second orifice (second restriction passage)
136A, 136B Third pressure receiving liquid chamber 138A, 138B Third orifice (third restricted passage)

Claims (5)

振動発生部及び振動受部の一方に連結され、略筒状に形成された第1取付部材と、
振動発生部及び振動受部の他方に連結され、前記第1取付部材の内周側に配置された第2取付部材と、
前記第1取付部材と前記第2取付部材との間に配置され、第1取付部材と第2取付部材とを弾性的に連結したゴム製の弾性体と、
前記第1取付部材の内周側であって、前記第2取付部材の軸方向外部に設けられると共に、内壁の少なくとも一部が前記弾性体により形成され、液体が充填された第1受圧液室と、
液体が充填されると共に、隔壁の一部がダイヤフラムにより形成され液圧変化に応じて内容積が拡縮可能とされた副液室と、
前記第1受圧液室と前記副液室とを互いに連通させる第1制限通路と、
前記軸方向と直交する第1副振幅方向に沿って前記第2取付部材を間に挟むように前記第1取付部材の内周側に設けられると共に、内壁の少なくとも一部が前記弾性体により形成され、液体が充填された一対の第2受圧液室と、
一対の前記第2受圧液室をそれぞれ前記副液室に連通させる一対の第2制限通路と、
前記軸方向及び前記第1副振幅方向と直交する第2副振幅方向に沿って前記第2取付部材を間に挟むように前記第1取付部材の内周側に設けられると共に、内壁の少なくとも一部が前記弾性体により形成され、液体が充填された一対の第3受圧液室と、
一対の前記第3受圧液室をそれぞれ前記副液室に連通させる一対の第3制限通路と、
を有することを特徴とする防振装置。
A first mounting member connected to one of the vibration generating portion and the vibration receiving portion and formed in a substantially cylindrical shape;
A second mounting member connected to the other of the vibration generating unit and the vibration receiving unit and disposed on the inner peripheral side of the first mounting member;
A rubber elastic body disposed between the first mounting member and the second mounting member and elastically connecting the first mounting member and the second mounting member;
A first pressure receiving liquid chamber that is provided on the inner peripheral side of the first mounting member and outside the second mounting member in the axial direction , and at least a part of the inner wall is formed of the elastic body and filled with liquid. When,
A sub liquid chamber in which a part of the partition wall is formed by a diaphragm and the internal volume can be expanded and contracted in accordance with a change in liquid pressure, while being filled with liquid;
A first restriction passage for communicating the first pressure receiving liquid chamber and the sub liquid chamber with each other;
It is provided on the inner peripheral side of the first mounting member so as to sandwich the second mounting member along a first sub-amplitude direction orthogonal to the axial direction, and at least a part of the inner wall is formed by the elastic body. A pair of second pressure receiving liquid chambers filled with liquid;
A pair of second restriction passages that respectively connect the pair of second pressure receiving liquid chambers to the sub liquid chamber;
At least one of the inner walls is provided on the inner peripheral side of the first mounting member so as to sandwich the second mounting member along the second sub-amplitude direction orthogonal to the axial direction and the first sub-amplitude direction. A pair of third pressure receiving liquid chambers formed of the elastic body and filled with a liquid;
A pair of third restriction passages that respectively connect the pair of third pressure receiving liquid chambers to the sub liquid chamber;
An anti-vibration device comprising:
前記第1取付部材の内周側に、前記複数の第2受圧液室と前記副液室とを区画すると共に、前記第2制限通路及び前記第3制限通路がそれぞれ形成された仕切部材を配設したことを特徴とする請求項1記載の防振装置。   A plurality of second pressure receiving liquid chambers and sub liquid chambers are partitioned on the inner peripheral side of the first mounting member, and partition members each having the second restriction passage and the third restriction passage are formed. The anti-vibration device according to claim 1, wherein the anti-vibration device is provided. 前記弾性体は、前記第1取付部材又は前記第2取付部材への前記軸方向と略一致する主振幅方向に沿った振動の入力により弾性変形すると、該主振幅方向に沿った弾性変形により主として前記第1受圧液室の内容積を拡縮させることを特徴とする請求項1又は2記載の防振装置。   When the elastic body is elastically deformed by vibration input along the main amplitude direction substantially coincident with the axial direction to the first mounting member or the second mounting member, the elastic body is mainly subjected to elastic deformation along the main amplitude direction. The vibration isolator according to claim 1 or 2, wherein the internal volume of the first pressure receiving liquid chamber is expanded or reduced. 前記弾性体は、前記第1取付部材又は前記第2取付部材への前記第1副振幅方向に沿った振動の入力により弾性変形すると、該第1副振幅方向に沿った弾性変形により主として前記第2受圧液室の内容積を拡縮させることを特徴とする請求項1乃至3の何れか1項記載の防振装置。   When the elastic body is elastically deformed by an input of vibration along the first sub-amplitude direction to the first mounting member or the second mounting member, the elastic body mainly receives the first deformation due to elastic deformation along the first sub-amplitude direction. The vibration isolator according to any one of claims 1 to 3, wherein the internal volume of the two pressure receiving liquid chambers is expanded or reduced. 前記弾性体は、前記第1取付部材又は前記第2取付部材への前記第2副振幅方向に沿った振動の入力により弾性変形すると、該第2副振幅方向に沿った弾性変形により主として前記第2受圧液室の内容積を拡縮させることを特徴とする請求項1乃至4の何れか1項記載の防振装置。   When the elastic body is elastically deformed by the vibration input along the second sub-amplitude direction to the first mounting member or the second mounting member, the elastic body mainly receives the first deformation due to the elastic deformation along the second sub-amplitude direction. 5. The vibration isolator according to claim 1, wherein the internal volume of the pressure receiving liquid chamber is expanded or reduced.
JP2005109513A 2005-04-06 2005-04-06 Vibration isolator Active JP4528661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109513A JP4528661B2 (en) 2005-04-06 2005-04-06 Vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109513A JP4528661B2 (en) 2005-04-06 2005-04-06 Vibration isolator

Publications (2)

Publication Number Publication Date
JP2006291990A JP2006291990A (en) 2006-10-26
JP4528661B2 true JP4528661B2 (en) 2010-08-18

Family

ID=37412765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109513A Active JP4528661B2 (en) 2005-04-06 2005-04-06 Vibration isolator

Country Status (1)

Country Link
JP (1) JP4528661B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8960654B2 (en) 2009-07-28 2015-02-24 Bridgestone Corporation Vibration isolation device
JP5384241B2 (en) * 2009-07-28 2014-01-08 株式会社ブリヂストン Vibration isolator
JP5384242B2 (en) * 2009-07-28 2014-01-08 株式会社ブリヂストン Vibration isolator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172893A (en) * 1990-03-16 1992-12-22 Hutchison Hydraulic antivibratory sleeves

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172893A (en) * 1990-03-16 1992-12-22 Hutchison Hydraulic antivibratory sleeves

Also Published As

Publication number Publication date
JP2006291990A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP5014329B2 (en) Vibration isolator
JP4217686B2 (en) Vibration isolator
JP4938248B2 (en) Vibration isolator
JP5557837B2 (en) Vibration isolator
JP4945162B2 (en) Vibration isolator
JP4939997B2 (en) Vibration isolator
JP2009103141A (en) Liquid filling type vibration-proof device
JP4921776B2 (en) Vibration isolator
JP2002327788A (en) Vibrationproof device sealed with fluid
JP4528661B2 (en) Vibration isolator
JP7350628B2 (en) Vibration isolator
JP7349325B2 (en) Vibration isolator
JP7326121B2 (en) Anti-vibration device
JP7290550B2 (en) Anti-vibration device
JP5801040B2 (en) Vibration isolator
JP5280923B2 (en) Vibration isolator
JP2006144817A (en) Vibration damper
JP5689645B2 (en) Vibration isolator
CN109312810B (en) Vibration-proof device
JP5801041B2 (en) Vibration isolator
JP4602821B2 (en) Vibration isolator
JP4404748B2 (en) Vibration isolator
JP2011099465A (en) Vibration control device
JP2010031990A (en) Fluid-sealed vibration control device
JP2004316792A (en) Vibration isolator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4528661

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250