JP3888632B2 - マイクロミキサ、試料分析キット及びその製造方法 - Google Patents
マイクロミキサ、試料分析キット及びその製造方法 Download PDFInfo
- Publication number
- JP3888632B2 JP3888632B2 JP2003126758A JP2003126758A JP3888632B2 JP 3888632 B2 JP3888632 B2 JP 3888632B2 JP 2003126758 A JP2003126758 A JP 2003126758A JP 2003126758 A JP2003126758 A JP 2003126758A JP 3888632 B2 JP3888632 B2 JP 3888632B2
- Authority
- JP
- Japan
- Prior art keywords
- fluid
- path
- inflow
- flow
- flow paths
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/421—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F33/00—Other mixers; Mixing plants; Combinations of mixers
- B01F33/30—Micromixers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F2025/91—Direction of flow or arrangement of feed and discharge openings
- B01F2025/915—Reverse flow, i.e. flow changing substantially 180° in direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/20—Jet mixers, i.e. mixers using high-speed fluid streams
- B01F25/25—Mixing by jets impinging against collision plates
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Micromachines (AREA)
- Sampling And Sample Adjustment (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Description
【発明の属する技術分野】
本発明は、微少量の流体(気体、液体、微粒子、ゲル状物質などを含む)を混合するマイクロミキサ、試料分析キット及びその製造方法に関するものである。
【0002】
【従来の技術】
臨床分析チップ、環境分析チップ、遺伝子分析チップ(DNAチップ)、たんぱく質分析チップ(プロテオームチップ)、糖鎖チップ、クロマトグラフチップ、細胞解析チップ、製薬スクリーニングチップなど、従来は試験管やビーカーや攪拌棒などの器具を用いて行ってきた実験をチップ上で行うLab on Chipと呼ばれる技術が近年注目されている。このチップには数nmから数mmの流路が設けられ、微少量の流体(気体、液体、微粒子、ゲル状物質などを含む)を取り扱うことができる。このようなチップは一般にマイクロチップと呼ばれる。また、マイクロチップ内に設けられ、複数の流体を混合するミキサは、マイクロミキサと呼ばれる。
【0003】
複数の流体を混合するマイクロミキサとして、複数の流体を流入する入口部材、複数の流体を混合する中央部材及び混合された流体を流出させる出口部材の3部材からなるミキサが開示されている(特許文献1参照)。特許文献1に記載のマイクロミキサは、中央部材に設けられた凹部に複数の流体を流入し、その凹部の底面に複数の流体を衝突させることで攪拌する。そして、凹部の底面での衝突により流体の方向を変化させ、中央部材から出口部材につながる複数の流路に流体を流入する。さらに、その複数の流路は欠部で合流して出口部材に接続されているため、欠部において複数の流体の衝突・攪拌が行われる。
【0004】
また、第1流体を流入する第1流路から分岐する第1分岐路と第2流体を流入する第2流路から分岐する第2分岐路とを隣り合うように層状に複数設けるマイクロミキサが開示されている(特許文献2参照)。特許文献2に記載のマイクロミキサでは、その層状に設けられた第1分岐路及び第2分岐路に複数の流体を交互に導入し、第1分岐路及び第2分岐路が接続される混合流路において複数の流体を混合する。このとき、複数の流体は、混合流路において、隣り合うように層状に合流するため、隣り合う流体の間で効率よく拡散混合する。
【0005】
また、上部と下部とを貼り合わせる構造であり、その内部に流体を混合する混合区域がもうけられたマイクロミキサが開示されている(特許文献3参照)。特許文献3に記載のマイクロミキサにおいては、2つの入口通路(所謂、Y字Inlet)から、複数の流体を混合区域に流入し、複数の流体を混合する。この混合区域は、相互に数回交差する波形形状を呈している。そのため、狭い空間で混合区域が比較的短くても混合できる。また、混合区域により混合された流体は、入口通路と同一平面に開口を有する出口通路から流出される。よって、流体の混合を達成しつつ、比較的簡単に製造することができ、製造コストを減少することができる。
【0006】
しかし、特許文献3に記載の構成を有するマイクロミキサでは、複数の流体を混合できないとの報告が非特許文献1においてされている。
さらに、波形形状ではなく、くの字型の流路を連結し、複数の流体の混合を行っているマイクロミキサが開示されている(非特許文献2参照)。
【0007】
【特許文献1】
特開2002−18257号公報
【0008】
【特許文献2】
特開2003−1077号公報
【0009】
【特許文献3】
特表2001−520112号公報
【0010】
【非特許文献1】
Proceedings of the μTAS 2001 Symposium Abstract 31−33
【0011】
【非特許文献2】
PHYSICS TODAY JUNE 2001 47
【0012】
【発明が解決しようとする課題】
しかし、特許文献1に記載のマイクロミキサは、3次元方向に拡がりを有する構造である。その3次元方向に拡がりを有する中央部材内に設けられた凹部において、複数の流体を衝突・攪拌する。そのため、流路壁の高さや流路幅に自由度があり、流体に乱流を発生させ、流体の混合を行う構造を容易に設計することができる。しかし、流路壁の高さや流路幅がμm程度のマイクロミキサにおいては、流路の設計に自由度が少なく、レイノルズ数が200以下の層流が支配的となる。そのため、流路内の流体に乱流を発生させ、混合を行うことは極めて困難である。
【0013】
また、特許文献2に記載のマイクロミキサでは、第2流体を流入する第2流路は、第1流体を流入する第1流路、第1分岐路及び第2分岐路とは異なる平面に配置される。よって、第2流路を、異なる平面に配置される第2分岐路に接続するための接続路を設ける必要がある。そのため、製造工程が複雑化し、コスト上昇を招く。また、特許文献2に記載のマイクロミキサを射出成型法やインプリント法などで形成する場合には、第1流路、第1分岐路及び第2分岐路を形成された基板と、第2流路及び接続路が形成された基板との位置合わせの精度が要求される。よって、製造工程がさらに複雑化し、コスト上昇を招く。
【0014】
さらに、特許文献3に記載のマイクロミキサの混合区域における流体は層流であり、前記非特許文献1に記載の通り複数の流体を混合することは困難である。よって、特許文献3に記載のマイクロミキサにおいて複数の流体を混合するには、波形形状の混合区域をさらに長くする必要がある。しかし、流路壁の高さや流路幅がμm程度のマイクロミキサにおいては、流路の設計に自由度が少なく、混合区域を長くすることができない。よって、複数の流体の混合を行うことが困難である。つまり、特許文献3のマイクロミキサにおいて、複数の流体の混合を達成するために混合区域を長くした場合、マイクロミキサが大きくなり、微少領域での混合を達成することが困難である。
【0015】
また、前記非特許文献2においても、複数の流体の混合が行われていない。
そこで、本発明は、微少領域において、複数の流体の混合効率を高めることができるマイクロミキサを提供することを目的とする。
また、本発明は、微少領域において、複数の流体の混合効率を高めることができる試料分析キットを提供することを目的とする。
さらに、本発明は、微少領域において、複数の流体の混合効率を高めることができるマイクロミキサの製造方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
上記課題を解決するために、本願第1発明は、板状基板内に形成されるマイクロミキサであって、複数の流体を流入する流体流入手段と、前記流体流入手段の流体を混合するミキサ部が、前記板状基板の主面に沿う方向(以下、主面方向)に連続して設けられており、前記流体流入手段に接続される混合手段と、前記混合手段に接続されており、前記混合手段において混合された流体を流出する流体流出手段とを含むマイクロミキサを提供する。ここで、前記ミキサ部は、前記流体流入手段から複数の流体を流入する流入路と、前記流入路の下流端から分岐し、前記主面方向に沿って形成され、前記流体の進行方向を変化させる複数の多段流路と、前記複数の多段流路を連結し、その流路幅が、前記複数の多段流路各々の流路幅よりも大きく、前記複数の多段流路各々の流体を衝突させる連結路と、前記連結路で衝突した流体を、次のミキサ部の流入路または前記流体流出手段に流出する流出路とを含む。
【0017】
上記に記載のように、マイクロミキサ内の連続したミキサ部が、板状基板内に主に2次元方向に広がりを有するように設けられている。また、ミキサ部内の流路は、複数に分割され、また流路内での流体の進行方向を変化させ、さらに分割された流路を連結するように構成されている。以上のようなマイクロミキサでは、主に2次元方向に広がりを有するミキサ部において、その内部で流れ方向が変化された複数の流体を合流させることで、衝突、拡散及び混合する。また、複数の流体が合流する連結路は、その流路幅が多段流路の流路幅よりも大きいため、多段流路から連結路へと流体が流れることによる流体の拡散効果を高めることができる。よって、マイクロミキサに流入される複数の微少量の流体を、効率よく混合することができる。また、混合効率の高いミキサ部を板状基板内に2次元方向に設けることで、マイクロミキサの小型化・薄型化を図ることができる。さらに、前記のマイクロミキサは2次元方向に広がりを有しているため、半導体加工技術、射出成型法またはインプリント法などを用いて容易に作製することができる。
【0018】
本願第2発明は、本願第1発明において、前記ミキサ部において、前記流入路の下流端から2方向に分岐する2つの多段流路は、同一形状であり線対称に配置されているマイクロミキサを提供する。
上記のように、流入路に流入した複数の流体は、同一形状で線対称に設けられた2つの多段流路により2つに均等に分割されるため、同量の流体が連結路に流入される。よって、連結路での流体の衝突、拡散及び混合の効果を高めることができる。
【0019】
本願第3発明は、本願第1発明において、前記多段流路は、前記多段流路内の流体の進行方向が略90度以上変化するように屈曲している少なくとも1の屈曲部分を含むマイクロミキサを提供する。
多段流路は、その内部の流体の進行方向が略90度以上変化する少なくとも1の屈曲部分を有している。そのため、例えば所定のチップサイズ内に多段流路を設ける場合、前述のように屈曲部分が含まれることで、その流路長を長く、かつ流路幅を狭くすることができる。よって、屈曲部分を含む多段流路内において、流体の拡散効果を高めることができる。また、多段流路が90度以上少なくとも1回屈曲することで、複数の多段流路から連結路に流入される流体同士を、連結路において正面衝突させるとさらに効率よく混合することができ好ましい。
【0020】
本願第4発明は、本願第3発明において、前記屈曲部分の角をとるように形成されるマイクロミキサを提供する。
流体の方向を変化させる屈曲部分の角をとることで、角において空気が溜まるのを低減することができる。よって、空気が溜まることによる屈曲部分における流路幅の減少を低減することにより、予測できない流路抵抗の変動を抑え、マイクロミキサの設計を容易にすることができる。
本願第5発明は、本願第1発明において、前記多段流路は、前記多段流路内の流体の進行方向が略90度以上変化するように湾曲しているマイクロミキサを提供する。
【0021】
多段流路が90度以上湾曲することで、第3発明と同様に、複数の多段流路から連結路に流入される流体同士を、連結路において正面衝突させたり、流体の拡散効果を高めることができる。
本願第6発明は、本願第1発明において、前記連結路の流路幅は、前記複数の多段流路との連結部分から下流側ほど小さくなるマイクロミキサを提供する。
連結路の流路幅を下流側ほど徐々に小さくすることで、流路抵抗の急激な変化を抑え、次のミキサ部の流入路への接続を容易にすることができる。あるいは、流路幅の小さな流体流出手段に接続する場合でも、同様に接続を容易にすることができる。また、ミキサ部の間隔を詰めてミキサ部を高密度化することができ、マイクロミキサを小型化することができる。
【0022】
本願第7発明は、本願第1発明において、前記流入路、複数の多段流路及び流出路における流路幅及び流路深さは500μm以下であるマイクロミキサを提供する。
ミキサ部における流路幅及び流路深さを500μm以下とすることで、マイクロミキサの小型化をさらに図ることができる。
本願第8発明は、本願第1発明において、前記流体流入手段は、第1流体を流入する第1流体流入路と、第2流体を流入する複数の第2流体流入路と、前記第1流体流入路と第2流体流入路とを接続し、前記第1及び第2流体とを合流させる合流部とを含み、前記複数の第2流体流入路は、前記第1流体流入路の軸に関して線対称に配置されているマイクロミキサを提供する。
【0023】
第1流体流入路の軸に関して線対称に複数の第2流体流入路を配置することで、第2流体が第1流体を挟みこむような流体となり、第1流体と第2流体との接触面積を高めることができる。よって、第1流体から第2流体への拡散、または第2流体から第1流体への拡散を促進することができる。また、線対称とすることで、第1流体や第2流体の物性を考慮したマイクロミキサの設計が容易となる。
本願第9発明は、本願第1発明において、前記流体流入手段は、第1流体を流入する第1流体流入路と、第2流体を流入する複数の第2流体流入路と、前記第1流体流入路と第2流体流入路とを接続し、前記第1及び第2流体とを合流させる合流部とを含み、前記複数の第2流体流入路は、前記第1流体流入路の軸に関して線対称に配置されており、前記ミキサ部において、前記流入路の下流端から2方向に分岐する2つの多段流路は、同一形状であり線対称に配置されているマイクロミキサを提供する。
【0024】
第1流体流入路の軸に関して線対称に複数の第2流体流入路を配置することで、第1流体が第2流体に挟まれるので第1流体と第2流体との接触面積を高めることができる。よって、第1流体から第2流体への拡散、または第2流体から第1流体への拡散を促進することができる。また、線対称とすることでマイクロミキサの設計が容易となる。
さらに、流入路に流入した複数の流体は、同一形状で線対称に設けられた2つの多段流路により2つに均等に分割されるため、同量の流体が連結路に流入される。よって、連結路での流体の衝突、拡散及び混合の効果を高めることができる。
【0025】
本願第10発明は、本願第9発明において、前記第2流体流入路の各々の流路抵抗は実質的に同一であるマイクロミキサを提供する。
各々の第2流体流入路における流路抵抗を実質的に同一にすることにより、合流部において第1流体が第2流体の中央に挟まれる。よって、合流部で第1流体が第2流体の中央に挟まれた状態の流体は、そのままの状態でミキサ部の流入路を経て多段流路において均等に2つに分割される。そして、連結路に流入されるので、連結路での流体の衝突、拡散及び混合の効果をさらに高めることができる。例えば、第1流体が第2流体の中央に挟まれない状態で、多段流路において流体が分割された場合、一方の流体には第1流体が含まれているが、一方の流体には第1流体が含まれていない状態で連結路に流入される場合がある。第1流体が第2流体の中央に挟まれていると、多段流路において分岐された後のどちらの流体にも第1流体が含まれており、連結路での流体同士の衝突を効率良く起こすことができる。
【0026】
さらに、第1流体が第2流体の中央に挟まれることにより、第1流体から第1流体を挟み込む各々の第2流体への拡散距離が短くなり、拡散効率が向上する。本願第11発明は、本願第10発明において、前記第1流体流入路と前記複数の第2流体流入路の各々との流路抵抗は実質的に同一であるマイクロミキサを提供する。
例えば、第1流体と第2流体との粘性が同じである場合、第1流体流入路と第2流体流入路との流路抵抗を実質的に同一にすることで、第1流体と第2流体との流れやすさを実質的に同一にすることができる。よって、第1流体流入路に流入される第1流体の流入量と複数の第2流体流入路に流入される第2流体の各々の流入量との流入比を同一にすることができる。そのため、第1流体と第2流体との流入比の調整が容易である。
【0027】
また、前述のように流入量を調整することで、混合が行われないという弊害を低減することができる。例えば第1流体の合流部への流入がなくなり、第2流体のみが合流部へ流入されると混合が行われない。さらに、流体のかわりに空気が流入されることによる、合流部への空気の侵入を防止できる。
本願第12発明は、本願第9発明において、前記第2流体流入路の各々の流路幅、流路長及び流路の深さは実質的に同一であるマイクロミキサを提供する。
このように、第2流体が流入する各々の第2流体流入路の流路幅等を実質的に同一にすることで、各々の第2流体流入路における流路抵抗を実質的に同一にすることができる。よって、前記第10発明と同様の効果を得ることができる。
【0028】
本願第13発明は、本願第12発明において、前記第1流体流入路と前記複数の第2流体流入路の各々との流路幅、流路長及び流路の深さは実質的に同一であるマイクロミキサを提供する。
例えば、第1流体と第2流体との粘性が同じである場合、第1流体流入路と第2流体流入路との流路抵抗を実質的に同一にすることで、第1流体と第2流体との流れやすさを実質的に同一にすることができる。よって、前記第11発明と同様の効果を得ることができる。
【0029】
本願第14発明は、板状基板内に形成される試料分析キットであって、複数の流体を流入する流体流入手段と、前記流体流入手段の流体を混合するミキサ部が、前記板状基板の主面に沿う方向(以下、主面方向)に連続して設けられており、前記流体流入手段に接続される混合手段と、前記混合手段に接続されており、前記混合手段において混合された流体を流出する流体流出手段と、前記流体流出手段に接続されており、前記流体流出手段から流出される流体を通過させる光導波路と、前記光導波路に接続され、前記光導波路に光を導入するための光導入口と、前記光導波路に接続され、前記光導波路内を通過後の光を取り出すための光導出口とを含む試料分析キットを提供する。ここで、前記ミキサ部は、前記流体流入手段から複数の流体を流入する流入路と、前記流入路の下流端から分岐し、前記主面方向に沿って形成され、前記流体の進行方向を変化させる複数の多段流路と、前記複数の多段流路を連結し、前記複数の多段流路との連結部分の流路幅が、前記複数の多段流路各々の流路幅よりも大きく、前記複数の多段流路各々の流体を衝突させる連結路と、前記連結路で衝突した流体を、次のミキサ部の流入路または前記流体流出手段に流出する流出路とを含む。
【0030】
前記第1発明に記載の効果を有するミキサ部により混合された流体を、光導波路内に流入する。よって、上記の試料分析キットを光源と光検出部を有するユニットに接続して利用することで、光導入口を介して光導波路に導入された試料の吸光度を測定することができる。また、試料分析キットは、混合効率の高いミキサ部が板状基板内に設けられているので、小型化・薄型化を図ることができる。よって、携行可能であり、簡便に生化学検査が可能である。
本願第15発明は、本願第14発明において、前記光導波路の内壁は、光反射率が高い物質によりコーティングされている試料分析キットを提供する。
【0031】
本願第16発明は、板状基板内に形成される試料分析キットであって、複数の流体を流入する流体流入手段と、前記流体流入手段の流体を混合するミキサ部が、前記板状基板の主面に沿う方向(以下、主面方向)に連続して設けられており、前記流体流入手段に接続される混合手段と、前記混合手段に接続されており、前記混合手段において混合された流体を流出する流体流出手段と、前記流体流出手段に接続されており、前記流体流出手段から流出される流体を通過させる光導波路と、前記光導波路に接続され、前記光導波路に光を導入するための光導入口と、前記光導波路に接続され、前記光導波路内を通過後の光を取り出すための光導出口と、前記光導入口に接続され、前記光導入口を介して前記光導波路に光を入射する入射用光ファイバと、前記光導出口に接続され、前記光導出口から前記光導波路内を通過後の光を出射する出射用光ファイバと、前記光導波路の内部に設けられ、前記光導波路内を通過する光を集光するためのレンズとを含む試料分析キットを提供する。ここで、前記ミキサ部は、前記流体流入手段から複数の流体を流入する流入路と、前記流入路の下流端から分岐し、前記主面方向に沿って形成され、前記流体の進行方向を変化させる複数の多段流路と、前記複数の多段流路を連結し、前記複数の多段流路との連結部分の流路幅が、前記複数の多段流路各々の流路幅よりも大きく、前記複数の多段流路各々の流体を衝突させる連結路と、前記連結路で衝突した流体を、次のミキサ部の流入路または前記流体流出手段に流出する流出路とを含む。
【0032】
前記第1発明に記載の効果を有するミキサ部により混合された流体を、光導波路内に流入する。よって、上記の試料分析キットの入射用光ファイバを光源に接続し、出射用光ファイバを光検出部を有するユニットに接続して利用することで、光導波路に導入された試料の吸光度を測定することができる。また、試料分析キットは、混合効率の高いミキサ部が板状基板内に設けられているので、小型化・薄型化を図ることができる。よって、携行可能であり、簡便に生化学検査が可能である。
【0033】
本願第17発明は、前記第16発明に記載の試料分析キットを、第1基板と第2基板と貼り合わせることにより製造する試料分析キットの製造方法であって、前記第1基板上に積層されたレジストを選択的に露光し、除去することにより、前記混合手段、光導波路及びレンズを形成する第1ステップと、前記第2基板上に積層されたレジストを選択的に露光し、除去することにより、前記流体流入手段、流体流出手段、光導入口及び光導出口を形成する第2ステップと、前記第1ステップにより形成された第1基板と前記第2ステップにより形成された第2基板とを密着する貼り合わせステップとを含み、前記貼り合わせステップでは、前記入射用光ファイバが光導入口に接続され、前記検出用光ファイバが光導出口に接続されるように前記第1基板と第2基板とを位置合わせする試料分析キットの製造方法を提供する。
【0034】
インプリント法を用いて容易に試料分析キットを製造することができる。また、光導波路及びレンズを第1ステップにおいて同時に作製するので、製造工程を簡単化することができる。
本願第18発明は、本願第17発明において、前記第1及び第2ステップは、機械的加工により作成した金型あるいはフォトリソグラフィで積層されたレジストを選択的に露光し除去することにより作成したシリコン基板型や有機物材料型を用いたインプリント法により、または射出成型法により行われる試料分析キットの製造方法を提供する。
【0035】
インプリント法、射出成形法を用いて容易に試料分析キットを製造することができる。
本願第19発明は、板状基板内に形成されるミキサ部であって、複数の流体を流入する流入路と、前記流入路の下流端から分岐し、前記主面方向に沿って形成され、前記流体の進行方向を変化させる複数の多段流路と、前記複数の多段流路は、前記主面方向に変化しており、前記複数の多段流路を連結し、前記複数の多段流路との連結部分の流路幅が、前記複数の多段流路各々の流路幅よりも大きく、前記複数の多段流路各々の流体を衝突させる連結路と、前記連結路で衝突した流体を、下流側に流出する流出路とを含むミキサ部を提供する。
【0036】
前記第1発明と同様の効果を有するミキサ部を得ることができる。
【0037】
【発明の実施の形態】
<第1実施形態例>
本発明のマイクロミキサにおける混合には、流体同士の衝突等による物理的な混合、あるいは流体そのものあるいは流体中に含まれる物質同士が化学反応を起こすことによる混合を含むものとする。
図1は、本発明の第1実施形態例に係るマイクロミキサの分解斜視図である。以下に第1実施形態例に係るマイクロミキサの構成を説明する。
(1)マイクロミキサの構成
第1実施形態のマイクロミキサは、板状基板である第1基板1と第2基板2とを有する。第1基板1には、混合する複数の流体を導入する流体流入口3a及び混合された流体を取り出す流体流出口5aが設けられている。第2基板2には、流体流入口3aに対応する流体流入口3b、流体流出口5aに対応する流体流出口5b及び混合部7を有する。第2基板は、流体流入口3bから混合部7に流体を流入するための流体流入路9及び混合部7で混合された流体を流出させるための流体流出路11とをさらに有する。混合部7には、流体流入路9から導入された流体を混合するミキサ部7aが、板状の第2基板の主面に沿う方向(以下、主面方向)に連続して設けられている。
【0038】
図2は、第1実施形態例に係る混合部を構成するミキサ部の平面図である。ミキサ部7aは、流体を流入する流入路20、複数の多段流路(26a、26b)26、連結路28及び混合された流体を流出する流出路30を有する。また、ミキサ部7aには、多段流路26及び連結路28を形成するための凹型の凹型壁22が設けられている。
多段流路26は、流入路20の下流端を複数に分岐し、流入路20から流入される流体の流れ方向を変化させる。ここで、多段流路26は、多段流路26内の流体の進行方向を変化させる様な流路であれば良く、必ずしも階段状に屈曲している必要はない。また、その流路が湾曲している場合も含むものとする。多段流路26は、2方向に分岐されているため複数の多段流路26a及び26bを有する。図2においては、多段流路26は、左右2方向に流入路20を分岐しているが、左右に限定されず、また2方向以上に分岐するようにしても良い。また、多段流路26は、主面方向に進行方向が変化しており、多段流路26内の流体を主面方向に進行させる。連結路28は、多段流路26a及び多段流路26bを連結し、多段流路26a及び26b内各々の流体を合流して、互いに衝突、拡散及び混合する。連結路28は、その流路幅Bが、多段流路26a及び26b各々の流路幅A1及びA2よりも大きくなるように設計されている。流路幅Bが、多段流路26a及び26b各々の流路幅A1及びA2の合計(A1+A2)よりも大きくなるように設計されていると拡散効果を高めることができ好ましい。流入路20、複数の多段流路26及び流出路30における流路幅及び流路深さは500μm以下で設計されると好ましい。また、200μm以下で設計されるとさらに好ましく、例えば約2cm×2cmの小さなチップ上でのミキサ部7a、あるいはマイクロミキサの面積占有率を小さくすることができ、多くのその他の機能を搭載することができ好ましい。
【0039】
さらに、以下のように各部が設計されていると好ましい。
[多段流路]
多段流路26は、流入路20の下流端を2つに均等に分岐するようにすると好ましい。さらに、分岐された2方向の多段流路26a及び26bが、同一形状でありミキサ部7aにおいて線対称に配置されていると好ましい。均等に分岐され、多段流路26a及び26bが線対称に設けられていると、2つの多段流路26a及び26bから同量の流体が連結路28に流入される。よって、連結路28での流体の衝突、拡散及び混合の効果を高めることができる。
【0040】
また、多段流路26が、その内部での流体の進行方向が少なくとも1回、90度以上変化するように屈曲していると好ましい。例えば、所定のチップサイズ内に多段流路26を設ける場合、前述のように屈曲することで、その流路長を長く、かつ流路幅を狭くすることができる。よって、90度以上変化する多段流路26内において、流体の拡散効果を高めることができる。また、多段流路26が90度以上少なくとも1回屈曲することで、複数の多段流路26から連結路28に流入される流体同士を、連結路28において正面衝突させるとさらに効率よく混合することができ好ましい。多段流路26を、その内部の流体の進行方向を略90度以上変化するように湾曲させても良い。多段流路26を屈曲させた場合は、その屈曲部分の角32をとるように形成されていると好ましい。図3は、屈曲部分の角32をとるように形成されたミキサ部の平面図である。前記図2と比較してその屈曲部分の角32に曲率が与えられている。よって、屈曲部分の角32において空気が溜まるのを低減することができる。そのため、空気が溜まることによる屈曲部分における流路幅の減少を低減することにより、予測できない流路抵抗の変動を抑え、マイクロミキサの設計を容易にすることができる。
[連結路]
連結路28の流路幅は、複数の多段流路26a及び26bとの連結部分から下流側ほど小さくなると好ましい。連結路28の流路幅を下流側ほど徐々に小さくすることで、流路抵抗の急激な変化を抑え、次のミキサ部7aの流入路20への接続を容易にすることができる。あるいは、流路幅の小さな流体流出路11に接続する場合でも、同様に接続を容易にすることができる。また、ミキサ部7aの間隔を詰めてミキサ部7aを高密度化することができ、マイクロミキサを小型化することができる。
(2)マイクロミキサ内での流体の流れ
上記のような第1実施形態に係るマイクロミキの流体の流れを以下に説明する。
【0041】
流体流入口3a及び3bから複数の流体が流入され、流体流入路9を介して混合部7内のミキサ部7aに流入される。ミキサ部7aでは、流入路20に流入された複数の流体が、多段流路26a及び26bに流入され、その進行方向が変化させられる。このとき、多段流路26内の複数の流体は、互いに拡散していると考えられるため、さらに効率良く混合していると考えられる。
多段流路26を通過した流体は、連結路28に流入されることで合流し、衝突、拡散及び混合する。連結路28は、その流路幅Bが、多段流路26a及び26b各々の流路幅A1及びA2よりも大きいため、多段流路26から連結路28へと流体が流れることによる流体の拡散効果が高まる。また、連結路28は、次のミキサ部7aの流入路20または流体流出路11と接続されている。次のミキサ部7aに流入された場合は、前述と同様にミキサ部7aにおいて混合が行われる。流体流出路11と接続されている場合は、流体流出口5a及び5bから、混合された流体が流出される。
(3)マイクロミキサの製造方法
次に、第1実施形態に係るマイクロミキの製造方法の一例を説明する。図4は、第1実施形態に係るマイクロミキの製造方法の一例である。
【0042】
基板40にレジスト42を塗布し、全面露光を行う (同図(a)、同図(b)参照)。次に、全面露光後のレジスト44上にさらにレジスト46を塗布する(同図(c)参照)。
次に、マスク50上から露光を行うことにより、ミキサ部7a内の流入路20、多段流路26等のパターンをレジスト46に転写する(同図(d)参照)。現像液を用いて、不溶部48以外を除去する(同図(e)参照)。同図(e)にて形成された基板を型として、PET(Poly Ethylene Terephthalate)基板52をモールドすることによりPET基板52にパターンを転写する(同図(f)参照)。外部から流体を流入、流出するための流体流入口3a及び流体流出口5aを形成したPET基板60と、同図(f)においてパターンが形成されたPET基板52とを貼り合わせ、マイクロミキサを形成する(同図(g)参照)。
【0043】
マイクロミキサは、機械的加工により作成した金型あるいはフォトリソグラフィで積層されたレジストを選択的に露光し除去することにより作成したシリコン基板型や有機物材料型を用いたインプリント法によって、または射出成型法によって作成することができる。
基板材料としては基板を製造する方法に応じて、その他Si、Si酸化膜、石英、ガラス、PDMS(Poly Dimetyhl Siloxane)、PMMA(Poly Methyl Metacryl Acid)、ポリカーボネイト、ポリシロキサン、アリルエステル樹脂、シクロオレフィンポリマー、Siゴムなどを用いることができる。
【0044】
必要に応じて、流体流入路9、流体流出路11または混合部7を第1基板1に形成しても良い。また、第1基板1と第2基板2とを貼り合わせることなく使用することも可能である。
(4)効果
第1実施形態に係るマイクロミキサでは、マイクロミキサ内の連続したミキサ部7aが、板状基板内に主に2次元方向に広がりを有するように設けられている。また、ミキサ部7a内の流路は、複数に分割され、また流路内での流体の流れ方向を変化させ、さらに分割された流路を連結するように構成されている。よって、主に2次元方向に広がりを有するミキサ部7aにおいて、その内部で進行方向が変化された複数の流体を合流させることで、衝突、拡散及び混合する。また、複数の流体が合流する連結路28は、その流路幅Bが多段流路26a及び26bの流路幅A1及びA2よりも大きいため、多段流路26から連結路28へと流体が流れることによる流体の拡散効果を高めることができる。よって、マイクロミキサに流入される複数の微少量の流体を、効率よく混合することができる。また、混合効率の高いミキサ部7aを板状基板内に2次元方向に設けることで、マイクロミキサの小型化・薄型化を図ることができる。さらに、前記のマイクロミキサは2次元方向に広がりを有しているため、半導体加工技術、射出成型法またはインプリント法などを用いて容易に作製することができる。
<第2実施形態例>
図5は、本発明の第2実施形態例に係るマイクロミキサの分解斜視図である。混合部7への流入路の構成が異なるのみであり、その他は第1実施形態例に係るマイクロミキサと同様の構成であり、同一の符号番号は同一の構成要素を表す。
【0045】
第1基板1は、第1流体を流入する第1流体流入口13a、第2流体を2つの入口から流入する2つの第2流体流入口15−1a及び15−2aが設けられている。また、第2基板2には、第1流体流入口13aに対応する第1流体流入口13b、第2流体流入口15−1a及び15−2aに対応する第2流体流入口15−1b及び15−2bが設けられている。第1流体流入口13aは第1流体流入路16と接続されており、第2流体流入口15−1b及び15−2bはそれぞれ第2流体流入路17−1及び17−2と接続されている。第1流体流入路16、第2流体流入路17−1及び17−2は、合流部18で合流している。また、第2流体流入路17−1及び17−2は、第1流体流入路16の軸に関して線対称に配置されている。
【0046】
さらに、第2流体流入路17−1及び17−2の各々の流路抵抗を実質的に同一にすると好ましい。各々の第2流体流入路17−1及び17−2における流路抵抗を実質的に同一にすることにより、合流部18において第1流体が第2流体の中央に挟まれる。よって、合流部18で第1流体が第2流体の中央に挟まれた状態の流体は、そのままの状態でミキサ部7aの流入路20を経て多段流路26において均等に2つに分割される。そして、連結路28に流入されるので、連結路28での流体の衝突、拡散及び混合の効果をさらに高めることができる。例えば、第1流体が第2流体の中央に挟まれない状態で、多段流路26により流体が分割された場合、一方の流体には第1流体が含まれているが、一方の流体には第1流体が含まれていない状態で連結路28に流入される場合がある。第1流体が第2流体の中央に挟まれていると、多段流路26において分岐されたあとのどちらの流体にも第1流体が含まれており、連結路28での流体同士の衝突を効率良く起こすことができる。さらに、第1流体が第2流体の中央に挟まれることにより、第1流体から第1流体を挟み込む各々の第2流体への拡散距離が短くなり拡散効率が向上する。
【0047】
各々の第2流体流入路17−1及び17−2における流路抵抗を実質的に同一にするには、例えば各々の第2流体流入路17−1及び17−2の流路幅、流路長及び流路の深さを実質的に同一にする。
また、第1流体流入路16と第2流体流入路17−1及び17−2の各々との流路抵抗を実質的に同一にすると好ましい。例えば、第1流体と第2流体との粘性が同じである場合、第1流体流入路16と第2流体流入路17−1及び17−2との流路抵抗を実質的に同一にすることで、第1流体と第2流体との流れやすさを実質的に同一にすることができる。よって、第1流体流入路16に流入される第1流体の流入量と第2流体流入路17−1及び17−2各々に流入される第2流体の各々の流入量との流入比を同一にすることができる。そのため、第1流体と第2流体との流入比の調整が容易である。
【0048】
また、前述のように流入量を調整することで、混合が行われないという弊害を低減することができる。例えば第1流体の合流部18への流入がなくなり、第2流体のみが合流部18へ流入されると混合を行うことができない。さらに、流入量が不足し、合流部18に流体の代わりに空気が流入されることも防止できる。第1流体流入路16と第2流体流入路17−1及び17−2の各々との流路抵抗を実質的に同一にするには、例えば、第1流体流入路16と第2流体流入路17−1及び17−2の各々の流路幅、流路長及び流路の深さを実質的に同一にする。
【0049】
第2流体流入路17−1及び17−2は、2つに限定されず、図6に示すようにさらに数を増やし第3流体を流入するようにしても良い。図6では、第3流体は、第3流体流入口19−1b及び19−2bを設け、第3流体流入路21−1及び21−2を介して合流部18に流入される。このとき、第3流体流入路21−1及び21−2は、第1流体流入路16の軸に関して線対称に配置されている。
第2実施形態に係るマイクロミキサでは、第1流体流入路16の軸に関して線対称に第2流体流入路17−1及び17−2を配置することで、合流部18において第2流体が第1流体を挟みこむように合流する。よって、第1流体と第2流体との接触面積を高めることができる。そのため、第1流体から第2流体への拡散、または第2流体から第1流体への拡散を促進することができる。また、線対称とすることで、第1流体や第2流体の物性を考慮したマイクロミキサの設計が容易となる。さらに、流入路20に流入した複数の流体は、2つの線対称に配置された同一形状の多段流路26a及び26bにより2つに均等に分割されため、同量の流体が連結路28に流入される。よって、連結路28での流体の衝突、拡散及び混合の効果を高めることができる。
<第3実施形態例>
図7は、本発明の第3実施形態例に係るマイクロミキサの分解斜視図である。第3実施形態例に係るマイクロミキサは、ミキサ部7aの形状が異なる第1または第2実施形態例と異なる。第1または2実施形態例に係るマイクロミキサと同一の符号番号は、同一の構成要素を表す。
【0050】
図8は、第3実施形態例に係るマイクロミキサのミキサ部の平面図である。ミキサ部7aには、多段流路26及び連結路28を形成するためのH型のH型壁23が設けられている。このようにH型壁23により流路を形成することで、ミキサ部7aの集積率を高めることができ、マイクロミキサの小型化を図ることができる。
また、第1流体流入路16の軸に関して線対称に配置されている第2流体流入路17−1及び17−2のそれぞれを1つの第2流体流入口15bと接続するようにしても良い。さらに、複数の流体を混合する場合、図9に示すように、1段目の混合部7で第1流体と第2流体とを混合し、その混合した流体にさらに第3流体流入口19−1b及び19−2bから第3流体を加え、2段目の混合部7で第3流体と混合するようにしても良い。
<第4実施形態例>
図10は、本発明の第4実施形態例に係る比色チップの分解斜視図である。以下に、第4実施形態例に係る比色チップの構成を説明する。
(1)構成
第4実施形態例に係る比色チップは、流体を流入する流入管80、第2実施形態に係るマイクロミキサ、光の吸光度を検出するために流体が流入される光導波路84、光導波路84に光を入射及び出射するための石英窓86a及び86b、光導波路84から流体を取り出す取出流路88及び取出口82を有している。マイクロミキサは第2実施形態例と同様の構成であり、同一の符号番号は同一の構成要素を表す。また、流入管80は、例えば検査用の無痛針などで直接生体から採取可能なように形成されていると好ましい。また、石英窓86a及び86bは、光の入射及び出射を妨げないように約0.1mm程度の厚さとするのが良い。さらに、光導波路84は、A1等の光反射率が高い物質によりコーティングされていると好ましい。
(2)検査方法
次に、第4実施形態例に係る比色チップを用いた検査方法について説明する。図11は、第4実施形態例に係る比色チップを用いた検査方法を示す断面図である。流入管80から例えば血液などの第1流体を流入する。流入された第1流体を、第1流体流入路16から合流部18に流入する。同時に、試薬等の第2流体を第2流体流入口15−1b及び15−2bから第2流体流入路17−1及び17−2を介して合流部18に流入する。そして、第1流体と第2流体とを混合部7において混合した後、混合された流体を流体流出路11から光導波路84に流入する。光を入射するための石英窓86aを介して、例えば光源として水銀ランプを用い、光ファイバ110から光を取り出す。取り出した光を石英レンズ120により平行光とした入射光を、光導波路84に入射する。石英窓86aから入射された光は、光導波路84入り口のθが約45度の壁で反射し、光導波路84を第1及び第2基板の主面方向に進行する。光導波路84内を通過した光は、光導波路84出口のθが約45度の壁で再び反射され、石英窓86bから取り出される。検出項目に応じた波長の光のみを検出するためバンドパスフィルタ130を用い、検出にはフォトダイオードまたはフォトマル140を用い、混合された流体中の対象物質の濃度を検出する。例えば、第1流体が血清で、第2流体が試薬であるとすると、比色法を用いて、血清と試薬を混合した際に生成される生成物による特定波長光の吸光度の上昇、あるいは試薬や血清中物質の減少にともなう特定波長光の吸光度の減少を測定し、血清中の検体の濃度を測定する。
【0051】
さらに、第1流体や第2流体に血漿あるいは試薬を使用する場合は、血漿や試薬内の酵素の活性を最大にするため、サーミスタ160で温度をセンシングし、ペルチェ素子170で温度を制御する。またミキサ部、流入路または光導波路84内に生じる気泡を除去するため超音波発生装置150を設けている。
図12は、光ファイバを接続した比色チップの分解斜視図である。光導波路84に光を入射するための入射用光ファイバ90、光導波路84から光を出射するための出射用光ファイバ92が、光導波路84に直接接続されている。このような比色チップの入射用光ファイバを光源に接続し、出射用光ファイバを光検出部を有するユニットに接続して利用することで、光導波路に導入された試料の吸光度を測定することができる。
【0052】
上記図10〜図12に示す比色チップの光導波路84にレンズ100を設けるようにしても良い。図13は、光導波路内に設けられたレンズを示す。図13(a)の場合、長方形状の光導波路84と円形のレンズ100との隙間を介して流体が流入される。図14(b)の場合、光導波路84を突出させることで、突出部分を介して流体が流れる。このようにレンズ100を設けると、光導波路84内を通過し、散乱された光を、レンズ100により集光して検出感度を向上させることができる。このレンズは、射出成型で基板に流路を作成する際に同時に作成するとプロセスが簡単である。
【0053】
上記の比色チップでは、マイクロミキサにより混合された流体を光導波路84内に流入する。そして、石英窓86a、86bを介して光導波路84に導入された流体の吸光度を測定することができる。このように比色チップ内に小型、薄型かつ混合効率の高いマイクロミキサ及び光導波路84を設けることで、比色チップの小型化・薄型化を図ることができる。よって、血液を遠心分離して得られる血漿・血清中の脂質や酵素、糖、たんぱく質、イオンなどの濃度を測定し、健康状態の管理や病気の発見、病状の変化を知るために欠かせない生化学検査を簡便に行うことが可能である。また、小型であるので携行することもできる。
<実験例1>
図14及び図15は、本発明の第1実験例に係るマイクロミキサである。マイクロミキサの構成は、第2実施形態例と同様である。各部の寸法を以下に記載する。
[マイクロミキサの寸法]
W1=564μm、W2=1262μm、W3=1262μm、W4=5262μm、W5=5262μm、W6=5262μm、W7=1200μm、W8=900μm、W9=1100μm、θ1=60°及びθ2=30°である。また、W10=118μm、W11=170μm、W12=141μm、W13=100μm、W14=100μm、W15=100μm、W16=80μm、W17=400μm、W18=200μm、W19=500μm、W20=520μm、W21=380μm、W22=100μm、W23=100μm、W24=800μm及びθ2=45°である。
[マイクロミキサの製造方法]
次に上記図14及び図15のマイクロミキサの製造方法を説明する。
(1)ガラス基板例えばプレパラートにドライフィルムレジスト(東京応化製ORDRY 120R)を熱圧着により貼り付ける。
(2)水銀ランプで全面露光し、5分程度プリベークし、更に透明性がでるまで200℃以上で数時間ハードベークする。
(3)前記(1)と同様にドライフィルムレジストをもう一層熱圧着する。
(4)アライナーを用いてフォトマスクに描いたミキサーやその他のパターンを露光する。露光時間は用いるフィルムレジスト、アライナー光源の強度によって異なるが数10秒程度である。
(5)現像液としてNMD3を用い現像し純水で洗浄後、前記(2)と同様にプリベーク、ハードベークする。
(6)前記(1)から(5)で作成した基板を型として、大きさ2cm×2cm厚さ0.5mmのPET基板を上からのせ、数分間80〜110℃で加熱、0.05〜0.3Mpaで加圧しパターンを転写する。
(7)第1流体流入口5b、第2流体流入口15−1a及び15−2a、流体流出口5aをあらかじめドリルなどで設けたもう一枚のPET基板をパターン転写した基板と熱圧着により貼りあわせる。
[マイクロミキサの混合評価]
(1)視覚評価
上記のように作成したマイクロミキサについて混合の効果について実証した。第1流体流入口13bから第1流体として蛍光物質FITC水溶液20μMを流入し、第2流体流入口15−1b及び15−2bから第2流体としてPBSバッファーを流入した。このときの混合の様子を蛍光顕微鏡にとりつけたCCDカメラで観察した結果が図16〜図23である。光源には水銀ランプを用い490nmの光で励起し、フィルターブロックで520nm以下の光を遮断して発せられる530nmの蛍光を観察した。図16から図23は、それぞれ流体が進行する方向に順に、合流部18、1個目のミキサ部、5個目のミキサ部、6個目のミキサ部、10個目のミキサ部、15個目のミキサ部、図14の領域18での混合状態を示している。ミキサ部を通過していくほど蛍光物質の均一化が進んでいる様子を観察できる。
(2)定量評価
次に、作成したマイクロミキサの混合性能を定量的に評価した。図14の15個のミキサ部7aそれぞれについて、図24に示す直径約150μmの3円からの蛍光強度変化を測定した。図25は、各流速におけるミキサ部の個数とフォトマルの電圧値との関係図である。グラフの横軸はミキサ部の個数、縦軸はフォトマルの電圧値(100から500mV程度)を各流速における最大値と最小値の差が1となるように規格化した値である。流速は溶液出口に取り付けたシリンジポンプを引く速度で調整し、100μl/min、60μl/min、20μl/min、10μl/minとポンプを引く速度を変化させた。
【0054】
流速が大きい100μl/minの場合は、グラフが上下に激しく変動する。これは中央部分を流れていた蛍光物質が多段流路26で外壁側に流れを変えるためである。そして、外側方向に流れが変化したまま、連結路28において左右の流れが衝突する。そのため、その衝突が弱まり混合が起こりにくい。
流速5μl/min以下であると流体が流れないことを考慮すると、図25から判断し、5μl/min以上20μl/min以下でシリンジポンプを引くことが好ましい。10μl/minであるとさらに好ましい。実際の流速は直径約0.5μmの蛍光ビーズを流したところ約20mm/secであった。また、ミキサ部7aの個数は、5個以上が好ましく、さらに10個以上であると混合状態がよく好ましい。
<実験例2>
図26及び図27は、本発明の第2実験例に係るマイクロミキサである。マイクロミキサの構成は、第3実施形態例と同様である。また、H型壁23を有するミキサ部7aの寸法以外は、第1実験例と同一の寸法である。各部の寸法を以下に記載する。
[マイクロミキサの寸法]
W30=3000μm、W40=118μm、W41=141μm、W42=100μm、W43=100μm、W44=100μm、W45=170μm、W46=400μm、W47=200μm、W48=400μm、W49=170μm、W50=1340μm、W51=380μm、W52=100μm、W53=441μm、W54=957.5μm、W55=441μm及びθ4=45°である。
【0055】
マイクロミキサの製造方法は、実験例1と同様である。
[マイクロミキサの混合評価]
図26及び図27のマイクロミキサについて、実験例1と同様に混合性能を定量的に評価した。図28は、各流速におけるミキサ部の個数とフォトマルの電圧値との関係図である。実験例1と同様に、図28から判断すると、5μl/min以上20μl/min以下でシリンジポンプを引くことが好ましい。10μl/minであるとさらに好ましい。実際の流速は直径約0.5μmの蛍光ビーズを流したところ約20mm/secであった。また、H型壁23を有するミキサ部7aの個数は、3個以上が好ましく、さらに5個以上であると混合状態がよく好ましい。
<比較例1>
図14のミキサ部が凹型壁22を有するマイクロミキサにおいて、混合部7を設けない場合の混合性能を定量的に評価した。その他の実験方法は、実験例1と同様である。
<比較例2>
図14のミキサ部が凹型壁22を有するマイクロミキサにおいて、第1流体を第1流体流入路16から流入せず、第2流体流入路15−2bから流入した。また、第2流体を第2流体流入路15−2aから流入した。つまり、第1流体と第2流体とをY字注入した。この場合の混合性能を定量的に評価した。その他の実験方法は、実験例1と同様である。
【0056】
実験例1、実験例2、比較例1及び比較例2それぞれの、流速10μl/minにおける実験結果を図29に示す。実験例1及び実験例2では、ミキサ部7aの流体の進行方向の左、中央、右の3点の蛍光強度が等しくなり均一になっていることが確認できる。しかし、比較例1の混合部7が無い場合では、蛍光強度が左右と中央とでばらばらであり、混合が起こりにくいことが確認できる。また、比較例2のY字注入の場合では、15個のミキサ部7aを通過しても均一になっていない。このことから、実験例1の図14に示す凹型壁22を有するミキサ部7a及び実験例2の図26に示すH型壁23を有するミキサ部7aの混合状態が良く、かつ、Y字注入よりも3方向から流体を流入する方が混合状態が良いと実証された。
<実験例3>
実験例3では、本発明の第4実施形態例の図10に示す比色チップを用いて検体の検出を行った。まず、比色チップの製造方法を説明する。
[製造方法]
製造方法は、前記図4の(a)から(f)までは同様である。図4(f)の後、図11に示す第1基板1及び第2基板2にAlを成膜する。平行平板間の電圧は487V、電流は0.6A、2mTorrの圧力で6分間スパッタし約0.1μmのAlを成膜した。ただしマイクロミキサ部分は混合状態を観察するため、Alが成膜されないようにスパッタの際はポリイミドテープでマスクした。次に、基板表面の不要なAlをCMPで除去し表面にPET基板表面を出す。Alでコートされた光導波路84を有する第1及び第2基板の貼りあわせを行う。光導波路84に入射した光はAl表面で反射されるため、溶液中で散乱された光の散逸を抑制し、高感度測定が可能となる。
【0057】
第1基板と第2基板とを張り合わせた後、Al表面へのたんぱく質の吸着を防止するために、MPCポリマー(日本油脂製Lipidure D05 PMAc37 Mw=37K)溶液を流路に流し、Al表面をコートし生体適合性を高めた。コートする金属としてはAu、Ag、Cu、Crなどでも良い。またこれらを含む合金でも良い。金属膜のコート方法としては蒸着や無電界めっき法を用いても良い。更にコート剤は金属でなくとも良い。今回はテフロン(登録商標)で表面をコートする方法も実施した。CVD法でC4F8ガスを噴き付け光導波路84をテフロンコートする。テフロンは非常に撥水性が高いため溶液とテフロン膜の間に空気の層ができる。光導波路84を進む光はこの空気の層により全反射される。空気と水の屈折率から計算される理論的な臨界角は51°であり、臨界角以上で入射した光は全反射されるため溶液中で散乱された光の散逸を抑制することができ高感度測定ができる。
[検出方法]
作成した色素チップでの検体の検出方法を説明する。流入管80である、直径100μm以下の無痛針から数マイクロリットルの血液を採血する。比色チップを1500rpmで約5分遠心分離するとこの血液は血球と血漿に分離され、血漿のみをマイクロミキサに導入し試薬と混合後、混合液を光導波路84に導入する。
【0058】
γ−GTP検出には、第1流体として、和光純薬製 標準血清を純水で薄めγ−GTP活性値を280U/L〜40U/Lまで調整した血清を用いた。第2流体としてはL−γ−グルタミル−p−N−エチル−N−ヒドロキシエチルアミノアニリド12mM、グリシルグリシン50mM、1−ナフトール−2−スルホン酸カリウム0.2mM、過ヨウ素酸8.8mMを用いて調整した試薬を用いた。このとき、下記の化学式(1)及び(2)に記載の反応が生じる。
【0059】
【化1】
上記のような反応によって青色色素の生成を660nmの吸光度変化から求めた結果を図30に示す。
<実験例4>
実験例4で、作成した色素チップを図31に示す。実験例4では、流路を彫った基板に貼りあわせる基板として、厚さ5mmのPET基板を用いた。この厚さ5mmのPET基板には、光導波路84として直径1mmの貫通穴をドリルで開けた。さらに溶液の流入口13、15−1及び15−2、流出口5及び、流路側基板である第2基板との接続口200を作り、貼り合わせた。そして、端面を研磨して厚さ0.1mmの石英板を貼り付けて光の導入口、出口とした(図示せず)。光導波路84の容積が15.7μlとなるため血清2μl、試薬20μlを直径0.8mmのInlet(流入口13、15−1及び15−2)から注入した。このチップでは、光導波路84部の光路長をチップ一辺の長さと等しくできること、さらに光がPET基板を通過することがないので基盤による光の吸収が起こらないというメリットがある。今回は光導波路84に貫通穴を用いたが基板に同程度の溝を掘って貼り合わせても良い。
<実験例5>
実験例4では、第4実施形態例の図12と図32に示す、光ファイバを接続した比色チップを作成した。厚さ0.5mmのPET基板を用い貼り合わせの際に光ファイバ(入射用光ファイバ90、出射用光ファイバ92)を取り付け、光の導入口、出口とした。紫外光による検出の場合にはファイバそのものの光吸収を考慮して石英ファイバ(スペクトラコープ製LUVコア系90μm)を用いた。可視光域ではプラスチックファイバー(三菱レーヨン製ESKA CK10外径250μm)を用いた。このチップでは、光導波路84の光路長をチップ一辺の長さとほぼ等しくできること、さらに光がPET基板を通過することがないので基板による光の吸収が起こらないというメリットがある。
【0060】
【発明の効果】
本発明を用いれば、微少領域において、複数の流体の混合効率を高めることができるマイクロミキサを提供することができる。
また、本発明を用いれば、微少領域において、複数の流体の混合効率を高めることができる試料分析キットを提供することができる。
さらに、本発明を用いれば、微少領域において、複数の流体の混合効率を高めることができるマイクロミキサの製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態例に係るマイクロミキサの分解斜視図。
【図2】図1の混合部を構成するミキサ部の平面図。
【図3】屈曲部分の角をとるように形成されたミキサ部の平面図。
【図4】(a)マイクロミキの製造方法(1)。
(b)マイクロミキの製造方法(2)。
(c)マイクロミキの製造方法(3)。
(d)マイクロミキの製造方法(4)。
(e)マイクロミキの製造方法(5)。
(f)マイクロミキの製造方法(6)。
(g)マイクロミキの製造方法(7)。
【図5】本発明の第2実施形態例に係るマイクロミキサの分解斜視図(1)。
【図6】本発明の第2実施形態例に係るマイクロミキサの分解斜視図(2)。
【図7】本発明の第3実施形態例に係るマイクロミキサの分解斜視図(1)。
【図8】図7のマイクロミキサのミキサ部の平面図。
【図9】本発明の第3実施形態例に係るマイクロミキサの分解斜視図(2)。
【図10】本発明の第4実施形態例に係る比色チップの分解斜視図。
【図11】第4実施形態例に係る比色チップを用いた検査方法を示す断面図。
【図12】光ファイバを接続した比色チップの分解斜視図。
【図13】(a)光導波路内に設けられたレンズ(1)。
(b)光導波路内に設けられたレンズ(2)。
【図14】本発明の第1実験例に係るマイクロミキサの平面図。
【図15】図14のミキサ部の平面図。
【図16】ミキサ部の流体の混合状態(合流部)。
【図17】ミキサ部の流体の混合状態(1個目のミキサ部)。
【図18】ミキサ部の流体の混合状態(5個目のミキサ部)。
【図19】ミキサ部の流体の混合状態(6個目のミキサ部)。
【図20】ミキサ部の流体の混合状態(10個目のミキサ部)。
【図21】ミキサ部の流体の混合状態(11個目のミキサ部)。
【図22】ミキサ部の流体の混合状態(15個目のミキサ部)。
【図23】ミキサ部の流体の混合状態(領域18)。
【図24】蛍光強度変化を測定箇所。
【図25】各流速におけるミキサ部の個数とフォトマルの電圧値との関係図。
【図26】本発明の第2実験例に係るマイクロミキサの平面図。
【図27】図26のミキサ部の平面図。
【図28】各流速におけるミキサ部の個数とフォトマルの電圧値との関係図。
【図29】実験例1、実験例2、比較例1及び比較例2の実験結果。
【図30】比色チップを用いた実験結果。
【図31】色素チップの平面図。
【図32】光ファイバを接続した比色チップ。
【符号の説明】
1:第1基板
2:第2基板
3a、3b:流体流入口
5a、5b:流体流出口
7:混合部
7a:ミキサ部
9:流体流入路
11:流体流出路
16:第1流体流入路
17−1、17−2:第2流体流入路
18:合流部
20:流入路
22:凹型壁
23:H型壁
26:多段流路
28:連結路
84:光導波路
86a、86b:石英窓
90:入射用光ファイバ
92:出射用光ファイバ
Claims (19)
- 板状基板内に形成されるマイクロミキサであって、
複数の流体を流入する流体流入手段と、
前記流体流入手段の流体を混合するミキサ部が、前記板状基板の主面に沿う方向(以下、主面方向)に連続して設けられており、前記流体流入手段に接続される混合手段と、
前記混合手段に接続されており、前記混合手段において混合された流体を流出する流体流出手段と、を含み、
前記ミキサ部は、
前記流体流入手段から複数の流体を流入する流入路と、
前記流入路の下流端から分岐し、前記主面方向に沿って形成され、前記流体の進行方向を変化させる複数の多段流路と、
前記複数の多段流路を連結し、その流路幅が、前記複数の多段流路各々の流路幅よりも大きく、前記複数の多段流路各々の流体を衝突させる連結路と、
前記連結路で衝突した流体を、次のミキサ部の流入路または前記流体流出手段に流出する流出路と、
を含むマイクロミキサ。 - 前記ミキサ部において、前記流入路の下流端から2方向に分岐する2つの多段流路は、同一形状であり線対称に配置されている、請求項1に記載のマイクロミキサ。
- 前記多段流路は、前記多段流路内の流体の進行方向が略90度以上変化するように屈曲している少なくとも1の屈曲部分を含む、請求項1に記載のマイクロミキサ。
- 前記屈曲部分の角をとるように形成される、請求項3に記載のマイクロミキサ。
- 前記多段流路は、前記多段流路内の流体の進行方向が略90度以上変化するように湾曲している、請求項1に記載のマイクロミキサ。
- 前記連結路の流路幅は、前記複数の多段流路との連結部分から下流側ほど小さくなる、請求項1に記載のマイクロミキサ。
- 前記流入路、複数の多段流路及び流出路における流路幅及び流路深さは500μm以下である、請求項1に記載のマイクロミキサ。
- 前記流体流入手段は、
第1流体を流入する第1流体流入路と、
第2流体を流入する複数の第2流体流入路と、
前記第1流体流入路と第2流体流入路とを接続し、前記第1及び第2流体とを合流させる合流部とを含み、
前記複数の第2流体流入路は、前記第1流体流入路の軸に関して線対称に配置されている、請求項1に記載のマイクロミキサ。 - 前記流体流入手段は、
第1流体を流入する第1流体流入路と、
第2流体を流入する複数の第2流体流入路と、
前記第1流体流入路と第2流体流入路とを接続し、前記第1及び第2流体とを合流させる合流部とを含み、
前記複数の第2流体流入路は、前記第1流体流入路の軸に関して線対称に配置されており、
前記ミキサ部において、前記流入路の下流端から2方向に分岐する2つの多段流路は、同一形状であり線対称に配置されている、請求項1に記載のマイクロミキサ。 - 前記第2流体流入路の各々の流路抵抗は実質的に同一である、請求項9に記載のマイクロミキサ。
- 前記第1流体流入路と前記複数の第2流体流入路の各々との流路抵抗は実質的に同一である、請求項10に記載のマイクロミキサ。
- 前記第2流体流入路の各々の流路幅、流路長及び流路の深さは実質的に同一である、請求項9に記載のマイクロミキサ。
- 前記第1流体流入路と前記複数の第2流体流入路の各々との流路幅、流路長及び流路の深さは実質的に同一である、請求項12に記載のマイクロミキサ。
- 板状基板内に形成される試料分析キットであって、
複数の流体を流入する流体流入手段と、
前記流体流入手段の流体を混合するミキサ部が、前記板状基板の主面に沿う方向(以下、主面方向)に連続して設けられており、前記流体流入手段に接続される混合手段と、
前記混合手段に接続されており、前記混合手段において混合された流体を流出する流体流出手段と、
前記流体流出手段に接続されており、前記流体流出手段から流出される流体を通過させる光導波路と、
前記光導波路に接続され、前記光導波路に光を導入するための光導入口と、
前記光導波路に接続され、前記光導波路内を通過後の光を取り出すための光導出口と、を含み、
前記ミキサ部は、
前記流体流入手段から複数の流体を流入する流入路と、
前記流入路の下流端から分岐し、前記主面方向に沿って形成され、前記流体の進行方向を変化させる複数の多段流路と、
前記複数の多段流路を連結し、前記複数の多段流路との連結部分の流路幅が、前記複数の多段流路各々の流路幅よりも大きく、前記複数の多段流路各々の流体を衝突させる連結路と、
前記連結路で衝突した流体を、次のミキサ部の流入路または前記流体流出手段に流出する流出路と、
を含む試料分析キット。 - 前記光導波路の内壁は、光反射率が高い物質によりコーティングされている、請求項14に記載の試料分析キット。
- 板状基板内に形成される試料分析キットであって、
複数の流体を流入する流体流入手段と、
前記流体流入手段の流体を混合するミキサ部が、前記板状基板の主面に沿う方向(以下、主面方向)に連続して設けられており、前記流体流入手段に接続される混合手段と、
前記混合手段に接続されており、前記混合手段において混合された流体を流出する流体流出手段と、
前記流体流出手段に接続されており、前記流体流出手段から流出される流体を通過させる光導波路と、
前記光導波路に接続され、前記光導波路に光を導入するための光導入口と、
前記光導波路に接続され、前記光導波路内を通過後の光を取り出すための光導出口と、
前記光導入口に接続され、前記光導入口を介して前記光導波路に光を入射する入射用光ファイバと、
前記光導出口に接続され、前記光導出口から前記光導波路内を通過後の光を出射する出射用光ファイバと、
前記光導波路の内部に設けられ、前記光導波路内を通過する光を集光するためのレンズと、を含み、
前記ミキサ部は、
前記流体流入手段から複数の流体を流入する流入路と、
前記流入路の下流端から分岐し、前記主面方向に沿って形成され、前記流体の進行方向を変化させる複数の多段流路と、
前記複数の多段流路を連結し、前記複数の多段流路との連結部分の流路幅が、前記複数の多段流路各々の流路幅よりも大きく、前記複数の多段流路各々の流体を衝突させる連結路と、
前記連結路で衝突した流体を、次のミキサ部の流入路または前記流体流出手段に流出する流出路と、
を含む試料分析キット。 - 前記請求項16に記載の試料分析キットを、第1基板と第2基板と貼り合わせることにより製造する試料分析キットの製造方法であって、
前記第1基板上に積層されたレジストを選択的に露光し、除去することにより、前記混合手段、光導波路及びレンズを形成する第1ステップと、
前記第2基板上に積層されたレジストを選択的に露光し、除去することにより、前記流体流入手段、流体流出手段、光導入口及び光導出口を形成する第2ステップと、
前記第1ステップにより形成された第1基板と前記第2ステップにより形成された第2基板とを密着する貼り合わせステップと、を含み、
前記貼り合わせステップでは、前記入射用光ファイバが光導入口に接続され、前記検出用光ファイバが光導出口に接続されるように前記第1基板と第2基板とを位置合わせする、試料分析キットの製造方法。 - 前記第1及び第2ステップは、機械的加工により作成した金型あるいはフォトリソグラフィで積層されたレジストを選択的に露光し除去することにより作成したシリコン基板型や有機物材料型を用いたインプリント法により、または射出成型法により行われる、請求項17に記載の試料分析キットの製造方法。
- 板状基板内に形成されるミキサ部であって、
複数の流体を流入する流入路と、
前記流入路の下流端から分岐し、前記主面方向に沿って形成され、前記流体の進行方向を変化させる複数の多段流路と、
前記複数の多段流路は、前記主面方向に変化しており、
前記複数の多段流路を連結し、前記複数の多段流路との連結部分の流路幅が、前記複数の多段流路各々の流路幅よりも大きく、前記複数の多段流路各々の流体を衝突させる連結路と、
前記連結路で衝突した流体を、下流側に流出する流出路と、
を含むミキサ部。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003126758A JP3888632B2 (ja) | 2003-03-26 | 2003-03-26 | マイクロミキサ、試料分析キット及びその製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003126758A JP3888632B2 (ja) | 2003-03-26 | 2003-03-26 | マイクロミキサ、試料分析キット及びその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004294417A JP2004294417A (ja) | 2004-10-21 |
JP3888632B2 true JP3888632B2 (ja) | 2007-03-07 |
Family
ID=33410326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003126758A Expired - Fee Related JP3888632B2 (ja) | 2003-03-26 | 2003-03-26 | マイクロミキサ、試料分析キット及びその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3888632B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112206695A (zh) * | 2020-09-16 | 2021-01-12 | 复旦大学 | 一种多层次结构微通道混合器及其流体混合方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3959436B2 (ja) * | 2003-08-29 | 2007-08-15 | 独立行政法人物質・材料研究機構 | 流れ変動構造及びマイクロミキサ |
JP4536536B2 (ja) * | 2005-01-27 | 2010-09-01 | 株式会社エンプラス | 流体取扱装置 |
JP2006239638A (ja) * | 2005-03-07 | 2006-09-14 | Ebara Corp | 混合器および混合方法 |
JP4689665B2 (ja) * | 2005-04-04 | 2011-05-25 | パナソニック株式会社 | 液体均一化装置およびそれを用いた分析装置 |
JP3805352B1 (ja) * | 2005-05-25 | 2006-08-02 | 株式会社エンプラス | 流体取扱装置およびそれに用いる流体取扱ユニット |
JP2007090138A (ja) * | 2005-09-27 | 2007-04-12 | Yokogawa Electric Corp | 化学処理用カートリッジおよびその使用方法 |
JP4764128B2 (ja) * | 2005-09-29 | 2011-08-31 | 三菱重工業株式会社 | 流体混合装置 |
EP1930070A4 (en) * | 2005-09-29 | 2012-11-07 | Fujifilm Corp | MICRODISPOSITIVE AND METHOD FOR MIXING FLUIDS |
EP2017000B1 (en) * | 2007-07-11 | 2012-09-05 | Corning Incorporated | Process intensified microfluidic devices |
RU2009120627A (ru) * | 2009-05-29 | 2010-12-10 | Корнинг Инкорпорейтед (US) | Микрожидкостные устройства с регулированием потока |
WO2019028002A1 (en) | 2017-07-31 | 2019-02-07 | Corning Incorporated | PERFECTED CONTINUOUS REACTOR |
CN110465338A (zh) * | 2018-05-11 | 2019-11-19 | 中国石油化工股份有限公司 | 促进流体混合的芯片和促进流体混合的方法 |
WO2022232122A1 (en) * | 2021-04-30 | 2022-11-03 | Corning Incorporated | Microfluidic devices for nanomixing and related systems and methods |
CN114160023B (zh) * | 2021-12-06 | 2023-10-17 | 华南师范大学 | 基于阵列式微型热源的涡流微混合器及其混合方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3185166A (en) * | 1960-04-08 | 1965-05-25 | Billy M Horton | Fluid oscillator |
US3474805A (en) * | 1967-05-17 | 1969-10-28 | Us Army | Pressure and temperature insensitive flueric oscillator |
US5500187A (en) * | 1992-12-08 | 1996-03-19 | Westinghouse Electric Corporation | Disposable optical agglutination assay device and method for use |
US5627041A (en) * | 1994-09-02 | 1997-05-06 | Biometric Imaging, Inc. | Disposable cartridge for an assay of a biological sample |
US5875187A (en) * | 1996-06-28 | 1999-02-23 | At&T Wireless Services Inc. | TDMA messaging service microcell |
JP3531027B2 (ja) * | 1996-10-04 | 2004-05-24 | 株式会社日立製作所 | マイクロポンプおよびポンプシステム |
US6063589A (en) * | 1997-05-23 | 2000-05-16 | Gamera Bioscience Corporation | Devices and methods for using centripetal acceleration to drive fluid movement on a microfluidics system |
CA2320296A1 (en) * | 1998-05-18 | 1999-11-25 | University Of Washington | Liquid analysis cartridge |
DE10005735A1 (de) * | 2000-02-09 | 2001-08-23 | Evotec Biosystems Ag | Verfahren und Vorrichtung zur Abführung suspendierter Mikropartikel aus einem fluidischen Mikrosystem |
US7485454B1 (en) * | 2000-03-10 | 2009-02-03 | Bioprocessors Corp. | Microreactor |
JP2003533682A (ja) * | 2000-05-15 | 2003-11-11 | テカン・トレーディング・アクチェンゲゼルシャフト | 双方向流動遠心ミクロ流体装置 |
CA2442342A1 (en) * | 2001-03-19 | 2002-09-26 | Gyros Ab | A microfluidic system (edi) |
WO2002074438A2 (en) * | 2001-03-19 | 2002-09-26 | Gyros Ab | Structural units that define fluidic functions |
JP4181497B2 (ja) * | 2001-08-28 | 2008-11-12 | ユィロス・パテント・アクチボラグ | 保持するためのマイクロ流体マイクロキャビティおよび他のマイクロ流体構造体 |
JP2004016870A (ja) * | 2002-06-13 | 2004-01-22 | Atec Japan:Kk | マイクロリアクター及びそれを用いた化学反応方法 |
-
2003
- 2003-03-26 JP JP2003126758A patent/JP3888632B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112206695A (zh) * | 2020-09-16 | 2021-01-12 | 复旦大学 | 一种多层次结构微通道混合器及其流体混合方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2004294417A (ja) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3888632B2 (ja) | マイクロミキサ、試料分析キット及びその製造方法 | |
US7952705B2 (en) | Integrated microfluidic optical device for sub-micro liter liquid sample microspectroscopy | |
RU2195653C2 (ru) | Анализатор | |
JP4566456B2 (ja) | 微量液体制御機構および微量液体制御方法 | |
US9234888B2 (en) | Fluidic connectors and microfluidic systems | |
US6454945B1 (en) | Microfabricated devices and methods | |
US8941826B2 (en) | Three-dimensional (3D) hydrodynamic focusing using a microfluidic device | |
US7058244B2 (en) | Microchip, method of manufacturing microchip, and method of detecting compositions | |
US8120770B2 (en) | Three-dimensional (3D) hydrodynamic focusing using a microfluidic device | |
JP4141494B2 (ja) | マイクロ分析測定装置及びそれを用いたマイクロ分析測定方法 | |
JP2003510554A (ja) | 複数の分析物の拡散に基づく化学センサ | |
EP2374540B1 (en) | Chip for analyzing fluids being moved without an outside power source | |
WO1997039338A9 (en) | Microfabricated diffusion-based chemical sensor | |
EP0890094A1 (en) | Microfabricated diffusion-based chemical sensor | |
JP2004528556A (ja) | スプリット集中サイトメーター | |
US9366606B1 (en) | Fluid processing micro-feature devices and methods | |
CN107107055A (zh) | 具有用于横向流动混合的纵向和横向液体阻挡物的微流体装置 | |
JP2003114229A (ja) | マイクロチャネルチップ,マイクロチャネルチップを使用した測定装置及び測定方法 | |
WO2009029177A1 (en) | Integrated microfluidic optical device for sub-micro liter liquid sample microspectroscopy | |
CN111013677B (zh) | 微流控芯片、检测装置以及检测方法 | |
US20170059459A1 (en) | Fluid processing micro-feature devices and methods | |
JP2006300741A (ja) | 光学測定用マイクロ流路及びマイクロ流体チップ | |
CN108704680A (zh) | 一种微流控芯片和免疫荧光分析仪 | |
JP3959436B2 (ja) | 流れ変動構造及びマイクロミキサ | |
Zuo et al. | An integrated microfluidic system for multi-target biochemical analysis of a single drop of blood |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060324 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060830 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061124 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |