JP3888142B2 - Method for synthesizing compound semiconductor polycrystal - Google Patents

Method for synthesizing compound semiconductor polycrystal Download PDF

Info

Publication number
JP3888142B2
JP3888142B2 JP2001355587A JP2001355587A JP3888142B2 JP 3888142 B2 JP3888142 B2 JP 3888142B2 JP 2001355587 A JP2001355587 A JP 2001355587A JP 2001355587 A JP2001355587 A JP 2001355587A JP 3888142 B2 JP3888142 B2 JP 3888142B2
Authority
JP
Japan
Prior art keywords
boat
compound semiconductor
group iii
synthesizing
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001355587A
Other languages
Japanese (ja)
Other versions
JP2003160315A (en
Inventor
保至 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001355587A priority Critical patent/JP3888142B2/en
Publication of JP2003160315A publication Critical patent/JP2003160315A/en
Application granted granted Critical
Publication of JP3888142B2 publication Critical patent/JP3888142B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、GaP等III−V族化合物半導体多結晶の合成方法に係り、特に、合成用ボート内に充填されたIII族原料がボート本体と蓋材との螺着部位へ漏出する現象を防止できると共に、合成終了後に蓋材をボート本体から外す際の合成用ボートの欠けや破損も防止されてその再使用寿命の改善が図れるIII−V族化合物半導体多結晶の合成方法に関するものである。
【0002】
【従来の技術】
GaP等のIII−V族化合物半導体は、従来、レーザダイオード、発光ダイオードのようなオプトデバイスやHEMTのような高速デバイス等の材料に利用されている。
【0003】
そして、このようなIII−V族化合物半導体は、Ga等のIII族原料とP等のV族原料を直接反応させて単結晶を成長させることが困難なため、III−V族化合物半導体多結晶をまず合成し、次いでこのIII−V族化合物半導体多結晶を用いてLEC法等によりIII−V族化合物半導体単結晶を成長させる方法が採られている。
【0004】
ところで、上記III−V族化合物半導体多結晶は、図2に示すように各原料が充填された石英等から成る封管1を横型高圧炉2内に搬入して合成する方法が採られている。
【0005】
すなわち、図2に示すようにGa等のIII族原料3は、スリット51が設けられた合成用ボート4(図3参照)内に充填されると共に、ボート4全体を石英等から成る内管5内に収容して上記封管1の一端側に配置され、P等のV族原料6は、熱遮蔽板7を介し上記封管1の他端側に配置される。尚、原料等が充填された封管1は、その後真空にして封じ切られる。
【0006】
次に、真空にして封じ切られた上記封管1は、中央に高周波コイル8を有しこの高周波コイル8を中央に挟んでその両側に抵抗ヒータ9を有する高圧容器にて構成された横型高圧炉2内に搬入される。
【0007】
そして、横型高圧炉2内において封管1全体が加熱され、高周波コイル8により合成用ボート4内のIII族原料3が局所的に更に高温に加熱されると共に、V族原料6から発生した原料ガスが上記熱遮蔽板7に取付けられた導入管10を介し内管5内に導入されて上記III族原料3と反応し、かつ、上記封管1を矢印α方向へ横型高圧炉2内を移動させるか封管1を固定して上記横型高圧炉2を逆方向へ移動させる等して(すなわち、高温部を相対移動させる)III−V族化合物半導体多結晶が合成される。
【0008】
【発明が解決しようとする課題】
ところで、III−V族化合物半導体多結晶の合成方法に用いられる合成用ボート4は、図3および図4に示すように上部長手方向に直線状のスリット51が開設された円筒状ボート本体50とこのボート本体50の両開放端に螺着される蓋材60とでその主要部が構成されており、上記スリット51のみが開放されて原料ガスがボート4内に出入りできるようになっている。
【0009】
そして、上記蓋材60とボート本体50に設けられた螺子部を介して互いに螺着される構造になっているため、蓋材60の螺子部やボート本体50の螺子部に欠けが存在したり緩みが生ずると、これ等螺着部位に隙間ができ、合成用ボート4内に充填されたIII族原料が上記螺着部位へ漏出することがあった。
【0010】
この状態でIII−V族化合物半導体多結晶の合成を行った場合、上記螺着部位へ漏出したIII族原料の一部とV族の原料ガスとがこの部位で反応してIII−V族化合物半導体多結晶を生成してしまうことがあり、螺着部位に生成した上記結晶が原因となって化合物半導体多結晶の合成を終了した時点でボート本体50から蓋材60を外す場合に蓋材60が外れ難くなる問題を有していた。
【0011】
尚、ボート本体50から蓋材60を強引に外そうとした場合、合成用ボート4に欠けや破損が発生し易く、合成用ボート4の再使用が阻害されてIII−V族化合物半導体多結晶の製造コストを上昇させる問題があつた。
【0012】
また、蓋材60近傍にIII族原料が未反応状態で残留した場合、未反応のIII族原料を介し合成されたIII−V族化合物半導体多結晶と蓋材60とが接着してしまうことがあり、上記同様、蓋材60を強引に外そうとした場合、合成用ボート4に欠けや破損が発生し易く、合成用ボート4の再使用が阻害されてIII−V族化合物半導体多結晶の製造コストを上昇させる問題があつた。
【0013】
本発明はこの様な問題点に着目してなされたもので、その課題とするところは、ボート内に充填されたIII族原料がボート本体と蓋材との螺着部位へ漏出する現象を防止できると共に、合成終了後に蓋材をボート本体から外す際の合成用ボートの欠けや破損も防止されてその再使用寿命の改善が図れるIII−V族化合物半導体多結晶の合成方法を提供することにある。
【0014】
【課題を解決するための手段】
すなわち、請求項1に係る発明は、
上部長手方向に直線状のスリットが開設された円筒状ボート本体とこのボート本体の両開放端に螺着される蓋材とでその主要部が構成されるボート内にIII族原料を充填し、このボートを封管内の一端側に配置する一方、封管内の他端側にはV族原料を配置し、上記封管全体を加熱すると共にボート内のIII族原料を局所的に更に高温に加熱してV族原料から発生した原料ガスと上記III族原料を反応させ、かつ、上記高温部を徐々に相対移動させながらIII−V族化合物半導体多結晶を合成する化合物半導体多結晶の合成方法を前提とし、
ボート本体の両開放端側筒壁面にその開放縁部から上記スリット端方向へ延びる帯状切欠部をそれぞれ設けると共に、ボート本体の開放面よりわずかに大きくかつその外周縁の一部に上記帯状切欠部に嵌合される突起片が設けられた円形若しくは多角形状の耐熱性フィルム体を間に介在させた状態でボート本体の両開放端に蓋材をそれぞれ螺着して上記ボートが構成されていることを特徴とし、
請求項2に係る発明は、
請求項1記載の発明に係る化合物半導体多結晶の合成方法を前提とし、
上記ボート本体並びに蓋体が黒鉛で構成され、かつ、耐熱性フィルム体がカーボンフィルムで構成されていることを特徴とするものである。
【0015】
そして、これ等請求項1〜2記載の発明に係る化合物半導体多結晶の合成方法によれば、
ボート本体の両開放端側筒壁面にその開放縁部から上記スリット端方向へ延びる帯状切欠部をそれぞれ設けると共に、ボート本体の開放面よりわずかに大きくかつその外周縁の一部に上記帯状切欠部に嵌合される突起片が設けられた円形若しくは多角形状の耐熱性フィルム体を間に介在させた状態でボート本体の両開放端に蓋材をそれぞれ螺着して上記ボートが構成されているため、蓋材の螺子部やボート本体の螺子部に欠けが存在したり緩みが生じてこれ等螺着部位に隙間ができても、蓋材とボート本体の開放端間に介在された上記耐熱性フィルム体の作用によりボート内に充填されたIII族原料が上記螺着部位へ漏出することがなく、更に、上記蓋材近傍にIII族原料が未反応状態で残留した場合でも、上記耐熱性フィルム体の作用により合成されたIII−V族化合物半導体多結晶と蓋材とが接着してしまうこともない。
【0016】
従って、化合物半導体多結晶の合成を終了した時点で蓋材をボート本体から容易に外すことができ、かつ、上記ボートの再使用が阻害されることもない。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
【0018】
すなわち、この実施の形態に係る化合物半導体多結晶の合成方法は、III族原料を充填するボートが図1に示すような構造に変更されている点を除き従来の合成方法と略同一である。
【0019】
まず、ボート4は、図1に示すように筒壁面の上部長手方向に直線状のスリット51が開設されかつ両開放端側筒壁面に上記スリット51より広幅で筒壁開放縁部から延びてスリット51端に接続される帯状切欠部52がそれぞれ設けられた黒鉛製の円筒状ボート本体50と、この円筒状ボート本体50の両開放端にそれぞれ螺着される黒鉛製の蓋材60と、上記円筒状ボート本体50と蓋材60との間に介在され円筒状ボート本体50の内径よりわずかに大きい直径を有しかつその外周縁の一部に上記帯状切欠部52に嵌合される突起片71を有する円形状の耐熱性フィルム体70とでその主要部が構成され、このボート4内には図2に示すようにIII族原料3が充填されている。
【0020】
そして、上記III族原料3が充填されたボート4は石英内管5内に収納され、図2に示すように石英内管5毎、石英封管(外管)1内の一端側に配置されると共に、石英封管1の他端側にはV族原料6が配置され、かつ、石英封管1の略中央部には不透明石英製の熱遮蔽板7が配置される。尚、熱遮蔽板7には導入管10が取付けられており、この導入管10を介してV族原料6が配置された空間と石英内管5とが連通するようになっている。
【0021】
次に、石英内管5、熱遮蔽板7およびV族原料6等が収納された石英封管(外管)1の口を塞ぎ、真空引きを行なった後、封止切る。
【0022】
次に、中央に高周波コイル8を有しこの高周波コイル8を中央に挟んでその両側に抵抗ヒータ9を有する高圧容器にて構成された横型高圧炉2内に、封じ切られた上記石英封管(外管)1を搬入し、横型高圧炉2の高圧容器内に窒素等不活性ガスを充填して高圧炉内を高圧状態に設定した後、抵抗ヒータ9を作用させて石英封管(外管)1全体を加熱し、かつ、高周波コイル8を作用させてボート4内におけるIII族原料3を局所的に更に高温に加熱する。
【0023】
そして、熱遮蔽板7に取付けられた導入管10を介し上記石英内管5内に導入されたV族原料6からの原料ガスとボート4内におけるIII族原料3とを反応させ、かつ、上記石英封管(外管)1若しくは横型高圧炉2を移動(すなわち、高温部を相対移動)させ、ボート4内で上記反応を順次進行させてIII−V族化合物半導体多結晶を合成する。
【0024】
この実施の形態に係る合成方法によれば、ボート本体50の両開放端側筒壁面にスリット51より広幅で筒壁開放縁部から延びてスリット51端に接続される帯状切欠部52がそれぞれ設けられていると共に、ボート本体50の内径よりわずかに大きい直径を有しかつその外周縁の一部に上記帯状切欠部52に嵌合される突起片71を設けた円形状の耐熱性フィルム体70を間に介在させた状態でボート本体50の両開放端に蓋材60がそれぞれ螺着されているため、蓋材60の螺子部やボート本体50の螺子部に欠けが存在したり緩みが生じてこれ等螺着部位に隙間ができていても、蓋材60とボート本体50の開放端間に介在された上記耐熱性フィルム体70の作用によりボート4内に充填されたIII族原料3が上記螺着部位へ漏出することがなく、更に、上記蓋材60近傍にIII族原料3が未反応状態で残留した場合でも、上記耐熱性フィルム体70の作用により合成されたIII−V族化合物半導体多結晶と蓋材60とが接着してしまうこともない。
【0025】
従って、化合物半導体多結晶の合成を終了した時点で蓋材60をボート本体50から外す際に、従来のように蓋材60が外れ難くなるようなことがなく、ボート4の再使用が阻害されるようなこともない利点を有している。
【0026】
尚、ボート本体50の両開放端側筒壁面に設けられる上記帯状切欠部52の幅寸法についてはスリット51と同一幅若しくは狭幅であってもよく、また、帯状切欠部52がスリット51端に必ずしも接続される必要はない。
【0027】
また、上記耐熱性フィルム体70の材質としては、例えば、カーボンフィルムや熱分解窒化ホウ素(p−BN)製フィルム等が挙げられる。また、耐熱性フィルム体70の直径はボート本体50の内径よりもわずかに大きければよく、この耐熱性フィルム体70を蓋材60とボート本体50の開放端間に介在させることによりボート4内に充填されたIII族原料3が螺着部位へ漏出しなくなるような寸法なら任意である。尚、ボート4内に充填されたIII族原料3の上記螺着部位への漏出が防止されるなら耐熱性フィルム体70の形状は円形状に限定されるものではなく、例えば、ボート本体の開放面よりわずかに大きい正八角形状など多角形状であってもよい。更に、上記耐熱性フィルム体70の外周縁に設けられる突起片71の幅寸法についても、この突起片71がボート本体50の上記帯状切欠部52に嵌合されてボート4内で保持されればよくこれ等寸法も任意である。
【0028】
【実施例】
以下、本発明の実施例について具体的に説明する。
【0029】
まず、図1に示す黒鉛製ボート本体50の内径よりわずかに大きい、直径42mm、厚さ0.4mmのカーボンフィルム製耐熱性フィルム体70を間に介在させた状態で上記黒鉛製ボート本体50の両開放端に蓋材60をそれぞれ螺着させて合成用ボート4を組み立てた。
【0030】
尚、図2に示すようにこのボート4は外径48mm、内径40mm、長さ745mmの寸法を有しており、この内部にIII族原料3であるガリウム(Ga)2000gが2等分して充填されている。
【0031】
次に、III族原料3が充填され黒鉛製ボート4を石英内管5内に収納し、図1に示すように石英内管5毎、石英封管1内の一端側に配置すると共に、石英封管1の他端側にはV族原料6である赤燐(P)920gを配置した。尚、石英封管1内には、V族原料6の原料ガスを石英内管5内に導入するための導入管10が取付けられた不透明石英製の熱遮蔽板7が配置されている。
【0032】
次に、石英内管5、熱遮蔽板7およびV族原料6等が収納された石英封管1の口を塞ぎ、中を10-6Torrオーダまで真空引きを行なった後、封止切る。
【0033】
次に、中央に高周波コイル8を有しこの高周波コイル8を中央に挟んでその両側に抵抗ヒータ9を有する高圧容器にて構成された横型高圧炉2内に、封じ切られた上記石英封管1を搬入し、横型高圧炉2の高圧容器内に窒素ガスを充填して高圧炉内を高圧状態(40kg/cm2)に設定した後、抵抗ヒータ9を作用させ石英封管1全体を加熱してV族原料6である赤燐(P)を300℃〜700℃に昇温し、かつ、ボート4内のIII族原料3であるガリウム(Ga)を500℃〜600℃の範囲で保持すると共に、高周波コイル8を作用させて上記ボート4内をGaPの融点である1470℃付近の温度で保持する。
【0034】
そして、熱遮蔽板7に取付けられた導入管10を介し上記石英内管5内に導入されたV族原料6からの原料ガスとボート4の内におけるIII族原料3とを反応させ、かつ、上記石英封管1を矢印α方向へ横型高圧炉2内を移動させ(すなわち、高温部を相対移動させ)、ボート4内で上記反応を順次進行させて一体化されたIII−V族化合物半導体(GaP)多結晶を合成した。
【0035】
一方、比較例としてカーボンフィルム製耐熱性フィルム体70を間に介在させない従来のボートも組み立て、かつ、合成条件は実施例と同一にしてIII−V族化合物半導体(GaP)多結晶を合成した。
【0036】
そして、実施例と比較例に係るIII−V族化合物半導体(GaP)多結晶の合成を繰り返し行い、III族原料であるガリウム(Ga)の漏れ状態、合成された多結晶と蓋材60との接着状態、および、黒鉛製ボート4の再使用寿命(耐久性)を比較した。この結果を以下の表1に示す。
【0037】
尚、表1において「原料漏れ発生率(%)」は繰り返し行った合成数に対して原料漏れが発生した数の割合、「蓋との接着発生率(%)」は上記合成数に対して合成されたIII−V族化合物半導体(GaP)多結晶と蓋材60とが接着した数の割合である。また、「黒鉛ボートの破損率(%)」は合成数に対して合成されたIII−V族化合物半導体(GaP)多結晶を取り出すときに破損したボート数の割合、「平均使用回数(回)」は黒鉛ボート1個について合成に繰り返し使用した回数の平均回数である。
【0038】
【表1】

Figure 0003888142
表1に示された数値から明らかなように、実施例においてはIII族原料であるガリウム(Ga)の漏れ、合成されたIII−V族化合物半導体(GaP)多結晶と蓋材60との接着はほとんどない状態となり、接着の発生率は大幅に低下していることが確認される。
【0039】
また、実施例における黒鉛ボートの破損率は0.7%となり、比較例の18.2%から大きく低下し、かつ、実施例における黒鉛ボートの平均使用回数についても6.5回となり比較例の2.4回に較べて著しく向上していることが確認される。
【0040】
【発明の効果】
請求項1〜2記載の発明に係る化合物半導体多結晶の合成方法によれば、
ボート本体の両開放端側筒壁面にその開放縁部から上記スリット端方向へ延びる帯状切欠部をそれぞれ設けると共に、ボート本体の開放面よりわずかに大きくかつその外周縁の一部に上記帯状切欠部に嵌合される突起片が設けられた円形若しくは多角形状の耐熱性フィルム体を間に介在させた状態でボート本体の両開放端に蓋材をそれぞれ螺着して上記ボートが構成されているため、蓋材の螺子部やボート本体の螺子部に欠けが存在したり緩みが生じてこれ等螺着部位に隙間ができても、蓋材とボート本体の開放端間に介在された上記耐熱性フィルム体の作用によりボート内に充填されたIII族原料が上記螺着部位へ漏出することがなく、更に、上記蓋材近傍にIII族原料が未反応状態で残留した場合でも、上記耐熱性フィルム体の作用により合成されたIII−V族化合物半導体多結晶と蓋材とが接着してしまうこともない。
【0041】
従って、化合物半導体多結晶の合成を終了した時点で蓋材をボート本体から容易に外すことができるためボートの欠けや破損を防止することが可能となり、これによりボートの再使用寿命の大幅な改善が図れる効果を有する。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る化合物半導体多結晶の合成方法に適用されるボートの一部分解斜視図。
【図2】 III−V族化合物半導体多結晶の合成方法を示す説明図。
【図3】従来例に係るIII−V族化合物半導体多結晶の合成方法に適用されるボートの概略斜視図。
【図4】従来例に係るIII−V族化合物半導体多結晶の合成方法に適用されるボートの一部分解斜視図。
【符号の説明】
4 ボート
50 ボート本体
51 スリット
52 帯状切欠部
60 蓋材
70 耐熱性フィルム体
71 突起片[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for synthesizing a group III-V compound semiconductor polycrystal such as GaP, and in particular, prevents a phenomenon in which a group III raw material filled in a synthesis boat leaks into a screwed portion between a boat body and a lid. Further, the present invention relates to a method for synthesizing a group III-V compound semiconductor polycrystal which can prevent chipping or breakage of the synthesis boat when the lid member is removed from the boat body after the synthesis is completed and can improve its reuse life.
[0002]
[Prior art]
Conventionally, III-V group compound semiconductors such as GaP have been used as materials for optical devices such as laser diodes and light-emitting diodes and high-speed devices such as HEMTs.
[0003]
Since such a III-V compound semiconductor is difficult to grow a single crystal by directly reacting a group III material such as Ga and a group V material such as P, a III-V compound semiconductor polycrystal Is first synthesized, and then a group III-V compound semiconductor single crystal is grown by the LEC method using this group III-V compound semiconductor polycrystal.
[0004]
By the way, as shown in FIG. 2, the III-V group compound semiconductor polycrystal is synthesized by bringing a sealed tube 1 made of quartz or the like filled with each raw material into a horizontal high pressure furnace 2 and synthesizing it. .
[0005]
That is, as shown in FIG. 2, the group III raw material 3 such as Ga is filled in a synthesis boat 4 (see FIG. 3) provided with slits 51 and the entire boat 4 is made of an inner tube 5 made of quartz or the like. The V group raw material 6 such as P is disposed on the other end side of the sealed tube 1 via the heat shielding plate 7 and accommodated in one end side of the sealed tube 1. The sealed tube 1 filled with the raw materials and the like is then vacuumed and sealed.
[0006]
Next, the sealed tube 1 that has been sealed in a vacuum is a horizontal high-pressure vessel that is composed of a high-pressure vessel having a high-frequency coil 8 in the center and sandwiching the high-frequency coil 8 in the center and having resistance heaters 9 on both sides thereof. It is carried into the furnace 2.
[0007]
The entire sealed tube 1 is heated in the horizontal high-pressure furnace 2, and the group III material 3 in the synthesis boat 4 is locally heated to a higher temperature by the high frequency coil 8, and the material generated from the group V material 6 Gas is introduced into the inner pipe 5 through the introduction pipe 10 attached to the heat shielding plate 7 to react with the group III raw material 3, and the sealed pipe 1 is moved in the horizontal high-pressure furnace 2 in the direction of arrow α. The group III-V compound semiconductor polycrystal is synthesized by moving or fixing the sealed tube 1 and moving the horizontal high pressure furnace 2 in the opposite direction (that is, relatively moving the high temperature part).
[0008]
[Problems to be solved by the invention]
By the way, the synthesis boat 4 used in the method for synthesizing the III-V compound semiconductor polycrystal has a cylindrical boat body 50 in which a straight slit 51 is opened in the upper longitudinal direction as shown in FIGS. And the lid member 60 screwed to both open ends of the boat main body 50 constitute the main part, and only the slit 51 is opened so that the source gas can enter and exit the boat 4. .
[0009]
Since the lid 60 and the boat body 50 are screwed to each other via a screw portion, the screw portion of the lid member 60 and the screw portion of the boat main body 50 are chipped. When loosening occurs, gaps are formed in these screwing sites, and the group III material filled in the synthesis boat 4 may leak to the screwing sites.
[0010]
When the III-V compound semiconductor polycrystal is synthesized in this state, a part of the group III source material leaked to the screwing site reacts with the group V source gas at this site, so that the group III-V compound is produced. When the cover 60 is removed from the boat body 50 at the time when the synthesis of the compound semiconductor polycrystal is finished due to the crystal generated at the screwing site in some cases, the semiconductor 60 may be formed. Had the problem of becoming difficult to come off.
[0011]
If the cover 60 is forcibly removed from the boat body 50, the synthesis boat 4 is likely to be chipped or damaged, and the reuse of the synthesis boat 4 is hindered, and the III-V compound semiconductor polycrystal There was a problem of increasing the manufacturing cost of
[0012]
Further, when the group III raw material remains in an unreacted state in the vicinity of the lid 60, the III-V group compound semiconductor polycrystal synthesized through the unreacted group III raw material may adhere to the lid 60. In the same manner as described above, when the lid 60 is forcibly removed, the synthesis boat 4 is likely to be chipped or damaged, and the reuse of the synthesis boat 4 is hindered. There was a problem of increasing manufacturing costs.
[0013]
The present invention has been made paying attention to such problems, and the problem is that the group III material filled in the boat is prevented from leaking into the screwed portion between the boat body and the lid. The present invention provides a method for synthesizing a III-V compound semiconductor polycrystal which can prevent chipping or breakage of the synthesis boat when removing the lid member from the boat body after synthesis and can improve its reuse life. is there.
[0014]
[Means for Solving the Problems]
That is, the invention according to claim 1
Group III raw material is filled into the boat, which consists of a cylindrical boat body with straight slits in the upper longitudinal direction and a lid member screwed to both open ends of the boat body. The boat is arranged on one end side in the sealed tube, while the V group material is arranged on the other end side in the sealed tube, and the entire sealed tube is heated and the group III material in the boat is locally heated to a higher temperature. A method for synthesizing a compound semiconductor polycrystal by reacting a source gas generated from a group V source by heating with the group III source and synthesizing a group III-V compound semiconductor polycrystal while gradually moving the high temperature portion relative to each other. Assuming
A strip-shaped notch extending from the open edge to the slit end direction is provided on both open end-side cylindrical wall surfaces of the boat body, and the strip-shaped notch is slightly larger than the open surface of the boat body and part of the outer periphery. The boat is configured by screwing lid members to both open ends of the boat body with a circular or polygonal heat-resistant film body provided with projection pieces fitted to the boat interposed therebetween. It is characterized by
The invention according to claim 2
Based on the method for synthesizing compound semiconductor polycrystal according to the invention of claim 1,
The boat body and the lid body are made of graphite, and the heat-resistant film body is made of a carbon film.
[0015]
According to the compound semiconductor polycrystal synthesis method according to the inventions according to claims 1 and 2,
A strip-shaped notch extending from the open edge to the slit end direction is provided on both open end-side cylindrical wall surfaces of the boat body, and the strip-shaped notch is slightly larger than the open surface of the boat body and part of the outer periphery. The boat is configured by screwing lid members to both open ends of the boat body with a circular or polygonal heat-resistant film body provided with projection pieces fitted to the boat interposed therebetween. Therefore, even if the screw part of the lid member or the screw part of the boat main body is chipped or loosened, and there is a gap between these screwed parts, the above heat resistance interposed between the cover member and the open end of the boat main body The group III raw material filled in the boat by the action of the conductive film body does not leak to the screwing site, and even when the group III raw material remains in an unreacted state in the vicinity of the lid member, the heat resistance Due to the action of the film body Is a Group III-V compound semiconductor polycrystalline and the lid member has no sometimes resulting in adhesion.
[0016]
Therefore, when the synthesis of the compound semiconductor polycrystal is finished, the lid member can be easily removed from the boat body, and the reuse of the boat is not hindered.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0018]
That is, the method for synthesizing the compound semiconductor polycrystal according to this embodiment is substantially the same as the conventional synthesis method except that the boat filled with the group III material is changed to the structure shown in FIG.
[0019]
First, as shown in FIG. 1, the boat 4 is provided with a linear slit 51 in the upper longitudinal direction of the cylindrical wall surface and extends from the cylindrical wall open edge at a width wider than the slits 51 on both open end side cylindrical wall surfaces. A graphite cylindrical boat body 50 provided with strip-shaped notches 52 connected to the ends of the slits 51; a graphite lid member 60 screwed to both open ends of the cylindrical boat body 50; A protrusion that is interposed between the cylindrical boat body 50 and the lid member 60 and has a diameter slightly larger than the inner diameter of the cylindrical boat body 50 and is fitted to the strip-shaped notch 52 at a part of the outer peripheral edge thereof. The main part is comprised with the circular heat-resistant film body 70 which has the piece 71, and the III group raw material 3 is filled into this boat 4 as shown in FIG.
[0020]
The boat 4 filled with the group III raw material 3 is accommodated in the quartz inner tube 5 and is disposed on one end side in the quartz sealed tube (outer tube) 1 for each quartz inner tube 5 as shown in FIG. In addition, a group V material 6 is disposed on the other end side of the quartz sealed tube 1, and a heat shielding plate 7 made of opaque quartz is disposed at a substantially central portion of the quartz sealed tube 1. An introduction pipe 10 is attached to the heat shield plate 7, and the space in which the group V raw material 6 is disposed and the quartz inner pipe 5 communicate with each other through the introduction pipe 10.
[0021]
Next, the mouth of the quartz sealed tube (outer tube) 1 in which the quartz inner tube 5, the heat shielding plate 7, the group V raw material 6 and the like are stored is closed, vacuumed, and then sealed.
[0022]
Next, the quartz sealed tube sealed in a horizontal high pressure furnace 2 constituted by a high pressure vessel having a high frequency coil 8 in the center and sandwiching the high frequency coil 8 in the center and having resistance heaters 9 on both sides thereof. (Outer tube) 1 is carried in, and an inert gas such as nitrogen is filled in the high-pressure vessel of the horizontal high-pressure furnace 2 to set the inside of the high-pressure furnace to a high pressure state. Tube) 1 is heated, and the high frequency coil 8 is operated to heat the group III material 3 in the boat 4 locally to a higher temperature.
[0023]
Then, the raw material gas from the group V raw material 6 introduced into the quartz inner tube 5 through the introduction tube 10 attached to the heat shielding plate 7 is reacted with the group III raw material 3 in the boat 4, and The quartz sealed tube (outer tube) 1 or the horizontal high-pressure furnace 2 is moved (that is, the high temperature portion is relatively moved), and the above reactions are sequentially advanced in the boat 4 to synthesize a III-V compound semiconductor polycrystal.
[0024]
According to the synthesizing method according to this embodiment, the strip-shaped notches 52 that are wider than the slits 51 and extend from the cylinder wall open edge and are connected to the ends of the slits 51 are respectively provided on the both open end side cylinder wall surfaces of the boat body 50. And a circular heat-resistant film body 70 having a diameter slightly larger than the inner diameter of the boat body 50 and provided with a protruding piece 71 fitted to the strip-shaped notch 52 at a part of the outer peripheral edge thereof. Since the lid member 60 is screwed to both open ends of the boat main body 50 with the gap interposed therebetween, the screw portion of the lid member 60 and the screw portion of the boat main body 50 are chipped or loosened. Even if there are gaps in these screwed parts, the group III raw material 3 filled in the boat 4 by the action of the heat-resistant film body 70 interposed between the lid member 60 and the open end of the boat body 50 can be obtained. Leak into the above screwed part Furthermore, even when the group III raw material 3 remains in an unreacted state in the vicinity of the lid member 60, the III-V group compound semiconductor polycrystal synthesized by the action of the heat-resistant film body 70, the lid member 60, Will not adhere.
[0025]
Therefore, when the lid 60 is removed from the boat body 50 when the synthesis of the compound semiconductor polycrystal is finished, the lid 60 is not easily detached unlike the conventional case, and the reuse of the boat 4 is hindered. It has the advantage that there is no such thing.
[0026]
It should be noted that the width of the strip-shaped notch 52 provided on both open end side cylindrical wall surfaces of the boat body 50 may be the same width or narrow as the slit 51, and the strip-shaped notch 52 is at the end of the slit 51. It is not always necessary to be connected.
[0027]
Moreover, as a material of the said heat resistant film body 70, a carbon film, a pyrolytic boron nitride (p-BN) film, etc. are mentioned, for example. Further, the diameter of the heat-resistant film body 70 is only required to be slightly larger than the inner diameter of the boat main body 50, and the heat-resistant film body 70 is interposed in the boat 4 by interposing the heat-resistant film body 70 between the lid member 60 and the open end of the boat main body 50. Any dimension may be used as long as the filled group III raw material 3 does not leak into the screwed portion. Note that the shape of the heat-resistant film body 70 is not limited to a circular shape as long as leakage of the group III raw material 3 filled in the boat 4 to the screwed portion is prevented. For example, the boat body is opened. It may be a polygonal shape such as a regular octagon slightly larger than the surface. Further, with respect to the width dimension of the protrusion piece 71 provided on the outer peripheral edge of the heat resistant film body 70, if the protrusion piece 71 is fitted in the band-shaped notch portion 52 of the boat body 50 and is held in the boat 4. These dimensions are often arbitrary.
[0028]
【Example】
Examples of the present invention will be specifically described below.
[0029]
First, the graphite boat main body 50 having a diameter of 42 mm and a thickness of 0.4 mm, which is slightly larger than the inner diameter of the graphite boat main body 50 shown in FIG. The cover boat 60 was screwed to both open ends, and the synthesis boat 4 was assembled.
[0030]
As shown in FIG. 2, this boat 4 has dimensions of an outer diameter of 48 mm, an inner diameter of 40 mm, and a length of 745 mm. Inside this, gallium (Ga) 2000 g which is a group III raw material 3 is divided into two equal parts. Filled.
[0031]
Next, the graphite boat 4 filled with the group III raw material 3 is accommodated in the quartz inner tube 5 and arranged on one end side in the quartz sealed tube 1 for each quartz inner tube 5 as shown in FIG. On the other end side of the sealed tube 1, 920 g of red phosphorus (P) which is a group V raw material 6 was disposed. In the quartz sealed tube 1, a heat shielding plate 7 made of opaque quartz to which an introduction tube 10 for introducing the source gas of the group V material 6 into the quartz inner tube 5 is attached.
[0032]
Next, the quartz sealed tube 1 containing the quartz inner tube 5, the heat shielding plate 7, the group V raw material 6 and the like is closed, the inside is evacuated to the order of 10 −6 Torr, and then sealed.
[0033]
Next, the quartz sealed tube sealed in a horizontal high pressure furnace 2 constituted by a high pressure vessel having a high frequency coil 8 in the center and sandwiching the high frequency coil 8 in the center and having resistance heaters 9 on both sides thereof. 1 is loaded, nitrogen gas is charged into the high-pressure vessel of the horizontal high-pressure furnace 2 and the inside of the high-pressure furnace is set to a high pressure state (40 kg / cm 2 ), and then the resistance heater 9 is operated to heat the entire quartz sealed tube 1. Then, the temperature of the red phosphorus (P) which is the group V raw material 6 is increased to 300 ° C. to 700 ° C., and the gallium (Ga) which is the group III raw material 3 in the boat 4 is held in the range of 500 ° C. to 600 ° C. At the same time, the inside of the boat 4 is maintained at a temperature in the vicinity of 1470 ° C., which is the melting point of GaP, by operating the high frequency coil 8.
[0034]
Then, the raw material gas from the group V raw material 6 introduced into the quartz inner tube 5 through the introduction tube 10 attached to the heat shielding plate 7 and the group III raw material 3 in the boat 4 are reacted, and The quartz sealed tube 1 is moved in the horizontal high pressure furnace 2 in the direction of the arrow α (that is, the high temperature portion is relatively moved), and the above reactions are sequentially advanced in the boat 4 to integrate the III-V group compound semiconductor. (GaP) polycrystals were synthesized.
[0035]
On the other hand, as a comparative example, a conventional boat without a carbon film heat-resistant film body 70 interposed therebetween was also assembled, and a III-V compound semiconductor (GaP) polycrystal was synthesized under the same synthesis conditions as in the examples.
[0036]
And the synthesis | combination of the III-V compound semiconductor (GaP) polycrystal which concerns on an Example and a comparative example is performed repeatedly, the leakage state of the gallium (Ga) which is a III group raw material, the synthesized polycrystal, and the cover material 60 The adhesion state and the reuse life (durability) of the graphite boat 4 were compared. The results are shown in Table 1 below.
[0037]
In Table 1, “Raw material leakage occurrence rate (%)” is the ratio of the number of raw material leakages to the number of repeated synthesis, and “Adhesion rate with lid (%)” is the number of the above synthesis. It is the ratio of the number of the synthesized III-V compound semiconductor (GaP) polycrystal and the lid member 60 adhered. “The failure rate of graphite boat (%)” is the ratio of the number of boats damaged when taking out the synthesized III-V compound semiconductor (GaP) polycrystal with respect to the number of synthesis, “average number of use (times)” "Is the average number of times of repeated use for synthesis for one graphite boat.
[0038]
[Table 1]
Figure 0003888142
As is apparent from the numerical values shown in Table 1, in the examples, leakage of gallium (Ga), which is a group III raw material, and adhesion between the synthesized III-V compound semiconductor (GaP) polycrystal and the lid member 60 It is confirmed that the occurrence rate of adhesion is greatly reduced.
[0039]
Further, the failure rate of the graphite boat in the example is 0.7%, which is greatly reduced from 18.2% in the comparative example, and the average number of times of use of the graphite boat in the example is 6.5 times. It is confirmed that it is remarkably improved compared to 2.4 times.
[0040]
【The invention's effect】
According to the method for synthesizing a compound semiconductor polycrystal according to the inventions of claims 1 and 2,
A strip-shaped notch extending from the open edge to the slit end direction is provided on both open end-side cylindrical wall surfaces of the boat body, and the strip-shaped notch is slightly larger than the open surface of the boat body and part of the outer periphery. The boat is configured by screwing lid members to both open ends of the boat body with a circular or polygonal heat-resistant film body provided with projection pieces fitted to the boat interposed therebetween. Therefore, even if the screw part of the lid member or the screw part of the boat main body is chipped or loosened, and there is a gap between these screwed parts, the above heat resistance interposed between the cover member and the open end of the boat main body The group III raw material filled in the boat by the action of the conductive film body does not leak to the screwing site, and even when the group III raw material remains in an unreacted state in the vicinity of the lid member, the heat resistance Due to the action of the film body Is a Group III-V compound semiconductor polycrystalline and the lid member has no sometimes resulting in adhesion.
[0041]
Therefore, when the synthesis of the compound semiconductor polycrystal is completed, the lid can be easily removed from the boat body, so that the boat can be prevented from being chipped or damaged, thereby greatly improving the reuse life of the boat. Has the effect of achieving.
[Brief description of the drawings]
FIG. 1 is a partially exploded perspective view of a boat applied to a method for synthesizing a compound semiconductor polycrystal according to an embodiment of the present invention.
FIG. 2 is an explanatory view showing a method for synthesizing a III-V compound semiconductor polycrystal.
FIG. 3 is a schematic perspective view of a boat applied to a conventional method for synthesizing a group III-V compound semiconductor polycrystal.
FIG. 4 is a partially exploded perspective view of a boat applied to a method for synthesizing a III-V compound semiconductor polycrystal according to a conventional example.
[Explanation of symbols]
4 Boat 50 Boat body 51 Slit 52 Strip-shaped notch 60 Lid material 70 Heat-resistant film body 71 Projection piece

Claims (2)

上部長手方向に直線状のスリットが開設された円筒状ボート本体とこのボート本体の両開放端に螺着される蓋材とでその主要部が構成されるボート内にIII族原料を充填し、このボートを封管内の一端側に配置する一方、封管内の他端側にはV族原料を配置し、上記封管全体を加熱すると共にボート内のIII族原料を局所的に更に高温に加熱してV族原料から発生した原料ガスと上記III族原料を反応させ、かつ、上記高温部を徐々に相対移動させながらIII−V族化合物半導体多結晶を合成する化合物半導体多結晶の合成方法において、
ボート本体の両開放端側筒壁面にその開放縁部から上記スリット端方向へ延びる帯状切欠部をそれぞれ設けると共に、ボート本体の開放面よりわずかに大きくかつその外周縁の一部に上記帯状切欠部に嵌合される突起片が設けられた円形若しくは多角形状の耐熱性フィルム体を間に介在させた状態でボート本体の両開放端に蓋材をそれぞれ螺着して上記ボートが構成されていることを特徴とする化合物半導体多結晶の合成方法。
Group III raw material is filled into a boat which is composed of a cylindrical boat body with straight slits in the upper longitudinal direction and a lid member screwed to both open ends of the boat body. The boat is arranged on one end side in the sealed tube, while the V group material is arranged on the other end side in the sealed tube, the entire sealed tube is heated, and the group III material in the boat is locally heated to a higher temperature. A method for synthesizing a compound semiconductor polycrystal by reacting a source gas generated from a group V source by heating with the group III source and synthesizing a group III-V compound semiconductor polycrystal while gradually moving the high temperature part relatively In
A strip-shaped notch extending from the open edge to the slit end direction is provided on both open end-side cylindrical wall surfaces of the boat body, and the strip-shaped notch is slightly larger than the open surface of the boat body and part of the outer periphery. The boat is configured by screwing lid members to both open ends of the boat body with a circular or polygonal heat-resistant film body provided with projection pieces fitted to the boat interposed therebetween. A method of synthesizing a compound semiconductor polycrystal.
上記ボート本体並びに蓋体が黒鉛で構成され、かつ、耐熱性フィルム体がカーボンフィルムで構成されていることを特徴とする請求項1記載の化合物半導体多結晶の合成方法。2. The method for synthesizing a compound semiconductor polycrystal according to claim 1, wherein the boat body and the lid are made of graphite, and the heat-resistant film is made of a carbon film.
JP2001355587A 2001-11-21 2001-11-21 Method for synthesizing compound semiconductor polycrystal Expired - Fee Related JP3888142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355587A JP3888142B2 (en) 2001-11-21 2001-11-21 Method for synthesizing compound semiconductor polycrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355587A JP3888142B2 (en) 2001-11-21 2001-11-21 Method for synthesizing compound semiconductor polycrystal

Publications (2)

Publication Number Publication Date
JP2003160315A JP2003160315A (en) 2003-06-03
JP3888142B2 true JP3888142B2 (en) 2007-02-28

Family

ID=19167266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355587A Expired - Fee Related JP3888142B2 (en) 2001-11-21 2001-11-21 Method for synthesizing compound semiconductor polycrystal

Country Status (1)

Country Link
JP (1) JP3888142B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920224B2 (en) * 2005-09-21 2012-04-18 昭和電工株式会社 Method for producing III-V compound semiconductor polycrystal
KR102224533B1 (en) 2017-03-28 2021-03-05 후지필름 가부시키가이샤 Method for producing group III-V semiconductor nanoparticles, method for producing group III-V semiconductor quantum dots, and flow reaction system

Also Published As

Publication number Publication date
JP2003160315A (en) 2003-06-03

Similar Documents

Publication Publication Date Title
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
JP5001516B2 (en) MOCVD reactor susceptor
US11047041B2 (en) Method and system for preparing polycrystalline group III metal nitride
US20100028240A1 (en) Process for producing silicon carbide single crystal
US6547876B2 (en) Apparatus for growing epitaxial layers on wafers by chemical vapor deposition
KR102177385B1 (en) A Hydride Vapor Phase Epitaxy Apparatus for Manufacturing a GaN Wafer and a Method for Manufacturing the Same
JP3888142B2 (en) Method for synthesizing compound semiconductor polycrystal
EP2784191A1 (en) Low carbon group-III nitride crystals
US10267564B2 (en) Heat treatment container for vacuum heat treatment apparatus
JPH0222460A (en) High power microwave permeable window assembly
JP2007042899A (en) Vapor phase epitaxial growth apparatus
CN215976142U (en) Silicon carbide powder synthesizer
KR100505358B1 (en) GaN single crystal and their manufacturing method and their manufacturing apparatus
JP3610899B2 (en) Vapor growth equipment
JP2002164293A (en) Susceptor of vapor phase growth system
JP6083766B2 (en) NH3 atmosphere high temperature heating device
JPH0142488B2 (en)
JPH01224295A (en) Gas source molecular beam crystal growing apparatus
JPS6146440B2 (en)
CN115896945A (en) Silicon carbide powder synthesizing device and method
JPS61180429A (en) Manufacture of semiconductor liquid phase epitaxial growth equipment
KR20050075198A (en) Apparatus and method for manufacturing substrate of nitride chemicals
KR20030090996A (en) lifting - off Method with laser in a Growth chamber
JP2004353762A (en) Clamping device
JPS61166125A (en) Organic metal vapor-phase growing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111208

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees