JP3887040B2 - 超音波診断装置 - Google Patents

超音波診断装置 Download PDF

Info

Publication number
JP3887040B2
JP3887040B2 JP23517696A JP23517696A JP3887040B2 JP 3887040 B2 JP3887040 B2 JP 3887040B2 JP 23517696 A JP23517696 A JP 23517696A JP 23517696 A JP23517696 A JP 23517696A JP 3887040 B2 JP3887040 B2 JP 3887040B2
Authority
JP
Japan
Prior art keywords
ultrasonic diagnostic
diagnostic apparatus
filter
region
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23517696A
Other languages
English (en)
Other versions
JPH1075949A (ja
Inventor
康彦 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23517696A priority Critical patent/JP3887040B2/ja
Publication of JPH1075949A publication Critical patent/JPH1075949A/ja
Application granted granted Critical
Publication of JP3887040B2 publication Critical patent/JP3887040B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被検体の断面を超音波で走査して得られる受信信号に含まれる位相情報と振幅情報との少なくとも一方に基づいて超音波画像を生成する超音波診断装置に関する。
【0002】
【従来の技術】
組織分布を表す断層像、つまりBモード像の生成には、受信信号の振幅検波と、対数圧縮という2つの非線形処理が必要である。被検体内に放射された超音波は音響インピーダンスの境界で反射する。この反射強度は音響インピーダンスの差に比例する。送信超音波を搬送波として見れば、反射現象は振幅変調に等価的である。したがって、受信信号の振幅を検波することにより、組織情報を取り出すことができる。なお、振幅検波としては、受信信号が非常に小さいことから非線形の2乗検波方式が採用されている。対数圧縮とは、例えば220もある受信信号のダイナミックレンジを比較的小さい回路上のダイナミックレンジ、実質的にはモニタのダイナミックレンジに圧縮する処理である。
【0003】
特定の超音波画像診断では、胸壁や肋骨等の比較的動きの遅い部位を抑制し、心臓壁等の比較的動きの速い部位だけを強調することが望まれている。このため従来では、図7に示すように、高域通過型フィルタ(HPF)6を検波器4及び対数圧縮器5の後段に配置し、断面内の複数のサンプル点の各々に関するディジタル信号の時間変化から比較的低周波の固定エコー成分を減衰し、比較的高周波の信号エコー成分を強調することが提案されている。
【0004】
しかし検波器4および対数変換器5を透過した画像データは、既に非線形処理を受けているので、固定エコー成分を除去して、信号エコー成分だけを高精度で取り出すことができず、したがって診断対象部分が明瞭に抽出されないという不具合があった。
【0005】
一方、非線形処理を受ける前の受信信号に対してフィルタ手段でフィルタ処理を施すことにより、特定周波数成分を十分減衰することができ、診断上有益な部分だけを鮮明に表示することを目的とした本願出願人の出願にかかる特願平7−173398号に記載の超音波診断装置がある。この超音波診断装置は心時相に応じてより最適なフィルタ特性を得ることも目的としており、ECG信号に同期させて時間的にフィルタ特性を変化させるものであって、主に壁運動速度が大きい時相と壁運動が停止する時相とでは除去したい固定エコー成分と信号エコー成分の変動速度(周波数)が異なるという先験的な情報を利用し、予め設定されたフィルタ特性の時間変化パターンに従ってフィルタ特性を変化させるものである。
【0006】
この超音波診断装置には次のような問題点がある。
(1)生体の変動に起因し、予め設定されたフィルタ特性の時間変化パターンに対して設定時相にズレが生じることがある。例えば被検体の不整脈に対しては常に最適なフィルタ特性を設定することは困難である。
(2)心臓は複雑な動態を有するので、同じ心時相においても局所的に見ると、激しく動いている部分と殆ど動かない部分とが混在している。したがって、時間的にフィルタ特性を変化させるだけでは、このような場合に対しては最適なフィルタ特性の設定が得られにくい。
【0007】
【発明が解決しようとする課題】
本発明は上述した事情に対処すべくなされたものであり、その目的は、時間的のみならず空間的にも最適なフィルタ特性を設定し得る超音波診断装置を提供することにある。
【0008】
【課題を解決するための手段】
(1)本発明の超音波診断装置は、被検体の断面を超音波で走査する走査手段と、前記走査手段の出力信号に基づいて位相情報と振幅情報とを含む受信信号を得る受信手段と、前記受信手段から複数のフレームに対応して得られた時系列的な受信信号を用いて、前記断面内の複数の箇所に関する任意のフィルタ特性を算出する算出手段と、前記算出手段により算出されたフィルタ特性に基づいて、前記断面内の複数の箇所に関する受信信号から低周波成分を減衰させるフィルタ手段と、前記低周波成分が減衰された受信信号に基づいて前記被検体の形態画像を生成する画像生成手段とを具備することを特徴とする。
(2)本発明の超音波診断装置は、上記(1)記載の超音波診断装置であって、且つ前記フィルタ手段は低周波成分を減衰することを特徴とする。
(3)本発明の超音波診断装置は、上記(1)に記載の超音波診断装置であって、且つ前記受信手段は線形回路であり、前記画像生成手段は非線形回路を含むことを特徴とする。
(4)本発明の超音波診断装置は、上記(3)に記載の超音波診断装置であって、且つ前記非線形回路は、前記受信信号を検波する検波回路を有することを特徴とする。
(5)本発明の超音波診断装置は、上記(3)に記載の超音波診断装置であって、且つ前記非線形回路は、前記受信信号を対数圧縮する回路を有することを特徴とする。
(6)本発明の超音波診断装置は、上記(1)に記載の超音波診断装置であって、且つ前記受信手段は、前記受信信号をディジタル化する手段を有することを特徴とする。
(7)本発明の超音波診断装置は、上記(1)に記載の超音波診断装置であって、且つ前記断面内の特定領域の内外でフィルタ特性を切り換えることにより前記特定領域を関心領域として設定する関心領域設定手段を具備することを特徴とする。
(8)本発明の超音波診断装置は、上記(7)に記載の超音波診断装置であって、且つ前記関心領域設定手段は、前記断面内の特定領域内において所要のフィルタ特性を設定し、当該特定領域外においてオールパスフィルタ特性を設定することを特徴とする。
(9)本発明の超音波診断装置は、上記(7)に記載の超音波診断装置であって、且つ前記関心領域内のゲインを当該関心領域外のゲインより大きな値に制御するゲイン制御手段を具備することを特徴とする。
(10)本発明の超音波診断装置は、上記(1)に記載の超音波診断装置であって、且つ前記算出手段は、前記受信手段から得られた時系列的な受信信号を用いて周波数解析を行うことにより前記断面内の複数の箇所に関する任意のフィルタ特性を算出することを特徴とする。
(11)本発明の超音波診断装置は、上記(1)に記載の超音波診断装置であって、且つ前記周波数解析は、自己相関演算処理を含むことを特徴とする。
(12)本発明の超音波診断装置は、上記(1)に記載の超音波診断装置であって、且つ前記周波数解析は、フーリエ変換処理を含むことを特徴とする。
【0009】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。なお、ここでは、スキャン方式としてセクタ電子スキャン方式が採用されるものとして説明するが、勿論、リニア電子スキャン方式やコンベックススキャン方式等の他のスキャン方式の採用を否定するものではない。
【0010】
また、本実施形態では拍動の拡張期において移動速度が比較的遅く、収縮期において移動速度が比較的速い心臓壁を診断対象として説明するが、診断対象は心臓壁に限らない。
(第1の実施の形態)
図1は第1の実施の形態による超音波診断装置の構成図である。超音波プローブ1の先端には、機械振動と電気信号とを可逆的に変換する複数の圧電素子が一次元に配列され、装備される。超音波プローブ1は、送信時には送信系2に接続され、受信時には受信系3に接続される。送信系2は、図示しないが、クロック発生器、分周器、分配器、送信遅延回路、パルサを有する。
【0011】
クロック発生器で発生されたクロックパルスは、分周器で例えば6KHzのレートパルスに分周される。分周器から出力されるレートパルスは、分配器でチャンネル数分に分配される。分配器から出力されるレートパルスは、送信遅延回路でチャンネル毎に異なる遅延時間を与えられる。各チャンネルの遅延時間は、超音波をビーム状に集束するために必要な遅延時間と、超音波ビームの送信方向に応じた遅延時間とで決定される。
【0012】
後者の遅延時間を変化させていくことにより、被検体の扇状の断面を超音波ビームでスキャンすることが可能である。送信遅延回路から出力される各チャンネルのレートパルスは、チャンネル毎に設けられたパルサにトリガとして供給される。パルサは、レートパルスを受けたタイミングで、各々対応するチャンネルの圧電素子にパルス電圧を印加する。これにより超音波プローブ1から超音波ビームが遅延時間に応じた方向に発射される。なお、1つの圧電素子が1つのチャンネルに相当する。または、隣り合う複数の圧電素子が1つのチャンネルに相当する。
【0013】
超音波は被検体内の音響インピーダンスの境界で反射する。この反射波は超音波プローブ1の圧電素子で受波され、電気信号(電圧信号)に変換される。圧電素子の電気信号はチャンネル毎に受信器3に取り込まれる。受信器3は、図示しないが、プリアンプ、アナログディジタル変換器、受信遅延回路、加算器を有する。プリアンプ、アナログディジタル変換器、受信遅延回路及び加算器は全て線形回路として構成される。プリアンプは電気信号をチャンネル毎に増幅する。アナログディジタル変換器は、増幅された各チャンネルの電気信号を、1本の走査線に対して例えば0.5mm間隔に相当するサンプリング周波数でサンプリングし、サンプル点毎にディジタル信号に変換する。ディジタル信号は受信遅延回路でチャンネル毎に異なる遅延時間を与えられる。
【0014】
各チャンネルの遅延時間は、超音波をビーム状に集束するために必要な遅延時間と、反射波の受信方向に応じた遅延時間とで決定される。通常、送信方向と受信方向とは同一に設定される。受信遅延回路から出力される各チャンネルのディジタル信号は、加算器で加算される。これにより特定方向からの反射成分が強調された受信信号が得られる。受信信号には、組織間の音響インピーダンスの差を反映した振幅情報と、反射体の動き(移動速度)を反映した位相情報とが含まれる。
【0015】
受信系3から出力される受信信号は、検波器4に送られる。検波器4は、振幅変調を受けた受信信号の振幅を検波する。これにより、振幅情報が取り出される。なお、検波器4としては、受信信号が非常に小さいことから非線形の2乗検波方式のものが採用される。検波器4から出力される信号は、非線形回路としての対数圧縮器5に送られる。対数圧縮器5は、例えば220もある受信信号のダイナミックレンジを比較的狭い回路上のダイナミックレンジ、実質的には表示ユニット7が扱える比較的狭いダイナミックレンジに圧縮し、組織分布を反映したBモード像の画像データを生成する。検波器4と対数圧縮器5とを併せて画像生成手段として定義する。
【0016】
画像生成手段により生成される画像データは振幅情報のみ反映し、位相情報は反映していない。この点で画像データは、両情報を含む受信信号と完全に区別されるべきであり、振幅情報と位相情報とを有する受信信号は、非線形処理を受ける前の信号として定義される。画像データは表示ユニット7に送られ、Bモード像としてビジュアルに濃淡表示される。
【0017】
フレーム間フィルタ部9は、非線形回路を含む画像生成手段の前段の、受信系3と検波器4との間に設けられる。またフレーム間フィルタ部9は、受信系3から得られた時系列的な受信信号を用い、断面内の至る箇所に関する任意のフィルタ特性を算出し、特定の周波成分を減衰する高域通過型のディジタルフィルタとして構成される。
【0018】
システムコントローラ10にはコンソール11が接続される。コンソール11には、フレーム間フィルタ部9のフィルタ特性をオペレータが選択するためのフィルタ特性選択スイッチ12や、表示されたBモード像上に関心領域ROIをオペレータが設定するためのROI設定器13を含む複数のスイッチ類、マウス、キーボード等が装備される。またシステムコントローラ10は、フィルタ特性選択スイッチ12により選択されたフィルタ特性が適用されるようにフレーム間フィルタ部9を制御する。
【0019】
図2はフレーム間フィルタ部9の構成を示すブロック図である。同図に示されるように、本実施形態においてはいわゆるFIR型(非再帰型)のディジタルフィルタが構成されている。ここでの伝達関数の次数はNとして説明する。なお、FIR型フィルタのみに限定されず、他のディジタルフィルタ、例えばIIR型(再帰型)フィルタ等を採用しても良い。
【0020】
伝達関数の次数に応じたN個のフレームメモリ23乃至25の各々は、フィルタコントローラ21からの書き込み/読み出し制御を受けてスキャンのフレーム周期Z-1の遅延器として機能する。フレームメモリ23乃至25は、同じサンプル点に関する現在のディジタル信号xi 、1フレーム前のディジタル信号xi-1 、2フレーム前のディジタル信号xi-2 、Nフレーム前のディジタル信号xi-N がそれぞれ乗算器26乃至29に同時に供給されるように、多段に接続される。乗算器26乃至29の乗算結果は加算器30で加算される。乗算器26乃至29それぞれには乗算係数ROM22から、乗算係数k0 ,k1 ,k2 ,kN が供給される。乗算係数k0 ,k1 ,k2 ,kN の組み合わせに応じてフィルタ特性が決定される。加算器30での加算結果は、低周波成分が減衰された信号Yi として出力される。図3はこのようなフレーム間フィルタ処理を概念的に示している。
【0021】
フィルタコントローラ21には、フィルタ特性選択スイッチ12を介して選択されたフィルタ特性を識別する識別情報がシステムコントローラ10から供給される。また、このフィルタコントローラ21には、係数アドレスデータ変換部32から係数アドレスFCAが供給される。フィルタコントローラ21は、係数アドレスFCAを乗算係数ROM22に供給する。この係数アドレスFCAに応じた場所に記憶されている複数の乗算係数列が乗算係数ROM22から各々の乗算器26乃至29に読み出される。
【0022】
係数アドレスデータ変換部32は、周波数解析部31による周波数解析結果に基づいて係数アドレスFCAを出力する。係数アドレスFCAはフィルタコントローラ21からの制御により画像上の至る所で任意の値に設定される。乗算係数ROM22にはN+1個の所定の係数列がFCAに応じてM種類記憶されている。図4はこのような乗算係数ROM22のアドレス空間を模式的に示す図である。ちなみに係数アドレスFCA=0はオールパス係数列であって、係数k0 =1とし、その他の全ての係数=0とする、すなわち入力信号をそのまま出力するオールパスフィルタを意味している。その他の係数アドレスFCA=1〜M−1には所定のフィルタ特性を与える係数列がそれぞれ記憶されている。
【0023】
周波数解析部31は、受信系3から得られた時系列的な受信信号を用い、断面内の至る箇所に関する任意のフィルタ特性を得るための周波数解析としての自己相関演算を実行するものである。
【0024】
次に本実施の形態の動作について説明する。ROI設定器13がオペレータにより操作される。これにより、図5に示すように、例えば2本の走査線Ra ,Rb と、2本の等深線Da ,Db とで囲まれた関心領域ROIが設定される。このROIに関する情報は、システムコントローラ10を介してフレーム間フィルタ部9に送られる。ここで、ROI内のゲインをROI外のゲインより大きな値となるように制御することで、動きの速い部位がより強調される。このゲイン制御は、例えば乗算係数ROM22に通常のゲイン0dBの係数列aに対してゲインgdB(g>0)を有する係数列bを記憶させておき、ROI内外に応じて選択することで実現される。
【0025】
図示しない操作者が図1に示したプローブ1を操作して診断を開始すると、同一走査線上に存在する複数のサンプル点に関するディジタル信号が受信系3から出力される。この際、プローブ1との距離が短い箇所(すなわち被検体の表面から浅い箇所)の信号から順番に出力される。出力された信号は、先ずフレーム間フィルタ部9に供給され、ここで本実施形態に係るフィルタ処理が施された後、検波器4に供給される。
【0026】
フレーム間フィルタ部9において、フィルタコントローラ21は、システムコントローラ10からのフレーム更新信号(フレーム同期信号)に基づいて、複数のフレームメモリ23乃至25の書き込み/読み出しを制御する。これによりフレームメモリ23乃至25各々はスキャンのフレーム周期Z-1の遅延器として機能する。同じサンプル点に関する現在のディジタル信号xi 、1フレーム前のディジタル信号xi-1 、2フレーム前のディジタル信号xi-2 、Nフレーム前のディジタル信号xi-N は同期してそれぞれの乗算器26乃至29に供給される。
【0027】
一方、システムコントローラ10からのフレーム更新信号に基づいたタイミングにより、フィルタコントローラ21から乗算係数ROM22に係数アドレスFCAが供給されるとともに、この係数アドレスFCAに応じた場所に記憶されている複数の係数列k0 〜kN が、ディジタル信号xi 〜xi-N が乗算器26乃至29に供給されるタイミングに同期して乗算係数ROM22から乗算器26乃至29に読み出される。
【0028】
これにより現在のディジタル信号xi 、1フレーム前のディジタル信号xi-1 、2フレーム前のディジタル信号xi-2 、Nフレーム前のディジタル信号xi-N と、乗算係数k0 ,k1 ,k2 ,kN とが掛け合わされる。乗算器26乃至29のそれぞれの乗算結果、すなわちk0 ・xi ,k1 ・xi-1 ,k2 ・xi-2 ,kN ・xi-N は、加算器30で加算される。加算器30での加算結果は、フィルタ特性に応じたカットオフ周波数Nfcより低い低周波成分が減衰された当該サンプル点のディジタル信号Yi として出力される。
【0029】
かくして受信系3の線形処理に供され、検波器4及び対数圧縮器5の非線形処理を受けていない受信信号に対して、所望のフィルタ処理が実現される。
ところで、フレーム間フィルタ部9のフィルタコントローラ21はROIの範囲外のサンプル点のディジタル信号が受信系3から出力されている期間にはFCAに0が設定され、ROIの範囲内のサンプル点のディジタル信号が受信系3から出力されている期間にはFCAに所定の値が設定される。すなわちROI外ではフィルタ処理を実施せず、ROI内のみにおいて所定のフィルタ処理を実施することが可能となる。
【0030】
ROI内における所定のフィルタ処理、すなわちROI内(断面内)の至る点において最適なフィルタ特性が個々に算出され、これにより空間的に最適なフィルタ処理が行われる。このようなフィルタ処理が具体的にどのようにして行われるかについては第2の実施の形態において説明する。
(第2の実施の形態)
フレーム間フィルタ部9は、特定の周波成分、すなわち固定ノイズの信号成分を減衰する高域通過型のディジタルフィルタとして設けられることについては第1の実施形態において既に述べた。第2の実施の形態では、ROI内(断面内)の至る点において最適なフィルタ特性を個々に算出し、これにより局所的に異なるフィルタ特性を設定することを特徴とするフレーム間フィルタ部9の具体的構成について説明する。
【0031】
図2に示されるフレーム間フィルタ部9の周波数解析部31は、断層面内のある点における時系列的なRF受信ディジタル信号群(xi 〜xi-N )を用い、次式(1)および(2)に示すように、2πで規格された重心の周波数Nvを自己相関演算により算出する。
【0032】
【数1】
Figure 0003887040
【0033】
この重心の周波数Nvは、図6の(a)において波線で示されている。また算出された重心の周波数Nvは、係数アドレスデータ変換部32に出力される。
次に、係数アドレスデータ変換部32は上式により算出された重心周波数Nvの値を用い、次式(3)により規格化カットオフ周波数Nfcを設定する。
【0034】
Nfc = |Nv| …(3)
続いて係数アドレスデータ変換部32は、上式により算出された規格化カットオフ周波数Nfcの値に基づいて係数アドレスFCAを算出する。図6の(b)に示すように、NfcとFCAとは一対一で対応する。また、Nfcと振幅とFCAとの関係は、図6の(c)に示すようになる。
【0035】
乗算係数ROM22は、各々が異なるカットオフ周波数、すなわち異なるフィルタ特性を与えるM個の係数列を係数アドレスFCA毎に記憶している。
したがって、ある点について最適なフィルタ特性を得ることができる。さらに、これをROI内の至るところにおいて実施することにより局所的に異なる最適なフィルタ特性を設定できる。
【0036】
さらに、上記した重心周波数Nvの演算と係数アドレスFCAの設定とをフレームが更新される毎に断層面内の至る所で実施する。これにより、信号源の速度に適応する上、断層面内において局所的に異なる最適なフィルタ特性を設定できる。
【0037】
なお、上記重心の周波数Nvは、図(6)の(a)に示したように固定ノイズ成分と信号成分との両者を重心の周波数であって、一般には両者を分離するために最適なカットオフ周波数を与え得る。しかしながら、次のような特殊な条件下においては、カットオフ周波数の最適値に対してズレが生じる場合が起こり得る。
【0038】
まず固定ノイズ成分の振幅が極端に大きい場合において重心周波数Nvは、支配的なノイズ成分の影響を受けて小さな値となる。これにより所望のノイズ除去効果が発揮されない。一方、固定ノイズ成分が殆ど無い場合には、重心周波数Nvは支配的な信号成分(例えば心筋)の影響を受けて大きな値となる。これにより本来表示させたい信号成分(心筋)の周波数まで不必要に除去してしまうおそれがある。
【0039】
そこで、重心周波数Nvから得たカットオフ周波数Nfcを用いて係数アドレスFCAを設定する場合は、次式(4)に示すように係数アドレス補正値αを用いる。
【0040】
この係数アドレス補正値αを変化させることにより、上記したような特殊な条件下にあっても最適なフィルタ特性を得ることができ好ましい。なお、次式(4)において“≒”はFCAの量子化を意味する。また、α>0とすると固定ノイズ除去効果が優先され、α<0とすると信号成分の消去防止が優先される。
【0041】
FCA ≒ f(Nfc) + α …(4)
より具体的な構成例としては、例えば検査中において操作者がノイズの程度を判定し、コンソール11のフィルタ特性選択スイッチ12を操作することにより、フィルタコントローラ21の制御を介して所定のαが設定されるようにする。
【0042】
なお、重心周波数の算出に係る周波数解析は、自己相関演算によることとして説明したが、これを離散フーリエ変換(DFT)によって実現しても良い。この場合は、構成が複雑になるという反面があるが重心周波数Nvのみならず固定ノイズ成分および信号成分の各々の周波数分布に関する情報(すなわち図6の(a)の周波数分布そのもの)が得られる。したがって、より最適なカットオフ周波数Nfcを自動的に設定可能となる。例えばこの場合においては、重心周波数Nvに加え、固定ノイズ成分の振幅値に基づいて係数アドレスFCAを設定することとすれば良い。
【0043】
本発明は上述した実施の形態に限定されることなく種々変形して実施可能である。例えば、サンプル点の深さという要素を加えて係数アドレスを作成することにより、深さに応じてフィルタ特性を変化させることも可能である。
【0044】
【発明の効果】
本発明に超音波診断装置によれば、断層面内の至る所において最適なフィルタ特性がフレーム更新毎に逐次算出され、設定される。これにより時間的にも空間的にも最適なノイズ低減効果が得られる。したがって超音波診断画像の画質が改善される。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る超音波診断装置の構成を示すブロック図。
【図2】フレーム間フィルタ部9の構成を示すブロック図。
【図3】フレーム間フィルタ処理を概念的に示す図。
【図4】乗算係数ROM22のアドレス空間を模式的に示す図。
【図5】関心領域ROIを模式的に示す図。
【図6】本発明の第2の実施形態に係り、ROI内(断面内)の至る点におけるフィルタ特性算出を説明するための図。
【図7】従来例に係る超音波診断装置の構成を示すブロック図。
【符号の説明】
1…超音波プローブ、
2…送信系、
3…受信系、
4…検波器、
5…対数圧縮器、
7…表示ユニット、
8…切替器、
9…フレーム間フィルタ部、
10…システムコントローラ、
11…コンソール、
12…フィルタ特性選択スイッチ、
13…ROI設定器。

Claims (12)

  1. 被検体の断面を超音波で走査する走査手段と、
    前記走査手段の出力信号に基づいて位相情報と振幅情報とを含む受信信号を得る受信手段と、
    前記受信手段から複数のフレームに対応して得られた時系列的な受信信号を用いて、前記断面内の複数の箇所に関する任意のフィルタ特性を算出する算出手段と、
    前記算出手段により算出されたフィルタ特性に基づいて、前記断面内の複数の箇所に関する受信信号から低周波成分を減衰させるフィルタ手段と、
    前記低周波成分が減衰された受信信号に基づいて前記被検体の形態画像を生成する画像生成手段と、
    を具備することを特徴とする超音波診断装置。
  2. 前記フィルタ手段は低周波成分を減衰することを特徴とする請求項1記載の超音波診断装置。
  3. 前記受信手段は線形回路であり、前記画像生成手段は非線形回路を含むことを特徴とする請求項1記載の超音波診断装置。
  4. 前記非線形回路は、前記受信信号を検波する検波回路を有することを特徴とする請求項3記載の超音波診断装置。
  5. 前記非線形回路は、前記受信信号を対数圧縮する回路を有することを特徴とする請求項3記載の超音波診断装置。
  6. 前記受信手段は、前記受信信号をディジタル化する手段を有することを特徴とする請求項1記載の超音波診断装置。
  7. 前記断面内の特定領域の内外でフィルタ特性を切り換えることにより前記特定領域を関心領域として設定する関心領域設定手段を具備することを特徴とする請求項1に記載の超音波診断装置。
  8. 前記関心領域設定手段は、前記断面内の特定領域内において所要のフィルタ特性を設定し、当該特定領域外においてオールパスフィルタ特性を設定することを特徴とする請求項7に記載の超音波診断装置。
  9. 前記関心領域内のゲインを当該関心領域外のゲインより大きな値に制御するゲイン制御手段を具備することを特徴とする請求項7に記載の超音波診断装置。
  10. 前記算出手段は、前記受信手段から得られた時系列的な受信信号を用いて周波数解析を行うことにより前記断面内の複数の箇所に関する任意のフィルタ特性を算出することを特徴とする請求項1に記載の超音波診断装置。
  11. 前記周波数解析は、自己相関演算処理を含むことを特徴とする請求項1に記載の超音波診断装置。
  12. 前記周波数解析は、フーリエ変換処理を含むことを特徴とする請求項1に記載の超音波診断装置。
JP23517696A 1996-09-05 1996-09-05 超音波診断装置 Expired - Fee Related JP3887040B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23517696A JP3887040B2 (ja) 1996-09-05 1996-09-05 超音波診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23517696A JP3887040B2 (ja) 1996-09-05 1996-09-05 超音波診断装置

Publications (2)

Publication Number Publication Date
JPH1075949A JPH1075949A (ja) 1998-03-24
JP3887040B2 true JP3887040B2 (ja) 2007-02-28

Family

ID=16982202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23517696A Expired - Fee Related JP3887040B2 (ja) 1996-09-05 1996-09-05 超音波診断装置

Country Status (1)

Country Link
JP (1) JP3887040B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4190530B2 (ja) * 2005-09-26 2008-12-03 オリンパスメディカルシステムズ株式会社 超音波診断装置
CN101336093B (zh) * 2006-02-22 2012-07-18 株式会社日立医药 超声波诊断装置
JP2010125118A (ja) * 2008-11-28 2010-06-10 Toshiba Corp 超音波診断装置及び超音波診断装置制御方法
EP3871007B1 (en) * 2018-10-23 2024-04-24 Koninklijke Philips N.V. Adaptive ultrasound flow imaging

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60127457A (ja) * 1983-12-14 1985-07-08 Fujitsu Ltd 超音波媒体特性値測定装置
JPH069565B2 (ja) * 1988-12-21 1994-02-09 横河メディカルシステム株式会社 カラーフローマッピング方式の超音波診断装置
JPH02218352A (ja) * 1989-02-20 1990-08-31 Toshiba Corp 超音波診断装置
JP2807131B2 (ja) * 1992-08-05 1998-10-08 オリンパス光学工業株式会社 超音波診断装置
JP3281435B2 (ja) * 1993-02-23 2002-05-13 アロカ株式会社 超音波ドプラ診断装置
JP3042964B2 (ja) * 1994-06-30 2000-05-22 アロカ株式会社 超音波ドプラ診断装置
JP3683943B2 (ja) * 1994-08-15 2005-08-17 株式会社東芝 超音波診断装置

Also Published As

Publication number Publication date
JPH1075949A (ja) 1998-03-24

Similar Documents

Publication Publication Date Title
US6102862A (en) Adaptive cancellation of ring-down artifact in IVUS imaging
JP4405017B2 (ja) Bモード超音波イメージングにおける自動的な時間及び/又は横方向ゲイン補償のための方法及び装置
JP4266659B2 (ja) スペクトル・ドプラ・イメージングの自動制御のための方法及び装置
US7666142B2 (en) Ultrasound doppler diagnostic apparatus and image data generating method
EP0032513B1 (en) Ultrasonic diagnostic equipment
US5016641A (en) Spectral interpolation of ultrasound Doppler signal
JP2003510102A (ja) 血管内超音波像形成システムで血液スペックルを検出する方法と装置
EP1008863A2 (en) Method and apparatus for automatic transmit waveform optimization in B-mode ultrasound imaging
JP3683943B2 (ja) 超音波診断装置
US20100137715A1 (en) Ultrasonic imaging apparatus and control method for ultrasonic imaging apparatus
JP3887040B2 (ja) 超音波診断装置
JP3943653B2 (ja) 超音波診断装置
JP4313869B2 (ja) 超音波診断装置
JP3682104B2 (ja) 超音波診断装置
US5846203A (en) Method and apparatus for noise suppression in a doppler ultrasound system.
JP2508000B2 (ja) 超音波診断装置
JP5481261B2 (ja) 超音波診断装置及び多重検出プログラム
JP2005245479A (ja) 超音波診断装置
JP2005288021A (ja) 超音波診断装置及びその診断方法
JP4664209B2 (ja) 超音波診断装置およびその撮像を実行する超音波イメージングプログラム
JP3069404B2 (ja) 超音波診断装置
JP4575505B2 (ja) 超音波診断装置
JPH0947451A (ja) 超音波診断装置
Jensen Deconvolution of in vivo ultrasound images
JP2004337461A (ja) 超音波診断装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061124

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees