JP3886412B2 - Determination method of rolling pass condition setting in reversible rolling mill - Google Patents

Determination method of rolling pass condition setting in reversible rolling mill Download PDF

Info

Publication number
JP3886412B2
JP3886412B2 JP2002138464A JP2002138464A JP3886412B2 JP 3886412 B2 JP3886412 B2 JP 3886412B2 JP 2002138464 A JP2002138464 A JP 2002138464A JP 2002138464 A JP2002138464 A JP 2002138464A JP 3886412 B2 JP3886412 B2 JP 3886412B2
Authority
JP
Japan
Prior art keywords
rolling
pass
plate
temperature
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002138464A
Other languages
Japanese (ja)
Other versions
JP2003326304A (en
Inventor
俊彦 渡辺
恭志 前田
章 北村
禎夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002138464A priority Critical patent/JP3886412B2/en
Publication of JP2003326304A publication Critical patent/JP2003326304A/en
Application granted granted Critical
Publication of JP3886412B2 publication Critical patent/JP3886412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
可逆式圧延機を用い、複数回の圧延パスにわたる板圧延を行って鋼板を製造するに際し、圧延開始前に行われる圧延パス条件設定の決定方法に関する。
【0002】
【従来の技術】
可逆式圧延機(リバース圧延機)にて複数回の圧延パスにわたる板圧延を行う厚板圧延などにおいては、圧延開始前に、最終圧延パス後に所定の目標板厚等が付与された鋼板を製造するためのパススケジュール(各パスでの出側板厚)設定等に関する計算を行い、各圧延パス条件設定を決定する。この場合、最終圧延パス後の目標板厚および目標板クラウンだけでなく、目標材質確保のための1つ以上の所定板厚での圧延パスにおける目標板温度を満たすことや、最終圧延パス後の鋼板の長手方向(圧延方向)にわたって板平坦度(急峻度)が良好であることが望まれる。
ここで、1つ以上の所定板厚での圧延パスにおける目標板温度とは、例えば、最終圧延パス後の仕上り温度(圧延終了温度)や圧延開始温度、又は所定の途中パス(所定の板厚)における板温度のことである。また、平坦度が良好とは、板幅方向の両端部や中心部などに波型形状(耳波・中波形状)が発生していない状態であって、クラウン比率(幅方向における板厚比)の長手方向における変化が少ない状態である。
【0003】
圧延開始前に行われる圧延パス条件設定の決定方法に関しては、例えば、特開平7−178424号公報に記載されたパススケジュール設定方法が知られている。この方法は、クラウン計算モデルに基づいて所定の平坦度と板厚とを満足するように、板クラウン比率変化を予測しつつパススケジュールの設定計算を行うものである。この方法によると、圧延後得られる材質を確保するための所定パスでの圧延温度条件を厳格に保証・管理することが困難である。そこで、この管理を厳格化するため、特開平5−69020号公報においては、圧延荷重と圧延温度予測計算から各パス毎の圧延速度、パス間時間を操作する方法が開示されている。
【0004】
しかし、特開平5−69020号公報に記載の方法は、パススケジュール設定が既に決定されたものとして、各パスの圧延温度を予測計算し、所定の圧延温度が確保されるように、各パスの圧延速度やパス間時間を修正するものであり、形状制約条件(良好な板平坦度を確保するための制約条件)も満足することが難しい。すなわち、板平坦度に直接的に影響する設定圧延荷重等の条件は、修正された圧延速度やパス間時間により予測された温度に基づいて再計算され、設備制約条件(許容圧延荷重、許容圧延トルク等)が満足されない場合にのみ、パススケジュール設定が修正され、設定圧延荷重等も変更されるものである。
【0005】
目標の材質を確保し安定した材質を実現するためには、例えば、複数パスからなる圧延パスの前段パスでの圧延温度は比較的高い温度に設定し、仕上りに近い後段パスでは、圧延途中において比較的長時間の空冷(乃至は水冷)を施すことで、比較的低い圧延温度で仕上げる場合がある。このような製造条件を設定した場合、従来の技術による方法では、たとえ圧延パス条件設定が設備制約条件の範囲内であっても、パススケジュール設定計算で仮定していた圧延温度に対して実績圧延温度が大きく変化してしまい、実績圧延荷重の設定に対する誤差も大きくなり、耳波や中波といった板形状の悪化が発生していた。また、板形状が悪化した場合、形状矯正のためレベラ−等の工程を通過させる必要が生じることもあった。さらに最悪の場合、圧延ロールの損傷などの操業・設備トラブルを引き起こす原因ともなっていた。
【0006】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みることにより、可逆式圧延機にて複数回の圧延パスにわたる板圧延を行って鋼板を製造する際において、目標板厚および目標板クラウンを当然に満たすとともに、目標材質確保のための目標板温度条件、および良好な板平坦度を得るための形状制約条件を満足する圧延パス条件設定の決定方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、請求項1に記載の圧延パス条件設定の決定方法は、可逆式圧延機を用い、複数回の圧延パスにわたる板圧延を行って最終圧延パス後に所定の目標板厚及び目標板クラウンが付与された鋼板を製造するに際し、圧延開始前に行われる圧延パス条件設定の決定方法において、目標材質確保のための1つ以上の所定板厚での圧延パスにおける目標板温度と、板平坦度についての所定の制約条件とを設定し、圧延荷重予測計算モデルと板クラウン予測計算モデルと板平坦度予測計算モデルとに基づいて、前記目標板温度条件を満たすために必要な各パスの設定圧延温度の条件を用いて予測計算される板平坦度が前記板平坦度制約条件を満たすように各パスの設定出側板厚を計算するパススケジュール計算と、このパススケジュール計算結果をもとに、圧延温度予測計算モデルに基づいて、前記目標板温度条件を満たすように各パスの設定板冷却条件を調整する圧延温度計算と、を交互に繰り返して、各パスの前記設定出側板厚及び前記設定圧延温度の収束計算を実施することにより、最終圧延パス後の前記目標板厚及び前記目標板クラウンに加え、前記目標板温度及び前記板平坦度制約条件を満足する、各パスの設定出側板厚と、各パスの設定圧延温度及び設定板冷却条件とを決定することを特徴とする。
【0008】
この構成によると、目標板温度条件と板平坦度制約条件とを予め設定し、目標板温度条件を満たすように定めた各パス設定圧延温度と板平坦度制約条件(形状制約条件)を満たすようにパススケジュール計算を行い、且つ、このパススケジュール設定と目標板温度を満たすように板冷却条件を調整し、これらを収束するまで行う。このため、目標板厚及び目標板クラウンを当然に満たすことに加え、目標板温度条件および形状制約条件をも満足する圧延パス条件設定の決定を行うことができる。したがって、この設定に基づいて圧延を行うことで、板厚・板クラウンだけでなく、良好な材質および形状(平坦度)も実現した鋼板を製造することが可能になる。
また、圧延パス条件設定の決定においては、加熱炉から抽出した時点の鋼板温度や圧延開始前の鋼板温度、操業設備の状態などを計測した後に、実際に圧延を開始するまでの短時間で設定計算を行う必要がある。本発明の構成によると、パススケジュール計算と圧延温度計算とを、互いの計算結果を用いて交互に繰り返して収束計算を行うことで、最適値に速やかに収束させることができ、短時間での設定計算が可能になる。
【0009】
請求項2に記載の圧延パス条件設定の決定方法は、請求項1において、前記設定板冷却条件は、各パス圧延開始までの設定空冷条件、例えば空冷時間、または各パスの設定水冷条件であることを特徴とする。
【0010】
この構成によると、パススケジュール計算結果に基づいて、目標板温度条件を満たすように設定板冷却条件を調整する計算を容易に行うことができる。
【0011】
請求項3に記載の圧延パス条件設定の決定方法は、請求項1または2において、前記圧延温度計算として、各パスの前記設定板冷却条件を仮定し、前記圧延温度予測計算モデルに基づき算出される計算温度を求め、この計算温度と前記目標板温度との偏差に基づき、前記設定板冷却条件を変更して調整する計算を、偏差が所定値以内に収束するまで繰り返して行うことにより、設定板冷却条件を決定することを特徴とする。
【0012】
この構成によると、目標板温度条件を満たす板冷却条件を容易に計算することができ、設定計算時間の短縮化を図れる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。本発明は、とくに厚板圧延において、可逆式圧延機を用い、複数回の圧延パスにわたる熱間での板圧延を行って最終圧延パス後に所定の目標板厚及び目標板クラウンが付与された鋼板を製造するに際し、圧延開始前に行われる圧延パス条件設定の決定方法として適用されるものである。
【0014】
本実施形態に係る圧延パス条件設定の決定方法1(以下、「設定計算方法1」ともいう)の概要を図10及び図11をもとに説明する。図10は、設定計算方法1の全体構成の概略を説明する図であり、ブロック図的に示したものである。
この設定計算方法1は、圧延機スペック(ミル定数、ロール径等)や材料条件(板厚、板幅、圧下率、温度、変形抵抗パラメータ等)に基づいて、プロセスコンピュータa1(プロコンa1)等の演算処理装置によりパススケジュール計算や圧下位置の算出等が行われるものである。圧延開始前に、まずプロコンa1には、被圧延材についての情報である実績入側板厚a2(即ち、圧延開始前の板厚)や実績入側板温a3(即ち、圧延開始前の板温度)等の計測結果が送信されるとともに、最終圧延パス後の目標板厚及び目標板クラウンと所定の制約条件とが製造条件a4として設定される。この所定の制約条件とは、目標材質確保のための1つ以上の所定の圧延パスにおける目標板厚や、最終圧延パス後の板平坦度等についての制約条件である。図10では、この制約条件としてnパス目の出側板厚及び板温度、目標の板平坦度を設定した場合を示している。
【0015】
そして、このプロコンa1にて、ゲージメータ式a5(圧延機をバネとみなした計算モデル)と、荷重予測計算モデルa6(入側板厚、出側板厚、ロール径、変形抵抗パラメータ等から圧延荷重を算出する計算モデル)と、トルク予測計算モデルa7(圧延荷重、圧延荷重重心位置予測値等から圧延トルクを算出する計算モデル)と、クラウン予測計算モデルa8(圧延荷重、板幅、入側板クラウン、出側板クラウン等の間の関係式)と、圧延温度予測計算モデルa9(熱伝導方程式に基づいた温度変化を算出する計算モデル)と、板平坦度予測計算モデルa10(板クラウン比率の変化、ロール径、板厚、板幅等から平坦度を算出する計算モデル)とに基づいて演算処理される計算が行われる。
【0016】
演算処理としては、設定した目標板温度条件を満たすために必要な各パスの設定圧延温度の条件を用いて予測計算される板平坦度が設定した板平坦度制約条件を満たすように各パスの設定出側板厚a12を計算するパススケジュール計算2と、このパススケジュール計算結果をもとに、目標板温度条件を満たすように各パスの設定空冷時間a11(設定板冷却条件)を調整する圧延温度計算3とが行われる。これらの計算内容については、後で詳述するが、パススケジュール計算2と圧延温度計算3とが交互に繰り返して行われることで、各パスの設定出側板厚a12(パススケジュール設定a12)と、設定圧延温度及び設定空冷時間a11とについての収束計算が実施される。
【0017】
図11は、従来の技術に係る圧延パス条件設定の決定例(図9(a))と本実施形態に係る圧延パス条件設定の決定例(図9(b))とを示したものである。従来の技術(例えば、特開平7−178424号公報参照)では、最終的に所定の板厚及び平坦度が得られるように設定計算が行われるものであるため、所定の出側板厚となる途中パス(例えば、nパス目)における板温度は何ら制約されない(図9(a)参照)。しかし、本実施形態においては、後述の説明から明らかになるように、所定の出側板厚となる途中の所定パス(nパス目)における板温度が、目標の板温度値になるように設定される(図9(b)参照)。これにより、目標材質確保の管理厳格化が図れる。
【0018】
以下、設定計算方法1について、フローチャート等を参照しながら詳細に説明する。図1は設定計算方法1における計算フローを示したものである。設定計算方法1においては、最初に、移送厚(圧延開始前の板厚)、移送温度(圧延開始前の板温度)、所定板厚での圧延パスにおける目標板温度(以下、「目標板温度T」という)、最終圧延パス後の目標板厚(以下、「目標板厚h」という)及び目標板クラウン(以下、「目標板クラウンC」という)、板平坦度についての所定の制約条件(以下、「板平坦度制約条件F」という)、などに関する各情報が与えられる(A1)。そして、最終圧延パスの設定出側板厚及び設定出側板クラウンとして、それぞれ目標板厚h及び目標板クラウンCを設定するとともに、初期値としての各パスの設定圧延温度、圧下率を仮定して設定する(A2)。この初期値設定における圧下率は、例えば、移送厚、目標板厚、鋼種等の条件によって予め定めたテーブル等によって設定される。この初期圧下率設定により、初期パススケジュール(各パスの設定出側板厚の初期値)も設定されることになる。また、初期設定圧延温度は、所定パスでは目標板温度Tを満たし、所定パス以外では圧延パスとともに均等幅で低下する等と仮定して設定するものとする。
【0019】
設定計算方法1は、前述のパススケジュール計算2及び圧延温度計算3を含んでおり、前記の各初期値がセットされると(A2)、先にパススケジュール計算2が行われる。パススケジュール計算2においては、各予測計算モデル(a5〜a10)に基づき、初期値条件を用いて各パスの圧延荷重等を計算するが、最初に最終圧延パス条件を計算し、順次後段パスから前段パスにかけて遡るように第1パスまで逆算して計算を行っていく(A3〜A8)。
【0020】
各パスの計算において、まずステップA3では、温度関数として与えられる圧延時の変形抵抗を求め、圧延荷重予測計算モデルa6に基づき圧延荷重を計算する。この予測圧延荷重をもとに、圧延ロールの弾性撓みを計算する。そして、このロール撓み計算結果および設定出側板クラウンをもとに、クラウン予測計算モデルa8に基づき設定入側板クラウン及び板クラウン比率の変化を計算する。ここで、板クラウン比率とは板幅方向の所定の板厚比を意味し、板クラウン比率変化とは、入側板クラウン比率と出側板クラウン比率との変化を意味するものとする。そして、計算した板クラウン比率変化をもとに板平坦度予測計算モデルa10に基づき出側板平坦度を予測する。この出側板平坦度予測値を板平坦度制約条件Fと比較し、出側板平坦度予測値が板平坦度制約条件Fよりも小さければ、当該パスにおける入側設定板クラウンと設定入側板厚とを一旦決定する。出側板平坦度予測値が板平坦度制約条件Fより耳波形状として大きければ、当該パスの圧下率が軽くなるように入側板厚を薄くなる方向に設定入側板厚を修正する。このように設定入側板厚及び設定入側板クラウンが逆算され、これが順次前パスの設定出側板厚及び設定出側板クラウンとなるため(A7)、所定の形状制約が満たされる各パスの設定出側板厚が求められることになる。
【0021】
そして、当該パスにおける設定入側板厚及び設定入側板クラウンを逆算した後、荷重予測計算モデルa6に基づき計算された当該パスの予測圧延荷重が荷重制約(圧延機仕様から定まる許容最大荷重)を超えていないか否かの判断を行う(A4)。さらに、圧延トルク予測計算モデルa7に基づき計算された当該パスの予測圧延トルクがトルク制約条件(機械的仕様から定まる許容最大トルク)を超えていないか否かの判断を行う(A5)。これらの判断(A4、A5)の結果、制約条件を超えている場合は、当該パスの圧下率を軽くなるよう修正し、設定入側板厚及び設定入側板クラウンの再調整を行う(A6)。当該パスの設定入側板厚が移送厚よりも小さい限りは、全圧延パスについて計算が終了していないため、これらの処理(A3〜A7)を繰り返し行う(A8)。以上により、全パスについての計算が終了した場合は、荷重及びトルク制約条件はもとより、板平坦度制約条件Fも満たされる各パスの設定入側板厚(及び設定出側板厚)と設定入側板クラウン(設定出側板クラウン)とが一旦決定される。
【0022】
上記のA3〜A8の処理が一旦終了することで、パススケジュール計算2は一旦終了し、次いで、圧延温度計算3が行われる。圧延温度計算3においては、後述するように、目標板温度Tを満たすように各パスの設定板冷却条件が調整される。この圧延温度計算3が終了すると、各パスの設定出側板厚及び設定圧延温度が収束したか否かが判断され(A9)、収束していなければ、収束するまでパススケジュール計算2と圧延温度計算3とが交互に繰り返して収束計算が実施される。
【0023】
各パスの設定出側板厚及び設定圧延温度が繰り返し計算により収束したか否かは、繰り返しの過程における前回の圧延パス条件設定との変化が少なければ収束したと判定する。例えば、各パスの設定出側板厚、設定圧延温度、設定板冷却条件についての今回繰り返し計算結果と前回繰り返し計算結果との差が所定の閾値以下である場合や、これらの設定値に各パス間でムラがある場合(あるパスの設定値のみが、その前段パス又は後段パスとの隔たりが所定の範囲を超えている場合等)や、設定板冷却条件が計算により求まらなかった(解が得られなかった)場合など収束していないと判定する。収束していないと判定した場合は、例えば、所定の収束判定条件との乖離量に応じて各パスの設定出側板厚及び設定圧延温度(パススケジュール計算2を最初に行う場合における初期値条件に相当)を変更して、パススケジュール計算2と圧延温度計算3との繰り返し計算を続行する。収束していると判定した場合は、圧延パス条件設定が確定し(A10)、設定計算方法1による計算が終了して圧延パス条件設定が最終的に決定される。
【0024】
なお、設定計算方法1は、パススケジュール計算2及び圧延温度計算3において、上記のように互いの計算結果を前提として用いて交互に繰り返して収束計算を行うものである。パススケジュール計算2と圧延温度計算3とは、互いに従属関係にあるものであるが、上記の繰り返し計算により、非線形方程式の繰り返し解法(陰関数で表現された式に初期値を設定し、繰り返し計算することにより、その解が求まる解法)が適用されることと等価となり、少ない繰り返し回数で、パススケジュール設定と圧延温度設定とが収束する。これは、圧延温度と圧延荷重との関係が、同じ圧延材のある温度近傍(実際に操業される圧延温度の範囲)では、単調な関係にあることによる。したがって、速やかに最適値に収束させることができ、短時間での設定計算が可能になる。
【0025】
ここで、圧延温度計算3について詳しく説明する。各パスの設定圧延温度は、所定パスにおける目標板温度Tを満たすように定められているが、圧延温度計算3においては、各パスの設定板冷却条件を調整することで、目標板温度Tを満たすように計算する。調整する設定板冷却条件の対象としては、各パス圧延開始までの設定空冷条件、例えば各パス圧延開始までの設定空冷時間(当該パスの前パスの圧延終了から当該パスの圧延開始までの空冷時間)、又は水冷を施す場合はその設定水冷条件(冷却水の量や温度もパラメータとして設定できるが、圧延能率最大の観点からは水冷能力最大で冷却することを前提とし、水冷時間で調整することが好ましい。)を選択することができる。なお、各パスの設定圧延速度を選択してもよい。この場合、圧延速度を調整することが、圧延中の板冷却時間(空冷時間や水冷時間)を調整することに相当することになる。これらのいずれの条件を調整してもよいが、本実施形態においては、設定空冷時間を調整する場合を例にとり説明する。
【0026】
図2は、パススケジュール設定と目標板温度Tとの関係を例示して説明する模式図である。この例では、説明を簡単にするため、3パスの可逆式圧延により、50mmの鋼板を20mmまで(50mm→40mm→30mm→20mm)圧延して製品とする(次工程へ送る)ものとする。このとき、圧延開始前の板温度は900℃であったとし、材質安定化の観点から2パス目の設定圧延温度(圧延直前の温度)が、目標板温度T(圧延直前の温度)として800℃と設定されたものとする。
【0027】
この場合、2パス目圧延開始までの空冷時間(設定空冷時間)を調整することにより、2パス目に設定された温度800℃を満足する圧延パス条件設定を圧延開始前の限られた時間内で行う必要がある。そこで、図1の設定計算方法1における圧延温度計算3の部分を図3に示すように、ニュートン法や一次元探索法などの最適化計算を行うことで、目標板温度T(図2の例では800℃)を満足するように設定空冷時間を調整する。
【0028】
図3は圧延温度計算3の計算フローを示したものであるが、この圧延温度計算3は、パススケジュール計算2により板平坦度制約条件Fを満たすように定められた各パス出側設定板厚と、目標板温度Tを満たすように定められた各パス設定圧延温度とを前提として行われる(B1)。そして、予め被圧延材の寸法や鋼種等の条件に応じて定めておいた標準圧延時間(空冷、圧延パス、などの素過程の時間)から仮定した各パスの設定空冷時間(設定板冷却条件)を初期値として計算を開始する(B1)。
【0029】
これらの前提条件(B1)をもとに、目標板温度Tが設定されたパスの計算温度を圧延温度予測計算モデルa9に基づき算出して求め、この算出された計算温度と目標板温度Tとの偏差に基づき、各パスの設定空冷時間を変更して調整する計算(以下、「調整計算B」ともいう)を、偏差が所定値以内に収束するまで(目標板温度Tを満足するまで)繰り返して行うことにより(B2〜B7)、設定空冷時間を決定し、各パスの設定圧延温度が決定されることになる(B8)。この調整計算Bについて図3及び図4をもとに説明する。
【0030】
図4は、ニュートン法の計算概念図の形式で設定空冷時間を調整する計算を説明する図である。まず最初に、初期値として仮定した設定空冷時間をもとに所定パスの空冷時間修正量α1及びα2を決める(図4参照)。そして、この空冷時間修正量α1及びα2それぞれに対し、圧延温度予測計算モデルa9に基づき、圧延時間を所定単位時間毎に進め(素過程を進め)ながら(B3)、素過程に応じた温度変化量の計算を行う(B4)。この計算(B3、B4)を目標板温度Tが設定された圧延パスが終了するまで所定単位時間毎に繰り返し行う(B5)。これにより、空冷時間修正量α1及びα2にそれぞれ対応する(目標板温度Tが設定された圧延パスの)計算温度を求め、この計算温度と設定圧延温度との偏差y(α1)及びy(α2)を求める(図4参照)。そして、両偏差y(α1)及びy(α2)の勾配から、次の計算に用いる所定パスの空冷時間修正量α3を求め(図4参照)、この所定パスの空冷時間の調整量を計算する(B6)。こうして、同様に空冷時間修正量α2、α3から空冷時間修正量α4を順次求めていき、偏差が略ゼロとなる空冷時間修正量を求める(図4参照)。即ち、目標板温度Tを満足するまで調整計算Bが行われる(B7)。本実施形態では、このように、ニュートン法を用いた例を示しているが、一次元探索法の併用も可能である。
【0031】
以下、実際の各計算例について説明する。まず、圧延温度計算3の計算例を図5に示す。この計算例は2パス目の空冷時間(1パス目圧延後2パス目圧延開始までの空冷時間)を修正し、3パス後の目標板温度Tに合わせる場合の例を示したものである。この計算例では、圧延温度開始温度が異なり標準圧延時間により温度計算が目標板温度Tから2℃〜57℃ずれている7ケースで、収束までの計算回数を確認した。なお、各ケースで繰り返し2回目の修正量は、標準の温度降下率を設定しておいて、1回目の計算結果である温度偏差から求めている。いずれのケースでも、5回程度の繰り返し計算で目標板温度Tから±1℃以内に収束していることがわかる。
【0032】
つぎに、図6に、本実施形態の設定計算方法1により圧延パス条件設定を具体的に行った例におけるパススケジュール設定(各パス設定出側板厚)が一定の値に収束している過程(図6(a))と、各パス設定圧延温度が一定の値に収束している過程(図6(b))とを示す。この例では、移送厚を65mm、目標板厚hを14mmとし、6パス目(板厚25mmの段階)の目標板温度Tを780℃に設定している。また、図6(a)及び図6(b)の縦軸は、6パス目についての計算での設定出側板厚及び設定圧延温度のベクトルの2乗ノルムを示している。これらの結果(図6)からわかるように、各パスの出側設定板厚及び各パスの設定圧延温度ともに少ない計算回数で収束していることがわかる。
【0033】
最後に、図7に、設定計算方法1による圧延パス条件の設定結果を示す。図7(a)は各パスの設定出側板厚と設定圧延温度との関係を、図7(b)は各パスの設定出側板厚と予測圧延荷重との関係を、図7(c)は各パスの設定出側板厚とクラウン比率変化との関係を、それぞれ示したものである。この計算例では、移送厚を63mm、目標板厚hを16mmと設定しており、4パス目(板厚36mmの段階)における目標板温度Tを850℃に設定した場合について計算した例を示している。この設定計算結果では、全10パスの圧延で、目標板厚h(h=16mm)に到達するよう設定されている。
【0034】
この計算を実際に行った結果、パススケジュール計算2及び圧延温度計算3ともに数回の繰り返し回数で収束することが確認できた。また、図9(a)に示すように、目標板温度T(T=850℃)を満足することができ、図9(b)に示すように、圧延中の板形状(板平坦度)に関係する圧延荷重のバランスも良好となる設定が得られた。さらに、図9(c)に示すように、板形状(板平坦度)の指標となるクラウン比率変化も小さく抑えられていることがわかる。なお、図9(c)中の点線は、経験的に板形状が耳波、中波となる限界値を表している。また、図示していないが、圧延トルクなどの設備制約条件も十分満足できていることが確認できた。
【0035】
以上説明したように、本実施形態では、最終圧延パス後の目標板厚及び目標板クラウンに加え、板平坦度制約条件と所定パスにおける目標板温度とを満足する、各パスの設定出側板厚と、各パスの設定圧延温度及び板平坦度制約条件とを決定するものである。これにより、目標板厚及び目標板クラウンを当然に満たすことに加え、目標板温度条件および形状制約条件をも満足する圧延パス条件設定の決定を行うことができる。したがって、この設定に基づいて圧延を行うことで、板厚・板クラウンだけでなく、良好な材質および形状(平坦度)も実現した鋼板を製造することが可能になる。
【0036】
また、圧延パス条件設定の決定においては、加熱炉から抽出した時点の鋼板温度や圧延開始前の鋼板温度、操業設備の状態などを計測した後に、実際に圧延を開始するまでの短時間で設定計算を行う必要がある。本発明の構成によると、パススケジュール計算と圧延温度計算とを、互いの計算結果を用いて交互に繰り返して収束計算を行うことで、最適値に速やかに収束させることができ、短時間での設定計算が可能になる。
【0037】
以上が、本実施形態の説明である。なお、実施の形態は、上述した各実施例に限定されるものではなく、例えば、次のように変更して実施してもよい。
【0038】
(1)本実施形態では、目標板温度を1つのみ設定した場合を説明しているが、2つ以上設定する場合であっても本発明を適用できる。この場合、図1に示す設定計算方法1において、最終圧延パスまでの温度を一度に計算してしまうのではなく、複数設定されている各目標板温度までの計算に分割して、各目標板温度を満足するための最適化を施すことにより、複数の目標板温度を満足することができる。
【0039】
(2)本実施形態の設定計算方法で用いられる各予測計算モデル(圧延荷重予測計算モデル、クラウン予測計算モデル、圧延温度予測計算モデル、板平坦度予測計算モデル)は、それぞれ独立した計算モデルでなくてもよい。例えば、圧延荷重予測モデルの中に他の予測計算モデルが組み込まれた表現形式であっても同一とみなし得るものであり、本発明と全く同様の効果を奏し得る。
【0040】
【発明の効果】
請求項1の発明によると、目標板温度条件と板平坦度制約条件とを予め設定し、目標板温度条件を満たすように定めた各パス設定圧延温度と板平坦度制約条件(形状制約条件)を満たすようにパススケジュール計算を行い、且つ、このパススケジュール設定と目標板温度を満たすように板冷却条件を調整し、これらを収束するまで行う。このため、目標板厚及び目標板クラウンを当然に満たすことに加え、目標板温度条件および形状制約条件をも満足する圧延パス条件設定の決定を行うことができる。したがって、この設定に基づいて圧延を行うことで、板厚・板クラウンだけでなく、良好な材質および形状(平坦度)も実現した鋼板を製造することが可能になる。
また、圧延パス条件設定の決定においては、加熱炉から抽出した時点の鋼板温度や圧延開始前の鋼板温度、操業設備の状態などを計測した後に、実際に圧延を開始するまでの短時間で設定計算を行う必要がある。本発明の構成によると、パススケジュール計算と圧延温度計算とを、互いの計算結果を用いて交互に繰り返して収束計算を行うことで、最適値に速やかに収束させることができ、短時間での設定計算が可能になる。
【0041】
請求項2の発明によると、パススケジュール計算結果に基づいて、目標板温度条件を満たすように設定板冷却条件を調整する計算を容易に行うことができる。
【0042】
請求項3の発明によると、目標板温度条件を満たす板冷却条件を容易に計算することができ、設定計算時間の短縮化を図れる。
【図面の簡単な説明】
【図1】本実施形態に係る設定計算方法における計算フローを示したものである。
【図2】パススケジュール設定と所定板厚での圧延パスにおける目標板温度との関係を例示して説明する模式図である。
【図3】本実施形態に係る設定計算方法における圧延温度計算の計算フローを示したものである。
【図4】本実施形態に係る設定計算方法の圧延温度計算における設定空冷時間を調整する計算について説明する図である。
【図5】本実施形態に係る設定計算方法の圧延温度計算の計算例を示す図である。
【図6】本実施形態の設定計算方法1により圧延パス条件設定を具体的に行った例におけるパススケジュール設定と各パス設定圧延温度とが一定の値に収束している様子を示したものである。
【図7】本実施形態に係る設定計算方法による圧延パス条件設定の計算例を示したものである。
【図8】本実施形態に係る設定計算方法の全体構成の概略を説明する図である。
【図9】従来の技術に係る圧延パス条件設定の決定例と本実施形態に係る圧延パス条件設定の決定例とを示したものである。
【符号の説明】
1 設定計算方法
2 パススケジュール計算
3 圧延温度計算
a6 荷重予測計算モデル
a8 板クラウン予測計算モデル
a9 圧延温度予測計算モデル
a10 板平坦度予測計算モデル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for determining a rolling pass condition setting performed before starting rolling when a steel plate is manufactured by performing plate rolling over a plurality of rolling passes using a reversible rolling mill.
[0002]
[Prior art]
In plate rolling, etc., in which sheet rolling is performed over multiple rolling passes with a reversible rolling mill (reverse rolling mill), a steel plate with a predetermined target thickness is provided after the final rolling pass before rolling starts. The calculation related to the setting of the pass schedule (exit side plate thickness in each pass) and the like is performed, and the setting of each rolling pass condition is determined. In this case, not only the target plate thickness and target plate crown after the final rolling pass, but also satisfy the target plate temperature in the rolling pass at one or more predetermined plate thicknesses for securing the target material, or after the final rolling pass It is desired that the plate flatness (steepness) is good over the longitudinal direction (rolling direction) of the steel plate.
Here, the target plate temperature in the rolling pass with one or more predetermined plate thicknesses is, for example, the finishing temperature after the final rolling pass (rolling end temperature), the rolling start temperature, or a predetermined intermediate pass (predetermined plate thickness) ) Is the plate temperature. Also, good flatness means that no corrugated shape (ear wave / medium wave shape) is generated at both ends or the center of the plate width direction, and the crown ratio (plate thickness ratio in the width direction). ) In the longitudinal direction is small.
[0003]
As a method for determining the rolling pass condition setting performed before the start of rolling, for example, a pass schedule setting method described in JP-A-7-178424 is known. This method performs pass schedule setting calculation while predicting a change in the plate crown ratio so as to satisfy a predetermined flatness and plate thickness based on the crown calculation model. According to this method, it is difficult to strictly guarantee and manage the rolling temperature condition in a predetermined pass for securing the material obtained after rolling. Therefore, in order to tighten this management, Japanese Patent Laid-Open No. 5-69020 discloses a method of manipulating the rolling speed and the time between passes from the rolling load and the rolling temperature prediction calculation.
[0004]
However, in the method described in Japanese Patent Laid-Open No. 5-69020, assuming that the pass schedule setting has already been determined, the rolling temperature of each pass is predicted and calculated so that a predetermined rolling temperature is ensured. It is intended to correct the rolling speed and the time between passes, and it is difficult to satisfy the shape constraint conditions (constraint conditions for ensuring good plate flatness). That is, conditions such as the set rolling load that directly affects the plate flatness are recalculated based on the temperature predicted by the corrected rolling speed and the time between passes, and the equipment constraints (allowable rolling load, allowable rolling) Only when the torque or the like is not satisfied, the pass schedule setting is corrected, and the set rolling load and the like are also changed.
[0005]
In order to secure the target material and realize a stable material, for example, the rolling temperature in the first pass of a multi-pass rolling pass is set to a relatively high temperature, and in the second pass that is close to the finish, By performing air cooling (or water cooling) for a relatively long time, there are cases where finishing is performed at a relatively low rolling temperature. When such manufacturing conditions are set, in the conventional method, even if the rolling pass condition setting is within the range of the equipment constraint conditions, the actual rolling is performed with respect to the rolling temperature assumed in the pass schedule setting calculation. The temperature greatly changed, the error with respect to the setting of the actual rolling load also increased, and the plate shape such as ear waves and medium waves deteriorated. Further, when the plate shape deteriorates, it may be necessary to pass a process such as a leveler for shape correction. Furthermore, in the worst case, it was a cause of operation / equipment troubles such as damage to the rolling roll.
[0006]
[Problems to be solved by the invention]
In view of the above circumstances, the present invention naturally satisfies the target plate thickness and the target plate crown when producing a steel plate by performing plate rolling over a plurality of rolling passes in a reversible rolling mill, It is an object of the present invention to provide a method for determining a rolling pass condition setting that satisfies a target plate temperature condition for securing and a shape constraint condition for obtaining good plate flatness.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problem, the method for determining the rolling pass condition setting according to claim 1 uses a reversible rolling machine, performs plate rolling over a plurality of rolling passes, and performs a predetermined target plate thickness after the final rolling pass. In the method of determining the rolling pass condition setting performed before the start of rolling when manufacturing the steel plate to which the target plate crown is applied, the target plate temperature in the rolling pass at one or more predetermined plate thicknesses for securing the target material And a predetermined constraint on the plate flatness, and based on the rolling load prediction calculation model, the plate crown prediction calculation model, and the plate flatness prediction calculation model, it is necessary to satisfy the target plate temperature condition. A pass schedule calculation for calculating a set delivery side plate thickness of each pass so that the plate flatness predicted using the set rolling temperature condition of each pass satisfies the plate flatness constraint condition, and this pass schedule The rolling temperature calculation for adjusting the set plate cooling condition of each pass so as to satisfy the target plate temperature condition based on the rolling temperature prediction calculation model based on the rolling calculation result is alternately repeated, and In addition to the target plate thickness and the target plate crown after the final rolling pass, the target plate temperature and the plate flatness constraint condition are satisfied by performing convergence calculation of the set delivery side plate thickness and the set rolling temperature. The set delivery side plate thickness of each pass, the set rolling temperature and the set plate cooling condition of each pass are determined.
[0008]
According to this configuration, the target plate temperature condition and the plate flatness constraint condition are set in advance, and each pass setting rolling temperature and the plate flatness constraint condition (shape constraint condition) determined to satisfy the target plate temperature condition are satisfied. The pass schedule calculation is performed, and the plate cooling conditions are adjusted so as to satisfy the pass schedule setting and the target plate temperature, and these are performed until convergence. For this reason, in addition to satisfying the target plate thickness and the target plate crown, it is possible to determine the rolling pass condition setting that also satisfies the target plate temperature condition and the shape constraint condition. Therefore, by performing rolling based on this setting, it is possible to manufacture a steel plate that realizes not only the plate thickness and the plate crown but also a good material and shape (flatness).
In determining the rolling pass condition setting, the steel plate temperature at the time of extraction from the heating furnace, the steel plate temperature before the start of rolling, the state of the operation equipment, etc. are measured and then set in a short time until the actual rolling starts. It is necessary to perform calculation. According to the configuration of the present invention, the pass schedule calculation and the rolling temperature calculation are alternately repeated using the calculation results of each other to perform the convergence calculation, so that the optimum value can be quickly converged in a short time. Setting calculation becomes possible.
[0009]
The rolling pass condition setting determination method according to claim 2 is the method according to claim 1, wherein the set plate cooling condition is a set air cooling condition until the start of each pass rolling, for example, an air cooling time or a set water cooling condition for each pass. It is characterized by that.
[0010]
According to this configuration, it is possible to easily perform calculation for adjusting the set plate cooling condition so as to satisfy the target plate temperature condition based on the pass schedule calculation result.
[0011]
The method for determining the rolling pass condition setting according to claim 3 is calculated based on the rolling temperature prediction calculation model in claim 1 or 2, assuming the set plate cooling condition of each pass as the rolling temperature calculation. The calculation temperature is calculated, and the calculation for changing and adjusting the setting plate cooling condition based on the deviation between the calculated temperature and the target plate temperature is repeatedly performed until the deviation converges within a predetermined value. The plate cooling condition is determined.
[0012]
According to this configuration, the plate cooling condition that satisfies the target plate temperature condition can be easily calculated, and the setting calculation time can be shortened.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. The present invention particularly relates to a steel plate in which a predetermined target plate thickness and a target plate crown are provided after the final rolling pass by performing hot plate rolling over a plurality of rolling passes using a reversible rolling mill, particularly in thick plate rolling. Is used as a method for determining the rolling pass condition setting performed before the start of rolling.
[0014]
An outline of the rolling pass condition setting determination method 1 (hereinafter also referred to as “setting calculation method 1”) according to the present embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is a diagram for explaining the outline of the overall configuration of the setting calculation method 1 and is shown in a block diagram.
This setting calculation method 1 is based on the specifications of the rolling mill (mill constant, roll diameter, etc.) and material conditions (sheet thickness, sheet width, rolling reduction, temperature, deformation resistance parameters, etc.), etc. The arithmetic processing unit performs path schedule calculation, calculation of the reduction position, and the like. Prior to the start of rolling, first, in the process control a1, the actual entry side plate thickness a2 (that is, the plate thickness before the start of rolling) or the actual entry side plate temperature a3 (that is, the plate temperature before the start of rolling), which is information about the material to be rolled. The measurement results such as the above are transmitted, and the target plate thickness and target plate crown after the final rolling pass and predetermined constraint conditions are set as the manufacturing conditions a4. This predetermined constraint condition is a constraint condition regarding a target plate thickness in one or more predetermined rolling passes for securing a target material, a plate flatness after the final rolling pass, and the like. FIG. 10 shows a case in which the nth pass exit side plate thickness and plate temperature, and the target plate flatness are set as the constraint conditions.
[0015]
And in this process computer a1, a rolling load is calculated from a gauge meter type a5 (calculation model in which the rolling mill is regarded as a spring) and a load prediction calculation model a6 (incoming side plate thickness, outgoing side plate thickness, roll diameter, deformation resistance parameter, etc.) Calculation model), torque prediction calculation model a7 (calculation model for calculating rolling torque from rolling load, rolling load center of gravity position predicted value, etc.), crown prediction calculation model a8 (rolling load, plate width, entry side plate crown, A relational expression between the exit side plate crown and the like), a rolling temperature prediction calculation model a9 (a calculation model for calculating a temperature change based on the heat conduction equation), and a plate flatness prediction calculation model a10 (a change in the plate crown ratio, roll A calculation is performed based on a calculation model that calculates flatness from a diameter, a plate thickness, a plate width, and the like.
[0016]
As the calculation processing, each pass is set so that the plate flatness predicted by using the set rolling temperature condition of each pass necessary to satisfy the set target plate temperature condition satisfies the set plate flatness constraint condition. Rolling temperature for adjusting the set air cooling time a11 (setting plate cooling condition) of each pass so as to satisfy the target plate temperature condition based on the pass schedule calculation 2 for calculating the set delivery side plate thickness a12 and this pass schedule calculation result Calculation 3 is performed. These calculation contents will be described in detail later, but by performing the pass schedule calculation 2 and the rolling temperature calculation 3 alternately and repeatedly, the set delivery side plate thickness a12 (pass schedule setting a12) of each pass, Convergence calculation is performed for the set rolling temperature and the set air cooling time a11.
[0017]
FIG. 11 shows an example of determining the rolling pass condition setting according to the conventional technique (FIG. 9A) and an example of determining the rolling pass condition setting according to the present embodiment (FIG. 9B). . In the conventional technique (for example, see JP-A-7-178424), setting calculation is performed so that a predetermined plate thickness and flatness are finally obtained. The plate temperature in the pass (for example, the n-th pass) is not limited at all (see FIG. 9A). However, in the present embodiment, as will be apparent from the following description, the plate temperature in the predetermined pass (n-th pass) in the middle of the predetermined delivery side plate thickness is set to the target plate temperature value. (See FIG. 9B). As a result, it is possible to tighten the management of securing the target material.
[0018]
Hereinafter, the setting calculation method 1 will be described in detail with reference to a flowchart and the like. FIG. 1 shows a calculation flow in the setting calculation method 1. In the setting calculation method 1, first, a transfer thickness (plate thickness before the start of rolling), a transfer temperature (plate temperature before the start of rolling), a target plate temperature in a rolling pass at a predetermined plate thickness (hereinafter referred to as “target plate temperature”). T ”), a target plate thickness after the final rolling pass (hereinafter referred to as“ target plate thickness h ”), a target plate crown (hereinafter referred to as“ target plate crown C ”), and predetermined constraints on plate flatness ( Hereinafter, each piece of information relating to “plate flatness constraint condition F”) is given (A1). Then, the target plate thickness h and the target plate crown C are set as the set delivery side plate thickness and the set delivery side plate crown of the final rolling pass, respectively, and set by assuming the set rolling temperature and rolling reduction of each pass as initial values. (A2). The rolling reduction in this initial value setting is set by, for example, a table or the like determined in advance according to conditions such as transfer thickness, target plate thickness, and steel type. With this initial rolling reduction setting, an initial pass schedule (initial value of the set delivery side plate thickness of each pass) is also set. In addition, the initial setting rolling temperature is set on the assumption that the target plate temperature T is satisfied in a predetermined pass, and is decreased with a uniform width together with the rolling pass in other than the predetermined pass.
[0019]
The setting calculation method 1 includes the pass schedule calculation 2 and the rolling temperature calculation 3 described above. When the initial values are set (A2), the pass schedule calculation 2 is performed first. In pass schedule calculation 2, based on each prediction calculation model (a5 to a10), the rolling load and the like of each pass are calculated using the initial value condition. First, the final rolling pass condition is calculated first, and then the subsequent pass The calculation is performed by calculating back to the first pass so as to go back to the previous pass (A3 to A8).
[0020]
In the calculation of each pass, first, in step A3, the deformation resistance at the time of rolling given as a temperature function is obtained, and the rolling load is calculated based on the rolling load prediction calculation model a6. Based on the predicted rolling load, the elastic deflection of the rolling roll is calculated. Based on the roll deflection calculation result and the set exit side plate crown, the change in the set entrance side plate crown and the plate crown ratio is calculated based on the crown prediction calculation model a8. Here, the plate crown ratio means a predetermined plate thickness ratio in the plate width direction, and the plate crown ratio change means a change between the entrance side plate crown ratio and the exit side plate crown ratio. Based on the calculated plate crown ratio change, the delivery side plate flatness is predicted based on the plate flatness prediction calculation model a10. When the predicted value of the exit side plate flatness is compared with the plate flatness constraint condition F and the predicted value of the exit side plate flatness is smaller than the plate flatness constraint condition F, the entry side set plate crown and the set entry side plate thickness in the path Is determined once. If the predicted value of the exit side plate flatness is larger than the plate flatness constraint condition F as the ear wave shape, the set entrance side plate thickness is corrected in the direction in which the entrance side plate thickness is reduced so that the rolling reduction of the path becomes lighter. In this way, the set entry side plate thickness and the set entry side plate crown are back-calculated, which in turn become the set exit side plate thickness and set exit side plate crown of the previous pass (A7), so the set exit plate of each path that satisfies the predetermined shape constraint Thickness will be required.
[0021]
And after calculating back the set entry side plate thickness and set entry side plate crown in the pass, the predicted rolling load of the pass calculated based on the load prediction calculation model a6 exceeds the load constraint (allowable maximum load determined from the rolling mill specifications). It is determined whether it is not (A4). Further, it is determined whether or not the predicted rolling torque of the path calculated based on the rolling torque prediction calculation model a7 exceeds a torque constraint condition (allowable maximum torque determined from mechanical specifications) (A5). As a result of these determinations (A4, A5), when the constraint condition is exceeded, the reduction rate of the path is corrected to be light, and the set entry side plate thickness and the set entry side plate crown are readjusted (A6). As long as the set entry side plate thickness of the pass is smaller than the transfer thickness, calculation is not completed for all rolling passes, so these processes (A3 to A7) are repeated (A8). As described above, when the calculation for all the paths is completed, the set entry side plate thickness (and set exit side plate thickness) and the set entry side plate crown of each path satisfying the plate flatness constraint condition F as well as the load and torque constraint conditions. (Set outlet plate crown) is once determined.
[0022]
When the processes of A3 to A8 are once completed, the pass schedule calculation 2 is temporarily ended, and then the rolling temperature calculation 3 is performed. In the rolling temperature calculation 3, as will be described later, the set plate cooling conditions for each pass are adjusted so as to satisfy the target plate temperature T. When the rolling temperature calculation 3 is completed, it is determined whether or not the set delivery side plate thickness and the set rolling temperature of each pass have converged (A9). If not converged, the pass schedule calculation 2 and the rolling temperature calculation are performed until they converge. The convergence calculation is performed by alternately repeating 3.
[0023]
Whether or not the set delivery side plate thickness and the set rolling temperature of each pass converged by repeated calculation is determined to have converged if there is little change from the previous rolling pass condition setting in the iteration process. For example, when the difference between the current repeated calculation result and the previous repeated calculation result for the set delivery side plate thickness, set rolling temperature, and set plate cooling condition for each pass is less than a predetermined threshold value, If there is unevenness (only the set value of a pass is separated from its pre- or post-pass) beyond the specified range, or the setting plate cooling conditions could not be obtained by calculation (solution It is determined that it has not converged. When it is determined that it has not converged, for example, according to the amount of deviation from a predetermined convergence determination condition, the set delivery side plate thickness and set rolling temperature of each pass (the initial value condition in the case of performing the pass schedule calculation 2 first) And the repeated calculation of the pass schedule calculation 2 and the rolling temperature calculation 3 is continued. When it determines with having converged, rolling pass condition setting is decided (A10), the calculation by the setting calculation method 1 is complete | finished, and rolling pass condition setting is finally determined.
[0024]
The setting calculation method 1 performs the convergence calculation in the pass schedule calculation 2 and the rolling temperature calculation 3 by alternately repeating the calculation results on the premise of each other as described above. The pass schedule calculation 2 and the rolling temperature calculation 3 are dependent on each other, but the iterative calculation of the nonlinear equation (initial value is set to the expression expressed by the implicit function and repeated calculation is performed by the above iterative calculation. By doing this, it is equivalent to applying the solution that finds the solution), and the pass schedule setting and the rolling temperature setting converge with a small number of iterations. This is because the relationship between the rolling temperature and the rolling load is monotonous in the vicinity of a certain temperature of the same rolled material (the range of the rolling temperature that is actually operated). Therefore, it is possible to quickly converge to the optimum value, and setting calculation in a short time becomes possible.
[0025]
Here, the rolling temperature calculation 3 will be described in detail. The set rolling temperature of each pass is determined so as to satisfy the target plate temperature T in the predetermined pass, but in the rolling temperature calculation 3, the target plate temperature T is set by adjusting the set plate cooling condition of each pass. Calculate to meet. The set plate cooling conditions to be adjusted include the set air cooling conditions until the start of each pass rolling, for example, the set air cooling time until the start of each pass rolling (the air cooling time from the end of rolling of the pass before the pass to the start of rolling of the pass ), Or when water cooling is performed, the set water cooling conditions (the amount and temperature of the cooling water can also be set as parameters, but from the viewpoint of maximum rolling efficiency, it is premised that cooling is performed at the maximum water cooling capacity, and the water cooling time is adjusted. Is preferable.) Can be selected. The set rolling speed for each pass may be selected. In this case, adjusting the rolling speed corresponds to adjusting the plate cooling time (air cooling time or water cooling time) during rolling. Any of these conditions may be adjusted. In the present embodiment, a case where the set air cooling time is adjusted will be described as an example.
[0026]
FIG. 2 is a schematic diagram illustrating and illustrating the relationship between the pass schedule setting and the target plate temperature T. In this example, in order to simplify the explanation, it is assumed that a 50 mm steel plate is rolled to 20 mm (50 mm → 40 mm → 30 mm → 20 mm) by 3 reversible rolling to obtain a product (send to the next process). At this time, it is assumed that the plate temperature before the start of rolling was 900 ° C., and the set rolling temperature in the second pass (temperature immediately before rolling) is 800 as the target plate temperature T (temperature immediately before rolling) from the viewpoint of material stabilization. It shall be set to ° C.
[0027]
In this case, by adjusting the air cooling time (set air cooling time) until the start of the second pass rolling, the rolling pass condition setting satisfying the temperature of 800 ° C. set in the second pass is within the limited time before the start of rolling. It is necessary to do in. Thus, as shown in FIG. 3, the rolling temperature calculation 3 in the setting calculation method 1 of FIG. 1 is performed by performing optimization calculation such as Newton's method or one-dimensional search method, thereby obtaining the target plate temperature T (example of FIG. 2). Then, the set air cooling time is adjusted so as to satisfy 800 ° C.
[0028]
FIG. 3 shows a calculation flow of the rolling temperature calculation 3. This rolling temperature calculation 3 is a plate thickness set for each pass outlet defined by the pass schedule calculation 2 so as to satisfy the plate flatness constraint F. And each pass set rolling temperature determined to satisfy the target plate temperature T (B1). And the set air cooling time (set plate cooling condition) of each pass assumed from the standard rolling time (time of elementary processes such as air cooling, rolling pass, etc.) previously determined according to conditions such as the dimensions of the material to be rolled and the steel type ) Is started as an initial value (B1).
[0029]
Based on these preconditions (B1), the calculation temperature of the path in which the target plate temperature T is set is calculated based on the rolling temperature prediction calculation model a9, and the calculated calculation temperature, the target plate temperature T, Based on the deviation, the calculation for changing the set air cooling time for each pass (hereinafter also referred to as “adjustment calculation B”) until the deviation converges within a predetermined value (until the target plate temperature T is satisfied). By repeatedly performing (B2 to B7), the set air cooling time is determined, and the set rolling temperature of each pass is determined (B8). This adjustment calculation B will be described with reference to FIGS.
[0030]
FIG. 4 is a diagram for explaining the calculation for adjusting the set air cooling time in the form of a Newton method calculation conceptual diagram. First, air cooling time correction amounts α1 and α2 for a predetermined pass are determined based on a set air cooling time assumed as an initial value (see FIG. 4). For each of the air cooling time correction amounts α1 and α2, based on the rolling temperature prediction calculation model a9, the rolling time is advanced by a predetermined unit time (the elementary process is advanced) (B3), and the temperature change corresponding to the elementary process is performed. The amount is calculated (B4). This calculation (B3, B4) is repeated every predetermined unit time until the rolling pass in which the target plate temperature T is set is completed (B5). Thereby, calculated temperatures (for the rolling pass in which the target plate temperature T is set) corresponding to the air cooling time correction amounts α1 and α2 are obtained, and deviations y (α1) and y (α2) between the calculated temperature and the set rolling temperature are obtained. ) Is obtained (see FIG. 4). Then, from the gradients of both deviations y (α1) and y (α2), an air cooling time correction amount α3 for a predetermined pass used for the next calculation is obtained (see FIG. 4), and an adjustment amount of the air cooling time for the predetermined pass is calculated. (B6). In this manner, similarly, the air cooling time correction amount α4 is sequentially obtained from the air cooling time correction amounts α2 and α3, and the air cooling time correction amount at which the deviation becomes substantially zero is obtained (see FIG. 4). That is, adjustment calculation B is performed until the target plate temperature T is satisfied (B7). In this embodiment, an example using the Newton method is shown in this way, but a one-dimensional search method can also be used.
[0031]
Hereinafter, actual calculation examples will be described. First, a calculation example of the rolling temperature calculation 3 is shown in FIG. This calculation example shows an example in which the air cooling time of the second pass (air cooling time from the first pass rolling to the start of the second pass rolling) is corrected to match the target plate temperature T after the third pass. In this calculation example, the number of calculations until convergence was confirmed in 7 cases where the rolling temperature start temperature was different and the temperature calculation was shifted from the target plate temperature T by 2 ° C. to 57 ° C. depending on the standard rolling time. In each case, the second correction amount is obtained from the temperature deviation which is the first calculation result by setting a standard temperature drop rate. In any case, it can be seen that the convergence is within ± 1 ° C. from the target plate temperature T by repeated calculation about five times.
[0032]
Next, in FIG. 6, a process in which the pass schedule setting (each pass setting outlet thickness) in the example in which the rolling pass condition setting is specifically performed by the setting calculation method 1 of the present embodiment converges to a constant value ( FIG. 6 (a)) and a process (FIG. 6 (b)) in which each pass setting rolling temperature converges to a constant value are shown. In this example, the transfer thickness is 65 mm, the target plate thickness h is 14 mm, and the target plate temperature T for the sixth pass (step of plate thickness 25 mm) is set to 780 ° C. Moreover, the vertical axis | shaft of Fig.6 (a) and FIG.6 (b) has shown the square norm of the vector of set delivery side plate | board thickness and set rolling temperature in the calculation about the 6th pass. As can be seen from these results (FIG. 6), it can be seen that both the outlet side set plate thickness of each pass and the set rolling temperature of each pass converge with a small number of calculations.
[0033]
Finally, FIG. 7 shows the setting result of the rolling pass condition by the setting calculation method 1. FIG. 7A shows the relationship between the set delivery side plate thickness and the set rolling temperature of each pass, FIG. 7B shows the relationship between the set delivery side plate thickness of each pass and the predicted rolling load, and FIG. The relationship between the set delivery side plate thickness of each pass and the change in crown ratio is shown. In this calculation example, the transfer thickness is set to 63 mm, the target plate thickness h is set to 16 mm, and the calculation is made for the case where the target plate temperature T is set to 850 ° C. in the fourth pass (the plate thickness of 36 mm). ing. In this setting calculation result, it is set so as to reach the target plate thickness h (h = 16 mm) by rolling all 10 passes.
[0034]
As a result of actually performing this calculation, it was confirmed that both the pass schedule calculation 2 and the rolling temperature calculation 3 converge after several repetitions. Moreover, as shown in FIG. 9A, the target plate temperature T (T = 850 ° C.) can be satisfied, and as shown in FIG. 9B, the plate shape (plate flatness) during rolling is obtained. The setting that the balance of the rolling load concerned is also good was obtained. Further, as shown in FIG. 9C, it can be seen that the change in the crown ratio, which is an indicator of the plate shape (plate flatness), is also suppressed to a small level. In addition, the dotted line in FIG.9 (c) represents the limit value from which the plate shape becomes an ear wave and a medium wave empirically. Although not shown, it was confirmed that the equipment constraint conditions such as rolling torque were sufficiently satisfied.
[0035]
As described above, in this embodiment, in addition to the target plate thickness and the target plate crown after the final rolling pass, the set delivery side plate thickness of each pass that satisfies the plate flatness constraint condition and the target plate temperature in a predetermined pass. And the set rolling temperature and plate flatness constraint conditions for each pass. As a result, in addition to satisfying the target plate thickness and the target plate crown, it is possible to determine the rolling pass condition setting that also satisfies the target plate temperature condition and the shape constraint condition. Therefore, by performing rolling based on this setting, it is possible to manufacture a steel plate that realizes not only the plate thickness and the plate crown but also a good material and shape (flatness).
[0036]
In determining the rolling pass condition setting, the steel plate temperature at the time of extraction from the heating furnace, the steel plate temperature before the start of rolling, the state of the operation equipment, etc. are measured and then set in a short time until the actual rolling starts. It is necessary to perform calculation. According to the configuration of the present invention, the pass schedule calculation and the rolling temperature calculation are alternately repeated using the calculation results of each other to perform the convergence calculation, so that the optimum value can be quickly converged in a short time. Setting calculation becomes possible.
[0037]
The above is the description of the present embodiment. The embodiment is not limited to the above-described embodiments, and may be implemented with the following modifications, for example.
[0038]
(1) In this embodiment, the case where only one target plate temperature is set is described, but the present invention can be applied even when two or more target plate temperatures are set. In this case, in the setting calculation method 1 shown in FIG. 1, the temperature up to the final rolling pass is not calculated at once, but divided into calculations up to a plurality of set target plate temperatures, By performing optimization to satisfy the temperature, a plurality of target plate temperatures can be satisfied.
[0039]
(2) Each prediction calculation model (rolling load prediction calculation model, crown prediction calculation model, rolling temperature prediction calculation model, plate flatness prediction calculation model) used in the setting calculation method of this embodiment is an independent calculation model. It does not have to be. For example, even an expression format in which another prediction calculation model is incorporated in the rolling load prediction model can be regarded as the same, and the same effect as the present invention can be obtained.
[0040]
【The invention's effect】
According to the first aspect of the present invention, the target plate temperature condition and the plate flatness constraint condition are set in advance, and each pass setting rolling temperature and plate flatness constraint condition (shape constraint condition) determined to satisfy the target plate temperature condition. The pass schedule calculation is performed so as to satisfy, and the plate cooling condition is adjusted so as to satisfy the pass schedule setting and the target plate temperature, and these are performed until convergence. For this reason, in addition to satisfying the target plate thickness and the target plate crown, it is possible to determine the rolling pass condition setting that also satisfies the target plate temperature condition and the shape constraint condition. Therefore, by performing rolling based on this setting, it is possible to manufacture a steel plate that realizes not only the plate thickness and the plate crown but also a good material and shape (flatness).
In determining the rolling pass condition setting, the steel plate temperature at the time of extraction from the heating furnace, the steel plate temperature before the start of rolling, the state of the operation equipment, etc. are measured and then set in a short time until the actual rolling starts. It is necessary to perform calculation. According to the configuration of the present invention, the pass schedule calculation and the rolling temperature calculation are alternately repeated using the calculation results of each other to perform the convergence calculation, so that the optimum value can be quickly converged in a short time. Setting calculation becomes possible.
[0041]
According to the invention of claim 2, it is possible to easily perform the calculation for adjusting the set plate cooling condition so as to satisfy the target plate temperature condition based on the pass schedule calculation result.
[0042]
According to the invention of claim 3, the plate cooling condition that satisfies the target plate temperature condition can be easily calculated, and the setting calculation time can be shortened.
[Brief description of the drawings]
FIG. 1 shows a calculation flow in a setting calculation method according to the present embodiment.
FIG. 2 is a schematic view illustrating the relationship between pass schedule setting and target plate temperature in a rolling pass with a predetermined plate thickness.
FIG. 3 shows a calculation flow of rolling temperature calculation in the setting calculation method according to the present embodiment.
FIG. 4 is a diagram for explaining calculation for adjusting a set air cooling time in rolling temperature calculation of the setting calculation method according to the present embodiment.
FIG. 5 is a diagram showing a calculation example of rolling temperature calculation of the setting calculation method according to the present embodiment.
FIG. 6 shows how the pass schedule setting and each pass setting rolling temperature converge to a constant value in an example in which the rolling pass condition is specifically set by the setting calculation method 1 of the present embodiment. is there.
FIG. 7 shows a calculation example of rolling pass condition setting by the setting calculation method according to the present embodiment.
FIG. 8 is a diagram illustrating an outline of the overall configuration of a setting calculation method according to the present embodiment.
FIG. 9 shows an example of determining rolling pass condition settings according to a conventional technique and an example of determining rolling pass condition settings according to the present embodiment.
[Explanation of symbols]
1 Setting calculation method
2 Pass schedule calculation
3 Rolling temperature calculation
a6 Load prediction calculation model
a8 Plate crown prediction calculation model
a9 Rolling temperature prediction calculation model
a10 Plate flatness prediction calculation model

Claims (3)

可逆式圧延機を用い、複数回の圧延パスにわたる板圧延を行って最終圧延パス後に所定の目標板厚及び目標板クラウンが付与された鋼板を製造するに際し、圧延開始前に行われる圧延パス条件設定の決定方法において、
目標材質確保のための1つ以上の所定板厚での圧延パスにおける目標板温度と、板平坦度についての所定の制約条件とを設定し、
圧延荷重予測計算モデルと板クラウン予測計算モデルと板平坦度予測計算モデルとに基づいて、前記目標板温度条件を満たすために必要な各パスの設定圧延温度の条件を用いて予測計算される板平坦度が前記板平坦度制約条件を満たすように各パスの設定出側板厚を計算するパススケジュール計算と、
このパススケジュール計算結果をもとに、圧延温度予測計算モデルに基づいて、前記目標板温度条件を満たすように各パスの設定板冷却条件を調整する圧延温度計算と、
を交互に繰り返して、各パスの前記設定出側板厚及び前記設定圧延温度の収束計算を実施することにより、
最終圧延パス後の前記目標板厚及び前記目標板クラウンに加え、前記目標板温度及び前記板平坦度制約条件を満足する、各パスの設定出側板厚と、各パスの設定圧延温度及び設定板冷却条件とを決定することを特徴とする可逆式圧延機における圧延パス条件設定の決定方法。
Rolling pass conditions that are performed before the start of rolling when using a reversible rolling mill to produce a steel plate with a predetermined target plate thickness and target plate crown after the final rolling pass by performing plate rolling over a plurality of rolling passes. In the setting determination method,
Set a target plate temperature in a rolling pass at one or more predetermined plate thicknesses for securing a target material, and a predetermined constraint on plate flatness,
Based on the rolling load prediction calculation model, the plate crown prediction calculation model, and the plate flatness prediction calculation model, a plate that is predicted and calculated using the conditions of the set rolling temperature of each pass necessary to satisfy the target plate temperature condition Pass schedule calculation for calculating the set delivery side plate thickness of each pass so that the flatness satisfies the plate flatness constraint condition;
Based on this pass schedule calculation result, based on the rolling temperature prediction calculation model, rolling temperature calculation that adjusts the set plate cooling condition of each pass so as to satisfy the target plate temperature condition,
By alternately repeating, the convergence calculation of the set delivery side plate thickness and the set rolling temperature of each pass,
In addition to the target plate thickness and the target plate crown after the final rolling pass, the set delivery side plate thickness of each pass and the set rolling temperature and set plate of each pass satisfying the target plate temperature and the plate flatness constraint condition A method for determining a rolling pass condition setting in a reversible rolling mill, wherein the cooling condition is determined.
前記設定板冷却条件は、各パス圧延開始までの設定空冷条件、または各パスの設定水冷条件であることを特徴とする請求項1に記載の可逆式圧延機における圧延パス条件設定の決定方法。The method for determining the setting of rolling pass conditions in a reversible rolling mill according to claim 1, wherein the set plate cooling conditions are set air cooling conditions until the start of each pass rolling, or set water cooling conditions for each pass. 前記圧延温度計算として、各パスの前記設定板冷却条件を仮定し、前記圧延温度予測計算モデルに基づき算出される計算温度を求め、この計算温度と前記目標板温度との偏差に基づき、前記設定板冷却条件を変更して調整する計算を、偏差が所定値以内に収束するまで繰り返して行うことにより、設定板冷却条件を決定することを特徴とする請求項1又は2に記載の可逆式圧延機における圧延パス条件設定の決定方法。As the rolling temperature calculation, assuming the set plate cooling condition of each pass, obtain a calculated temperature calculated based on the rolling temperature prediction calculation model, and based on the deviation between the calculated temperature and the target plate temperature, the setting The reversible rolling according to claim 1 or 2, wherein the setting plate cooling condition is determined by repeatedly performing calculation for changing and adjusting the plate cooling condition until the deviation converges within a predetermined value. Of determining the rolling pass condition setting in the machine.
JP2002138464A 2002-05-14 2002-05-14 Determination method of rolling pass condition setting in reversible rolling mill Expired - Fee Related JP3886412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138464A JP3886412B2 (en) 2002-05-14 2002-05-14 Determination method of rolling pass condition setting in reversible rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138464A JP3886412B2 (en) 2002-05-14 2002-05-14 Determination method of rolling pass condition setting in reversible rolling mill

Publications (2)

Publication Number Publication Date
JP2003326304A JP2003326304A (en) 2003-11-18
JP3886412B2 true JP3886412B2 (en) 2007-02-28

Family

ID=29699894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138464A Expired - Fee Related JP3886412B2 (en) 2002-05-14 2002-05-14 Determination method of rolling pass condition setting in reversible rolling mill

Country Status (1)

Country Link
JP (1) JP3886412B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006305579A (en) * 2005-04-26 2006-11-09 Toshiba Mitsubishi-Electric Industrial System Corp Control apparatus of hot rolling mill
JP4669376B2 (en) * 2005-11-10 2011-04-13 新日本製鐵株式会社 Manufacturing method of thick steel plate with high flatness
KR101148950B1 (en) 2009-07-24 2012-05-22 현대제철 주식회사 Hot rolling method for high tensile steel
KR101159739B1 (en) 2009-09-28 2012-06-28 현대제철 주식회사 Method for controlling rolling in controlled rolling progress

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524672B2 (en) * 1992-01-24 1996-08-14 新日本製鐵株式会社 Plate rolling method
JPH07178424A (en) * 1993-12-24 1995-07-18 Kobe Steel Ltd Setting method of pass schedule of rolling of steel sheet
JP2001347308A (en) * 2000-06-07 2001-12-18 Kobe Steel Ltd Method and device for setting pass schedule of rolling mill

Also Published As

Publication number Publication date
JP2003326304A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
JP6435234B2 (en) Hot roll finishing mill outlet temperature control device and control method thereof
JP5231968B2 (en) Winding temperature control device and control method thereof
JP3886412B2 (en) Determination method of rolling pass condition setting in reversible rolling mill
JP5168170B2 (en) Method for estimating the material constant and straightening state of the material to be straightened in roller straightening, and roller roller leveling method
JP6652095B2 (en) Method of rolling steel sheet and method of manufacturing steel sheet
JP2001252709A (en) Method for temperature on outlet side of finishing mill for hot rolling
JP4617929B2 (en) Hot rolled steel sheet rolling method
CN104673992B (en) The control method of a kind of production line of bar Controlled cooling process and device
JP6569691B2 (en) Manufacturing method of unequal side unequal thickness angle steel
JP2001269703A (en) Method for deciding pass schedule of thickness adjustment in thick plate rolling
JP5803888B2 (en) COOLING SETTING METHOD, COOLING SETTING DEVICE, AND METHOD FOR PRODUCING THICK STEEL SHEET
KR101050792B1 (en) Cooling Control Method Using Dynamic Reset
JP4669376B2 (en) Manufacturing method of thick steel plate with high flatness
KR100951269B1 (en) Flatness control method using fine pass rolling
KR20040056284A (en) Method for controlling shape of rolling plate
JP2007283353A (en) Method of rolling metal sheet
JP3598713B2 (en) Profile control method and device
JP2013116506A (en) Winding temperature controller and control method thereof
JP3939893B2 (en) Pass schedule setting method and apparatus for rolling mill
JPH11319922A (en) Pass schedule deciding method of rolling mill
JP3646622B2 (en) Sheet width control method
JP2002219507A (en) Method for determining dimension controlled target value
JP2001191104A (en) Device for deciding pass schedule
JP6123153B2 (en) Rolling pass schedule creation method
CN118180162A (en) Cooling process residual stress improvement method based on rolling compensation stress

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3886412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees