JP3884561B2 - Plasma cleaning device - Google Patents

Plasma cleaning device Download PDF

Info

Publication number
JP3884561B2
JP3884561B2 JP11625498A JP11625498A JP3884561B2 JP 3884561 B2 JP3884561 B2 JP 3884561B2 JP 11625498 A JP11625498 A JP 11625498A JP 11625498 A JP11625498 A JP 11625498A JP 3884561 B2 JP3884561 B2 JP 3884561B2
Authority
JP
Japan
Prior art keywords
reaction chamber
magazine
plasma
electrode
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11625498A
Other languages
Japanese (ja)
Other versions
JPH11297677A (en
Inventor
巳喜夫 澤井
功 片山
康弘 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samco Inc
Original Assignee
Samco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samco Inc filed Critical Samco Inc
Priority to JP11625498A priority Critical patent/JP3884561B2/en
Publication of JPH11297677A publication Critical patent/JPH11297677A/en
Application granted granted Critical
Publication of JP3884561B2 publication Critical patent/JP3884561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップ、小物機械電気部品等の表面に成膜、エッチング、清浄等のプラズマを用いた各種処理を施すプラズマ表面処理装置に関する。
【0002】
【従来の技術】
半導体基板や小物機械電気部品、光学プラスチック部品等の表面に導体層や絶縁層を成膜・積層したり、逆に、半導体基板の表面や積層物の表面をエッチングするために、プラズマを用いて処理することは現在極めて広く行なわれている。また、近年では基板等の表面の汚れを除去するための洗浄にも、従来のフロン等を用いたウェット処理に代わってプラズマによるドライクリーニング処理が広く用いられるようになりつつある。
【0003】
プラズマによる表面処理の原理は次のように説明される。すなわち、高周波電源(RF電源)に接続された電極(RF電極)及びアースされた電極(接地電極)から成る一対の電極を密閉可能な反応室内に配置し、該反応室から空気を十分に除去する。この状態で、反応室内に反応ガス(Ar、O2等)を供給しつつ、RF電源を起動することによりRF電極に高周波(通常13.56MHz)で電力を供給すると、電極間に反応ガスの低温プラズマ(陽イオン及び電子)とラジカル種が生成される。ここで、イオンと電子の易動度の違いにより、電子はRF電極に捕集されて該RF電極を相対的に負に帯電させる(自己バイアス)一方、ラジカル種及び陽イオンは容易には電極に捕集されずにプラズマ中を運動する。このプラズマ中に被処理物を配すると、プラズマ中で運動するラジカル種や陽イオンが被処理物の表面に衝突又は接触する。こうして、被処理物の表面処理(クリーニング、エッチング、成膜等)が行なわれるのである。
【0004】
プラズマ処理の方法にはいくつかの形態(モード)があるが、そのうちの2つ、反応性イオンエッチング(RIE)モード及びプラズマエッチング(PE)モードについて図6及び図7を参照しながら説明する。なお、図6及び図7において、符号61はRF電源、符号62はRF電極、符号63は接地電極、符号64はコンデンサ、符号65は被処理物を示す。
【0005】
PEモードでは、図6に示すように、板状に成形された接地電極63の上に被処理物65を載置した状態でプラズマを発生させる。すると、陽イオンは負に帯電したRF電極62により引き寄せられるため、被処理物65の表面には主としてラジカル種が衝突又は接触することになる。一方、RIEモードでは、図7に示すように、板状に成形されたRF電極62の上に被処理物65を載置した状態で、上記のように電極間にプラズマを発生させる。すると、負に帯電したRF電極62により引き寄せられる陽イオンが被処理物65の表面に衝突する。RIEモードとPEモードと比較すると、RIEモードはイオン衝撃による物理的で高速な表面処理に適している。一方、PEモードは低速でラジカル種による化学的で穏やかな表面処理に適している。
【0006】
【発明が解決しようとする課題】
図6又は図7に示したように電極板上に被処理物を載置する構成のプラズマ表面処理装置は、電極板上に一度に載置可能な被処理物の数が少ない。このため、多数の被処理物を処理するには、被処理物の搬入、反応室の真空引き、プラズマ処理、反応室の開放、被処理物の搬出、という一連の行程を繰り返さなければならず、時間がかかり、生産性が著しく低くなるという問題が生じる。
【0007】
もちろん、階層的に配置された複数の棚板を備える棚(以下、マガジンと呼ぶ)を用いれば、一度に多数の被処理物を反応室内に収納してプラズマに晒すことは可能である。しかし、特にRIEモードで処理を行なう場合、被処理物の近くの空間における陽イオン密度が該被処理物とRF電極との距離に依存するため、棚板毎に表面処理の仕上がり具合が異なってくるという問題がある。また、従来のマガジンは金属製の外壁を備えており、この外壁がプラズマ分子のマガジン内への流入を妨げてしまうという問題もある。
【0008】
本発明はこのような課題を解決するために成されたものであり、その目的とするところは、スペース効率が良く、多数の被処理物を一度に且つ均一に処理することができるとともに、反応室内への被処理物のセットや反応室からの被処理物の取り出しを容易に且つ短時間で行なうことのできるプラズマ表面処理装置を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するために成された本発明に係るプラズマ表面処理装置は、
a)高周波電源と、
b)導電性材料から成る複数の棚板及び該複数の棚板を階層的に支持する外枠とを含むマガジンと、
c)前記マガジンを内部に収納した状態で密閉可能な反応室と、
d)前記反応室内に収納された前記マガジンの棚板を前記高周波電源に電気的に接続する電気接続手段と、
e) 前記反応室の天井及び側面を覆うように内装された接地電極と、
を備えることを特徴とする。
【0010】
【発明の実施の形態】
本発明に係るプラズマ表面処理装置に用いられるマガジンは、被処理物を載置するための複数の棚板が外枠により階層的に支持された構造を有する。このマガジンの棚板は導電性材料から成る。マガジンが反応室に収納されたのち、全ての棚板は電気接続手段により高周波電源と接続される。このように反応室に収納されたマガジンに高周波電力を供給すると、棚板間の空間においてプラズマが生成される。このプラズマにより、各棚板上に載置された被処理物の表面が処理されるのである。
【0011】
前記電気接続手段は、例えば、前記外枠を導電性材料により作成するとともに、前記反応室の床面に前記高周波電源に接続された電極を配設し、前記マガジンを前記反応室の所定位置に載置すると前記外枠と前記電極とが電気的に接続される、という構成とすればよい。
【0012】
前記マガジンの好ましい形態としては、前記外枠を直方体状に構成し、その側面に外部のプラズマを内部へ導入するための開口を設けたものが挙げられる。このようなマガジンは、作成が容易であり、しかも、マガジンの外部で生成されたプラズマが開口を通じて内部へ流入しやすいという長所がある。
【0013】
本発明に係るプラズマ表面処理装置において、前記マガジンは前記反応室から取り出し可能とすることが好ましい。このようなプラズマ表面処理装置は、小さい被処理物を多数処理するだけでなく、マガジンを反応室から取り出せば大きな被処理物の処理にも対応できる。また、被処理物に対する処理工程がプラズマ表面処理を含む複数の処理から成る場合、マガジンに被処理物を載置したまま一の処理から次の処理へ移ることができるため、処理毎に多数の被処理物を個別に移動させるという面倒な作業が不要となり、作業効率が高まる。
【0014】
本発明に係るプラズマ表面処理装置において、前記棚板は前記外枠から取り外し可能とすることが好ましい。このようにすると、被処理物の棚板上への載置及び棚板からの取り出しが容易となる。また、このプラズマ表面処理装置は、全ての棚板を取り外すことにより、より大きな被処理物の処理にも対応できる。
【0015】
【発明の効果】
以上のような本発明に係るプラズマ表面処理装置によれば、多数の被処理物を一括処理できるため、処理効率が高まる。また、反応室からマガジンを取り出し可能とした場合、及び/又は、マガジンから棚板を取り外し可能とした場合には、反応室への被処理物の搬入や、反応室からの被処理物の搬出が容易となるだけでなく、より大きな被処理物の処理にも、本発明のプラズマ表面処理装置を使用できる。
【0016】
【実施例】
図1は本発明の一実施例であるプラズマ表面処理装置10を示す斜視図である。このプラズマ表面処理装置10は、直方体形状を有する処理ユニット11、及びそれと同一の筐体内に設けられた制御ユニット12から成る。処理ユニット11の内部には反応室13が設けられている。反応室13の床面にはRF電極14が埋設されており、その上に後述するマガジン15が載置されている。処理ユニット11の前面に備えられた扉16を図のように開くと、マガジン15を反応室13から取り出すことができる。また、扉16を閉じると反応室13は気密な閉空間となる。一方、制御ユニット12には、反応室13内のRF電極14にプラズマ発生用高周波電力(通常、13.56MHz)を供給するためのRF電源、反応室13から空気を除去するための真空ポンプ、図示せぬガス源から供給される反応ガス(例えばAr)を反応室13内へ送るためのガス供給器、装置全体の動作を制御するための制御回路等が収納されている。
【0017】
図2はマガジン15の斜視図である。マガジン15は、矩形の底板155の4隅に立設された4本の支柱156により天板157を支持させた構造を有する直方体形状の外枠151と、5枚の棚板152とから成る。外枠151の右側面又は左側面を構成する一対の支柱156、156の間には、棚板152を支持するためのレール153が、各側面に5段ずつ設けられている。棚板152は、同じ高さにある一対のレール153、153により摺動可能に支持されている。なお、図示しないが、棚板152をレール153上の所定位置で固定するための固定手段(例えば、ネジ、クランパ)を外枠151又はレール153の適宜箇所に設けることが好ましい。外枠151及び棚板152はステンレス(SUS)やアルミニウムのような導電性材料により作成されている。
【0018】
図3は処理ユニット11の構成及びプラズマ表面処理に関連する電気系の構成を示す図である。反応室13内には、天井面及び側面(ただし、図1の扉16が取り付けられた側を除く)を覆うように内装された接地電極20が備えられている。反応室13の床に埋設されたRF電極14はコンデンサ64を介してRF電源61と接続されている。接地電極20とRF電極14とは絶縁部材21により絶縁されている。一方、マガジン15は底板155においてRF電極14と接触しているため、両者の間で電気の導通が可能である。なお、電気の導通をより確実にするために、例えば、RF電極14の上面及び底板155の底面に接続端子を設けるようにしてもよい。マガジン15の各棚板152にはそれぞれ被処理物22が載置されている。また、処理ユニット11には、反応室13内へ反応ガスを供給するためのガス入口111及び、反応室13内のガスを外部へ排出するためのガス出口112が備えられている。
【0019】
以上のような処理ユニット11において、被処理物22の表面処理を行なうには、ガス出口112から反応室13内の空気を除去した後、ガス入口111から反応室13内へ反応ガスを供給しつつ、RF電源61からRF電極14へ高周波電力を供給する。すると、その電力は、RF電極14から、底板155、支柱156及びレール153を通じて各棚板152に供給される。すなわち、全ての棚板152はRF電極14と同様にガスを電離させる電極として機能する。そして、棚板152に載置された全ての被処理物22は、RIEモードのプラズマ表面処理を同時に受ける。かくして、複数の被処理物の表面処理が一括して行なわれるのである。
【0020】
また、上記マガジン15の外枠151は側壁面を有していないため、マガジン15とRF電極14との間で生成されたプラズマは容易にマガジン15内へ流れ込む。これにより、処理効率は更に高められるのである。
【0021】
反応室13内でプラズマ放電を効果的に発生させるためのパラメータには様々なものが考えられるが、反応室13及びマガジン15の寸法や形状について言えば、マガジン15の外側面と反応室13の内壁(すなわち接地電極20の表面)との間の距離(以下、A寸法と呼ぶ)や、各棚板152間の距離(又はマガジン15の天井と最も上の棚板152との間の距離。以下、B寸法と呼ぶ)が、プラズマ放電の発生に影響を与える。図4はA寸法及びB寸法の設定とプラズマ放電の発生との関係を調べた実験結果を示すグラフである。なお、この実験は、反応室13内のガス圧力が89mTorr、RF電源の出力が50Wという条件下で行なった。
【0022】
図4のグラフを見ると、放電可能領域はB寸法が20mm以上の範囲に含まれている。このことから、ガス圧力及び電源出力が与えられた場合、それに応じてプラズマ放電を発生させることのできるB寸法の最小値が決定されると考えられる。一方、B寸法の値を大きくすると、マガジン15に搭載可能な棚板152の数がそれだけ少なくなり、スペース利用効率が低下する。以上のことを考慮すると、ガス圧力及び電源出力が予め決まっている場合は、B寸法を上記最小値に設定することが好ましい。
【0023】
以上、本発明に係るプラズマ表面処理装置の一実施例について説明したが、実施例は上記のものに限られないことは言うまでもない。例えば、図1のプラズマ表面処理装置では、反応室13への被処理物の搬入及び反応室13からの被処理物の搬出は、使用者が扉16を開いて手作業でこれを行なうことを想定していたが、このような被処理物の搬入及び搬出を自動的に行なう装置(以下、自動移送装置と呼ぶ)を更に備えるようにすれば、処理効率がより高まる。このような自動移送装置を備えるプラズマ表面処理装置に好適な処理ユニットの一例について、図5を参照しながら以下に説明する。
【0024】
図5に示した処理ユニット11Aは、接地電極20の内装された蓋部115と、RF電極14の埋設された底部116に分割されている。蓋部115を底部116に被せ、所定の固定手段で両者を完全に結合させると、内部に気密な反応室13が形成される。蓋部115は図示せぬ蓋駆動機構により上下方向に駆動される。蓋駆動機構が蓋部115を駆動する動作は、図示せぬ自動移送装置による被処理物22の搬入/搬出動作と連動させる。すなわち、まず、自動移送装置が被処理物22を反応室13へ搬入するとき、蓋駆動機構が蓋部115を、蓋部115の下端がマガジン15の上端とほぼ同じ高さに来るまで、上昇させる。被処理物22の搬入が完了したら、蓋駆動機構が蓋部115を下降させ、所定の結合手段により蓋部115を底部116と結合させる。この状態で、先に説明したようなプラズマ表面処理が行なわれる。プラズマ表面処理が終了した後、蓋駆動機構は蓋部115を再び前記高さまで上昇させ、自動移送装置は被処理物22を反応室13から搬出する。
【0025】
上記のような処理ユニット11Aでは、蓋部115を上昇させることにより、被処理物22の搬入及び搬出を一方向(例えば図5では左から右)に、スムーズに行なうことができる。このように被処理物22の移送経路が単純化される結果、自動移送装置の構成を単純化することが可能となり、ひいてはプラズマ表面処理装置全体の製造コストも低下するという効果が得られる。
【図面の簡単な説明】
【図1】 本発明の一実施例であるプラズマ表面処理装置を示す斜視図。
【図2】 マガジンの斜視図。
【図3】 処理ユニットの構成及びプラズマ表面処理に関連する電気系の構成を示す図。
【図4】 A寸法及びB寸法の設定とプラズマ放電の発生との関係を調べた実験結果を示すグラフ。
【図5】 処理ユニットの変形例を示す図。
【図6】 反応性イオンエッチングモードの原理を説明するための図。
【図7】 プラズマエッチングモードの原理を説明するための図。
【符号の説明】
10…プラズマ表面処理装置
11、11A…処理ユニット
12…制御ユニット
13…反応室
14、62…高周波電極(RF電極)
15…マガジン
151…外枠
152…棚板
153…レール
20、63…接地電極
22、65…被処理物
61…高周波電源(RF電源)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma surface treatment apparatus that performs various treatments using plasma such as film formation, etching, and cleaning on the surface of a semiconductor chip, small mechanical electrical component, and the like.
[0002]
[Prior art]
Plasma is used to deposit and stack conductor layers and insulating layers on the surface of semiconductor substrates, small mechanical electrical components, optical plastic components, etc., and conversely to etch the surfaces of semiconductor substrates and laminates. Processing is now very widespread. In recent years, a dry cleaning process using plasma has been widely used for cleaning for removing dirt on the surface of a substrate or the like instead of a conventional wet process using chlorofluorocarbon.
[0003]
The principle of surface treatment with plasma is explained as follows. That is, a pair of electrodes consisting of an electrode (RF electrode) connected to a high-frequency power source (RF power source) and a grounded electrode (ground electrode) are arranged in a sealable reaction chamber, and air is sufficiently removed from the reaction chamber. To do. In this state, when power is supplied to the RF electrode at a high frequency (usually 13.56 MHz) by starting the RF power supply while supplying the reaction gas (Ar, O 2, etc.) into the reaction chamber, Low temperature plasma (cations and electrons) and radical species are generated. Here, due to the difference in mobility between ions and electrons, the electrons are collected by the RF electrode and the RF electrode is relatively negatively charged (self-bias), while radical species and cations are easily It moves in the plasma without being collected. When an object to be processed is arranged in the plasma, radical species or cations that move in the plasma collide with or come into contact with the surface of the object to be processed. Thus, the surface treatment (cleaning, etching, film formation, etc.) of the object to be processed is performed.
[0004]
There are several forms (modes) of the plasma processing method, and two of them, the reactive ion etching (RIE) mode and the plasma etching (PE) mode, will be described with reference to FIGS. 6 and 7, reference numeral 61 denotes an RF power source, reference numeral 62 denotes an RF electrode, reference numeral 63 denotes a ground electrode, reference numeral 64 denotes a capacitor, and reference numeral 65 denotes an object to be processed.
[0005]
In the PE mode, as shown in FIG. 6, plasma is generated in a state where the workpiece 65 is placed on the ground electrode 63 formed in a plate shape. Then, since the positive ions are attracted by the negatively charged RF electrode 62, radical species mainly collide with or come into contact with the surface of the workpiece 65. On the other hand, in the RIE mode, as shown in FIG. 7, plasma is generated between the electrodes as described above in a state where the workpiece 65 is placed on the RF electrode 62 formed in a plate shape. Then, cations attracted by the negatively charged RF electrode 62 collide with the surface of the workpiece 65. Compared to the RIE mode and the PE mode, the RIE mode is suitable for physical and high-speed surface treatment by ion bombardment. On the other hand, the PE mode is suitable for chemical and mild surface treatment with radical species at a low speed.
[0006]
[Problems to be solved by the invention]
As shown in FIG. 6 or FIG. 7, the plasma surface treatment apparatus configured to place an object to be processed on the electrode plate has a small number of objects to be processed that can be placed on the electrode plate at one time. For this reason, in order to process a large number of objects to be processed, a series of steps of loading the objects to be processed, evacuating the reaction chamber, plasma processing, opening the reaction chamber, and unloading the objects to be processed must be repeated. However, it takes time and the productivity is remarkably lowered.
[0007]
Of course, if a shelf (hereinafter referred to as a magazine) including a plurality of shelf plates arranged hierarchically is used, a large number of objects to be processed can be stored in the reaction chamber and exposed to plasma at a time. However, especially when processing in the RIE mode, the cation density in the space near the object to be processed depends on the distance between the object to be processed and the RF electrode. There is a problem of coming. In addition, the conventional magazine has a metal outer wall, and this outer wall hinders the flow of plasma molecules into the magazine.
[0008]
The present invention has been made in order to solve such problems. The object of the present invention is to provide space efficiency and to treat a large number of objects to be treated at once and uniformly, as well as reaction. It is an object of the present invention to provide a plasma surface treatment apparatus capable of easily and in a short time setting a workpiece to be processed and taking out the workpiece from a reaction chamber.
[0009]
[Means for Solving the Problems]
The plasma surface treatment apparatus according to the present invention, which has been made to solve the above problems,
a) High frequency power supply,
b) a magazine including a plurality of shelves made of a conductive material and an outer frame that hierarchically supports the shelves;
c) a reaction chamber that can be sealed with the magazine stored therein;
d) electrical connection means for electrically connecting the shelf of the magazine housed in the reaction chamber to the high frequency power source;
e) a ground electrode installed so as to cover the ceiling and side surfaces of the reaction chamber;
It is characterized by providing.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The magazine used in the plasma surface treatment apparatus according to the present invention has a structure in which a plurality of shelf boards for placing an object to be processed are hierarchically supported by an outer frame. The magazine shelf is made of a conductive material. After the magazine is stored in the reaction chamber, all the shelves are connected to a high frequency power source by electrical connection means. When high frequency power is supplied to the magazine housed in the reaction chamber in this way, plasma is generated in the space between the shelves. The surface of the object to be processed placed on each shelf board is processed by this plasma.
[0011]
The electrical connection means, for example, creates the outer frame from a conductive material, arranges an electrode connected to the high-frequency power source on the floor surface of the reaction chamber, and places the magazine at a predetermined position in the reaction chamber. What is necessary is just to set it as the structure that the said outer frame and the said electrode will be electrically connected if mounted.
[0012]
As a preferred form of the magazine, there may be mentioned one in which the outer frame is formed in a rectangular parallelepiped shape and an opening for introducing external plasma into the inside is provided on the side surface. Such a magazine is advantageous in that it is easy to create and that plasma generated outside the magazine easily flows into the inside through the opening.
[0013]
In the plasma surface treatment apparatus according to the present invention, the magazine is preferably removable from the reaction chamber. Such a plasma surface treatment apparatus can handle not only a large number of small objects to be processed but also a large object to be processed by removing the magazine from the reaction chamber. In addition, when the processing steps for the object to be processed include a plurality of processes including the plasma surface treatment, it is possible to move from one process to the next process while the object to be processed is placed on the magazine. The troublesome work of individually moving the workpieces becomes unnecessary, and the work efficiency is increased.
[0014]
In the plasma surface treatment apparatus according to the present invention, it is preferable that the shelf board is removable from the outer frame. In this way, it becomes easy to place the workpiece on the shelf board and to remove it from the shelf board. Moreover, this plasma surface treatment apparatus can cope with processing of a larger object by removing all the shelf boards.
[0015]
【The invention's effect】
According to the plasma surface treatment apparatus according to the present invention as described above, since a large number of objects to be processed can be collectively processed, the processing efficiency is increased. In addition, when the magazine can be taken out from the reaction chamber and / or when the shelf plate can be removed from the magazine, the processing object can be carried into the reaction chamber or the processing object can be carried out from the reaction chamber. The plasma surface treatment apparatus of the present invention can be used not only for easy processing but also for processing larger workpieces.
[0016]
【Example】
FIG. 1 is a perspective view showing a plasma surface treatment apparatus 10 according to an embodiment of the present invention. The plasma surface treatment apparatus 10 includes a treatment unit 11 having a rectangular parallelepiped shape and a control unit 12 provided in the same casing. A reaction chamber 13 is provided inside the processing unit 11. An RF electrode 14 is embedded in the floor surface of the reaction chamber 13, and a magazine 15 described later is placed thereon. When the door 16 provided on the front surface of the processing unit 11 is opened as shown in the figure, the magazine 15 can be taken out from the reaction chamber 13. When the door 16 is closed, the reaction chamber 13 becomes an airtight closed space. On the other hand, the control unit 12 includes an RF power source for supplying high-frequency power for plasma generation (usually 13.56 MHz) to the RF electrode 14 in the reaction chamber 13, a vacuum pump for removing air from the reaction chamber 13, A gas supply unit for sending a reaction gas (for example, Ar) supplied from a gas source (not shown) into the reaction chamber 13 and a control circuit for controlling the operation of the entire apparatus are housed.
[0017]
FIG. 2 is a perspective view of the magazine 15. The magazine 15 includes a rectangular parallelepiped outer frame 151 having a structure in which a top plate 157 is supported by four columns 156 erected at four corners of a rectangular bottom plate 155 and five shelf plates 152. Between the pair of support columns 156 and 156 constituting the right side surface or the left side surface of the outer frame 151, five stages of rails 153 for supporting the shelf plate 152 are provided on each side surface. The shelf board 152 is slidably supported by a pair of rails 153 and 153 at the same height. Although not shown, it is preferable to provide a fixing means (for example, a screw or a clamper) for fixing the shelf board 152 at a predetermined position on the rail 153 at an appropriate position on the outer frame 151 or the rail 153. The outer frame 151 and the shelf board 152 are made of a conductive material such as stainless steel (SUS) or aluminum.
[0018]
FIG. 3 is a diagram showing the configuration of the processing unit 11 and the configuration of the electrical system related to the plasma surface treatment. In the reaction chamber 13, a ground electrode 20 is provided so as to cover the ceiling surface and side surfaces (except for the side to which the door 16 of FIG. 1 is attached). The RF electrode 14 embedded in the floor of the reaction chamber 13 is connected to an RF power source 61 via a capacitor 64. The ground electrode 20 and the RF electrode 14 are insulated by an insulating member 21. On the other hand, since the magazine 15 is in contact with the RF electrode 14 at the bottom plate 155, electrical conduction is possible between them. In order to make electrical conduction more reliable, for example, connection terminals may be provided on the upper surface of the RF electrode 14 and the bottom surface of the bottom plate 155. A workpiece 22 is placed on each shelf 152 of the magazine 15. Further, the processing unit 11 is provided with a gas inlet 111 for supplying a reaction gas into the reaction chamber 13 and a gas outlet 112 for discharging the gas in the reaction chamber 13 to the outside.
[0019]
In the processing unit 11 as described above, in order to perform the surface treatment of the workpiece 22, the air in the reaction chamber 13 is removed from the gas outlet 112 and then the reaction gas is supplied from the gas inlet 111 into the reaction chamber 13. Meanwhile, high frequency power is supplied from the RF power source 61 to the RF electrode 14. Then, the electric power is supplied from the RF electrode 14 to each shelf plate 152 through the bottom plate 155, the support column 156, and the rail 153. That is, all the shelves 152 function as electrodes that ionize gas in the same manner as the RF electrode 14. And all the to-be-processed objects 22 mounted in the shelf board 152 receive the plasma surface treatment of RIE mode simultaneously. Thus, the surface treatment of a plurality of objects to be processed is performed at once.
[0020]
Further, since the outer frame 151 of the magazine 15 does not have a side wall surface, the plasma generated between the magazine 15 and the RF electrode 14 easily flows into the magazine 15. Thereby, the processing efficiency is further enhanced.
[0021]
Various parameters can be considered for effectively generating plasma discharge in the reaction chamber 13. Regarding the dimensions and shapes of the reaction chamber 13 and the magazine 15, the outer surface of the magazine 15 and the reaction chamber 13 can be considered. The distance between the inner wall (that is, the surface of the ground electrode 20) (hereinafter referred to as A dimension) and the distance between each shelf 152 (or the distance between the ceiling of the magazine 15 and the uppermost shelf 152). Hereinafter, the dimension B) affects the generation of plasma discharge. FIG. 4 is a graph showing the experimental results of examining the relationship between the setting of the A and B dimensions and the occurrence of plasma discharge. This experiment was performed under the conditions that the gas pressure in the reaction chamber 13 was 89 mTorr and the output of the RF power source was 50 W.
[0022]
Referring to the graph of FIG. 4, the dischargeable region is included in the range where the B dimension is 20 mm or more. From this, when the gas pressure and the power supply output are given, it is considered that the minimum value of the B dimension capable of generating the plasma discharge is determined accordingly. On the other hand, when the value of dimension B is increased, the number of shelf boards 152 that can be mounted on the magazine 15 is reduced accordingly, and space utilization efficiency is reduced. Considering the above, when the gas pressure and the power output are predetermined, it is preferable to set the B dimension to the minimum value.
[0023]
As mentioned above, although one Example of the plasma surface treatment apparatus concerning this invention was described, it cannot be overemphasized that an Example is not restricted to said thing. For example, in the plasma surface treatment apparatus of FIG. 1, a user opens the door 16 and manually carries out the work to be carried into the reaction chamber 13 and the work to be carried out from the reaction chamber 13. Although it was assumed, if a device (hereinafter referred to as an automatic transfer device) that automatically carries in and out such a workpiece is further provided, the processing efficiency is further increased. An example of a processing unit suitable for a plasma surface processing apparatus provided with such an automatic transfer device will be described below with reference to FIG.
[0024]
The processing unit 11 </ b> A shown in FIG. 5 is divided into a lid portion 115 in which the ground electrode 20 is housed and a bottom portion 116 in which the RF electrode 14 is embedded. When the lid 115 is placed on the bottom 116 and the two are completely coupled by a predetermined fixing means, an airtight reaction chamber 13 is formed inside. The lid 115 is driven in the vertical direction by a lid driving mechanism (not shown). The operation of the lid driving mechanism driving the lid 115 is interlocked with the operation of carrying in / out the workpiece 22 by an automatic transfer device (not shown). That is, first, when the automatic transfer device carries the workpiece 22 into the reaction chamber 13, the lid driving mechanism raises the lid 115 until the lower end of the lid 115 is at substantially the same height as the upper end of the magazine 15. Let When the carry-in of the workpiece 22 is completed, the lid driving mechanism lowers the lid 115 and couples the lid 115 to the bottom 116 by a predetermined coupling means. In this state, the plasma surface treatment as described above is performed. After the plasma surface treatment is completed, the lid driving mechanism raises the lid 115 again to the height, and the automatic transfer device carries the workpiece 22 out of the reaction chamber 13.
[0025]
In the processing unit 11A as described above, by lifting the lid 115, the workpiece 22 can be smoothly carried in and out in one direction (for example, from left to right in FIG. 5). As a result of simplifying the transfer path of the workpiece 22 as described above, it is possible to simplify the configuration of the automatic transfer apparatus, and as a result, the manufacturing cost of the entire plasma surface treatment apparatus can be reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a plasma surface treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a perspective view of a magazine.
FIG. 3 is a diagram showing a configuration of a processing unit and a configuration of an electric system related to plasma surface treatment.
FIG. 4 is a graph showing experimental results of examining the relationship between the setting of A and B dimensions and the occurrence of plasma discharge.
FIG. 5 is a view showing a modification of the processing unit.
FIG. 6 is a view for explaining the principle of a reactive ion etching mode.
FIG. 7 is a view for explaining the principle of a plasma etching mode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Plasma surface treatment apparatus 11, 11A ... Processing unit 12 ... Control unit 13 ... Reaction chamber 14, 62 ... High frequency electrode (RF electrode)
DESCRIPTION OF SYMBOLS 15 ... Magazine 151 ... Outer frame 152 ... Shelf board 153 ... Rail 20, 63 ... Ground electrode 22, 65 ... To-be-processed object 61 ... High frequency power supply (RF power supply)

Claims (3)

a)高周波電源と、
b)被処理物を載置するための導電性材料から成る複数の棚板及び該複数の棚板を階層的に支持する外枠を含むマガジンと、
c)前記マガジンを内部に収納した状態で密閉可能な反応室と、
d)前記反応室内に収納された前記マガジンの棚板を前記高周波電源に電気的に接続する電気接続手段と、
e)前記反応室の天井及び側面を覆うように内装された接地電極と、
を備えることを特徴とするプラズマクリーニング装置。
a) High frequency power supply,
b) a magazine including a plurality of shelves made of a conductive material for placing an object to be processed and an outer frame that hierarchically supports the shelves;
c) a reaction chamber that can be sealed with the magazine stored therein;
d) electrical connection means for electrically connecting the shelf of the magazine housed in the reaction chamber to the high frequency power source;
e) a ground electrode installed so as to cover the ceiling and side surfaces of the reaction chamber;
A plasma cleaning apparatus comprising:
前記マガジンは前記反応室から取り出し可能であることを特徴とする請求項1に記載のプラズマクリーニング装置。The plasma cleaning apparatus according to claim 1, wherein the magazine is removable from the reaction chamber. 前記棚板は前記外枠から取り外し可能であることを特徴とする請求項1又は2に記載のプラズマクリーニング装置。The plasma cleaning apparatus according to claim 1, wherein the shelf plate is removable from the outer frame.
JP11625498A 1998-04-10 1998-04-10 Plasma cleaning device Expired - Lifetime JP3884561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11625498A JP3884561B2 (en) 1998-04-10 1998-04-10 Plasma cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11625498A JP3884561B2 (en) 1998-04-10 1998-04-10 Plasma cleaning device

Publications (2)

Publication Number Publication Date
JPH11297677A JPH11297677A (en) 1999-10-29
JP3884561B2 true JP3884561B2 (en) 2007-02-21

Family

ID=14682579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11625498A Expired - Lifetime JP3884561B2 (en) 1998-04-10 1998-04-10 Plasma cleaning device

Country Status (1)

Country Link
JP (1) JP3884561B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002126671A (en) * 2000-10-30 2002-05-08 Yamato Scient Co Ltd Chamber for plasma cleaning device
KR100746698B1 (en) * 2005-09-13 2007-08-07 주식회사 피에스엠 Plasma treatment apparatus using dual frequencies and plasma treatment method
EP1959480A4 (en) * 2005-11-25 2010-04-21 Sharp Kk Plasma processing apparatus and plasma processing method
JP4925843B2 (en) * 2007-01-30 2012-05-09 株式会社日立ハイテクインスツルメンツ Plasma cleaning device
JP6629807B2 (en) * 2017-09-27 2020-01-15 中谷 進 Plasma processing equipment
WO2019134058A1 (en) * 2018-01-05 2019-07-11 辉能科技股份有限公司 Vacuum device

Also Published As

Publication number Publication date
JPH11297677A (en) 1999-10-29

Similar Documents

Publication Publication Date Title
US4381965A (en) Multi-planar electrode plasma etching
JP2003174012A5 (en)
WO2005045873A2 (en) Plasma processing system and plasma treatment process
US20090255630A1 (en) Substrate processing apparatus and electrode member
TWI571930B (en) Plasma processing method and plasma processing device
KR20110055402A (en) Substrate processing apparatus, cleaning method thereof and storage medium storing program
US11538664B2 (en) Plasma treatment apparatus and method
JP3884561B2 (en) Plasma cleaning device
JP4141560B2 (en) Circuit board plasma processing equipment
KR20060047498A (en) Substrate cleaning apparatus and method
JPH10326772A (en) Dry etching device
JP4885586B2 (en) Plasma processing equipment
JP2021197489A (en) Substrate processing device and method for purging gas supply pipe
KR100746698B1 (en) Plasma treatment apparatus using dual frequencies and plasma treatment method
JP3196657B2 (en) Surface treatment device and surface treatment method
JP3813313B2 (en) Plasma surface treatment equipment
KR102378330B1 (en) Apparatus and method for treating substrate
JP4027088B2 (en) Plasma cleaning apparatus and plasma cleaning method for cleaning a substrate using the plasma cleaning apparatus
CN115298797A (en) Workpiece support system for plasma processing and method of using same
TWI582820B (en) Plasma processing device and plasma processing method
CN112563110A (en) Plasma processing apparatus
JP2000328269A (en) Dry etching device
JP3595433B2 (en) Plasma dry cleaner
JP2007059527A (en) Substrate treatment device
JP2008029930A (en) Plasma cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term