JP3883490B2 - Waste water treatment apparatus and method for producing soil improvement material using the same - Google Patents

Waste water treatment apparatus and method for producing soil improvement material using the same Download PDF

Info

Publication number
JP3883490B2
JP3883490B2 JP2002306330A JP2002306330A JP3883490B2 JP 3883490 B2 JP3883490 B2 JP 3883490B2 JP 2002306330 A JP2002306330 A JP 2002306330A JP 2002306330 A JP2002306330 A JP 2002306330A JP 3883490 B2 JP3883490 B2 JP 3883490B2
Authority
JP
Japan
Prior art keywords
reaction tank
tank
ozone
treatment
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002306330A
Other languages
Japanese (ja)
Other versions
JP2004141697A (en
Inventor
修平 松本
智博 下田
Original Assignee
株式会社松本設計
株式会社シモダアメニティサービス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社松本設計, 株式会社シモダアメニティサービス filed Critical 株式会社松本設計
Priority to JP2002306330A priority Critical patent/JP3883490B2/en
Publication of JP2004141697A publication Critical patent/JP2004141697A/en
Application granted granted Critical
Publication of JP3883490B2 publication Critical patent/JP3883490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、産業用廃水、下水及びし尿等の汚濁物質を含有する排水を処理する排水処理装置及びこれを用いた土壌改良材の製造方法に関するものである。
【0002】
【従来の技術】
従来より、産業用廃水、下水、汚濁水及びし尿等の排水に対して、凝集,沈殿,濾過等のような固液分離操作と化学反応を用いた物理化学処理や活性汚泥法等の生物処理等が行われている。これらによって処理された処理水は河川等に放流され、処理水と固液分離された余剰汚泥等の固形廃棄物は必要に応じて減容のため焼却され埋立等によって処分される。
そのため、少なくとも排水処理には、処理水中の有機物,有害物質,浮遊物質,栄養塩類等の汚染原因物質を除去し排水基準を満足する処理水を得ること、余剰汚泥等の固形廃棄物の発生量が少ないことが求められる。
近年、このような要求を満足させるための排水処理装置として、強い酸化力を有するオゾンを用いるものが開発されている。
【0003】
従来の技術としては、例えば、(特許文献1)に「汚泥のpHを3〜6に調整した後加圧雰囲気下においてオゾンを含有した気体と接触させる有機汚泥の改質方法」が記載されている。
【0004】
(特許文献2)には、「汚泥とオゾンガスとを混合接触処理させる第1処理工程と、第1処理工程で混合接触処理させた汚泥とオゾンガスとを一定時間滞留処理させる第2処理工程と、第2処理工程でオゾン処理された汚泥を分離液と濃縮汚泥とに固液分離処理させる第3処理工程と、を備えた汚泥処理方法」が記載されている。
【0005】
(特許文献3)には、「加圧ポンプを備えて被処理水を供給する被処理水供給系と、オゾンを発生させるオゾン発生手段と、発生したオゾンを被処理水供給系の加圧ポンプの上流側に注入するオゾン注入手段と、オゾンが注入された被処理水を加圧状態を保ってオゾン反応槽内でオゾン反応処理させるオゾン反応手段と、を備えた高速オゾン反応システム」が記載されている。
【0006】
【特許文献1】
特開昭59−4500号公報
【特許文献2】
特開2000−246293号公報
【特許文献3】
特開平10−230285号公報
【0007】
【発明が解決しようとする課題】
しかしながら上記従来の技術においては、以下のような課題を有していた。
(1)(特許文献1)に記載の技術は、加圧容器を要し装置が大型化・複雑化するという課題を有していた。
(2)容器内に充填されたオゾンを含有した気体中に汚泥水をシャワーリングして接触させるため、オゾンと汚泥との接触効率が低く処理効率が低いという課題を有していた。
(3)散気管を用いて汚泥水中にオゾンを供給するので、オゾンガスの気泡径が0.2〜0.8mmと大きく汚泥水中に溶け込むオゾン溶存量が少なく処理効率を高めることができないという課題を有していた。また、散気管の目詰まりが起こり易くメンテナンス性に欠けるという課題を有していた。
(4)(特許文献2)に記載の技術は、汚泥とオゾンガスとを一定時間滞留処理させるので、汚泥処理に要する時間が長くなるという課題を有していた。
(5)オゾン滞留槽と重力濃縮槽とを要するので、装置全体が大型化するという課題を有していた。
(6)(特許文献3)に記載の技術は、加圧状態でオゾンと被処理水とが反応処理されるオゾン反応槽を要するので、装置が大型化・複雑化するという課題を有していた。
【0008】
本発明は上記従来の課題を解決するもので、構成が簡単で小型化できるので設備負荷が小さく小規模排水処理装置としても用いることができ汎用性に優れ、また排水中の有機物の酸化分解、金属イオンの酸化・析出、排水の脱臭,脱色,殺菌等を非常に効率良く行うことができ、かつ、排水基準を大幅に下回る清浄な処理水を得ることができ、さらに汚泥の濃縮性を向上させ固形廃棄物の発生量を大幅に減少させることができる排水処理装置を提供することを目的とする。
また、本発明は、銅等の土壌汚染物質の含有量が少なく、かつ、大腸菌等の細菌類がなく無菌で衛生的で作物の栽培に適し、また好気性が著しく高く土壌菌等の繁殖も容易で、さらにコンポスト化も容易な汎用性に優れる土壌改良材の製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記従来の課題を解決するために本発明の排水処理装置及びこれを用いた土壌改良材の製造方法は、以下の構成を有している。
【0010】
本発明の請求項1に記載の排水処理装置は、排水流入口を有し排水が貯留される反応槽と、一端に排水吸引口が他端に排水注入口が形成され前記反応槽と連通する反応槽第1連通部と、前記反応槽第1連通部に配設され排水を循環させる反応槽第1ポンプと、前記反応槽第1ポンプの上流側の前記反応槽第1連通部に接続され系内にオゾンガスを供給する反応槽オゾンガス供給部と、前記反応槽の上方の所定部に接続され汚濁物質が付着した泡を前記反応槽の外部に排出する排泡部と、前記反応槽の所定部に接続された処理水排出部と、前記反応槽の底部若しくはその側部の所定部に接続された汚泥スラリー排出部と、前記汚泥スラリー排出部及び前記排泡部に接続された処理槽と、前記処理槽に接続された処理槽オゾンガス供給部と、前記処理槽に接続されスラリー状の汚泥を排出する汚泥排出部と、一端に汚泥吸引口が他端に汚泥注入口が形成され前記処理槽と連通する処理槽第1連通部と、前記処理槽第1連通部に配設され汚泥を循環させる処理槽第1ポンプと、を備え、処理槽オゾンガス供給部が、前記処理槽第1ポンプの上流側の前記処理槽第1連通部に接続された構成を有している。
この構成により、以下のような作用が得られる。
(1)排水が貯留される反応槽と、反応槽と連通する反応槽第1連通部と、反応槽第1連通部に配設された反応槽第1ポンプと、オゾンガスを系内に供給する反応槽オゾンガス供給部と、を備えているので、反応槽,反応槽第1連通部内の排水にオゾンガスを微細気泡にして拡散して供給することにより、オゾンの酸化力によって排水中の有機物の酸化分解、金属イオンの酸化・析出、排水の脱臭,脱色,殺菌等が行われ排水基準を大幅に下回る清浄な処理水を得ることができる。
(2)オゾンガスを反応槽第1ポンプの上流側に供給するので、供給されたオゾンガスを反応槽第1ポンプのインペラにより排水中に微細気泡として拡散させることができる。また、反応槽第1連通部を備え排水を循環させるので、排水が反応槽内で撹拌されて排水が微細気泡のオゾンガスと同伴し繰り返しオゾンガスと接触し排水処理効率を高めることができる。
(3)オゾンの酸化分解によって、汚泥中のタンパク質等の有機性物質等が酸化分解されて可溶化されるとともに、粘性を発現するタンパク質等の分解により汚泥の粘性が低下するので、汚泥の濃縮性を向上させ汚泥の発生量を大幅に減少させることができる。
(4)オゾンガスを用いて酸化分解するので、流入水質や水量の変動、気候等の環境条件の変動に対しても、安定して水質の良好な処理水を得ることができる。
(5)オゾンを用いた酸化分解によって酸素が生成されるので、周辺環境に二次的な環境汚染を引き起こさず、また処理水や汚泥はオゾンの強力な酸化力によって殺菌され衛生的である。さらに、処理水はオゾンの酸化力によって好気性の水質に変化しているので、河川等へ放流することはもちろん、生物処理の前処理として生物分解槽に注入することもでき応用性が高い。
(6)装置の構成が簡単なので、建設費や運転管理費を少なくすることができ設備負荷を小さくすることができ、大都市近郊や工場等の大規模な排水処理だけでなく、中小都市や農山村地域において汚濁水発生源若しくは小集落ごとに排水処理を行う小規模排水処理装置として用いることができる。また、設置に多くの敷地面積を要さないので、車両等に搭載して汚濁水発生源や小集落等を巡回する移動式の排水処理装置としても用いることができ汎用性に優れる。
(7)排泡部を備えているので、微細気泡に付着した汚泥を処理水とは別に反応槽の外部に排出することができ、排水中の汚泥を分離濃縮することができる。
(8)汚泥スラリー排出部や排泡部に接続された処理槽を備えているので、反応槽から排出された汚泥を処理槽でオゾンを用いてさらに酸化分解させることができ、汚泥等の固形廃棄物の減容を図ることができる。
(9)反応槽の底部に沈降した汚泥や微細気泡に付着して浮上分離した汚泥を処理槽に導いて汚泥を濃縮させ減容させることができるので、反応槽と処理槽で並行して排水処理を進めることができ作業性に優れる。
(10)オゾンガスを処理槽第1ポンプの上流側に供給するので、供給されたオゾンガスを処理槽第1ポンプのインペラにより排水中に微細気泡として拡散させることができる。また、処理槽第1連通部を備え排水を循環させるので、排水が処理槽内で撹拌されて排水が微細気泡のオゾンガスと同伴し繰り返しオゾンガスと接触し排水処理効率を高めることができる。
【0011】
ここで、排水としては、産業用廃水、下水、有機性や無機性の浮遊物質を含有する汚濁水及びし尿等が用いられる。
【0012】
反応槽オゾンガス供給部としては、化学反応,光化学反応,電解反応,放電反応(無声放電)等によってオゾンガスを生成し供給するものが用いられる。反応槽オゾンガス供給部は空気中の酸素を原料にすることができるが、反応槽オゾンガス供給部に酸素ガス発生部を接続し、空気中の酸素濃度を高めて高濃度の酸素を反応槽オゾンガス供給部に供給することにより、空気中のオゾンガス濃度を高めることができる。これにより、反応槽,反応槽第1連通部に空気,酸素とともに高濃度のオゾン若しくは酸素とともに高濃度のオゾンを供給しオゾン発生量を高め排水の酸化分解効率を高めることができる。
【0013】
反応槽内の排水の容量(L)に対するオゾン量(mg)を表すオゾン注入率(mg/L)としては、排水の汚濁度にもよるが、30〜1000mg/Lが用いられる。オゾン注入率が30mg/Lより少なくなるにつれ排水の容量に対するオゾン量が少なく処理効率が低下する傾向がみられ、1000mg/Lより多くなるにつれ反応槽オゾンガス供給部を駆動するために多大な電力等を要しエネルギー効率が低下したり反応槽オゾンガス供給部の寿命が短くなる傾向がみられるため、いずれも好ましくない。
なお、オゾン注入率(mg/L)は、(数1)で表される。
【数1】

Figure 0003883490
【0014】
オゾンに加え、紫外線、過酸化水素水、酸化チタン等の金属酸化触媒等を排水に照射、添加若しくは接触等させることにより、有機物等の分解をより促進させるとともに環境ホルモン,ダイオキシン,有機塩素化合物等の環境汚染物質の分解を促進させることができる。
ここで、処理槽第1連通部には、請求項で説明した微細気泡発生手段を配設することができる。これにより、請求項に記載の作用と同様の作用が得られる。
【0015】
本発明の請求項に記載の発明は、排水流入口を有し排水が貯留される反応槽と、一端に排水吸引口が他端に排水注入口が形成され前記反応槽と連通する反応槽第1連通部と、前記反応槽第1連通部に配設され排水を循環させる反応槽第1ポンプと、前記反応槽第1ポンプの上流側の前記反応槽第1連通部に接続され系内にオゾンガスを供給する反応槽オゾンガス供給部と、前記反応槽の所定部に接続された処理水排出部と、前記排水流入口に接続された溶解槽と、前記溶解槽に接続され排水を前記溶解槽に流入させる排水流入路と、前記排水流入路に配設され排水を圧送するとともに前記溶解槽内を加圧する圧送ポンプと、前記圧送ポンプの上流側の前記排水流入路に接続された溶解槽オゾンガス供給部と、を備えた構成を有している。
この構成により、請求項1の(1)乃至(6)の作用に加え、以下のような作用が得られる。
(1)排水流入口に接続された溶解槽と、排水流入路に配設され排水を圧送するとともに溶解槽内を加圧する圧送ポンプと、排水流入路に接続された溶解槽オゾンガス供給部と、を備えているので、溶解槽内で排水が加圧されオゾンを過飽和状態で溶解させることができオゾンによる酸化分解効率を高めることができる。
(2)溶解槽内で加圧されてオゾンが過飽和状態で溶解した排水が大気圧下の反応槽に放出されるので、溶解したオゾンが微細気泡として多量に出現し汚濁物質の浮上分離及び酸化分解反応が直ちに行われ排水処理時間を著しく短縮することができ作業性に優れる。
ここで、圧送ポンプは溶解槽を0.2〜1MPaの圧力で加圧するのが好ましい。圧力が0.2MPaより小さくなるにつれ圧力が小さいためオゾンの溶解度の増加量が少なく酸化分解効率の増加効果を高め難い傾向がみられ、圧力が1MPaより大きくなるにつれ耐圧性を高めるため溶解槽が大型化し設備負荷が増大する傾向がみられるため好ましくない。
なお、排水流入路には、請求項で説明した微細気泡発生手段を配設することができる。これにより、請求項に記載の作用と同様の作用が得られる。
請求項に記載の発明は、請求項1又は2に記載の排水処理装置であって、前記反応槽第1連通部に微細気泡発生手段が配設された構成を有している。
この構成により、請求項1又は2で得られる作用に加え、以下のような作用が得られる。
(1)反応槽第1連通部に微細気泡発生手段が配設されているので、オゾンガスを微細気泡に含有させて排水中に供給することができ、オゾンの排水中の滞在時間を長くすることができるとともに排水に対するオゾンの溶解度を増加させて酸化分解反応を活発化させることができ、さらに排水中の汚濁物質が微細気泡に付着して浮上分離され排水処理効率を高めることができる。
【0016】
ここで、微細気泡発生手段としては、反応槽第1ポンプの下流側の反応槽第1連通部に配設されたエゼクタを備えたものを用いることができる。これにより、排水注入口から噴射される排水の噴流による負圧によりエゼクタからオゾンガスを吸引し、気体流に作用する剪断作用によりオゾンを含有する微細気泡を発生させることができる。また、反応槽第1連通部に配設された渦流タービンポンプ(ニクニ社製)等の上流側に反応槽オゾンガス供給部を設け、該ポンプで渦流を発生させながらオゾンガスを排水に拡散させ気液を圧送することができる。この場合は、反応槽第1ポンプと微細気泡発生手段とを兼用させることができる。これにより、高濃度のオゾンガスを微細気泡として排水中に溶存させることができるとともに装置構成を簡単にできる。また、反応槽第1ポンプの上流側に反応槽オゾンガス供給部を設け、該ポンプの下流側の反応槽第1連通部に微細気泡発生装置(バブルタンク社製)を配設することができる。これにより、オゾンを含有する排水中の気泡を著しく微細化させることができる。なお、微細気泡発生手段は、これらに限定するものではなく、排水中の気泡を微細化させることができるものであれば用いることができる。
【0017】
微細気泡の平均の気泡径としては、0.01〜200μm好ましくは0.5〜50μmが好適である。平均の気泡径が0.5μmより小さくなるにつれ微細気泡の発生手段が複雑化する傾向がみられ、50μmより大きくなるにつれ、排水の粘度にもよるが、排水中に供給した微細気泡が直ちに浮上し排水中に滞留する時間が短く処理効率が低下する傾向がみられるため好ましくない。特に、0.01μmより小さくなるか200μmより大きくなるとこれらの傾向が著しくなるため、いずれも好ましくない。なお、気泡径の測定は、水面にガラス板を置き水中の気泡をデジタルカメラで撮影し画像処理を行い算出することができる。
【0018】
本発明の請求項に記載の発明は、請求項に記載の排水処理装置であって、前記反応槽の底部若しくはその側部の所定部に接続された汚泥スラリー排出部及び/又は前記反応槽の上方の所定部に接続された排泡部を備えた構成を有している。
この構成により、請求項で得られる作用に加え、以下のような作用が得られる。
(1)汚泥スラリー排出部や排泡部を備えているので、排水のオゾン処理を行った後に反応槽の底部に沈降した汚泥や微細気泡に付着した汚泥を処理水とは別に反応槽の外部に排出することができ、排水中の汚泥を分離濃縮することができる。
本発明の請求項に記載の発明は、請求項1乃至の内いずれか1に記載の排水処理装置であって、一端が前記反応槽の所定部に連通され他端が前記反応槽の上部に連通された反応槽第2連通部と、前記反応槽第2連通部に配設され排水を循環させる反応槽第2ポンプと、前記反応槽第2連通部の他端に接続された消泡ノズルと、を備えた構成を有している。
この構成により、請求項1乃至の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)反応槽第2連通部と、反応槽第2連通部に配設された反応槽第2ポンプと、反応槽第2連通部に接続された消泡ノズルと、を備えているので、注入された微細気泡に付着して浮上分離した汚濁物質に消泡ノズルから排水を吹き付けて消泡させ、汚濁物質を再び排水中に懸濁させることができる。また、排水の流滴等を反応槽上部のオゾンガス層に繰り返し接触させることができる。これによって、汚濁物質がオゾンガスに繰り返し接触し汚濁物質の分解が促進され排水処理効率を高めることができる。
【0019】
本発明の請求項に記載の発明は、請求項1乃至の内いずれか1に記載の排水処理装置であって、前記反応槽に配設された冷却装置及び/又は前記反応槽に覆設された断熱部材を備えた構成を有している。
この構成により、請求項1乃至の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)反応槽が冷却装置や断熱部材を備えているので、気温の高い夏季においても排水の水温を低く保つことができ、オゾンの溶解度を高め酸化分解反応等の反応を向上させ排水処理効率を向上させることができる。水に対するオゾンの溶解度は水温が低いほど大きくなるからである。
【0020】
ここで、冷却装置としては、(1)反応槽の外部に冷却用ジャケットを配設し内部に冷却水や冷風等を流したり氷等を蓄えて冷却するもの、(2)反応槽の外部に放熱用フィンを配設して空冷することによって冷却するもの、(3)反応槽の内部に冷却ガス噴射ノズルを配設し冷却されたガスを排水内に注入することによって排水を冷却するもの等のいずれか1以上を用いることができる。
【0021】
本発明の請求項に記載の発明は、請求項1乃至の内いずれか1に記載の排水処理装置であって、前記反応槽内の排水の水温が、28℃以下好ましくは20℃以下に維持された構成を有している。
この構成により、請求項1乃至の内いずれか1で得られる作用に加え、以下のような作用が得られる。
(1)反応槽内の排水の水温が低温に維持されているので、オゾンの溶解度が低下するのを防止し安定した排水処理効率を得ることができる。
【0022】
ここで、反応槽内の排水の水温が20℃より高くなるにつれ水に対するオゾンの溶解度が低下しオゾンによる酸化分解反応が乏しくなり排水処理効率が低下する傾向がみられるため好ましくない。特に、水温が28℃より高くなると、この傾向が著しくなるので好ましくない。なお、排水の水温の下限は、排水が凍りつかない水温であればよいため、0℃より高い温度に維持されていればよい。但し、反応槽等の内部が常に流動でき凍りつかない状態であれば、0℃以下の水温でも構わない。
【0028】
本発明の請求項に記載の土壌改良材の製造方法は、請求項1乃至の内いずれか1に記載の排水処理装置を用い前記反応槽に貯留された排水を循環させながらオゾンガスを供給して排水をオゾン処理するオゾン処理工程と、前記オゾン処理工程で処理された処理水と汚泥スラリーとを前記反応槽から排出する排出工程と、排出された前記処理水及び/又は前記汚泥スラリーを脱水処理して土壌改良材として単独で若しくは配合して用いる固形分を採取する脱水処理工程と、を備えた構成を有している。
この構成により、以下のような作用が得られる。
(1)オゾン処理された処理水や汚泥スラリーを脱水処理して固形分を採取するので、大腸菌等の細菌類がなく無菌で衛生的な土壌改良材を製造することができる。また、処理水等の溶存酸素量が著しく高いので、固形分の好気性が高く土壌菌等が繁殖し易く作物の栽培に適した土壌改良材を製造することができる。オゾンの酸化作用によって有害細菌類が死滅するとともにオゾンが分解した酸素で酸化されているからである。また、処理水を脱水処理して採取された固形分からは、銅,カドミウム,亜鉛等の土壌汚染物質の含有量の少ない土壌改良材を製造することができる。オゾン処理によって排水中の土壌汚染物質の金属イオンが酸化され析出し処理水から分離されるので処理水に含まれず、そのため処理水を脱水処理されて採取された固形分中にも含まれないからである。
(2)処理水や汚泥スラリーを固液分離して得られた固形分は、有機物が分解され窒素やリン等を含有するので作物の栽培に適している。
(3)オゾンの酸化力によって好気性の土質に変化しているので、もみがら,わら等の有機物を加えた後にコンポスト化することも容易であり汎用性に優れる。
【0029】
【発明の実施の形態】
以下、本発明の一実施の形態を、図面を参照しながら説明する。
(実施の形態1)
図1は実施の形態1における排水処理装置の模式図である。
図中、1は実施の形態1における排水処理装置、2は産業用廃水,下水及びし尿等の排水が集水されて貯留された排水貯留槽、3は排水貯留槽2内に浸漬され集水された排水を揚水する排水ポンプ、4は排水ポンプ3に一端が接続された排水供給路、5は排水供給路4に配設された排水供給弁、6は排水が貯留される反応槽、7は反応槽6の下部側に形成され排水供給路4の他端側が接続された排水流入口、8は反応槽6の上方及び下方と連通する反応槽第1連通部、9は反応槽第1連通部8の一端に形成され反応槽6に供給された排水を吸引する排水吸引口、10は反応槽第1連通部8の他端に形成され排水吸引口9から吸引された排水を反応槽6内に注入する排水注入口、11は反応槽第1連通部8に配設され排水を排水吸引口9から排水注入口10へと循環する反応槽第1ポンプである。本実施の形態においては反応槽第1ポンプ11として渦流タービンポンプ(ニクニ社製)を用い、これを微細気泡発生手段として兼用した。
12は反応槽第1ポンプ11の上流側の反応槽第1連通部8に接続され酸素を無声放電式のオゾナイザー等によりオゾンガス化し空気,酸素とともにオゾン若しくは酸素とともにオゾンを系内に供給する反応槽オゾンガス供給部、13はゼオライト等を用いて空気からオゾンの原料となる高濃度の酸素を製造し反応槽オゾンガス供給部12に供給する酸素ガス発生部、14は一端が反応槽6の下方に連通され他端が反応槽6の上方に連通された反応槽第2連通部、15は反応槽第2連通部14に配設され排水を循環する反応槽第2ポンプ、16は反応槽第2連通部14の他端に接続され反応槽6の上部に配設された消泡ノズル、17は反応槽6の底部に接続された汚泥スラリー排出部、18は汚泥スラリー排出部17に配設された排泥弁、19は汚泥スラリー排出部17に配設された排泥ポンプ、20は汚泥スラリー排出部17に配設された濾過装置等の固液分離装置、21は反応槽6の上方の所定部に接続された排泡部、22は排泡部21に配設された排泡ポンプ、23は反応槽6の所定部に接続された処理水排出部、24は処理水排出部23に配設された処理水排出弁、25は処理水排出部24に配設された処理水排出ポンプ、26は処理水排出部23に配設された濾過装置等の固液分離装置、27は反応槽6の上部に接続された排ガス管、28は排ガス管27に配設され排ガス中のオゾン濃度を測定するオゾン濃度検出装置、29は排ガス管27に配設され排ガス中のオゾンを吸着して分解する活性炭等を含有する排オゾン処理装置である。
【0030】
以上のように構成された実施の形態1における排水処理装置について、以下その使用方法を説明する。
オゾン処理工程において、始めに、排水供給路4に配設された排水供給弁5を開弁した後、排水ポンプ3を駆動し排水貯留槽2に集水された排水を反応槽6に供給する。排水の水面の高さが排水吸引口9よりも高い位置まで達した後、排水ポンプ3を停止するとともに排水供給弁5を閉止する。
次に、反応槽第1ポンプ11を駆動して排水を循環するとともに酸素ガス発生部13,反応槽オゾンガス供給部12を駆動して、所定濃度のオゾンガスを平均粒径0.01〜200μmの微細気泡に含有させて排水中に溶存させ排水注入口10から反応槽6内に注入する。これにより、排水中の汚濁物質が微細気泡に付着して浮上分離し反応槽6の上方に無数の汚濁物質が付着した泡が現れる。このとき、系内に供給するオゾンガス濃度は、排ガス管27に配設されたオゾン濃度検出装置28の検出値が所定の基準値以下になるように最適量に調整する。
次に、反応槽第2ポンプ15を駆動して排水を消泡ノズル16から噴射する。これにより、反応槽6の上方に発現した泡が消されて泡に付着していた汚濁物質は再び排水中に懸濁する。これを繰り返すことによって、オゾンによる排水中の汚濁物質の酸化分解が繰り返し行われる。
反応槽6内に所定濃度のオゾンガスを所定時間注入した後、反応槽第1ポンプ11,反応槽オゾンガス供給部12,酸素ガス発生部13を停止する。次いで、排出工程において、排泥弁18を開弁するとともに排泥ポンプ19を駆動して反応槽6の底部に沈降した汚泥を汚泥スラリーとして汚泥スラリー排出部17から反応槽6の外部に排出する。さらに、排泡ポンプ22を駆動して排泡部21から汚濁物質が付着した泡を反応槽6の外部に排出する。次いで、処理水排出弁24を開弁した後、処理水排出ポンプ25を駆動して、処理水排出部23から汚泥スラリーや泡が除去された処理水を反応槽6から排出する。
脱水処理工程において、処理水は固液分離装置26によって固形分が除去された後、河川等に放流される。固液分離装置26によって分離され脱水処理された固形分は、必要に応じて施肥や発酵,水分量調整等の処理がなされ土壌改良材として利用することができる。また、汚泥スラリー排出部17から排出された汚泥スラリーは固液分離装置20で脱水処理されて固形分が採取される。この固形分も土壌改良材として用いることができる。
【0031】
以上のように、実施の形態1における排水処理装置は構成されているので、以下のような作用が得られる。
(1)排水が貯留される反応槽と、反応槽と連通する反応槽第1連通部と、反応槽第1連通部に配設された反応槽第1ポンプと、オゾンガスを系内に供給する反応槽オゾンガス供給部と、を備えているので、反応槽,反応槽第1連通部内の排水にオゾンガスを微細気泡にして拡散して供給することにより、オゾンの酸化力によって排水中の有機物の酸化分解、金属イオンの酸化・析出、排水の脱臭,脱色,殺菌等が行われ排水基準を大幅に下回る清浄な処理水を得ることができる。
(2)オゾンガスを反応槽第1ポンプの上流側に供給するので、供給されたオゾンガスを反応槽第1ポンプのインペラにより排水中に微細気泡として拡散させることができる。また、反応槽第1連通部を備え排水を循環させるので、排水が反応槽内で撹拌されて排水が微細気泡のオゾンガスと同伴し繰り返しオゾンガスと接触し酸化分解や殺菌効率を高めることができる。
(3)オゾンガスを平均粒径0.01〜200μmの微細気泡に含有させて排水中に供給するので、オゾンの排水中の滞在時間を長くすることができるとともに排水中の溶解度を増加させて酸化分解反応を活発化させることができ、さらに排水中の汚濁物質に付着して浮上分離させることができ排水処理効率を高めることができる。
(4)オゾンの酸化分解によって、汚泥中のタンパク質等の有機性物質等が酸化分解されて可溶化されるとともに、粘性を発現するタンパク質等の分解により汚泥の粘性が低下するので、汚水中の泥状物の濃縮性を向上させ汚泥の発生量を大幅に減少させることができる。
(5)オゾンガスを用いて酸化分解するので、流入水質や水量の変動、気候等の環境条件の変動に対しても、安定して水質の良好な処理水を得ることができる。
(6)オゾンを用いた酸化分解によって酸素が生成されるので、周辺環境に二次的な環境汚染を引き起こさず、また処理水や汚泥はオゾンの強力な酸化力によって殺菌され衛生的である。さらに、処理水はオゾンの酸化力によって好気性の水質に変化しているので、河川等へ放流することはもちろん、生物処理の前処理として生物分解槽に注入することもでき応用性が高い。
(7)装置の構成が簡単なので、建設費や運転管理費を少なくすることができ設備負荷を小さくすることができ、大都市近郊や工場等の大規模な排水処理だけでなく、中小都市や農山村地域において汚濁水発生源若しくは小集落ごとに排水処理を行う小規模排水処理装置として用いることができる。また、設置に多くの敷地面積を要さないので、車両等に搭載して汚濁水発生源や小集落等を巡回する移動式の排水処理装置としても用いることができ汎用性に優れる。
(8)反応槽第2連通部と、反応槽第2連通部に配設された反応槽第2ポンプと、反応槽第2連通部に接続された消泡ノズルと、を備えているので、注入された微細気泡に付着して浮上分離した汚濁物質に消泡ノズルから排水を吹き付けて消泡させ、汚濁物質を再び排水中に懸濁させることができる。これによって、汚濁物質がオゾンガスに繰り返し接触し汚濁物質の分解が促進され排水処理効率を高めることができる。
(9)汚泥スラリー排出部や排泡部を備えているので、排水のオゾン処理を行った後に反応槽の底部に沈降した汚泥や微細気泡に付着した汚泥を処理水とは別に反応槽の外部に排出することができ、排水中の汚泥を分離濃縮することができる。
(10)酸素ガス発生装置が反応槽オゾンガス供給部に接続されているので、強制的に空気中の酸素濃度を高めて高濃度の酸素を反応槽オゾンガス供給部に供給することによりオゾンガス濃度を高めることができる。これにより、反応槽,反応槽第1連通部に供給するオゾン発生量を高め排水の酸化分解効率を高めることができる。また、汚濁水の含有有機物量に応じてオゾンガスを適正量発生させることができ、処理効率を高めることができる。
(11)排ガス管にオゾン濃度検出装置が配設されているので、排ガス中のオゾンガス濃度がほぼゼロになるように反応槽オゾンガス供給部から発生するオゾンガス濃度を調整して、酸化反応に必要な最適量のオゾンを排水中に供給することができオゾンを排水処理に無駄なく利用することができる。
【0032】
本実施の形態においては、反応槽第1ポンプ11に渦流タービンポンプを用い、これを微細気泡発生手段として用いる場合を説明したが、これに代えて、反応槽第1ポンプ11の下流側の反応槽第1連通部8にエゼクタを備えた微細気泡発生手段8aを配設する場合もある。これにより、排水注入口10から噴射される排水の噴流による負圧によりオゾンを吸引し、気体流に作用する剪断作用により排水中に微細気泡を発生させることができる。また、反応槽第1ポンプの下流側に微細気泡発生装置(バブルタンク社製)を配設し、より微細な気泡径を有する微細気泡を発生させることができる。
また、反応槽第1連通部8の一端に形成された排水吸引口9が反応槽6の上方と連通する場合について説明したが、排水吸引口9を反応槽6の下方乃至上方の所定部と連通させ反応槽6内の排水を吸引させる場合もある。また、排水注入口10や排水吸引口9を反応槽6の複数箇所と連通させることもできる。これにより、排水の循環効率を高めることができる。
【0033】
(実施の形態2)
図2は本発明の実施の形態2における排水処理装置の模式図である。なお、実施の形態1と同様のものは、同じ符号を付して説明を省略する。
図中、30は実施の形態2における排水処理装置、31は反応槽6の側壁に配設され反応槽6内の排水を28℃以下好ましくは20℃以下の水温に維持する冷却装置としての冷却用ジャケット、32は汚泥スラリー排出部17,排泡部21が接続された処理槽、33は処理槽32の上方及び下方と連通する処理槽第1連通部、33aは反応槽第1連通部33に配設されたエゼクタを備えた微細気泡発生手段、34は処理槽第1連通部33の一端に形成され処理槽32に供給された汚泥スラリーを吸引する汚泥吸引口、35は処理槽第1連通部33の他端に形成され汚泥吸引口34から吸引された汚泥スラリーを処理槽32内に注入する汚泥注入口、36は処理槽第1連通部33に配設され汚泥スラリーを汚泥吸引口34から汚泥注入口35へと循環する処理槽第1ポンプ、37は処理槽第1ポンプ36の上流側の処理槽第1連通部33に配設された微細気泡発生手段33aに接続され酸素を無声放電式のオゾナイザー等によりオゾンガス化し系内に空気,酸素とともにオゾン若しくは酸素とともにオゾンを供給する処理槽オゾンガス供給部、38はゼオライト等を用いて空気からオゾンの原料となる高濃度の酸素を製造し処理槽オゾンガス供給部37に供給する酸素ガス発生部、39は一端が処理槽32の下方に連通され他端が処理槽32の上方に連通された処理槽第2連通部、40は処理槽第2連通部39に配設され汚泥を循環する処理槽第2ポンプ、41は処理槽第2連通部39の他端に接続され処理槽32の上部に配設された消泡ノズル、42は処理槽32に接続されスラリー状の汚泥を排出する第1汚泥排出部、43は第1汚泥排出部42に配設された第1汚泥排出弁、44は処理槽32の底部に接続されスラリー状の汚泥を排出する第2汚泥排出部、45は第2汚泥排出部44に配設された第2汚泥排出弁、46は第1汚泥排出部42と第2汚泥排出部43に接続された汚泥排出部、47は汚泥排出部46に配設された汚泥排出ポンプ、48は汚泥排出部46に配設された濾過装置等の固液分離装置、49は処理槽32の上部に接続された排ガス管、50は排ガス管49に配設され排ガス中のオゾン濃度を測定するオゾン濃度検出装置、51は排ガス管49に配設され排ガス中のオゾンを吸着して分解する活性炭等を含有する排オゾン処理装置である。
実施の形態2においても実施の形態1と同様に、エゼクタを備えた微細気泡発生手段33aに代えて、処理槽第1ポンプ36として渦流タービンポンプ等を用い、オゾンを微細気泡として汚泥注入口35から発生させる場合もある。これにより、オゾンを含有する微細気泡の平均の気泡径を0.01〜200μmにすることができる。
【0034】
実施の形態2における排水処理装置が実施の形態1と異なる点は、反応槽6に冷却装置としての冷却用ジャケット31が配設されている点、汚泥スラリー排出部17及び排泡部21に接続された処理槽32を備え、処理槽32が、処理槽第1ポンプ36と処理槽オゾンガス供給部37の配設された処理槽第1連通部33と、消泡ノズル41が接続された処理槽第2連通部39と、を備えている点である。
処理槽32で処理された排泡や汚泥スラリーは、汚泥排出ポンプ47を駆動することによって第1汚泥排出部42及び第2汚泥排出部44から処理槽32の外部へ排出され、固液分離装置48によって汚泥スラリー等から固形分が採取される。採取された固形分は土壌改良材として用いることができる。
【0035】
以上のように、実施の形態2における排水処理装置は構成されているので、実施の形態1に記載の作用に加え、以下のような作用が得られる。
(1)反応槽が冷却装置を備えているので、気温の高い夏季においても排水の水温を低く保つことができ、オゾンの溶解度を高め酸化分解反応等の反応を向上させ排水処理効率を向上させることができる。水に対するオゾンの溶解度は水温が低いほど大きくなるからである。
(2)汚泥スラリー排出部や排泡部に接続された処理槽を備えているので、汚泥スラリーを処理槽でオゾンを用いて酸化分解させることができ、さらに汚泥等の固形廃棄物の減容を図ることができる。
(3)反応槽の底部に沈降した汚泥や微細気泡に付着して浮上分離した汚泥を処理槽に導いて汚泥を濃縮させ減容させることができるので、反応槽と処理槽で並行して排水処理を進めることができ作業性に優れる。
【0036】
なお、本実施の形態においては、処理槽第1連通部33の一端に形成された汚泥吸引口34が処理槽32の上方と連通する場合について説明したが、汚泥吸引口34を処理槽32の下方乃至上方の所定部と連通させ処理槽32内の汚泥スラリーを吸引させる場合もある。これにより、処理槽32内に貯留された汚泥スラリーの量が少ないときでも処理槽第1連通部33で汚泥スラリーを循環させてオゾン処理を行うことができ操作性に優れる。
【0037】
(実施の形態3)
図3は本発明の実施の形態3における排水処理装置の模式図である。なお、実施の形態1と同様のものは、同じ符号を付して説明を省略する。
図中、60は実施の形態3における排水処理装置、61は一端が排水ポンプ3に接続され排水貯留槽2に貯留された排水が流れる排水流入路、62は排水流入路61に配設された排水流入弁、63は排水流入弁62の下流側の排水流入路61に配設され排水を圧送する圧送ポンプ、64は圧送ポンプ63の上流側の排水流入路に接続され酸素を無声放電式のオゾナイザー等によりオゾンガス化し空気,酸素とともにオゾン若しくは酸素とともにオゾンを系内に供給する溶解槽オゾンガス供給部、65はゼオライト等を用いて空気からオゾンの原料となる高濃度の酸素を製造し溶解槽オゾンガス供給部64に供給する酸素ガス発生部、66は排水流入路61の他端が接続された溶解槽、67は一端が溶解槽66に接続され他端が反応槽6の排水流入口7に接続された連通部、68は連通部67に配設された連通弁、69は連通弁68より下流側の連通部67に配設された排水輸送ポンプ、70は溶解槽66に配設された冷却装置としての冷却用ジャケット、71は反応槽6に覆設された断熱部材、72は冷却ガスを発生する冷却装置としての冷却ガス発生部、73は反応槽6の内部の下部側に配設された冷却装置としての冷却ガス噴射ノズルである。
なお、本実施の形態においても実施の形態1乃至2と同様に、排水流入路61にエゼクタ(図示しない)を有する微細気泡発生手段や、圧送ポンプ63として微細気泡発生手段として兼用できる渦流タービンポンプ等を用い、オゾンを微細気泡として発生させることができる。これにより、オゾンを含有する微細気泡の平均の気泡径を0.01〜200μmにすることができる。
【0038】
以上のように構成された実施の形態3における排水処理装置について、以下その使用方法を説明する。
始めに、連通部67に配設された連通弁68を閉止し排水流入路61に配設された排水流入弁62を開弁した後、排水ポンプ3を駆動し排水貯留槽2に集水された排水を揚水する。次いで、圧送ポンプ63を駆動するとともに酸素ガス発生部65,溶解槽オゾンガス供給部64を駆動して、オゾンを含有する微細気泡が溶解した排水を排水流入路61から溶解槽66内に圧送し、微細気泡が溶解した排水を0.2〜1MPaの圧力で所定時間加圧する。さらに、オゾンの溶解度を高めるために冷却用ジャケット70を用いて溶解槽66を冷却する。
所定時間が経過した後、圧送ポンプ63,酸素ガス発生部65,溶解槽オゾンガス供給部64を停止するとともに連通弁68を開弁し、さらに排水輸送ポンプ69を駆動することによって、溶解槽66内の排水を反応槽6内へ輸送する。これにより、溶解槽66内で加圧されてオゾンが過飽和状態で溶解した排水を大気圧下の反応槽6に放出させる。このとき、溶存していた微細気泡が多量に反応槽6内に出現し汚濁物質の浮上分離が行われる。反応槽6内の排水の水面の高さが排水吸引口9よりも高い位置まで達した後、排水輸送ポンプ69を停止するとともに連通弁68を閉止する。
次いで、反応槽第1ポンプ11を駆動して排水を循環するとともに酸素ガス発生部13,反応槽オゾンガス供給部12を駆動して、オゾンを含有する微細気泡を排水注入口10から反応槽6内に注入し、反応槽6内でオゾンによる排水処理を行う。排水の水温が高い場合は、反応槽6内の排水中のオゾンの溶解度を高めるため冷却ガス噴射ノズル73から冷却ガスを排水中に注入し排水の水温を28℃以下好ましくは20℃以下の低温に維持する。
これ以後の排水処理装置の使用方法は、実施の形態1で説明したものと同様なので説明を省略する。
【0039】
以上のように、実施の形態3における排水処理装置は構成されているので、実施の形態1に記載の作用に加え、以下のような作用が得られる。
(1)排水流入口に接続された溶解槽と、排水流入路に配設され排水を圧送するとともに溶解槽内を加圧する圧送ポンプと、排水流入路に接続し排水に供給される微細気泡が含有するオゾンガスを発生する溶解槽オゾンガス供給部と、を備えているので、溶解槽内で排水が加圧されオゾンを過飽和状態で溶解させることができオゾンによる酸化分解効率を高めることができる。
(2)溶解槽内で0.2〜1Paの圧力で加圧されてオゾンが過飽和状態で溶解した排水が大気圧下の反応槽に放出されるので、溶解したオゾンが微細気泡として多量に出現し汚濁物質の浮上分離及び酸化分解反応が直ちに行われ排水処理時間を著しく短縮することができ作業性に優れる。
(3)反応槽や溶解槽が冷却装置や断熱部材を備えているので、気温の高い夏季においても排水の水温を低く保つことができ、オゾンの溶解度が低下して酸化分解反応が乏しくなり排水処理効率が低下するのを防止することができる。
【0040】
(実施の形態4)
図4は本発明の実施の形態4における排水処理装置の模式図である。なお、実施の形態1と同様のものは、同じ符号を付して説明を省略する。
図中、80は実施の形態4における排水処理装置、81は排水ポンプ3が一端に接続された排水供給路、82は排水供給路81が複数本に分岐され他端が複数の排水処理装置1に接続された分岐供給路、83は分岐供給路82に配設された分岐供給弁、84は排水処理装置1の各々に一端が接続された複数本の分岐処理水排出部、85は複数本の分岐処理水排出部84が収束した処理水排出部、86は処理水排出部85に配設された濾過装置等の固液分離装置である。
【0041】
実施の形態4における排水処理装置が実施の形態1と異なる点は、排水供給路81が分岐して複数の排水処理装置1が並列して配設されている点である。
【0042】
以上のように、実施の形態4における排水処理装置は構成されているので、実施の形態1に記載の作用に加え、以下のような作用が得られる。
(1)複数の排水処理装置が並列して配設されているので、排水処理を終えて処理水を排出した排水処理装置に順次未処理の排水を供給して排水処理を行うことができ、排水処理能力を著しく高めることができる。
【0043】
【実施例】
以下、本発明を実施例により具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
(実施例1)
実施の形態1で説明した排水処理装置を用いて排水処理効果を確認した。排水としては、山口県田万川町江崎集落排水浄化センターの沈殿槽の下部から汲み上げた排水を用いた。山口県田万川町江崎集落排水浄化センターは、各家庭から集められた排水中の大きな夾雑物をスクリーンを用いて除去した後、流量調整槽、接触曝気槽、沈殿槽を経て汚泥と放流水とに分離して排水の処理を行っている。沈殿槽は、接触曝気槽に充填された接触材より剥離した汚泥を沈殿分離させるもので、沈殿槽の下部から汲み上げた排水には多くの汚泥が含まれている。
この排水200Lを容量が250Lの反応槽内に貯留した後、反応槽オゾンガス供給部、酸素ガス発生部、反応槽第1ポンプを駆動し、排水内にオゾンを含有する微細気泡を供給した。このときのオゾン発生量は9.98g/h、オゾンガス濃度は20.8g/Nmであった。また、排ガス中に含まれるオゾンガス濃度は0g/Nmであった。さらに、反応槽第2ポンプを駆動し消泡ノズルから排水を噴射させて泡に付着して浮上分離した汚濁物質を排水内に繰り返し懸濁させた。排水内にオゾンを含有する微細気泡の供給を開始してからの経過時間(処理時間)毎(0,20,50,120分毎)に反応槽内から処理水を採取し、浮遊物質(SS)、BOD、COD、全窒素(以下、T−Nという)、孔径1μmのガラス繊維濾紙(GFP)を用いて濾過した濾液のBOD(以下、BODという)、濾液のCOD(以下、CODという)、アンモニア性窒素(NH −N)、硝酸性窒素(NO −N)、亜硝酸性窒素(NO −N)を測定した。なお、BOD、COD(過マンガン酸カリウム酸化法による)、T−N、NH −N、NO −N、NO −Nの測定はJIS K 0102に従って行った。また、BOD、CODの測定は、試料濾過操作以外はJIS K 0102に従って行った。SSの測定は昭和46年環境庁告示59号に従って行った。
なお、120分間の排水処理におけるオゾン注入率は99.8mg/Lであった。また、排水の温度は20℃であった。
【0044】
図5は処理時間と処理水中のSS,BOD,CODの関係を示した図であり、図6は処理時間と処理水中のT−N,BODS,CODS,NH4 +−Nの関係を示した図である。表1は処理時間に対する処理水中のNO3 -−N、NO2 -−Nの量を示した表である。
【表1】
Figure 0003883490
図5乃至図6から、処理時間120分で処理水中のSS,BOD,COD,T−N,BODS,CODS,NH4 +−Nを著しく小さくすることができることが確認された。なお、処理時間120分後の各測定値は、SS:8.0mg/L,BOD:10.4mg/L,COD:10.6mg/L,T−N:14.8mg/L,BODS:10.2mg/L,CODS:8.5mg/L,NH4 +−N:0.34mg/Lであった。
なお、図6において、BODS,CODSの値が処理時間20〜50分にかけて一時的に増加しているのは、オゾンの酸化作用によって、汚濁物質が濾紙を通過できる溶解性物質に変化し、その後分解されたことを示していると推察している。また、表1において、処理時間120分後にNO3 -−N、NO2 -−Nの量が増加しているのは、オゾンの酸化作用によってNH4 +−Nの分解が進んだことを示していると推察している。
下水道法施行令が求める排水基準では2次処理(具体的には活性汚泥法や散水濾過法等を中心とした処理)により、BODが20mg/L以下、SSが70mg/L以下とされているので、本実施例によれば、強い酸化作用を有するオゾンの微細気泡による浮上分離と汚濁物質の分解により、排水基準を大幅に下回る清浄な処理水が得られることが明らかになった。
【0045】
(実施例2)
実施の形態2で説明した排水処理装置を用いて排水処理効果を確認した。排水としては、山口県田万川町江崎集落排水浄化センターの沈殿槽の下部から汲み上げた排水を用いた。
この排水200Lを容量250Lの反応槽内に貯留した後、冷却用ジャケットを用いて反応槽内の排水の水温を25℃に維持した後、反応槽オゾンガス供給部、酸素ガス発生部、反応槽第1ポンプを駆動し、排水内にオゾンを含有する微細気泡を供給した。このときのオゾン発生量は61.6g/h、オゾンガス濃度は68.5g/Nm3であった。また、排ガス中に含まれるオゾンガス濃度は0g/Nm3であった。さらに、反応槽第2ポンプを駆動し消泡ノズルから排水を噴射させて泡に付着して浮上分離した汚濁物質を排水内に繰り返し懸濁させた。排水内にオゾンを含有する微細気泡の供給を30分間行った後(処理時間30分)、反応槽内から処理水と排泡及び排泥スラリー(以下、排泡・排泥という)とを採取し、pH、溶存酸素量(DO)、BOD、COD、BODS、CODS、浮遊物質(SS)、揮発性浮遊物質(VSS)、蒸発残留物(105〜110℃で2時間乾燥後の残留物)、強熱減量(蒸発残留物を800℃程度の高温で強熱した減量分)、全窒素(T−N)、アンモニア性窒素(NH4 +−N)、硝酸性窒素(NO3 -−N)、亜硝酸性窒素(NO2 -−N)、全リン(T−P)、Cu、一般細菌数、大腸菌数を測定した。なお、BOD、COD(過マンガン酸カリウム酸化法による)、T−N、NH4 +−N、NO3 -−N、NO2 -−Nの測定はJIS K0102に従って行った。また、BODS、CODSの測定は、試料の濾過操作以外はJIS K 0102に従って行った。SSの測定は昭和46年環境庁告示59号に従って行った。その他の分析操作は下水試験法に準拠した。なお、30分間の排水処理におけるオゾン注入率は308mg/Lであった。
反応槽内及び処理槽内の排水や汚泥スラリー等を全て排出した後、同様に山口県田万川町江崎集落排水浄化センターの沈殿槽から汲み上げた排水200Lを同じ反応槽内に貯留した後、冷却用ジャケットを用いて反応槽内の排水の水温を20℃に維持した。次いで、同様の処理を30分間行った後に処理水を採取し、同様の分析を行った。これらの分析値を未処理の排水の分析値と比較した。その結果を表2に示す。
【表2】
Figure 0003883490
【0046】
表2から、以下のことが明らかになった。
(1)排水の水温を20℃に維持することにより、25℃に維持した場合と比較して、処理水のpHが低くなり溶存酸素量が高くなることが確認された。これは、水温が低い方がオゾンの溶解度が高まり酸化分解が活発に行われることを示している。また、排水(原水)の溶存酸素量と比較すると10倍程度の高い値を示すことが明らかになった。これは処理水や排泡・排泥が好気性の水質や土質に変化していることを示している。
(2)排水の水温を20℃に維持することにより、25℃に維持した場合と比較して、BODS、CODSが高くなることが確認された。これは、オゾンによる酸化分解が活発化するため、排水中の有機物が分解されて低分子化し溶解性の有機物が増加したことを示している。
(3)排水と比較して処理水中のCuの量が著しく減少していることが確認された。これは、排水中のCuイオンが酸化されて析出し、処理水から分離されて排泡や排泥中に含まれたことを示している。この結果、処理水を脱水処理して採取される固形分は、土壌汚染物質であるCuの含有量が著しく少ないことが明らかになった。また、排泡・排泥には窒素、リン等の栄養塩類が多量に含まれており植物の栽培に適していることが明らかになった。
(4)処理水中の一般細菌数及び大腸菌数をほぼ0にできることが確認された(下水道法施行令が求める排水基準では2次処理により、大腸菌群数は3000個/cm3以下)。これにより、処理水、処理水や排泥・排泡を脱水処理して採取される固形分は、無菌で非常に衛生的であることが明らかになった。これらの結果から、従来は大部分が埋立処理されていた余剰汚泥等の固形廃棄物を、土壌改良材としてリサイクルすることが可能であり、排水を資源として有効に活用できることを示している。
(5)排水(原水)に比べて処理水の粘度が低下するとともに、排泡・排泥の蒸発残留物の量が、排水の蒸発残留物の量の約5倍に増加することが確認された。これは、排泡・排泥が排水に比べ濃度が約5倍に増加し著しく濃縮されていることを示している。この結果、本実施例によれば、汚泥の濃縮性を向上させ余剰汚泥等の固形廃棄物の発生量を大幅に減少させることができることが明らかになった。
【0047】
【発明の効果】
以上のように、本発明の排水処理装置及びこれを用いた土壌改良材の製造方法によれば、以下のような有利な効果が得られる。
請求項1に記載の発明によれば、
(1)排水が貯留される反応槽と、反応槽と連通する反応槽第1連通部と、反応槽第1連通部に配設された反応槽第1ポンプと、オゾンガスを系内に供給する反応槽オゾンガス供給部と、を備えているので、反応槽,反応槽第1連通部内の排水にオゾンガスを微細気泡にして拡散して供給することにより、オゾンの酸化力によって排水中の有機物の酸化分解、金属イオンの酸化・析出、排水の脱臭,脱色,殺菌等が行われ排水基準を大幅に下回る清浄な処理水を得ることができる排水処理装置を提供することができる。このため産業用廃水等の処理だけでなく、上水、工業用水等の水処理全般に広く用いることにできる汎用性に優れた排水処理装置を提供することができる。
(2)オゾンガスを反応槽第1ポンプの上流側に供給するので、供給されたオゾンガスを反応槽第1ポンプのインペラにより排水中に微細気泡として拡散させることができる。また、反応槽第1連通部を備え排水を循環させるので、排水が反応槽内で撹拌されて排水が微細気泡のオゾンガスと同伴し繰り返しオゾンガスと接触し排水処理効率を高めることができる。
(3)オゾンの酸化分解によって、汚泥中のタンパク質等の有機性物質等が酸化分解されて可溶化されるとともに、粘性を発現するタンパク質等の分解により汚泥の粘性が低下するので、汚泥の濃縮性を向上させ汚泥の発生量を大幅に減少させることができる排水処理装置を提供することができる。
(4)オゾンガスを用いて酸化分解するので、流入水質や水量の変動、気候等の環境条件の変動に対しても、安定して水質の良好な処理水を得ることができる安定性に優れた排水処理装置を提供することができる。
(5)オゾンを用いた酸化分解によって酸素が生成されるので、周辺環境に二次的な環境汚染を引き起こさず、またオゾンの強力な酸化力によって殺菌され衛生的な処理水や汚泥の得られる排水処理装置を提供することができる。さらに、処理水はオゾンの酸化力によって好気性の水質に変化しているので、河川等へ放流することはもちろん、生物処理の前処理として生物分解槽に注入することもでき応用性の高い排水処理装置を提供することができる。
(6)装置の構成が簡単なので、建設費や運転管理費を少なくすることができ設備負荷を小さくすることができ、大都市近郊や工場等の大規模な排水処理だけでなく、中小都市や農山村地域において汚濁水発生源若しくは小集落ごとに排水処理を行う小規模排水処理装置として用いることができる排水処理装置を提供することができる。また、設置に多くの敷地面積を要さないので、車両等に搭載して汚濁水発生源や小集落等を巡回する移動式の排水処理装置としても用いることができ汎用性に優れた排水処理装置を提供することができる。
(7)汚泥スラリー排出部や排泡部を備えているので、排水のオゾン処理を行った後に反応槽の底部に沈降した汚泥や微細気泡に付着した汚泥を処理水とは別に反応槽の外部に排出することができ、排水中の汚泥を分離濃縮することができ濃縮性が高く固形廃棄物の発生量が少ない排水処理装置を提供することができる。
(8)汚泥スラリー排出部や排泡部に接続された処理槽を備えているので、反応槽から排出された汚泥を処理槽でオゾンを用いてさらに酸化分解させることができ、汚泥等の固形廃棄物の減容を図ることができる排水処理装置を提供することができる。
(9)反応槽の底部に沈降した汚泥や微細気泡に付着して浮上分離した汚泥を処理槽に導いて汚泥を濃縮させ減容させることができるので、反応槽と処理槽で並行して排水処理を進めることができ作業性に優れた排水処理装置を提供することができる。
(10)オゾンガスを処理槽第1ポンプの上流側に供給するので、供給されたオゾンガスを処理槽第1ポンプのインペラにより排水中に微細気泡として拡散させることができる。 また、処理槽第1連通部を備え排水を循環させるので、排水が処理槽内で撹拌されて排水が微細気泡のオゾンガスと同伴し繰り返しオゾンガスと接触し排水処理効率を高めることができる。
【0048】
請求項に記載の発明によれば、請求項1の(1)乃至(6)の効果に加え、
(1)排水流入口に接続された溶解槽と、排水流入路に配設され排水を圧送するとともに溶解槽内を加圧する圧送ポンプと、排水流入路に接続された溶解槽オゾンガス供給部と、を備えているので、溶解槽内で排水が加圧されオゾンを過飽和状態で溶解させることができオゾンによる酸化分解効率を高めることができる排水処理装置を提供することができる。
(2)溶解槽内で加圧されてオゾンが過飽和状態で溶解した排水が大気圧下の反応槽に放出されるので、溶解したオゾンが微細気泡として多量に出現し汚濁物質の浮上分離及び酸化分解反応が直ちに行われ排水処理時間を著しく短縮することができ作業性に優れた排水処理装置を提供することができる。
請求項に記載の発明によれば、請求項1又は2の効果に加え、
(1)反応槽第1連通部に微細気泡発生手段が配設されているので、オゾンガスを微細気泡に含有させて排水中に供給することができ、オゾンの排水中の滞在時間を長くすることができるとともに排水に対するオゾンの溶解度を増加させて酸化分解反応を活発化させることができ、さらに排水中の汚濁物質が微細気泡に付着して浮上分離され排水処理効率に著しく優れた排水処理装置を提供することができる。
請求項に記載の発明によれば、請求項1乃至の内いずれか1の効果に加え、
(1)汚泥スラリー排出部や排泡部を備えているので、排水のオゾン処理を行った後に反応槽の底部に沈降した汚泥や微細気泡に付着した汚泥を処理水とは別に反応槽の外部に排出することができ、排水中の汚泥を分離濃縮することができ濃縮性が高く固形廃棄物の発生量が少ない排水処理装置を提供することができる。
【0049】
請求項に記載の発明によれば、請求項1乃至の内いずれか1の効果に加え、
(1)反応槽第2連通部と、反応槽第2連通部に配設された反応槽第2ポンプと、反応槽第2連通部に接続された消泡ノズルと、を備えているので、注入された微細気泡に付着して浮上分離した汚濁物質に消泡ノズルから排水を吹き付けて消泡させ、汚濁物質を再び排水中に懸濁させることができる。また、排水の流滴等を反応槽上部のオゾンガス層に繰り返し接触させることができる。これによって、汚濁物質がオゾンガスに繰り返し接触し汚濁物質の分解が促進される排水処理効率の高い排水処理装置を提供することができる。
【0050】
請求項に記載の発明によれば、請求項1乃至の内いずれか1の効果に加え、
(1)反応槽が冷却装置や断熱部材を備えているので、気温の高い夏季においても排水の水温を低く保つことができ、オゾンの溶解度を高め酸化分解反応等の反応を向上させ排水処理効率の高い排水処理装置を提供することができる。
【0051】
請求項に記載の発明によれば、請求項1乃至の内いずれか1の効果に加え、
(1)反応槽内の排水の水温が低温に維持されているので、オゾンの溶解度が低下するのを防止し安定した排水処理効率を得ることができる安定性に優れた排水処理装置を提供することができる。
【0055】
本発明の請求項に記載の発明によれば、
(1)オゾン処理された処理水や汚泥スラリーを脱水処理して固形分を採取するので、大腸菌等の細菌類がなく無菌で衛生的な土壌改良材を製造できる土壌改良材の製造方法を提供することができる。また、処理水等の溶存酸素量が著しく高いので、固形分の好気性が高く土壌菌等が繁殖し易く作物の栽培に適した土壌改良材を製造できる土壌改良材の製造方法を提供することができる。また、処理水を脱水処理して採取された固形分からは、銅,カドミウム,亜鉛等の土壌汚染物質の含有量の少ない土壌改良材を製造できる土壌改良材の製造方法を提供することができる。
(2)処理水を固液分離して得られた固形分は、有機物が分解され窒素やリン等を含有するので作物の栽培に適した土壌改良材の製造方法を提供することができる。
(3)オゾンの酸化力によって好気性の土質に変化しているので、もみがら,わら等の有機物を加えた後にコンポスト化することも容易であり汎用性に優れた土壌改良材が製造できる土壌改良材の製造方法を提供することができる。
【図面の簡単な説明】
【図1】実施の形態1における排水処理装置の模式図
【図2】実施の形態2における排水処理装置の模式図
【図3】実施の形態3における排水処理装置の模式図
【図4】実施の形態4における排水処理装置の模式図
【図5】処理時間と処理水中のSS,BOD,CODの関係を示した図
【図6】処理時間と処理水中のT−N,BODS,CODS,NH4 +−Nの関係を示した図
【符号の説明】
1 排水処理装置
2 排水貯留槽
3 排水ポンプ
4 排水供給路
5 排水供給弁
6 反応槽
7 排水流入口
8 反応槽第1連通部
9 排水吸引口
10 排水注入口
11 反応槽第1ポンプ
12 反応槽オゾンガス供給部
13 酸素ガス発生部
14 反応槽第2連通部
15 反応槽第2ポンプ
16 消泡ノズル
17 汚泥スラリー排出部
18 排泥弁
19 排泥ポンプ
20 固液分離装置
21 排泡部
22 排泡ポンプ
23 処理水排出部
24 処理水排出弁
25 処理水排出ポンプ
26 固液分離装置
27 排ガス管
28 オゾン濃度検出装置
29 排オゾン処理装置
30 排水処理装置
31 冷却用ジャケット
32 処理槽
33 処理槽第1連通部
33a 微細気泡発生手段
34 汚泥吸引口
35 汚泥注入口
36 処理槽第1ポンプ
37 処理槽オゾンガス供給部
38 酸素ガス発生部
39 処理槽第2連通部
40 処理槽第2ポンプ
41 消泡ノズル
42 第1汚泥排出部
43 第1汚泥排出弁
44 第2汚泥排出部
45 第2汚泥排出弁
46 汚泥排出部
47 汚泥排出ポンプ
48 固液分離装置
49 排ガス管
50 オゾン濃度検出装置
51 排オゾン処理装置
60 排水処理装置
61 排水流入路
62 排水流入弁
63 圧送ポンプ
64 溶解槽オゾンガス供給部
65 酸素ガス発生部
66 溶解槽
67 連通部
68 連通弁
69 排水輸送ポンプ
70 冷却用ジャケット
71 断熱部材
72 冷却ガス発生部
73 冷却ガス噴射ノズル
80 排水処理装置
81 排水供給路
82 分岐供給路
83 分岐供給弁
84 分岐処理水排出部
85 処理水排出部
86 固液分離装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wastewater treatment apparatus for treating wastewater containing pollutants such as industrial wastewater, sewage and human waste, and a method for producing a soil conditioner using the same.
[0002]
[Prior art]
Conventionally, wastewater such as industrial wastewater, sewage, polluted water, and human waste, such as solid-liquid separation operations such as coagulation, precipitation, and filtration, and biological treatment such as activated sludge method using chemical reactions. Etc. are done. The treated water treated by these is discharged into rivers and the like, and solid waste such as excess sludge separated from the treated water is incinerated for volume reduction as needed and disposed of by landfill.
Therefore, at least for wastewater treatment, remove pollutants such as organic substances, harmful substances, suspended solids, and nutrients in the treated water to obtain treated water that satisfies the wastewater standards, and the amount of solid waste such as excess sludge generated. Is required to be low.
In recent years, an apparatus using ozone having strong oxidizing power has been developed as a wastewater treatment apparatus for satisfying such a demand.
[0003]
As a conventional technique, for example, (Patent Document 1) describes “a method for reforming organic sludge in which the pH of sludge is adjusted to 3 to 6 and then contacted with a gas containing ozone in a pressurized atmosphere”. Yes.
[0004]
(Patent Document 2) includes "a first treatment step for mixing and treating sludge and ozone gas, a second treatment step for retaining and treating sludge and ozone gas mixed and contacted in the first treatment step for a certain period of time; And a third treatment step in which the sludge treated with ozone in the second treatment step is subjected to a solid-liquid separation treatment into a separated liquid and a concentrated sludge ”.
[0005]
(Patent Document 3) states that “a treated water supply system for supplying treated water with a pressure pump, ozone generating means for generating ozone, and a pressure pump for the treated water supply system for the generated ozone. "High-speed ozone reaction system comprising ozone injection means for injecting upstream of ozone and ozone reaction means for subjecting water to which ozone has been injected to an ozone reaction treatment in an ozone reaction tank while maintaining a pressurized state" Has been.
[0006]
[Patent Document 1]
JP 59-4500
[Patent Document 2]
JP 2000-246293 A
[Patent Document 3]
JP-A-10-230285
[0007]
[Problems to be solved by the invention]
However, the above conventional techniques have the following problems.
(1) The technique described in (Patent Document 1) has a problem that a pressurized container is required and the apparatus becomes large and complicated.
(2) Since sludge water is showered and brought into contact with the ozone-containing gas filled in the container, there is a problem that the contact efficiency between ozone and sludge is low and the treatment efficiency is low.
(3) Since ozone is supplied into sludge water using an air diffuser, there is a problem that the bubble diameter of ozone gas is as large as 0.2 to 0.8 mm, and the amount of ozone dissolved in sludge water is small and the treatment efficiency cannot be increased. Had. Further, there is a problem that the air diffuser is easily clogged and lacks in maintainability.
(4) The technique described in (Patent Document 2) has a problem that the time required for the sludge treatment becomes long because the sludge and ozone gas are retained for a certain period of time.
(5) Since an ozone retention tank and a gravity concentration tank are required, the entire apparatus has a problem of increasing in size.
(6) Since the technique described in (Patent Document 3) requires an ozone reaction tank in which ozone and water to be treated are reacted in a pressurized state, there is a problem that the apparatus becomes large and complicated. It was.
[0008]
The present invention solves the above-described conventional problems, and can be used as a small-scale wastewater treatment apparatus with a small equipment load because the structure is simple and can be miniaturized, and is excellent in versatility, and oxidative decomposition of organic matter in wastewater, Oxidation / precipitation of metal ions, drainage deodorization, decolorization, sterilization, etc. can be performed very efficiently, and clean treated water significantly lower than the drainage standard can be obtained, and the concentration of sludge is improved. An object of the present invention is to provide a wastewater treatment apparatus capable of greatly reducing the amount of solid waste generated.
In addition, the present invention has a low content of soil contaminants such as copper, is free of bacteria such as Escherichia coli, is sterile and hygienic, suitable for cultivation of crops, is extremely aerobic, and is capable of breeding soil bacteria and the like. An object of the present invention is to provide a method for producing a soil improvement material which is easy and can be easily composted and has excellent versatility.
[0009]
[Means for Solving the Problems]
In order to solve the above conventional problems, a wastewater treatment apparatus of the present invention and a method for producing a soil improvement material using the same have the following configurations.
[0010]
  The waste water treatment apparatus according to claim 1 of the present invention is in communication with the reaction tank having a drain inlet and a drainage suction port at one end and a drain inlet at the other end. A reaction tank first communication section; a reaction tank first pump disposed in the reaction tank first communication section for circulating waste water; and the reaction tank first communication section upstream of the reaction tank first pump. A reaction tank ozone gas supply unit for supplying ozone gas into the system, a bubble discharging unit connected to a predetermined part above the reaction tank for discharging polluted substances to the outside of the reaction tank, and a predetermined value for the reaction tank A treated water discharge part connected to the part, a sludge slurry discharge part connected to a predetermined part of the bottom part or the side part of the reaction tank, a treatment tank connected to the sludge slurry discharge part and the bubble removing part, A treatment tank ozone gas supply unit connected to the treatment tank; A sludge discharge portion for discharging the slurry sludge are connected to sense tank,A treatment tank first communication part which is formed with a sludge suction port at one end and a sludge injection port at the other end and communicates with the treatment tank; a treatment tank first pump which is disposed in the treatment tank first communication part and circulates sludge; The treatment tank ozone gas supply unit is connected to the treatment tank first communication part on the upstream side of the treatment tank first pump.It has a configuration.
  With this configuration, the following effects can be obtained.
(1) A reaction tank in which wastewater is stored, a reaction tank first communication part communicating with the reaction tank, a reaction tank first pump disposed in the reaction tank first communication part, and supplying ozone gas into the system A reaction tank ozone gas supply unit, so that ozone gas is diffused and supplied to the waste water in the reaction tank and the first communication part of the reaction tank to oxidize organic matter in the waste water by the oxidizing power of ozone. Decomposition, oxidation / precipitation of metal ions, deodorization, decolorization, sterilization, etc. of wastewater are performed, and clean treated water that is significantly lower than the wastewater standard can be obtained.
(2) Since ozone gas is supplied to the upstream side of the reaction tank first pump, the supplied ozone gas can be diffused as fine bubbles in the waste water by the impeller of the reaction tank first pump. Moreover, since the waste water is circulated with the reaction tank first communicating portion, the waste water is agitated in the reaction tank, and the waste water is accompanied with the fine bubble ozone gas and repeatedly comes into contact with the ozone gas, thereby improving the waste water treatment efficiency.
(3) Oxidative decomposition of organic matter such as protein in sludge is oxidatively decomposed and solubilized by the oxidative decomposition of ozone, and the viscosity of sludge is reduced by the decomposition of protein that develops viscosity. And the amount of sludge generated can be greatly reduced.
(4) Since oxidative decomposition is performed using ozone gas, treated water having stable and good water quality can be obtained even with respect to changes in the quality of inflow water, the amount of water, and changes in environmental conditions such as climate.
(5) Since oxygen is generated by oxidative decomposition using ozone, secondary environmental pollution is not caused in the surrounding environment, and treated water and sludge are sanitized by the strong oxidizing power of ozone. Furthermore, since the treated water has been changed to an aerobic water quality due to the oxidizing power of ozone, it can be discharged into rivers and the like, and can also be injected into a biodegradation tank as a pretreatment for biological treatment.
(6) Since the structure of the equipment is simple, construction costs and operation management costs can be reduced, and the equipment load can be reduced. In addition to large-scale wastewater treatment in suburban areas and factories, It can be used as a small-scale wastewater treatment device that performs wastewater treatment for each source of polluted water or small villages in rural areas. In addition, since a large site area is not required for installation, it can be used as a mobile wastewater treatment apparatus that is mounted on a vehicle or the like and circulates a polluted water generation source or a small village, and is excellent in versatility.
(7) Since the bubble removing part is provided, the sludge adhering to the fine bubbles can be discharged outside the reaction tank separately from the treated water, and the sludge in the waste water can be separated and concentrated.
(8) Since it has a treatment tank connected to the sludge slurry discharge part and the exhaust bubble part, the sludge discharged from the reaction tank can be further oxidatively decomposed using ozone in the treatment tank. The volume of waste can be reduced.
(9) Since sludge settled on the bottom of the reaction tank and sludge that floats and separates by adhering to fine bubbles can be guided to the treatment tank to concentrate and reduce the volume of sludge, waste water is discharged in parallel in the reaction tank and the treatment tank. Processing can be advanced and workability is excellent.
(10) Since ozone gas is supplied to the upstream side of the treatment tank first pump, the supplied ozone gas can be diffused as fine bubbles in the waste water by the impeller of the treatment tank first pump. Moreover, since the waste water is circulated by providing the treatment tank first communicating portion, the waste water is agitated in the treatment tank, and the waste water is accompanied with the fine bubble ozone gas repeatedly to come into contact with the ozone gas, thereby improving the waste water treatment efficiency.
[0011]
Here, as waste water, industrial waste water, sewage, polluted water containing organic or inorganic floating substances, human waste, and the like are used.
[0012]
As the reaction tank ozone gas supply unit, one that generates and supplies ozone gas by chemical reaction, photochemical reaction, electrolytic reaction, discharge reaction (silent discharge) or the like is used. The reaction tank ozone gas supply part can use oxygen in the air as a raw material, but the oxygen gas generation part is connected to the reaction tank ozone gas supply part to increase the oxygen concentration in the air and supply high concentration oxygen to the reaction tank ozone gas By supplying to the unit, the ozone gas concentration in the air can be increased. Thereby, high-concentration ozone together with air and oxygen or high-concentration ozone together with oxygen can be supplied to the reaction tank and the reaction tank first communication part to increase the amount of ozone generated and increase the oxidative decomposition efficiency of the waste water.
[0013]
As the ozone injection rate (mg / L) representing the ozone amount (mg) with respect to the volume (L) of the waste water in the reaction tank, 30 to 1000 mg / L is used, although it depends on the pollution degree of the waste water. As the ozone injection rate becomes lower than 30 mg / L, the amount of ozone with respect to the capacity of the waste water tends to decrease and the processing efficiency tends to decrease. As the ozone injection rate becomes higher than 1000 mg / L, a large amount of electric power is required to drive the reaction tank ozone gas supply unit. Therefore, energy efficiency is lowered and the life of the reaction vessel ozone gas supply unit tends to be shortened.
The ozone injection rate (mg / L) is expressed by (Equation 1).
[Expression 1]
Figure 0003883490
[0014]
  Irradiation, addition or contact with metal oxidation catalysts such as ultraviolet rays, hydrogen peroxide, titanium oxide, etc. in addition to ozone accelerates the decomposition of organic substances, etc. and promotes environmental hormones, dioxins, organochlorine compounds, etc. Can promote the degradation of environmental pollutants.
  Here, the treatment tank first communication portion includes a claim3The fine bubble generating means explained in the above can be arranged. As a result, the claim3The same action as described in 1 is obtained.
[0015]
  Claims of the invention2The invention described in the above, a reaction tank having a drainage inlet and storing drainage, a drainage suction port at one end and a drainage inlet at the other end, and a reaction tank first communication part communicating with the reaction tank, A reaction tank first pump disposed in the reaction tank first communication part for circulating waste water, and a reaction connected to the reaction tank first communication part upstream of the reaction tank first pump to supply ozone gas into the system. A tank ozone gas supply unit, a treated water discharge unit connected to a predetermined part of the reaction tank, a dissolution tank connected to the drainage inlet, and a drainage inflow for connecting wastewater to the dissolution tank connected to the dissolution tank A pressure feed pump that is disposed in the drainage inflow path and pressurizes the wastewater and pressurizes the inside of the dissolution tank, and a dissolution tank ozone gas supply unit connected to the drainage inflow path on the upstream side of the pressure pump. It has the composition provided.
  With this configuration, in addition to the operations (1) to (6) of the first aspect, the following operations can be obtained.
(1) a dissolution tank connected to the drainage inlet, a pressure pump disposed in the drainage inflow path to pressurize the wastewater and pressurize the inside of the dissolution tank, a dissolution tank ozone gas supply unit connected to the drainage inflow path, Since the waste water is pressurized in the dissolution tank, ozone can be dissolved in a supersaturated state, and the oxidative decomposition efficiency by ozone can be increased.
(2) Since the wastewater that has been pressurized in the dissolution tank and dissolved in a supersaturated state of ozone is released into the reaction tank under atmospheric pressure, a large amount of dissolved ozone appears as fine bubbles, and the floating separation and oxidation of pollutants The decomposition reaction takes place immediately and the wastewater treatment time can be significantly shortened, resulting in excellent workability.
  Here, the pressure feed pump preferably pressurizes the dissolution tank at a pressure of 0.2 to 1 MPa. As the pressure becomes smaller than 0.2 MPa, since the pressure becomes smaller, there is a tendency that the increase in the solubility of ozone is small and it is difficult to increase the effect of increasing the oxidative decomposition efficiency. As the pressure becomes higher than 1 MPa, This tends to increase the equipment load due to the increase in size.
  In addition, the drainage inflow passage is claimed3The fine bubble generating means explained in the above can be arranged. As a result, the claim3The same action as described in 1 is obtained.
  Claim3The invention described in claim 1Or 2The waste water treatment apparatus according to claim 1, wherein a fine bubble generating means is disposed in the first communication portion of the reaction tank.
  With this configuration, the first aspectOr 2In addition to the effects obtained with the above, the following actions are obtained.
(1) Since the fine bubble generating means is disposed in the first communicating portion of the reaction tank, ozone gas can be contained in the fine bubbles and supplied into the waste water, and the residence time of the ozone in the waste water can be increased. In addition, the solubility of ozone in the waste water can be increased to activate the oxidative decomposition reaction, and the pollutants in the waste water can be attached to the fine bubbles and floated to increase the waste water treatment efficiency.
[0016]
Here, as the fine bubble generating means, one provided with an ejector disposed in the reaction tank first communicating portion on the downstream side of the reaction tank first pump can be used. Thereby, ozone gas is attracted | sucked from an ejector with the negative pressure by the jet flow of the waste_water | drain injected from a waste_water | drain injection port, The fine bubble containing ozone can be generated by the shearing effect | action which acts on a gas flow. In addition, a reaction tank ozone gas supply unit is provided on the upstream side of a vortex turbine pump (manufactured by Nikuni Co., Ltd.) and the like disposed in the first communication section of the reaction tank. Can be pumped. In this case, the first reaction tank pump and the fine bubble generating means can be used together. Thereby, high-concentration ozone gas can be dissolved in the waste water as fine bubbles, and the apparatus configuration can be simplified. Moreover, a reaction tank ozone gas supply part can be provided in the upstream of a reaction tank 1st pump, and a fine bubble generator (made by Bubble Tank) can be arrange | positioned in the reaction tank 1st communication part in the downstream of this pump. Thereby, the bubble in the waste_water | drain containing ozone can be refined | miniaturized remarkably. The fine bubble generating means is not limited to these, and any means can be used as long as it can make the bubbles in the waste water fine.
[0017]
The average bubble diameter of fine bubbles is 0.01 to 200 μm, preferably 0.5 to 50 μm. As the average bubble diameter becomes smaller than 0.5 μm, the means for generating fine bubbles tends to become complicated, and as it becomes larger than 50 μm, the fine bubbles supplied in the drainage immediately rise up, depending on the viscosity of the drainage. However, it is not preferable because the retention time in the waste water is short and the processing efficiency tends to decrease. In particular, when the distance is smaller than 0.01 μm or larger than 200 μm, these tendencies become remarkable, so that neither is preferable. The measurement of the bubble diameter can be calculated by placing a glass plate on the surface of the water, photographing the bubbles in the water with a digital camera, and performing image processing.
[0018]
  Claims of the invention4The invention described in claim 12The wastewater treatment apparatus according to claim 1, further comprising a sludge slurry discharge part connected to a predetermined part of the bottom part of the reaction tank or a side part thereof and / or a bubble discharging part connected to a predetermined part above the reaction tank. It has a configuration.
  With this configuration, the claim2In addition to the effects obtained with the above, the following actions are obtained.
(1) Since the sludge slurry discharge part and the exhaust bubble part are provided, the sludge that settles on the bottom of the reaction tank after the ozone treatment of the waste water and the sludge adhering to fine bubbles are separated from the treated water outside the reaction tank. The sludge in the waste water can be separated and concentrated.
  Claims of the invention5The invention described in claim 1 to claim 14A wastewater treatment apparatus according to any one of the above, wherein a reaction tank second communication part having one end communicating with a predetermined part of the reaction tank and the other end communicating with an upper part of the reaction tank; It has the structure provided with the reaction tank 2nd pump which is arrange | positioned in the 2 communication part and circulates waste_water | drain, and the defoaming nozzle connected to the other end of the said reaction tank 2nd communication part.
  With this configuration, claims 1 to4In addition to the effects obtained by any one of the following, the following actions are obtained.
(1) Since it comprises a reaction tank second communication part, a reaction tank second pump disposed in the reaction tank second communication part, and a defoaming nozzle connected to the reaction tank second communication part, The pollutant that adheres to the injected fine bubbles and floats and separates can be defoamed by spraying the drainage from the defoaming nozzle, and the pollutant can be suspended again in the drainage. Moreover, it is possible to repeatedly contact the wastewater droplets or the like with the ozone gas layer above the reaction tank. As a result, the pollutant is repeatedly brought into contact with ozone gas, the decomposition of the pollutant is promoted, and the wastewater treatment efficiency can be increased.
[0019]
  Claims of the invention6The invention described in claim 1 to claim 15The waste water treatment apparatus according to any one of the above, comprising a cooling device disposed in the reaction tank and / or a heat insulating member covered by the reaction tank.
  With this configuration, claims 1 to5In addition to the effects obtained by any one of the following, the following actions are obtained.
(1) Since the reaction tank is equipped with a cooling device and a heat insulating member, the temperature of the wastewater can be kept low even in summer when the temperature is high, and the wastewater treatment efficiency is improved by increasing the solubility of ozone and improving the reaction such as oxidative decomposition reaction. Can be improved. This is because the solubility of ozone in water increases as the water temperature decreases.
[0020]
Here, as the cooling device, (1) a cooling jacket is provided outside the reaction tank and cooling water or cold air is flown inside or ice is stored to cool the inside, (2) outside the reaction tank. Cooling by disposing fins for heat dissipation and air cooling, (3) Cooling water discharge by disposing a cooling gas injection nozzle inside the reaction tank and injecting cooled gas into the drainage, etc. Any one or more of these can be used.
[0021]
  Claims of the invention7The invention described in claim 1 to claim 16The waste water treatment apparatus according to any one of the above, wherein the temperature of the waste water in the reaction tank is maintained at 28 ° C. or lower, preferably 20 ° C. or lower.
  With this configuration, claims 1 to6In addition to the effects obtained by any one of the following, the following actions are obtained.
(1) Since the water temperature of the waste water in the reaction tank is maintained at a low temperature, it is possible to prevent a decrease in the solubility of ozone and to obtain a stable waste water treatment efficiency.
[0022]
Here, as the water temperature of the waste water in the reaction tank becomes higher than 20 ° C., the solubility of ozone in the water is lowered, and the oxidative decomposition reaction due to ozone tends to be poor, and the waste water treatment efficiency tends to be lowered. In particular, when the water temperature is higher than 28 ° C., this tendency becomes remarkable, which is not preferable. In addition, since the minimum of the water temperature of waste_water | drain should just be the water temperature which waste_water | drain does not freeze, it should just be maintained at the temperature higher than 0 degreeC. However, a water temperature of 0 ° C. or less may be used as long as the inside of the reaction tank or the like can always flow and does not freeze.
[0028]
  Claims of the invention8The method for producing a soil amendment according to claim 1, wherein:7An ozone treatment process for supplying ozone gas and circulating the wastewater stored in the reaction tank using the wastewater treatment apparatus according to any one of the above, and treating the wastewater with ozone, and treated water treated in the ozone treatment process And a sludge slurry are discharged from the reaction tank, and the discharged treated water and / or the sludge slurry is dehydrated to collect solids used alone or in combination as a soil conditioner. And a process.
  With this configuration, the following effects can be obtained.
(1) Since the solids are collected by dehydrating the treated water and sludge slurry that have been subjected to ozone treatment, it is possible to produce a sterile and sanitary soil conditioner that is free of bacteria such as Escherichia coli. In addition, since the amount of dissolved oxygen such as treated water is extremely high, it is possible to produce a soil improvement material that is highly aerobic in the solid content and easily proliferates soil fungi and is suitable for crop cultivation. This is because harmful bacteria are killed by the oxidizing action of ozone and the ozone is oxidized with decomposed oxygen. Moreover, the soil improvement material with little content of soil pollutants, such as copper, cadmium, and zinc, can be manufactured from the solid content collected by dehydrating the treated water. Ozone treatment oxidizes and precipitates metal ions of soil pollutants in the wastewater and is separated from the treated water, so it is not included in the treated water, so it is not included in the solids collected by dehydrating the treated water. It is.
(2) The solid content obtained by solid-liquid separation of treated water or sludge slurry is suitable for crop cultivation because organic matter is decomposed and contains nitrogen, phosphorus and the like.
(3) Since it has changed to an aerobic soil due to the oxidizing power of ozone, it can be easily composted after adding organic substances such as rice husk and straw and is excellent in versatility.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram of a wastewater treatment apparatus in the first embodiment.
In the figure, 1 is a wastewater treatment apparatus in the first embodiment, 2 is a wastewater storage tank in which wastewater such as industrial wastewater, sewage and human waste is collected and stored, and 3 is a water collection that is immersed in the wastewater storage tank 2. A drainage pump for pumping the drained wastewater, 4 is a drainage supply passage connected at one end to the drainage pump 3, 5 is a drainage supply valve disposed in the drainage supply passage 4, 6 is a reaction tank in which wastewater is stored, 7 Is a drainage inlet formed on the lower side of the reaction tank 6 and connected to the other end of the drainage supply path 4, 8 is a first communication tank communicating with the upper and lower sides of the reaction tank 6, and 9 is a reaction tank first. A drainage suction port 10 is formed at one end of the communication portion 8 and sucks the wastewater supplied to the reaction tank 6. A wastewater suction port 10 is formed at the other end of the reaction tank first communication portion 8 and sucked from the drainage suction port 9. The drainage inlet 11 for injecting into the reactor 6 is disposed in the first communication part 8 of the reaction tank, and drainage is discharged from the drainage suction port 9. A first pump reactor to circulate to the inlet 10. In the present embodiment, a vortex turbine pump (manufactured by Nikuni Co., Ltd.) is used as the reaction tank first pump 11, and this is also used as a fine bubble generating means.
A reaction tank 12 is connected to the reaction tank first communication section 8 on the upstream side of the reaction tank first pump 11 to convert oxygen into ozone gas by a silent discharge type ozonizer or the like and supply air or oxygen together with ozone or oxygen into the system. An ozone gas supply unit 13 is an oxygen gas generation unit that produces high-concentration oxygen as a raw material of ozone from air using zeolite or the like and supplies it to the reaction tank ozone gas supply unit 12, and one end communicates with the lower part of the reaction tank 6. The reaction tank second communication part 15 is connected to the reaction tank 6 at the other end, 15 is a reaction tank second pump which is disposed in the reaction tank second communication part 14 and circulates waste water, and 16 is the reaction tank second communication. The defoaming nozzle connected to the other end of the part 14 and disposed at the top of the reaction tank 6, 17 is a sludge slurry discharge part connected to the bottom of the reaction tank 6, and 18 is disposed in the sludge slurry discharge part 17. Mud valve, 1 Is a sludge pump disposed in the sludge slurry discharge section 17, 20 is a solid-liquid separator such as a filtration device disposed in the sludge slurry discharge section 17, and 21 is connected to a predetermined section above the reaction tank 6. Defoaming section, 22 is a defoaming pump disposed in the defoaming section 21, 23 is a treated water discharge section connected to a predetermined section of the reaction tank 6, and 24 is treated water disposed in the treated water discharge section 23. A discharge valve, 25 is a treated water discharge pump disposed in the treated water discharge section 24, 26 is a solid-liquid separator such as a filtration device disposed in the treated water discharge section 23, and 27 is connected to the upper part of the reaction tank 6. The exhaust gas pipe 28 is disposed in the exhaust gas pipe 27 and an ozone concentration detecting device for measuring the ozone concentration in the exhaust gas. 29 is disposed in the exhaust gas pipe 27 and contains activated carbon that adsorbs and decomposes ozone in the exhaust gas. This is an exhaust ozone treatment device.
[0030]
  About the waste water treatment equipment in Embodiment 1 comprised as mentioned above, the usage method is demonstrated below.
  In the ozone treatment process, first, the drainage supply valve 5 disposed in the drainage supply path 4 is opened, and then the drainage pump 3 is driven to supply the drainage collected in the drainage storage tank 2 to the reaction tank 6. . After the water level of the drainage reaches a position higher than the drainage suction port 9, the drainage pump 3 is stopped and the drainage supply valve 5 is closed.
  Next, the reaction tank first pump 11 is driven to circulate the waste water, and the oxygen gas generation unit 13 and the reaction tank ozone gas supply unit 12 are driven so that ozone gas of a predetermined concentration is fine with an average particle size of 0.01 to 200 μm. It is made to contain in a bubble, is dissolved in waste_water | drain, and it inject | pours in the reaction tank 6 from the waste_water | drain injection port 10. FIG. Thereby, the pollutant in the wastewater adheres to the fine bubbles and floats and separates, and bubbles with countless pollutants adhering to the upper part of the reaction tank 6 appear. At this time, the concentration of ozone gas supplied into the system is adjusted to an optimum amount so that the detection value of the ozone concentration detection device 28 disposed in the exhaust gas pipe 27 is not more than a predetermined reference value.
  Next, the reaction tank second pump 15 is driven to discharge the waste water from the defoaming nozzle 16. Thereby, the foam expressed above the reaction tank 6 is extinguished, and the pollutant adhered to the foam is suspended again in the waste water. By repeating this, the oxidative decomposition of the pollutant in the wastewater by ozone is repeated.
  After injecting ozone gas of a predetermined concentration into the reaction tank 6 for a predetermined time, the reaction tank first pump 11, the reaction tank ozone gas supply unit 12, and the oxygen gas generation unit 13 are stopped. Next, in the discharge process, the sludge valve 18 is opened and the sludge pump 19 is driven to discharge the sludge settled at the bottom of the reaction tank 6 from the sludge slurry discharge section 17 to the outside of the reaction tank 6 as sludge slurry. . Further, the bubble discharge pump 22 is driven to discharge the bubbles with contaminated substances from the bubble discharge portion 21 to the outside of the reaction tank 6. Next, after the treated water discharge valve 24 is opened, the treated water discharge pump 25 is driven to discharge the treated water from which the sludge slurry and bubbles have been removed from the treated water discharge unit 23 from the reaction tank 6.
  In the dehydration process, the treated water is discharged into a river after the solid content is removed by the solid-liquid separator 26. The solid content separated and dehydrated by the solid-liquid separator 26 is subjected to treatments such as fertilization, fermentation, and water content adjustment as necessary, and can be used as a soil improvement material. Also sludge slurryDischarge sectionThe sludge slurry discharged from 17 is dehydrated by the solid-liquid separator 20 and the solid content is collected. This solid content can also be used as a soil conditioner.
[0031]
  As described above, since the waste water treatment apparatus according to Embodiment 1 is configured, the following effects can be obtained.
(1) A reaction tank in which wastewater is stored and communicated with the reaction tankReaction tankA first communication part;Reaction tankSince it has a reaction tank first pump disposed in the first communication part and a reaction tank ozone gas supply part for supplying ozone gas into the system, ozone gas is supplied to the waste water in the reaction tank and reaction tank first communication part. By supplying fine bubbles and diffusing, cleanliness that is well below the drainage standards by oxidative decomposition of organic matter in the wastewater, oxidation / precipitation of metal ions, deodorization, decolorization, sterilization, etc. of the wastewater by the oxidizing power of ozone Water can be obtained.
(2) Since ozone gas is supplied to the upstream side of the reaction tank first pump, the supplied ozone gas can be diffused as fine bubbles in the waste water by the impeller of the reaction tank first pump. Also,Reaction tankSince the waste water is circulated by providing the first communicating portion, the waste water is agitated in the reaction tank, and the waste water is accompanied with the fine bubble ozone gas and repeatedly comes into contact with the ozone gas to improve the oxidative decomposition and sterilization efficiency.
(3) Since ozone gas is contained in fine bubbles having an average particle size of 0.01 to 200 μm and supplied into the wastewater, the residence time of ozone in the wastewater can be extended and the solubility in the wastewater can be increased to oxidize. The decomposition reaction can be activated, and further, it can adhere to the pollutant in the wastewater and float and be separated, so that the wastewater treatment efficiency can be increased.
(4) Oxidative decomposition of ozone causes organic substances such as proteins in sludge to be oxidized and solubilized, and the viscosity of sludge decreases due to decomposition of proteins that develop viscosity. The concentration of sludge can be improved and the amount of sludge generated can be greatly reduced.
(5) Since oxidative decomposition is performed using ozone gas, treated water with stable and good water quality can be obtained even with respect to fluctuations in the quality of inflow water, the amount of water, and changes in environmental conditions such as climate.
(6) Since oxygen is generated by oxidative decomposition using ozone, secondary environmental pollution is not caused in the surrounding environment, and treated water and sludge are sterilized by the strong oxidizing power of ozone and are sanitary. Furthermore, since the treated water has been changed to an aerobic water quality due to the oxidizing power of ozone, it can be discharged into rivers and the like, and can also be injected into a biodegradation tank as a pretreatment for biological treatment.
(7) Since the structure of the equipment is simple, construction costs and operation management costs can be reduced, and the equipment load can be reduced. In addition to large-scale wastewater treatment in suburban areas and factories, It can be used as a small-scale wastewater treatment device that performs wastewater treatment for each source of polluted water or small villages in rural areas. In addition, since a large site area is not required for installation, it can be used as a mobile wastewater treatment apparatus that is mounted on a vehicle or the like and circulates a polluted water generation source or a small village, and is excellent in versatility.
(8) Since the reaction tank second communication part, the reaction tank second pump disposed in the reaction tank second communication part, and the defoaming nozzle connected to the reaction tank second communication part, The pollutant that adheres to the injected fine bubbles and floats and separates can be defoamed by spraying the drainage from the defoaming nozzle, and the pollutant can be suspended again in the drainage. As a result, the pollutant is repeatedly brought into contact with ozone gas, the decomposition of the pollutant is promoted, and the wastewater treatment efficiency can be increased.
(9) Since the sludge slurry discharge part and the exhaust bubble part are provided, the sludge deposited on the bottom of the reaction tank after the ozone treatment of the waste water and the sludge adhering to the fine bubbles are separated from the treated water outside the reaction tank. The sludge in the waste water can be separated and concentrated.
(10) Since the oxygen gas generator is connected to the reaction tank ozone gas supply unit, the ozone gas concentration is increased by forcibly increasing the oxygen concentration in the air and supplying high concentration oxygen to the reaction tank ozone gas supply unit. be able to. Thereby, the ozone generation amount supplied to a reaction tank and the reaction tank 1st communication part can be raised, and the oxidative decomposition efficiency of waste_water | drain can be improved. Further, an appropriate amount of ozone gas can be generated according to the amount of organic matter contained in the polluted water, and the processing efficiency can be increased.
(11) Since the ozone concentration detector is provided in the exhaust gas pipe, the ozone gas concentration generated from the reaction vessel ozone gas supply unit is adjusted so that the ozone gas concentration in the exhaust gas becomes almost zero, and is necessary for the oxidation reaction. An optimal amount of ozone can be supplied into the wastewater, and the ozone can be used for wastewater treatment without waste.
[0032]
In the present embodiment, the case where a vortex turbine pump is used as the reaction tank first pump 11 and used as the fine bubble generating means has been described, but instead, the reaction on the downstream side of the reaction tank first pump 11 is performed. There may be a case where fine bubble generating means 8a having an ejector is disposed in the tank first communicating portion 8. As a result, ozone can be sucked in by the negative pressure generated by the waste water jet injected from the waste water inlet 10, and fine bubbles can be generated in the waste water by the shearing action acting on the gas flow. In addition, a fine bubble generator (manufactured by Bubble Tank Co., Ltd.) can be disposed downstream of the reaction tank first pump to generate fine bubbles having a finer bubble diameter.
Further, the case where the drain suction port 9 formed at one end of the reaction tank first communication part 8 communicates with the upper part of the reaction tank 6 has been described, but the drain suction port 9 is connected to a predetermined part below or above the reaction tank 6. In some cases, the waste water in the reaction tank 6 is suctioned by communication. Further, the drain inlet 10 and the drain suction port 9 can be communicated with a plurality of locations in the reaction tank 6. Thereby, the circulation efficiency of drainage can be improved.
[0033]
(Embodiment 2)
FIG. 2 is a schematic diagram of a wastewater treatment apparatus according to Embodiment 2 of the present invention. In addition, the same thing as Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits description.
In the figure, 30 is a waste water treatment device in the second embodiment, 31 is a cooling device that is disposed on the side wall of the reaction tank 6 and maintains the waste water in the reaction tank 6 at a water temperature of 28 ° C. or less, preferably 20 ° C. or less. Jacket 32, a treatment tank to which sludge slurry discharge unit 17 and bubble removing unit 21 are connected, 33 a treatment tank first communication part communicating with the upper and lower parts of treatment tank 32, and 33 a a reaction tank first communication part 33. The fine bubble generating means provided with an ejector disposed in a sludge suction port for sucking sludge slurry formed at one end of the treatment tank first communication portion 33 and supplied to the treatment tank 32, and 35 is a treatment tank first. A sludge injection port formed at the other end of the communication portion 33 for injecting the sludge slurry sucked from the sludge suction port 34 into the treatment tank 32, 36 is disposed in the treatment tank first communication portion 33, and the sludge slurry is supplied to the sludge suction port. 34 to sludge inlet 35 The circulating treatment tank first pump 37 is connected to the fine bubble generating means 33a disposed in the treatment tank first communication portion 33 on the upstream side of the treatment tank first pump 36, and oxygen is ozone gas by a silent discharge type ozonizer or the like. The treatment tank ozone gas supply unit 38 supplies ozone into the system, ozone together with air or oxygen, or ozone, and produces high-concentration oxygen as a raw material of ozone from the air using zeolite or the like to the treatment tank ozone gas supply unit 37. The oxygen gas generating unit 39 to be supplied has a second communicating portion where one end communicates with the lower side of the processing bath 32 and the other end communicates with the upper side of the treating bath 32, and 40 is disposed in the second communicating portion 39 of the processing bath. The treatment tank second pump for circulating the sludge, 41 is connected to the other end of the treatment tank second communication portion 39 and disposed at the upper part of the treatment tank 32, and 42 is connected to the treatment tank 32 and is connected to the slurry. The first sludge discharge section for discharging the sludge in the form of a sludge, 43 is a first sludge discharge valve disposed in the first sludge discharge section 42, and 44 is a second sludge that is connected to the bottom of the treatment tank 32 and discharges the sludge sludge. 46 is a second sludge discharge valve disposed in the second sludge discharge section 44, 46 is a sludge discharge section connected to the first sludge discharge section 42 and the second sludge discharge section 43, and 47 is a sludge discharge section. 46 is a sludge discharge pump disposed in the section 46, 48 is a solid-liquid separator such as a filtration device disposed in the sludge discharge section 46, 49 is an exhaust gas pipe connected to the upper part of the treatment tank 32, and 50 is an exhaust gas pipe 49. An ozone concentration detecting device 51 for measuring the ozone concentration in the exhaust gas, 51 is an exhaust ozone treatment device that is provided in the exhaust gas pipe 49 and contains activated carbon that adsorbs and decomposes ozone in the exhaust gas.
In the second embodiment, as in the first embodiment, instead of the fine bubble generating means 33a provided with the ejector, a vortex turbine pump or the like is used as the treatment tank first pump 36, and the sludge inlet 35 is formed with ozone as fine bubbles. It may be generated from. Thereby, the average bubble diameter of the fine bubble containing ozone can be 0.01-200 micrometers.
[0034]
The point in which the waste water treatment apparatus in Embodiment 2 differs from Embodiment 1 is that the reaction jacket 6 is provided with a cooling jacket 31 as a cooling device, and is connected to the sludge slurry discharge part 17 and the exhaust bubble part 21. The treatment tank 32 is provided with a treatment tank first pump 36 and a treatment tank first communication part 33 provided with a treatment tank ozone gas supply part 37 and a defoaming nozzle 41. And a second communication part 39.
The exhausted foam and sludge slurry treated in the treatment tank 32 are discharged from the first sludge discharge part 42 and the second sludge discharge part 44 to the outside of the treatment tank 32 by driving the sludge discharge pump 47, and the solid-liquid separation device The solid content is collected from the sludge slurry by 48. The collected solid content can be used as a soil conditioner.
[0035]
As described above, since the waste water treatment apparatus in the second embodiment is configured, the following actions are obtained in addition to the actions described in the first embodiment.
(1) Since the reaction tank is equipped with a cooling device, the temperature of the wastewater can be kept low even in the summer when the temperature is high, and the solubility of ozone is increased to improve the reaction such as oxidative decomposition reaction and improve the wastewater treatment efficiency. be able to. This is because the solubility of ozone in water increases as the water temperature decreases.
(2) Since it is equipped with a treatment tank connected to the sludge slurry discharge section and the exhaust bubble section, the sludge slurry can be oxidatively decomposed using ozone in the treatment tank, and the volume of solid waste such as sludge can be reduced. Can be achieved.
(3) Since sludge settled on the bottom of the reaction tank and sludge that floats and separates by adhering to fine bubbles can be guided to the treatment tank to concentrate and reduce the volume of sludge, the wastewater is discharged in parallel in the reaction tank and the treatment tank. Processing can be advanced and workability is excellent.
[0036]
In the present embodiment, the case where the sludge suction port 34 formed at one end of the treatment tank first communication portion 33 communicates with the upper side of the treatment tank 32 has been described. In some cases, the sludge slurry in the treatment tank 32 is sucked by communicating with a predetermined part below or above. Thereby, even when the amount of sludge slurry stored in the treatment tank 32 is small, ozone treatment can be performed by circulating the sludge slurry in the treatment tank first communication portion 33, and the operability is excellent.
[0037]
    (Embodiment 3)
  FIG. 3 is a schematic diagram of a wastewater treatment apparatus according to Embodiment 3 of the present invention. In addition, the same thing as Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits description.
  In the figure, 60 is a wastewater treatment apparatus according to the third embodiment, 61 is connected to the drainage pump 3 at one end, a drainage inflow path through which drainage stored in the drainage storage tank 2 flows, and 62 is disposed in the drainage inflow path 61. Drainage inflow valve, 63 is a drainage inflow valve62A pressure feed pump disposed in the drainage inflow passage 61 on the downstream side of the pressure pump, 64 is connected to the drainage inflow passage on the upstream side of the pressure pump 63, and oxygen is converted into ozone gas by a silent discharge type ozonizer or the like, and the ozone together with air and oxygen Alternatively, a dissolving tank ozone gas supply unit that supplies ozone together with oxygen into the system, 65 is an oxygen gas generating unit that manufactures high-concentration oxygen as a raw material of ozone from air using zeolite or the like and supplies it to the dissolving tank ozone gas supply unit 64 , 66 is a dissolution tank to which the other end of the drainage inflow path 61 is connected, 67 is a communication part where one end is connected to the dissolution tank 66 and the other end is connected to the drainage inlet 7 of the reaction tank 6, and 68 is a communication part 67. , A communication valve 69, a drainage transport pump 69 disposed in the communication portion 67 downstream of the communication valve 68, and a cooling jacket 70 as a cooling device disposed in the dissolution tank 66, Kutsugae設 thermal insulation member in the reaction vessel 6 1, 72 cooling gas generator as a cooling device for generating a cooling gas, is 73Reaction tank 6It is the cooling gas injection nozzle as a cooling device arrange | positioned by the lower side inside.
  In the present embodiment, as in the first and second embodiments, fine bubble generating means having an ejector (not shown) in the drain inflow passage 61, and a vortex turbine pump that can also be used as the fine bubble generating means as the pressure feed pump 63. Etc., ozone can be generated as fine bubbles. Thereby, the average bubble diameter of the fine bubble containing ozone can be 0.01-200 micrometers.
[0038]
About the waste water treatment equipment in Embodiment 3 comprised as mentioned above, the usage method is demonstrated below.
First, the communication valve 68 disposed in the communication portion 67 is closed and the drainage inflow valve 62 disposed in the drainage inflow passage 61 is opened, and then the drainage pump 3 is driven to collect water in the drainage storage tank 2. Pump up the wastewater. Next, the pressure pump 63 is driven and the oxygen gas generator 65 and the dissolution tank ozone gas supply section 64 are driven to pump the waste water in which fine bubbles containing ozone are dissolved into the dissolution tank 66 from the drain inflow path 61. The waste water in which the fine bubbles are dissolved is pressurized at a pressure of 0.2 to 1 MPa for a predetermined time. Further, in order to increase the solubility of ozone, the melting tank 66 is cooled using the cooling jacket 70.
After a predetermined time has elapsed, the pumping pump 63, the oxygen gas generation unit 65, and the dissolution tank ozone gas supply unit 64 are stopped, the communication valve 68 is opened, and the drainage transport pump 69 is further driven to drive the inside of the dissolution tank 66. The waste water is transported into the reaction tank 6. Thereby, the waste water pressurized in the dissolution tank 66 and dissolved in a supersaturated state of ozone is discharged to the reaction tank 6 under atmospheric pressure. At this time, a large amount of dissolved fine bubbles appear in the reaction tank 6 and the pollutant is floated and separated. After the water level of the drainage in the reaction tank 6 reaches a position higher than the drainage suction port 9, the drainage transport pump 69 is stopped and the communication valve 68 is closed.
Next, the reaction tank first pump 11 is driven to circulate the waste water, and the oxygen gas generation unit 13 and the reaction tank ozone gas supply unit 12 are driven to remove fine bubbles containing ozone from the drain inlet 10 into the reaction tank 6. The waste water is treated with ozone in the reaction tank 6. When the temperature of the waste water is high, in order to increase the solubility of ozone in the waste water in the reaction tank 6, a cooling gas is injected into the waste water from the cooling gas injection nozzle 73 and the temperature of the waste water is a low temperature of 28 ° C. or less, preferably 20 ° C. or less. To maintain.
Since the subsequent usage method of the waste water treatment apparatus is the same as that described in the first embodiment, the description thereof is omitted.
[0039]
As described above, since the waste water treatment apparatus in the third embodiment is configured, in addition to the actions described in the first embodiment, the following actions are obtained.
(1) The dissolution tank connected to the drainage inlet, the pressure feed pump disposed in the drainage inflow passage to pressurize the wastewater and pressurize the inside of the dissolution tank, and the fine bubbles connected to the drainage inflow passage and supplied to the drainage And a dissolution tank ozone gas supply unit for generating the ozone gas contained therein, so that the waste water is pressurized in the dissolution tank, ozone can be dissolved in a supersaturated state, and the oxidative decomposition efficiency by ozone can be enhanced.
(2) Since the waste water that was pressurized in the dissolution tank at a pressure of 0.2 to 1 Pa and dissolved in a supersaturated state of ozone is discharged to the reaction tank under atmospheric pressure, a large amount of dissolved ozone appears as fine bubbles. In addition, the floating separation and oxidative decomposition reaction of the pollutant are immediately performed, so that the wastewater treatment time can be remarkably shortened and the workability is excellent.
(3) Since the reaction tank and dissolution tank are equipped with a cooling device and a heat insulating member, the water temperature of the waste water can be kept low even in summer when the temperature is high, and the solubility of ozone is lowered and the oxidative decomposition reaction becomes poor. It can prevent that processing efficiency falls.
[0040]
(Embodiment 4)
FIG. 4 is a schematic diagram of a wastewater treatment apparatus according to Embodiment 4 of the present invention. In addition, the same thing as Embodiment 1 attaches | subjects the same code | symbol, and abbreviate | omits description.
In the figure, 80 is a wastewater treatment apparatus in the fourth embodiment, 81 is a wastewater supply path in which the drainage pump 3 is connected to one end, 82 is a drainage supply path 81 that is branched into a plurality, and the other end is a plurality of wastewater treatment apparatuses 1. The branch supply path 83 is connected to the branch supply path 82, the branch supply valve 84 is disposed in the branch supply path 82, a plurality of branch treated water discharge sections 84 having one end connected to each of the waste water treatment apparatuses 1, and the plurality 85 are disposed. A treated water discharge unit 86 where the branched treated water discharge unit 84 converges, and a solid-liquid separation device 86 such as a filtration device disposed in the treated water discharge unit 85.
[0041]
The point in which the waste water treatment apparatus in Embodiment 4 differs from Embodiment 1 is that the waste water supply path 81 is branched and a plurality of waste water treatment apparatuses 1 are arranged in parallel.
[0042]
As described above, since the waste water treatment apparatus according to the fourth embodiment is configured, the following actions are obtained in addition to the actions described in the first embodiment.
(1) Since a plurality of wastewater treatment devices are arranged in parallel, wastewater treatment can be performed by sequentially supplying untreated wastewater to a wastewater treatment device that has finished wastewater treatment and discharged treated water, Waste water treatment capacity can be significantly increased.
[0043]
【Example】
  Hereinafter, the present invention will be specifically described by way of examples. The present invention is not limited to these examples.
  Example 1
  The wastewater treatment effect was confirmed using the wastewater treatment apparatus described in the first embodiment. As the wastewater, the wastewater pumped up from the bottom of the sedimentation tank of the Ezaki Village Wastewater Purification Center in Tamanagawa Town, Yamaguchi Prefecture was used. The Ezaki settlement drainage purification center in Tamanagawa-cho, Yamaguchi Prefecture uses a screen to remove large impurities in the wastewater collected from each household, and then passes sludge and effluent water through a flow adjustment tank, contact aeration tank, and sedimentation tank. The wastewater is treated separately. The sedimentation tank precipitates and separates sludge separated from the contact material filled in the contact aeration tank, and the waste water pumped from the lower part of the sedimentation tank contains a large amount of sludge.
  After 200 L of this waste water was stored in a reaction tank having a capacity of 250 L, the reaction tank ozone gas supply unit, the oxygen gas generation unit, and the reaction tank first pump were driven to supply fine bubbles containing ozone into the waste water. At this time, the ozone generation amount is 9.98 g / h, and the ozone gas concentration is 20.8 g / Nm.3Met. The concentration of ozone gas contained in the exhaust gas is 0 g / Nm.3Met. Furthermore, the 2nd pump of the reaction tank was driven, the waste water was sprayed from the defoaming nozzle, and the pollutant which adhered to the foam and floated and separated was repeatedly suspended in the waste water. Treated water is collected from the reaction tank at every elapsed time (treatment time) (every 0, 20, 50, 120 minutes) from the start of supplying fine bubbles containing ozone into the waste water, and suspended matter (SS ), BOD, COD, total nitrogen (hereinafter referred to as TN), and BOD of the filtrate filtered using glass fiber filter paper (GFP) having a pore size of 1 μm (hereinafter referred to as BOD).SCOD of the filtrate (hereinafter referred to as COD)SAmmoniacal nitrogen (NH)4 +-N), nitrate nitrogen (NO3 -N), nitrite nitrogen (NO)2 -N) was measured. BOD, COD (according to potassium permanganate oxidation method), TN, NH4 +-N, NO3 -N, NO2 The measurement of -N was performed according to JIS K 0102. Also, BODS, CODSThe measurement of the sampleofExcept for the filtration operation, it was performed according to JIS K 0102. The SS was measured according to the Environmental Agency Notification No. 59 of 1971.
  In addition, the ozone injection rate in the wastewater treatment for 120 minutes was 99.8 mg / L. The temperature of the wastewater was 20 ° C.
[0044]
FIG. 5 is a diagram showing the relationship between the treatment time and SS, BOD, and COD in the treated water, and FIG. 6 shows the treatment time and TN, BOD in the treated water.S, CODS, NHFour +It is the figure which showed the relationship of -N. Table 1 shows NO in treated water against treatment time.Three --N, NO2 -It is the table | surface which showed the quantity of -N.
[Table 1]
Figure 0003883490
From FIG. 5 to FIG. 6, SS, BOD, COD, TN, BOD in treated water in a treatment time of 120 minutes.S, CODS, NHFour +It was confirmed that -N can be significantly reduced. In addition, each measured value 120 minutes after processing time is SS: 8.0 mg / L, BOD: 10.4 mg / L, COD: 10.6 mg / L, TN: 14.8 mg / L, BODS: 10.2 mg / L, CODS: 8.5 mg / L, NHFour +-N: 0.34 mg / L.
In FIG. 6, BODS, CODSWhen the value of is temporarily increased over the treatment time of 20 to 50 minutes, it indicates that the pollutant changed into a soluble substance that can pass through the filter paper by the oxidation of ozone, and then decomposed. I guess. In Table 1, NO is determined after 120 minutes of processing time.Three --N, NO2 -The amount of -N increases because of the oxidizing action of ozone.Four +It is assumed that the decomposition of -N has progressed.
According to the drainage standards required by the Enforcement Ordinance of the Sewerage Law, BOD is 20 mg / L or less and SS is 70 mg / L or less by secondary treatment (specifically, treatment centering on activated sludge method, sprinkling filtration method, etc.). Therefore, according to the present Example, it became clear that clean treated water significantly lower than the drainage standard can be obtained by floating separation by ozone fine bubbles having strong oxidizing action and decomposition of pollutants.
[0045]
(Example 2)
The wastewater treatment effect was confirmed using the wastewater treatment apparatus described in the second embodiment. As the wastewater, the wastewater pumped up from the bottom of the sedimentation tank of the Ezaki Village Wastewater Purification Center in Tamanagawa Town, Yamaguchi Prefecture was used.
After the waste water 200L is stored in a reaction tank having a capacity of 250L, the temperature of the waste water in the reaction tank is maintained at 25 ° C. using a cooling jacket, and then the reaction tank ozone gas supply unit, oxygen gas generation unit, reaction tank first One pump was driven to supply fine bubbles containing ozone into the waste water. At this time, the ozone generation amount is 61.6 g / h, and the ozone gas concentration is 68.5 g / Nm.ThreeMet. The concentration of ozone gas contained in the exhaust gas is 0 g / Nm.ThreeMet. Furthermore, the 2nd pump of the reaction tank was driven, the waste water was sprayed from the defoaming nozzle, and the pollutant which adhered to the foam and floated and separated was repeatedly suspended in the waste water. After supplying fine bubbles containing ozone into the wastewater for 30 minutes (treatment time 30 minutes), collect the treated water and the waste gas and sludge slurry (hereinafter referred to as waste air and waste sludge) from the reaction tank. PH, dissolved oxygen (DO), BOD, COD, BODS, CODS, Suspended matter (SS), volatile suspended matter (VSS), evaporation residue (residue after drying at 105-110 ° C. for 2 hours), loss on ignition (evaporation residue was ignited at a high temperature of about 800 ° C. Weight loss), total nitrogen (TN), ammoniacal nitrogen (NHFour +-N), nitrate nitrogen (NOThree --N), nitrite nitrogen (NO)2 --N), total phosphorus (TP), Cu, general bacterial count, and E. coli count. BOD, COD (according to potassium permanganate oxidation method), TN, NHFour +-N, NOThree --N, NO2 --N was measured according to JIS K0102. Also, BODS, CODSThe measurement of was performed according to JIS K 0102 except for the filtration operation of the sample. The SS was measured according to the Environmental Agency Notification No. 59 of 1971. Other analytical procedures were in accordance with the sewage test method. In addition, the ozone injection rate in the wastewater treatment for 30 minutes was 308 mg / L.
After all the waste water and sludge slurry in the reaction tank and treatment tank are discharged, 200L of waste water pumped up from the sedimentation tank in the Ezaki settlement drainage purification center in Tamankawa-cho, Yamaguchi is stored in the same reaction tank, and then cooled. The temperature of the waste water in the reaction vessel was maintained at 20 ° C. using a jacket for the reactor. Next, the same treatment was performed for 30 minutes, and then treated water was collected and subjected to the same analysis. These analytical values were compared with those of untreated wastewater. The results are shown in Table 2.
[Table 2]
Figure 0003883490
[0046]
From Table 2, the following became clear.
(1) By maintaining the water temperature of the waste water at 20 ° C., it was confirmed that the pH of the treated water was lowered and the amount of dissolved oxygen was increased as compared with the case where it was maintained at 25 ° C. This indicates that the lower the water temperature, the higher the solubility of ozone and the more active the oxidative decomposition. Moreover, it became clear that it shows about 10 times as high value compared with the amount of dissolved oxygen of waste water (raw water). This indicates that the treated water, foam and mud have changed to aerobic water and soil quality.
(2) By maintaining the temperature of the waste water at 20 ° C, compared to the case of maintaining at 25 ° C, BODS, CODSWas confirmed to be high. This indicates that since the oxidative decomposition by ozone is activated, the organic matter in the waste water is decomposed to reduce the molecular weight and increase the soluble organic matter.
(3) It was confirmed that the amount of Cu in the treated water was significantly reduced as compared with the waste water. This indicates that Cu ions in the wastewater are oxidized and deposited, separated from the treated water, and contained in the exhausted foam and the mud. As a result, it has been clarified that the solid content collected by dehydrating the treated water has an extremely low content of Cu as a soil contaminant. In addition, it has been clarified that the foam and mud contain a large amount of nutrient salts such as nitrogen and phosphorus, which is suitable for plant cultivation.
(4) It was confirmed that the number of general bacteria and E. coli in the treated water can be reduced to almost zero (the drainage standard required by the Sewerage Law Enforcement Ordinance is secondary treatment, and the number of coliforms is 3000 / cm.ThreeLess than). As a result, it has been clarified that the solid content collected by dehydrating the treated water, the treated water, the waste mud and the discharged foam is aseptic and very sanitary. From these results, it has been shown that solid waste such as excess sludge, which has been mostly landfilled in the past, can be recycled as a soil conditioner, and wastewater can be effectively utilized as a resource.
(5) Compared with wastewater (raw water), the viscosity of treated water is reduced, and the amount of evaporation residue of foam and mud is increased to about 5 times the amount of evaporation residue of wastewater. It was. This indicates that the concentration of exhausted foam / mud is about 5 times as high as that of the wastewater and is remarkably concentrated. As a result, according to the present Example, it became clear that the concentration property of sludge can be improved and the generation amount of solid wastes such as excess sludge can be greatly reduced.
[0047]
【The invention's effect】
  As described above, according to the wastewater treatment apparatus of the present invention and the method for producing a soil conditioner using the same, the following advantageous effects can be obtained.
  According to the invention of claim 1,
(1) A reaction tank in which wastewater is stored, a reaction tank first communication part communicating with the reaction tank, a reaction tank first pump disposed in the reaction tank first communication part, and supplying ozone gas into the system A reaction tank ozone gas supply unit, so that ozone gas is diffused and supplied to the waste water in the reaction tank and the first communication part of the reaction tank to oxidize organic matter in the waste water by the oxidizing power of ozone. It is possible to provide a wastewater treatment apparatus capable of obtaining clean treated water significantly lower than the wastewater standard by performing decomposition, metal ion oxidation / precipitation, wastewater deodorization, decolorization, sterilization, and the like. For this reason, the waste water treatment apparatus excellent in the versatility which can be widely used not only for a process of industrial wastewater etc. but in general water treatments, such as clean water and industrial water, can be provided.
(2) Since ozone gas is supplied to the upstream side of the reaction tank first pump, the supplied ozone gas can be diffused as fine bubbles in the waste water by the impeller of the reaction tank first pump. Moreover, since the waste water is circulated with the reaction tank first communicating portion, the waste water is agitated in the reaction tank, and the waste water is accompanied with the fine bubble ozone gas and repeatedly comes into contact with the ozone gas, thereby improving the waste water treatment efficiency.
(3) Oxidative decomposition of organic matter such as protein in sludge is oxidatively decomposed and solubilized by the oxidative decomposition of ozone, and the viscosity of sludge is reduced by the decomposition of protein that develops viscosity. It is possible to provide a wastewater treatment apparatus that can improve the performance and greatly reduce the amount of sludge generated.
(4) Ozone gas is used for oxidative decomposition, so it is stable enough to obtain treated water with good water quality even against changes in influent water quality, water volume, and environmental conditions such as climate. A waste water treatment apparatus can be provided.
(5) Oxygen is generated by oxidative decomposition using ozone, so it does not cause secondary environmental pollution in the surrounding environment, and it is sterilized by the strong oxidizing power of ozone to obtain sanitary treated water and sludge. A waste water treatment apparatus can be provided. Furthermore, since the treated water has been changed to aerobic water quality due to the oxidizing power of ozone, it can be discharged into rivers, etc., and can also be injected into a biodegradation tank as a pretreatment for biological treatment. A processing device can be provided.
(6) Since the structure of the equipment is simple, construction costs and operation management costs can be reduced, and the equipment load can be reduced. In addition to large-scale wastewater treatment in suburban areas and factories, It is possible to provide a wastewater treatment apparatus that can be used as a small-scale wastewater treatment apparatus that performs wastewater treatment for each polluted water source or small village in an agricultural and mountain village area. In addition, since it does not require a lot of site space for installation, it can be used as a mobile wastewater treatment device that can be mounted on a vehicle or the like to circulate polluted water sources or small villages, etc., and has excellent versatility. An apparatus can be provided.
(7) Since the sludge slurry discharge part and the exhaust bubble part are provided, the sludge deposited on the bottom of the reaction tank after the ozone treatment of the waste water and the sludge adhering to the fine bubbles are separated from the treated water outside the reaction tank. Therefore, it is possible to provide a wastewater treatment apparatus that can separate and concentrate sludge in wastewater, has high concentrating properties, and generates less solid waste.
(8) Since it has a treatment tank connected to the sludge slurry discharge part and the exhaust bubble part, the sludge discharged from the reaction tank can be further oxidatively decomposed using ozone in the treatment tank. It is possible to provide a wastewater treatment apparatus capable of reducing waste volume.
(9) Since sludge settled on the bottom of the reaction tank and sludge that floats and separates by adhering to fine bubbles can be guided to the treatment tank to concentrate and reduce the volume of sludge, waste water is discharged in parallel in the reaction tank and the treatment tank. It is possible to provide a wastewater treatment apparatus that can proceed with the treatment and is excellent in workability.
(10) Since ozone gas is supplied to the upstream side of the treatment tank first pump, the supplied ozone gas can be diffused as fine bubbles in the waste water by the impeller of the treatment tank first pump. Moreover, since the waste water is circulated by providing the treatment tank first communicating portion, the waste water is agitated in the treatment tank, and the waste water is accompanied with the fine bubble ozone gas repeatedly to come into contact with the ozone gas, thereby improving the waste water treatment efficiency.
[0048]
  Claim2According to the invention described in (1), in addition to the effects of (1) to (6) of claim 1,
(1) a dissolution tank connected to the drainage inlet, a pressure pump disposed in the drainage inflow path to pressurize the wastewater and pressurize the inside of the dissolution tank, a dissolution tank ozone gas supply unit connected to the drainage inflow path, Since the waste water is pressurized in the dissolution tank and ozone can be dissolved in a supersaturated state, a waste water treatment apparatus that can improve the oxidative decomposition efficiency by ozone can be provided.
(2) Since the wastewater that has been pressurized in the dissolution tank and dissolved in a supersaturated state of ozone is released into the reaction tank under atmospheric pressure, a large amount of dissolved ozone appears as fine bubbles, and the floating separation and oxidation of pollutants It is possible to provide a wastewater treatment apparatus that can perform the decomposition reaction immediately and can significantly reduce the wastewater treatment time and that is excellent in workability.
  Claim3According to the invention described in claim 1,Or 2In addition to the effect of
(1) Since the fine bubble generating means is disposed in the first communicating portion of the reaction tank, ozone gas can be contained in the fine bubbles and supplied into the waste water, and the residence time of ozone in the waste water can be increased. A wastewater treatment device that can increase the solubility of ozone in the wastewater and activate the oxidative decomposition reaction. Can be provided.
  Claim4According to the invention described in claim 1, the claims 1 to3In addition to one of the effects,
(1) Since the sludge slurry discharge part and the exhaust bubble part are provided, the sludge that settles on the bottom of the reaction tank after the ozone treatment of the waste water and the sludge adhering to fine bubbles are separated from the treated water outside the reaction tank. Therefore, it is possible to provide a wastewater treatment apparatus that can separate and concentrate sludge in wastewater, has high concentrating properties, and generates less solid waste.
[0049]
  Claim5According to the invention described in claim 1, the claims 1 to4In addition to one of the effects,
(1) Since it comprises a reaction tank second communication part, a reaction tank second pump disposed in the reaction tank second communication part, and a defoaming nozzle connected to the reaction tank second communication part, The pollutant that adheres to the injected fine bubbles and floats and separates can be defoamed by spraying the drainage from the defoaming nozzle, and the pollutant can be suspended again in the drainage. Moreover, it is possible to repeatedly contact the wastewater droplets or the like with the ozone gas layer above the reaction tank. Accordingly, it is possible to provide a wastewater treatment device with high wastewater treatment efficiency in which pollutants are repeatedly contacted with ozone gas and decomposition of the pollutants is promoted.
[0050]
  Claim6According to the invention described in claim 1, the claims 1 to5In addition to one of the effects,
(1) Since the reaction tank is equipped with a cooling device and a heat insulating member, the temperature of the waste water can be kept low even in the summer when the temperature is high, and the waste water treatment efficiency is improved by increasing the solubility of ozone and improving the reaction such as oxidative decomposition reaction. High wastewater treatment equipment can be provided.
[0051]
  Claim7According to the invention described in claim 1, the claims 1 to6In addition to one of the effects,
(1) Since the water temperature of the wastewater in the reaction tank is maintained at a low temperature, a wastewater treatment apparatus excellent in stability capable of preventing a decrease in the solubility of ozone and obtaining a stable wastewater treatment efficiency is provided. be able to.
[0055]
  Claims of the invention8According to the invention described in
(1) Since the ozone-treated treated water or sludge slurry is dehydrated and the solid content is collected, a method for producing a soil amendment that can produce aseptic and hygienic soil amendment without bacteria such as Escherichia coli is provided. can do. Moreover, since the dissolved oxygen amount of treated water etc. is remarkably high, the manufacturing method of the soil improvement material which can manufacture the soil improvement material suitable for cultivation of a crop with high aerobic property of solid content and soil bacteria etc. is easy to propagate is provided. Can do. Moreover, the manufacturing method of the soil improvement material which can manufacture the soil improvement material with little content of soil pollutants, such as copper, cadmium, and zinc, can be provided from the solid content extract | collected by dehydrating the treated water.
(2) The solid content obtained by solid-liquid separation of the treated water can provide a method for producing a soil conditioner suitable for cultivation of crops because the organic matter is decomposed and contains nitrogen, phosphorus and the like.
(3) Soil that can be easily composted after adding organic substances such as rice husk and straw because it has been changed to aerobic soil by the oxidizing power of ozone, and can be used to produce a soil improver with excellent versatility. A method for producing an improved material can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a wastewater treatment apparatus in Embodiment 1. FIG.
FIG. 2 is a schematic diagram of a wastewater treatment apparatus according to Embodiment 2.
FIG. 3 is a schematic diagram of a wastewater treatment apparatus according to Embodiment 3.
4 is a schematic diagram of a wastewater treatment apparatus according to Embodiment 4. FIG.
FIG. 5 is a diagram showing the relationship between the treatment time and SS, BOD, and COD in the treated water.
[Figure 6] Treatment time and TN, BOD in treated waterS, CODS, NHFour +-N relationship diagram
[Explanation of symbols]
1 Wastewater treatment equipment
2 Drainage storage tank
3 Drainage pump
4 Drainage supply channel
5 Drainage supply valve
6 Reaction tank
7 Drainage inlet
8 reaction tank 1st communication part
9 Drainage suction port
10 Drainage inlet
11 Reaction tank first pump
12 Reaction tank ozone gas supply part
13 Oxygen gas generator
14 Second communication part of reaction tank
15 Second reaction tank pump
16 Defoaming nozzle
17 Sludge slurry discharge section
18 Mud valve
19 Waste mud pump
20 Solid-liquid separator
21 Bubble removal part
22 Foam pump
23 treated water discharge section
24 Treated water discharge valve
25 treated water discharge pump
26 Solid-liquid separator
27 Exhaust gas pipe
28 Ozone concentration detector
29 Waste ozone treatment equipment
30 Wastewater treatment equipment
31 Cooling jacket
32 treatment tank
33 1st communication part of processing tank
33a Fine bubble generating means
34 Sludge suction port
35 Sludge inlet
36 Treatment tank first pump
37 Treatment tank ozone gas supply part
38 Oxygen gas generator
39 Treatment tank second communication part
40 Treatment tank second pump
41 Defoaming nozzle
42 1st sludge discharge part
43 First sludge discharge valve
44 Second sludge discharge section
45 Second sludge discharge valve
46 Sludge discharge section
47 Sludge discharge pump
48 Solid-liquid separator
49 Exhaust gas pipe
50 Ozone concentration detector
51 Waste ozone treatment device
60 Wastewater treatment equipment
61 Drainage channel
62 Drainage inflow valve
63 Pressure pump
64 Dissolution tank ozone gas supply section
65 Oxygen gas generator
66 Dissolution tank
67 Communication part
68 Communication valve
69 Wastewater transport pump
70 Cooling jacket
71 Heat insulation member
72 Cooling gas generator
73 Cooling gas injection nozzle
80 Wastewater treatment equipment
81 Drain supply channel
82 Branch supply path
83 Branch supply valve
84 Branched water discharge section
85 treated water discharge unit
86 Solid-liquid separator

Claims (8)

排水流入口を有し排水が貯留される反応槽と、一端に排水吸引口が他端に排水注入口が形成され前記反応槽と連通する反応槽第1連通部と、前記反応槽第1連通部に配設され排水を循環させる反応槽第1ポンプと、前記反応槽第1ポンプの上流側の前記反応槽第1連通部に接続され系内にオゾンガスを供給する反応槽オゾンガス供給部と、前記反応槽の上方の所定部に接続され汚濁物質が付着した泡を前記反応槽の外部に排出する排泡部と、前記反応槽の所定部に接続された処理水排出部と、前記反応槽の底部若しくはその側部の所定部に接続された汚泥スラリー排出部と、前記汚泥スラリー排出部及び前記排泡部に接続された処理槽と、前記処理槽に接続された処理槽オゾンガス供給部と、前記処理槽に接続されスラリー状の汚泥を排出する汚泥排出部と、一端に汚泥吸引口が他端に汚泥注入口が形成され前記処理槽と連通する処理槽第1連通部と、前記処理槽第1連通部に配設され汚泥を循環させる処理槽第1ポンプと、を備え、前記処理槽オゾンガス供給部が、前記処理槽第1ポンプの上流側の前記処理槽第1連通部に接続されていることを特徴とする排水処理装置。A reaction tank having a drainage inlet and storing drainage; a drainage suction port at one end; a drainage inlet at the other end; and a reaction tank first communication part communicating with the reaction tank; and the reaction tank first communication A reaction tank first pump that circulates waste water disposed in the unit, a reaction tank ozone gas supply unit that is connected to the reaction tank first communication part upstream of the reaction tank first pump and supplies ozone gas into the system; A bubble discharging part connected to a predetermined part above the reaction tank for discharging a bubble to which a pollutant is attached to the outside of the reaction tank, a treated water discharge part connected to the predetermined part of the reaction tank, and the reaction tank A sludge slurry discharge part connected to a predetermined part of the bottom part or its side part, a treatment tank connected to the sludge slurry discharge part and the bubble removal part, a treatment tank ozone gas supply part connected to the treatment tank, Connected to the treatment tank to discharge slurry sludge A sludge discharge unit, circulates the sludge suction port sludge inlet is formed at the other end the processing bath and communicating with the processing tank first communicating portion at one, the sludge is disposed in the first communicating part and the processing bath treatment A wastewater treatment apparatus , wherein the treatment tank ozone gas supply unit is connected to the treatment tank first communication part on the upstream side of the treatment tank first pump . 排水流入口を有し排水が貯留される反応槽と、一端に排水吸引口が他端に排水注入口が形成され前記反応槽と連通する反応槽第1連通部と、前記反応槽第1連通部に配設され排水を循環させる反応槽第1ポンプと、前記反応槽第1ポンプの上流側の前記反応槽第1連通部に接続され系内にオゾンガスを供給する反応槽オゾンガス供給部と、前記反応槽の所定部に接続された処理水排出部と、前記排水流入口に接続された溶解槽と、前記溶解槽に接続され排水を前記溶解槽に流入させる排水流入路と、前記排水流入路に配設され排水を圧送するとともに前記溶解槽内を加圧する圧送ポンプと、前記圧送ポンプの上流側の前記排水流入路に接続された溶解槽オゾンガス供給部と、を備えていることを特徴とする排水処理装置。  A reaction tank having a drainage inlet and storing drainage; a drainage suction port at one end; a drainage inlet at the other end; and a reaction tank first communication part communicating with the reaction tank; and the reaction tank first communication A reaction tank first pump that circulates waste water disposed in the unit, a reaction tank ozone gas supply unit that is connected to the reaction tank first communication part upstream of the reaction tank first pump and supplies ozone gas into the system; A treated water discharge part connected to a predetermined part of the reaction tank, a dissolution tank connected to the drainage inlet, a drainage inflow path connected to the dissolution tank and allowing wastewater to flow into the dissolution tank, and the drainage inflow A pressure-feeding pump that is disposed in a path and pressurizes the inside of the dissolution tank, and a dissolution tank ozone gas supply unit that is connected to the drainage inflow path on the upstream side of the pressure-feed pump. Wastewater treatment equipment. 前記反応槽第1連通部に微細気泡発生手段が配設されていることを特徴とする請求項1又は2に記載の排水処理装置。Wastewater treatment device according to claim 1 or 2, characterized in that is provided a fine bubble generating means to the first communication unit reactor. 前記反応槽の底部若しくはその側部の所定部に接続された汚泥スラリー排出部及び/又は前記反応槽の上方の所定部に接続された排泡部を備えていることを特徴とする請求項に記載の排水処理装置。Claim 2, characterized in that it comprises a bottom or Haiawa unit connected to a predetermined portion of the upper sludge slurry discharge section connected to the predetermined portion and / or the reaction vessel of the sides of the reaction vessel The waste water treatment apparatus as described in. 一端が前記反応槽の所定部に連通され他端が前記反応槽の上部に連通された反応槽第2連通部と、前記反応槽第2連通部に配設され排水を循環させる反応槽第2ポンプと、前記反応槽第2連通部の他端に接続された消泡ノズルと、を備えていることを特徴とする請求項1乃至の内いずれか1に記載の排水処理装置。A reaction tank second communication part whose one end communicates with a predetermined part of the reaction tank and the other end communicates with an upper part of the reaction tank, and a reaction tank second which is disposed in the reaction tank second communication part and circulates waste water. The wastewater treatment apparatus according to any one of claims 1 to 4 , further comprising a pump and a defoaming nozzle connected to the other end of the reaction tank second communication portion. 前記反応槽に配設された冷却装置及び/又は前記反応槽に覆設された断熱部材を備えていることを特徴とする請求項1乃至の内いずれか1に記載の排水処理装置。The waste water treatment apparatus according to any one of claims 1 to 5 , further comprising: a cooling device disposed in the reaction tank and / or a heat insulating member covering the reaction tank. 前記反応槽内の排水の水温が、28℃以下好ましくは20℃以下に維持されていることを特徴とする請求項1乃至の内いずれか1に記載の排水処理装置。The waste water treatment apparatus according to any one of claims 1 to 6 , wherein the temperature of the waste water in the reaction tank is maintained at 28 ° C or lower, preferably 20 ° C or lower. 請求項1乃至の内いずれか1に記載の排水処理装置を用い前記反応槽に貯留された排水を循環させながらオゾンガスを供給して排水をオゾン処理するオゾン処理工程と、前記オゾン処理工程で処理された処理水と汚泥スラリーとを前記反応槽から排出する排出工程と、排出された前記処理水及び/又は前記汚泥スラリーを脱水処理して土壌改良材として単独で若しくは配合して用いる固形分を採取する脱水処理工程と、を備えていることを特徴とする土壌改良材の製造方法。An ozone treatment process for supplying ozone gas while circulating the wastewater stored in the reaction tank using the wastewater treatment apparatus according to any one of claims 1 to 7 , and ozone treatment of the wastewater, and the ozone treatment process A discharge step of discharging the treated water and sludge slurry from the reaction tank, and a solid content used alone or in combination as a soil conditioner by dehydrating the discharged treated water and / or sludge slurry. And a dehydration treatment step for collecting the soil.
JP2002306330A 2002-10-21 2002-10-21 Waste water treatment apparatus and method for producing soil improvement material using the same Expired - Lifetime JP3883490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002306330A JP3883490B2 (en) 2002-10-21 2002-10-21 Waste water treatment apparatus and method for producing soil improvement material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002306330A JP3883490B2 (en) 2002-10-21 2002-10-21 Waste water treatment apparatus and method for producing soil improvement material using the same

Publications (2)

Publication Number Publication Date
JP2004141697A JP2004141697A (en) 2004-05-20
JP3883490B2 true JP3883490B2 (en) 2007-02-21

Family

ID=32453141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002306330A Expired - Lifetime JP3883490B2 (en) 2002-10-21 2002-10-21 Waste water treatment apparatus and method for producing soil improvement material using the same

Country Status (1)

Country Link
JP (1) JP3883490B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005329397A (en) * 2004-04-23 2005-12-02 Mitsubishi Rayon Co Ltd Method and apparatus for separation
KR100924327B1 (en) 2007-09-19 2009-11-02 주동식 Method Of Treatment And Separation Excretion, And System Thereof
JP6493779B2 (en) * 2014-09-19 2019-04-03 国立大学法人 岡山大学 89Zr labeling method
JP6335750B2 (en) * 2014-10-10 2018-05-30 三菱電機株式会社 Ozone treatment device, sludge treatment device, ozone treatment method and sludge treatment method
JP6335749B2 (en) * 2014-10-10 2018-05-30 三菱電機株式会社 Ozone treatment device, sludge treatment device, ozone treatment method and sludge treatment method
WO2017115476A1 (en) * 2015-12-28 2017-07-06 株式会社栃木日化サービス Sewage water treatment device
CN108773939A (en) * 2018-07-09 2018-11-09 杭州绿环保技术有限公司 A kind of water process water circle device

Also Published As

Publication number Publication date
JP2004141697A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
US9023209B2 (en) Systems and methods for converting gaseous byproducts of wastewater treatment into energy
WO2005033010A2 (en) Waste water treatment system and process
CN106396270A (en) High-concentration pharmaceutical wastewater treatment system and treatment method
KR100906742B1 (en) Treatment method and the apparatus including ultasonic-electrolysis-precipitator and complexed upper filter isolator for domestic sewage or wasted water
KR20090090240A (en) Deep aer acceleration ozone photocatalyst use wastewater altitude equipment method
JP3883490B2 (en) Waste water treatment apparatus and method for producing soil improvement material using the same
CN1931750B (en) Petrochemical effluent treating and reusing process
KR100292225B1 (en) Method and apparatus of reusing for dirty and waste water including excretion
KR19980025268A (en) Leachate Treatment Method and Apparatus
JP4271991B2 (en) Ozone water treatment equipment
JP3491125B2 (en) Water treatment equipment
JP2003088885A (en) Method and apparatus for treating organic waste water
CN109879572A (en) Landfill leachate advanced purification process system
JP6371970B2 (en) Water treatment equipment
JP3931279B2 (en) Water purification equipment for suspended solids
JP3150734B2 (en) Wastewater or sludge treatment method and apparatus
CN208814846U (en) Oil-contained waste water treatment system
KR102059988B1 (en) Membrane water treatment apparatus using micro-bubble
KR20040020325A (en) A method for treating the graywater by membrane
KR20010068850A (en) The system to treat the sanitary sewage,wastewater by the membrane separator activated sludge process and the advanced oxidation process
TWI439425B (en) Gas dissolution mechanism
JP4549000B2 (en) Water purification equipment for suspended solids
KR102085280B1 (en) Method and system for processing high-dense organic wastewater by sequencing and batch type aeksangbusik process
WO2018021169A1 (en) Method and device for organic wastewater treatment
JP4109492B2 (en) Sludge treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3883490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term