JP3881287B2 - Method and apparatus for measuring wheel alignment of automobile - Google Patents

Method and apparatus for measuring wheel alignment of automobile Download PDF

Info

Publication number
JP3881287B2
JP3881287B2 JP2002163257A JP2002163257A JP3881287B2 JP 3881287 B2 JP3881287 B2 JP 3881287B2 JP 2002163257 A JP2002163257 A JP 2002163257A JP 2002163257 A JP2002163257 A JP 2002163257A JP 3881287 B2 JP3881287 B2 JP 3881287B2
Authority
JP
Japan
Prior art keywords
wheel mounting
mounting portion
measuring
wheel
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002163257A
Other languages
Japanese (ja)
Other versions
JP2004012195A (en
Inventor
清信 原
克裕 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002163257A priority Critical patent/JP3881287B2/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to PCT/JP2003/007003 priority patent/WO2003102503A1/en
Priority to CNB038121212A priority patent/CN100487368C/en
Priority to EP03730788A priority patent/EP1512941B1/en
Priority to US10/512,946 priority patent/US7062860B2/en
Priority to DE60334990T priority patent/DE60334990D1/en
Priority to AU2003241945A priority patent/AU2003241945A1/en
Publication of JP2004012195A publication Critical patent/JP2004012195A/en
Application granted granted Critical
Publication of JP3881287B2 publication Critical patent/JP3881287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のホイルアライメント測定方法及びその装置に関する。
【0002】
【従来の技術】
従来、自動車のホイルアライメントを測定する技術として、特許第2938984号公報に示されているものが知られている。該公報のものは、自動車車体を組立る組立ラインにおいて車輪を取り付けることなく車輪取付部を介してホイルアライメントを測定し、これによって生産性の向上を図るものである。
【0003】
この種のホイルアライメント測定方法は、自動車車体の組立ラインにおいて、ハンガーにより搬送される車体に操舵装置及び懸架装置が組付けられた後に、先ず、車体をハンガーから離脱させ、懸架装置が組付けられたことによって該車体に設けられた車輪取付部を介して該車体を昇降自在に支承する。次いで、該車体を引き下げる引下げ手段に備えるチェーン等の連結具を車体の前後に連結して車体を下方に引下げ、該車体に所定荷重を付与する。これにより、懸架装置は、車輪取付部からの反力によって所定荷重に相当する付勢力が付与され、車体はその車軸に車輪を組付けた完成時の走行状態に最も近い状態で固定される。そして、この状態を維持し、車輪取付部を介してホイルアライメントを測定する。
【0004】
しかし、このような従来の方法によると、車体に対して走行状態に最も近い状態を再現させなければならなず、ホイルアライメントを測定するに先立って、ハンガから離脱させた車体を引下げ手段により下方に引っ張る作業が必要となるために、測定にかかる工数が比較的多く効率が悪い不都合がある。
【0005】
また、引下げ手段により車体を下方に引っ張るとき、引下げ手段に備えるチェーン等の連結位置によっては、4つの車輪取付部に均等に荷重をかけることが困難であり、アライメントの測定精度が低下するおそれがある。
【0006】
【発明が解決しようとする課題】
かかる不都合を解消して本発明は、車輪取付部に走行時と同じ荷重をかけることなく、迅速且つ精度良くホイルアライメントを測定することができて生産性を向上することができるホイルアライメントの測定方法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
かかる目的を達成するために、自動車のホイルのトー角を測定する本発明の自動車のホイルアライメント測定方法は、先ず、車輪取付部を昇降自在として自動車車体を支持し、該自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇工程を行なう。
【0008】
車輪取付部を上昇させる高さ位置においては、例えば、車体の組立ラインにおいて該車体がハンガーにより支持されているとき、車輪取付部に追従して上昇しハンガーから離脱するようなことのない高さ位置とすることが挙げられる。これにより、車体はハンガーから浮き上がることなく安定した支持状態でのトー角測定が可能となる。
【0009】
次いで、該車輪取付部上昇工程により上昇される車輪取付部の位置とトー角とを測定する測定工程が行なわれ、該測定工程においては第1演算工程及び第2演算工程が行なわれる。
【0010】
即ち、前記第1演算工程においては、先ず、車輪取付部上昇工程による車輪取付部の上昇が開始された位置と該位置のトー角とを測定し、測定された位置とトー角からなる座標を第1の基準座標とする。次いで、車輪取付部が前記所定の高さ位置に上昇されるまでの間の所定間隔毎に車輪取付部の位置と各位置のトー角とを測定し、測定された各位置と夫々の位置におけるトー角からなる複数の座標を測定座標とする。そして、第1の基準座標と各測定座標とを結ぶ各直線の傾きを算出する。
【0011】
前記第2演算工程においては、先ず、予め算出された第2の基準座標と各設定座標とを結ぶ各直線の傾きと、第1の基準座標と各測定座標とを結ぶ各直線の傾きとの差を算出する。第2の基準座標は、前記第1の基準座標の車輪取付部の位置(即ち、車輪取付部上昇工程による車輪取付部の上昇が開始された位置)と該位置に対応して予め定められた正しいトー角とからなる座標である。
【0012】
各設定座標は、前記各測定座標における車輪取付部の各位置(即ち、該車輪取付部が前記所定の高さ位置に上昇されるまでの間の所定間隔毎に測定された車輪取付部の位置)と各位置に対応して予め定められた正しいトー角とからなる座標である。
【0013】
なお、本発明者は、トー角及びキャンバー角の変化量に関する各種の試験を行ない、第2の基準座標と各設定座標とを結ぶ各直線の傾きと、第1の基準座標と各測定座標とを結ぶ各直線の傾きとの差が、車輪取付部の位置に対して一定の変化をすることを知見した。
【0014】
そこで、該第2演算工程においては、第2の基準座標と各設定座標とを結ぶ各直線の傾きと、第1の基準座標と各測定座標とを結ぶ各直線の傾きとの差に基づいて、自動車の走行時における車輪取付部の位置のトー角の推定値を算出する。こうすることにより、実際に車輪取付部を自動車の走行時の位置とすることなく、走行時における車輪取付部の位置のトー角を演算により得ることができ、車体に走行時と同じ荷重を付与する工程を不要として短時間に効率よくトー角の測定を行なうことができる。
【0015】
また、自動車のホイルのキャンバー角を測定する本発明の自動車のホイルアライメント測定方法は、前述したトー角の測定と同様にしてキャンバー角を測定する。従って本発明によれば、車輪取付部上昇工程により自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで上昇される車輪取付部の位置とキャンバー角とを測定するだけで、走行時における車輪取付部の位置のキャンバー角を演算により得ることができ、車体に走行時と同じ荷重を付与する工程を不要として短時間に効率よくキャンバー角の測定を行なうことができる。
【0016】
また、トー角を測定する本発明の装置は、車輪取付部を昇降自在として自動車車体を支持する車体支持手段と、該車体支持手段により支持された自動車車体の下方位置に設けられ、自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇手段と、該車輪取付部上昇手段に設けられて車輪取付部の高さ位置を測定する第1測定手段と、前記車輪取付部上昇手段に設けられて車輪取付部を介して車軸のトー角を測定する第2測定手段と、前記車輪取付部上昇手段による車輪取付部の上昇が開始された位置から該車輪取付部が所定の高さ位置に上昇されるまでの間の所定間隔毎に前記第1測定手段による高さ位置の測定と前記第2測定手段によるトー角の測定とを行なう測定制御手段と、前記第1測定手段と前記第2測定手段とによる各測定値に基づいて、自動車の走行時における車輪取付部の位置に対応するトー角を算出するトー角算出手段とを備える。
【0017】
また、キャンバー角を測定する本発明の装置は、前記トー角の測定装置と同様に、車体支持手段と車輪取付部上昇手段とを備える。更に、該車輪取付部上昇手段に設けられて車輪取付部の高さ位置を測定する第1測定手段と、前記車輪取付部上昇手段に設けられて車輪取付部を介して車軸のキャンバー角を測定する第2測定手段と、前記車輪取付部上昇手段による車輪取付部の上昇が開始された位置から該車輪取付部が所定の高さ位置に上昇されるまでの間の所定間隔毎に前記第1測定手段による高さ位置の測定と前記第2測定手段によるキャンバー角の測定とを行なう測定制御手段と、前記第1測定手段と前記第2測定手段とによる各測定値に基づいて、自動車の走行時における車輪取付部の位置に対応するキャンバー角を算出するキャンバー角算出手段とを備える。
【0018】
本発明の装置によってトー角を測定するときには、先ず、前記車体支持手段が自動車車体を支持する。このとき、車体は車輪取付部を昇降自在として支持されていればよい。これにより、具体的には、例えば、自動車の車体組立ラインにおいて車体を搬送するハンガーを車体支持手段とすることができる。
【0019】
次いで、前記車輪取付部上昇手段が、車体支持手段により支持された車体の車輪取付部を上昇させる。このとき、車輪取付部上昇手段は、車輪取付部を自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで上昇させる。
【0020】
そして、前記測定制御手段が、前記車輪取付部上昇手段による車輪取付部の上昇時に、前記第1測定手段による車輪取付部の高さ位置の測定と前記第2測定手段による車輪取付部のトー角の測定とを行なう。このとき、前記測定制御手段は、前記車輪取付部上昇手段による車輪取付部の上昇が開始された位置を前記第1測定手段によって測定し、更に、該車輪取付部が所定の高さ位置に上昇されるまでの間の所定間隔毎に車輪取付部の高さ位置を測定する。一方、前記測定制御手段は、車輪取付部の各高さ位置の測定と同時に、各高さ位置におけるトー角を前記第2測定手段により測定する。
【0021】
続いて、前記トー角算出手段が、前記第1測定手段と前記第2測定手段とによる各測定値に基づいて、自動車の走行時における車輪取付部の位置に対応するトー角を算出する。これにより、車輪取付部を前記所定の高さ位置まで上昇させることで、自動車の走行時における車輪取付部の位置におけるトー角が算出されるので、従来のように車体に荷重をかけることなくトー角が測定でき、装置構成を簡単として確実に自動車の走行時におけるトー角を迅速に得ることができる。
【0022】
また、本発明のキャンバー角を測定する装置においても、前述したトー角の測定装置と同様に構成することで、自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで上昇される車輪取付部の位置とキャンバー角とが測定され、キャンバー角算出手段によって、走行時における車輪取付部の位置のキャンバー角が算出されるので、従来のように車体に荷重をかけることなくキャンバー角が測定でき、装置構成を簡単として確実に自動車の走行時におけるキャンバー角を迅速に得ることができる。
【0023】
【発明の実施の形態】
本発明の一実施形態を図面に基づいて説明する。図1は本実施形態のアライメント測定装置の概略構成を示す説明図、図2は車輪取付部上昇手段の作動説明図、図3は第2測定手段の説明図、図4はトー角の測定方法を示すフローチャート、図5は車輪取付部の位置とトー角との関係を示す線図、図6はキャンバー角の測定方法を示すフローチャート、図7は車輪取付部の位置とキャンバー角との関係を示す線図である。
【0024】
図1において、1は自動車車体2を支持するハンガ(車体支持手段)であり、図示しない組立ラインに沿って該車体2を搬送する。本実施形態のアライメント測定装置3は、該ハンガ1による車体2の搬送路の下方に設けられている。該アライメント測定装置3の直上位置に搬送される車体2は、組立ラインにおいて図示しない操舵装置及び懸架装置4が組付けられ、操舵装置のステアリング位置が中立位置に調整されている。また、車体2に懸架装置4を介して設けられた車輪取付部5は、車輪が未だ取り付けられていず、ハンガ1による車体2の吊り下げ支持によって昇降自在に垂れ下がった状態とされている。
【0025】
該アライメント測定装置3は、図1に示すように、車輪取付部5を上昇させる車輪取付部上昇手段6と、車輪取付部5の高さ位置を測定する第1測定手段7と、該車輪取付部5のトー角及びキャンバー角を測定する第2測定手段8とを備えている。第1測定手段7と第2測定手段8とは、後述する複数位置における測定を制御する図示しない測定制御手段に接続されている。更に、該測定制御手段は、図示しない演算手段(トー角算出手段、キャンバー角算出手段)に接続されており、該演算手段は測定制御手段を介して採取された後述する複数の測定値からトー角及びキャンバー角を算出する。
【0026】
前記車輪取付部上昇手段6は、図1及び図2に示すように、車輪取付部5にその下方から当接する当接部材9と、該当接部材9を一体に支持する昇降自在の昇降板10と、該昇降板10を介して当接部材9に当接された車輪取付部5を上昇させるシリンダ11とを備えている。
【0027】
図1に示すように、該シリンダ11は昇降台12の上部に車幅方向に摺動自在に支持された支持テーブル13に支持されている。昇降台12は所謂パンタグラフ方式により昇降され、例えば、ハンガ1によって搬送される車体2が、アライメント測定装置3の上方を通過する際に下降して、アライメント測定装置3と搬送中の車体2との干渉が防止できるようになっている。
【0028】
支持テーブル13は、昇降台12の上部に車幅方向に延設されたレール14に摺動自在に支持され、図示しない駆動手段によって摺動される。該駆動手段は、アライメント測定装置3の直上に車体2が位置したとき、該車体2の車輪取付部5と当接部材9との位置合わせを行なうものである。
【0029】
前記第1測定手段7は、図1及び図2に示すように、前記支持テーブル13に設けられたレーザセンサであり、昇降板10の上昇距離を計測することによって車輪取付部5の軸心位置を測定する。また、前記第2測定手段8は、図3に示すように、3つのレーザセンサ(第1センサ15、第2センサ16、第3センサ17)によって構成され、支持部材18(図2示)に一体に支持されて前記シリンダ11により昇降される。第1センサ15、第2センサ16、及び第3センサ17は、車輪取付部5の3つの点e,f,gに夫々対峙している。そして、第1センサ15は車輪取付部5のe点までの距離、第2センサ16は車輪取付部5のf点までの距離、第3センサ17は車輪取付部5のg点までの距離を夫々計測する。第1センサ15、第2センサ16及び第3センサ17とによって計測される距離の違いからe点とf点乃至g点間の中心点との垂直方向の変位を測定し、この変位からキャンバー角を検出する。また、第2センサ16と第3センサ17とによって計測される距離の違いからf点とg点との水平方向の変位を測定し、この変位からトー角を検出する。
【0030】
次に、本実施形態によるホイルアライメント測定方法を説明する。図1に示すように、ハンガ1に支持された車体2がアライメント測定装置3の直上に搬送されると、昇降台12が上昇し、車輪取付部上昇手段6が車輪取付部5に近接される。
【0031】
次いで、図2に示すように、シリンダ11により昇降板10が上昇され、当接部材9が車輪取付部5に当接する。このとき、上昇が開始される車輪取付部5の軸心位置は、前記第1測定手段7により測定される。なお、このときの車輪取付部5は、車体2から垂れ下がった位置にあり、本実施形態の被測定車種については、走行時の車輪取付部5の位置(0mm)に対して−90mmより幾分下方位置にある。
【0032】
そして、更にシリンダ11により昇降板10が上昇され、車輪取付部5の軸心位置が、走行時の車輪取付部5の位置に対して−60mmの位置になるまで車輪取付部5が上昇される。なお、本実施形態においては、−90mmの位置が測定開始位置とされる。
【0033】
一方、車輪取付部上昇手段6によって車輪取付部5が上昇されているとき、前記測定制御手段の制御によって、車輪取付部5の複数の位置と各位置に対応するトー角とキャンバー角とが測定される。本実施形態では、前記測定制御手段の制御により、走行時の車輪取付部5の位置に対して−90mm、−80mm、−70mm、−60mmに車輪取付部5が位置したことを第1測定手段7の測定により検出し、各位置でのトー角とキャンバー角とを第2測定手段8により測定する。
【0034】
なお、本実施形態においてハンガ1に支持された車体2は、走行時の車輪取付部5の位置に対して−60mmの位置に車輪取付部5を上昇させても(−90mmの位置から30mm上昇させても)、ハンガ1から離反して浮き上がることがない。このように、車輪取付部5の最大上昇位置は、車体2の浮き上がりがなくハンガ1に支持された状態が確実に維持される位置に設定される。
【0035】
そして、車輪取付部上昇手段6によって車輪取付部5が上昇されつつ該車輪取付部5の位置とトー角及びキャンバー角とが測定された後、前記演算手段により、走行時の車輪取付部5の位置に対応するトー角及びキャンバー角が算出される。
【0036】
ここで、前記演算手段による走行時の車輪取付部5の位置に対応するトー角の算出について説明する。先ず、図4に示すSTEP1において、車輪取付部上昇手段6による車輪取付部5が上昇され、測定開始位置での車輪取付部5の軸心位置(a=−90mm)とトー角bとを測定し、続いて、車輪取付部5の軸心位置が所定位置(a=−60mm)となるまで、所定間隔毎に(10mm毎に)トー角bを測定する。このとき測定された位置とトー角から、図5に示すように、先ず、車輪取付部5の軸心位置が−90mmのときに測定されたトー角の座標(a,b)を第1の基準座標Jとする。更に、車輪取付部5の軸心位置が−80mmのときに測定されたトー角の座標(a,b)を第1の測定座標J1、−70mmのときに測定されたトー角の座標(a,b)を第2の測定座標J2、−60mmのときに測定されたトー角の座標(a,b)を第3の測定座標J3とする。
【0037】
次いで、図5に示すように、第1の基準座標Jと第1の測定座標J1とを結ぶ直線の傾きΔtoe j st=-80、第1の基準座標Jと第2の測定座標J2とを結ぶ直線の傾きΔtoe j st=-70、第1の基準座標Jと第3の測定座標J3とを結ぶ直線の傾きΔtoe j st=-60を夫々算出する(図4のSTEP2)。以下、このとき算出された傾きを実測傾き(Δtoe j )と言う。
【0038】
一方、演算手段においては、自動車の車種毎の車輪取付部上昇手段6による車輪取付部5の上昇に伴う正しいトー角の変化量が、図5に示す基本特性カーブTとして記録されている。更に、基本特性カーブTにおいて、図5に示すように、車輪取付部5の軸心位置が−90mmのときの正しいトー角の座標が第2の基準座標Nとされ、同じように、車輪取付部5の軸心位置が−80mmのときの正しいトー角の座標が第1の設定座標N1、−70mmのときの正しいトー角の座標が第2の設定座標N2、−60mmのときにの正しいトー角の座標が第3の設定座標N3とされる。そして、図5に示すように、第2の基準座標Nと第1の設定座標N1とを結ぶ直線の傾きΔtoe n st=-80、第2の基準座標Nと第2の設定座標N2とを結ぶ直線の傾きΔtoe n st=-70、第2の基準座標Nと第3の設定座標N3とを結ぶ直線の傾きΔtoe n st=-60が夫々予め算出され(図4のSTEP3参照)、その結果が記憶されている。以下、予め記憶されている傾きを基本傾き(Δtoe n )と言う。
【0039】
続いて、図4のSTEP4において、各実測傾き(Δtoe j )と各基本傾き(Δtoe n )との差(m)を算出する。
【0040】
【数1】
-80=Δtoe n st=-80−Δtoe j st=-80 ………(1)
【0041】
【数2】
-70=Δtoe n st=-70−Δto e j st=-70 ………(2)
【0042】
【数3】
-60=Δtoe n st=-60−Δtoe j st=-60 ………(3)
【0043】
これにより、各傾きの差m-80、m-70、m-60が求められる。本発明者は、車輪取付部5の軸心の各位置での各実測傾き(Δtoe j )と各基本傾き(Δtoe n )との差(m)が一定の変化量を示すことを各種の試験により知見している。従って、算出された各傾きの差m-80、m-70、m-60から走行時の車輪取付部5の軸心位置(0mm)における傾き差m0を推定する(図4のSTEP5)。
【0044】
そして、上記のm0の値を基に、傾きΔtoe j st=0を表す数式(4)により走行時の車輪取付部5の軸心位置(0mm)におけるトー角yが算出される(図4のSTEP6)。
【0045】
【数4】
y=α(x−a)+b ………(4)
【0046】
数式(4)においてαは走行時の車輪取付部5の軸心位置xにおける傾きΔtoe j st=0である(α=Δtoe n st=0+m0)。なお、数式(4)における走行時の車輪取付部5の軸心位置(x=0)のトー角yは、数式(5)によって表すことができる。
【0047】
【数5】
y=−αa+b ………(5)
【0048】
次に、前記演算手段による走行時の車輪取付部5の位置に対応するキャンバー角の算出について説明する。本実施形態においてはキャンバー角の測定とトー角の測定とが同時に行なわれる。そして、走行時の車輪取付部5の位置に対応するキャンバー角は、前述したトー角の場合と同様にして前記演算手段により求められる。
【0049】
即ち、図6に示すSTEP1において、車輪取付部上昇手段6による車輪取付部5の上昇が開始された時点での車輪取付部5の軸心位置(a=−90mm)とキャンバー角bとを測定し、続いて、車輪取付部5の軸心位置が所定位置(a=−60mm)となるまで、所定間隔毎に(10mm毎に)キャンバー角bを測定する。このとき測定された位置とキャンバー角から、図7に示すように、先ず、車輪取付部5の軸心位置が−90mmのときに測定されたキャンバー角の座標(a,b)を第1の基準座標Jとする。更に、車輪取付部5の軸心位置が−80mmのときに測定されたキャンバー角の座標(a,b)を第1の測定座標J1、−70mmのときに測定されたキャンバー角の座標(a,b)を第2の測定座標J2、−60mmのときに測定されたキャンバー角を第3の測定座標J3とする。
【0050】
次いで、図7に示すように、第1の基準座標Jと第1の測定座標J1とを結ぶ直線の傾きΔcam j st=-80、第1の基準座標Jと第2の測定座標J2とを結ぶ直線の傾きΔcam j st=-70、第1の基準座標Jと第3の測定座標J3とを結ぶ直線の傾きΔcam j st=-60を夫々算出する(図6のSTEP2)。以下、このとき算出された傾きを実測傾き(Δcam j )と言う。
【0051】
一方、演算手段においては、自動車の車種毎の車輪取付部上昇手段6による車輪取付部5の上昇に伴う正しいキャンバー角の変化量が、図7に示す基本特性カーブCとして記録されている。更に、基本特性カーブCにおいて、図7に示すように、車輪取付部5の軸心位置が−90mmのときの正しいキャンバー角の座標が第2の基準座標Nとされ、同じように、車輪取付部5の軸心位置が−80mmのときの正しいキャンバー角の座標が第1の設定座標N1、−70mmのときの正しいキャンバー角の座標が第2の設定座標N2、−60mmのときにの正しいキャンバー角の座標が第3の設定座標N3とされる。そして、図7に示すように、第2の基準座標Nと第1の設定座標N1とを結ぶ直線の傾きΔcam n st=-80、第2の基準座標Nと第2の設定座標N2とを結ぶ直線の傾きΔcam n st=-70、第2の基準座標Nと第3の設定座標N3とを結ぶ直線の傾きΔcam n st=-60が夫々予め算出され(図6のSTEP3)、その結果が記憶されている。以下、予め記憶されている傾きを基本傾き(Δcam n )と言う。
【0052】
続いて、図6のSTEP4において、各実測傾き(Δcam j )と各基本傾き(Δcam n )との差(m)を算出する。差(m)の算出についても、前述したトー角の測定の場合と同様である。
【0053】
【数6】
-80=Δcam n st=-80−Δcam j st=-80 ………(6)
【0054】
【数7】
-70=Δcam n st=-70−Δcam j st=-70 ………(7)
【0055】
【数8】
-60=Δcam n st=-60−Δcam j st=-60 ………(8)
【0056】
これにより、各傾きの差m-80、m-70、m-60が求められる。そして、キャンバー角の場合にもトー角と同様に、車輪取付部5の軸心の各位置での各実測傾き(Δcam j )と各基本傾き(Δcam n )との差(m)は一定の変化量を示すことが本発明者による各種の試験により確認されている。従って、算出された各傾きの差m-80、m-70、m-60から走行時の車輪取付部5の軸心位置(0mm)における傾き差の推定値m0が求められる(図6のSTEP5)。
【0057】
このことから、前記数式(5)を用い、図6のSTEP6において走行時の車輪取付部5の軸心位置(0mm)におけるキャンバー角yを算出する。
【0058】
以上のように、本実施形態によれば車体に走行時と同じ荷重を付与することなく極めて迅速に走行時の車輪取付部5の軸心位置におけるトー角及びキャンバー角を算出することができる。しかも、車体2をハンガ1から離脱させることなく、車輪取付部5を所定位置(本実施形態では走行時から−60mmの位置)に上昇させるだけでトー角及びキャンバー角を得ることができるので、効率よくアライメントの測定が行なえ生産性を向上させることができる。
【0059】
なお、前述した測定開始位置及び各測定位置の間隔は、被測定車種のサスペンションの特性に応じて適宜決定されるものであって、本実施形態のトー角及びキャンバー角の測定において採用した寸法に限られるものではない。また、測定位置の間隔においては、短く設定するほど測定精度を上げることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態のアライメント測定装置の概略構成を示す説明図。
【図2】車輪取付部上昇手段の作動説明図。
【図3】第2測定手段の説明図。
【図4】トー角の測定方法を示すフローチャート。
【図5】車輪取付部の位置とトー角との関係を示す線図。
【図6】キャンバー角の測定方法を示すフローチャート。
【図7】車輪取付部の位置とキャンバー角との関係を示す線図。
【符号の説明】
1…ハンガ(車体支持手段)、2…車体、3…ホイルアライメント測定装置、5…車輪取付部、6…車輪取付部上昇手段、7…第1測定手段、8…第2測定手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wheel alignment measuring method and apparatus for an automobile.
[0002]
[Prior art]
Conventionally, a technique disclosed in Japanese Patent No. 2938984 is known as a technique for measuring the wheel alignment of an automobile. In this publication, the wheel alignment is measured via the wheel attachment portion without attaching the wheel in the assembly line for assembling the automobile body, thereby improving the productivity.
[0003]
In this type of wheel alignment measuring method, in the assembly line of an automobile body, after the steering device and the suspension device are assembled to the vehicle body conveyed by the hanger, the vehicle body is first detached from the hanger and the suspension device is assembled. Thus, the vehicle body is supported so as to be movable up and down through a wheel mounting portion provided on the vehicle body. Next, a connecting tool such as a chain provided in the lowering means for lowering the vehicle body is connected to the front and rear of the vehicle body to lower the vehicle body downward, and a predetermined load is applied to the vehicle body. Thereby, the urging force corresponding to the predetermined load is applied to the suspension device by the reaction force from the wheel mounting portion, and the vehicle body is fixed in a state closest to the traveling state at the time when the wheel is assembled to the axle. And this state is maintained and foil alignment is measured via a wheel attachment part.
[0004]
However, according to such a conventional method, the state closest to the running state must be reproduced with respect to the vehicle body, and the vehicle body detached from the hanger is lowered by the lowering means before measuring the wheel alignment. Therefore, there is a disadvantage that the number of man-hours for measurement is relatively large and the efficiency is poor.
[0005]
Further, when the vehicle body is pulled downward by the lowering means, depending on the connecting position of the chain or the like provided in the lowering means, it is difficult to apply a load equally to the four wheel mounting portions, and the alignment measurement accuracy may be reduced. is there.
[0006]
[Problems to be solved by the invention]
The present invention eliminates such inconveniences, and the present invention can measure the wheel alignment quickly and accurately without applying the same load to the wheel mounting portion, and can improve the productivity. And an apparatus for the same.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, the wheel alignment measuring method for a vehicle according to the present invention for measuring the toe angle of the wheel of the vehicle first supports the vehicle body by allowing the wheel mounting portion to be raised and lowered, and the wheel during traveling of the vehicle. A wheel attachment part raising step is performed for raising the wheel attachment part to a predetermined height position set below the position of the attachment part.
[0008]
At the height position where the wheel mounting portion is raised, for example, when the vehicle body is supported by a hanger in the assembly line of the vehicle body, the height does not rise up following the wheel mounting portion and does not leave the hanger. Position. This makes it possible to measure the toe angle in a stable support state without lifting the vehicle body from the hanger.
[0009]
Next, a measurement process for measuring the position and toe angle of the wheel mounting part that is raised by the wheel mounting part ascending process is performed, and a first calculation process and a second calculation process are performed in the measurement process.
[0010]
That is, in the first calculation step, first, the position at which the wheel attachment portion is started to be raised by the wheel attachment portion raising step and the toe angle of the position are measured, and the coordinates composed of the measured position and the toe angle are obtained. The first reference coordinate is assumed. Next, the position of the wheel mounting portion and the toe angle of each position are measured at predetermined intervals until the wheel mounting portion is raised to the predetermined height position, and the measured position and each position are measured. A plurality of coordinates composed of toe angles are taken as measurement coordinates. Then, the inclination of each straight line connecting the first reference coordinate and each measurement coordinate is calculated.
[0011]
In the second calculation step, first, an inclination of each straight line connecting the second reference coordinate calculated in advance and each set coordinate and an inclination of each straight line connecting the first reference coordinate and each measurement coordinate are calculated. Calculate the difference. The second reference coordinates are determined in advance corresponding to the position of the wheel mounting portion of the first reference coordinate (that is, the position where the rising of the wheel mounting portion in the wheel mounting portion raising process is started) and the position. Coordinates with correct toe angle.
[0012]
Each set coordinate is the position of the wheel mounting portion at each measurement coordinate (that is, the position of the wheel mounting portion measured at a predetermined interval until the wheel mounting portion is raised to the predetermined height position. ) And a correct toe angle determined in advance corresponding to each position.
[0013]
The inventor conducted various tests on the toe angle and the camber angle change amount, the inclination of each straight line connecting the second reference coordinate and each set coordinate, the first reference coordinate and each measurement coordinate, It has been found that the difference between the inclination of each straight line connecting the two changes with respect to the position of the wheel mounting portion.
[0014]
Therefore, in the second calculation step, based on the difference between the slope of each straight line connecting the second reference coordinate and each set coordinate and the slope of each straight line connecting the first reference coordinate and each measurement coordinate. Then, an estimated value of the toe angle of the position of the wheel mounting portion when the automobile is running is calculated. By doing this, the toe angle of the position of the wheel mounting portion during traveling can be obtained by calculation without actually setting the wheel mounting portion as the position during traveling of the automobile, and the same load as that during traveling is applied to the vehicle body. Thus, the toe angle can be measured efficiently in a short time without the need for a process to be performed.
[0015]
In addition, the automotive wheel alignment measurement method of the present invention for measuring the automotive camber angle measures the camber angle in the same manner as the toe angle measurement described above. Therefore, according to the present invention, the position of the wheel mounting portion and the camber angle that are raised to a predetermined height position set below the position of the wheel mounting portion when the vehicle is running are measured by the wheel mounting portion rising step. The camber angle at the position of the wheel mounting portion during traveling can be obtained by calculation, and the camber angle can be measured efficiently in a short time without the need to apply the same load to the vehicle body as during traveling. it can.
[0016]
Further, the device of the present invention for measuring the toe angle is provided at a lower position of the vehicle body supported by the vehicle body support means for supporting the vehicle body with the wheel mounting portion being movable up and down, and traveling of the vehicle. Wheel attachment portion raising means for raising the wheel attachment portion to a predetermined height position set below the position of the wheel attachment portion at the time, and the height position of the wheel attachment portion provided in the wheel attachment portion raising means First measuring means for measuring the wheel, second measuring means for measuring the toe angle of the axle via the wheel mounting portion provided in the wheel mounting portion lifting means, and raising of the wheel mounting portion by the wheel mounting portion lifting means Measurement of the height position by the first measuring means and measurement of the toe angle by the second measuring means at every predetermined interval from the position where the wheel is mounted to the predetermined height position. Measurement system And means, based on the measurements by said said first measuring means second measuring means, and a toe angle calculating means for calculating the toe angle corresponding to the position of the wheel mount during running of the automobile.
[0017]
Further, the apparatus of the present invention for measuring the camber angle includes a vehicle body support means and a wheel mounting part raising means, similarly to the toe angle measurement apparatus. Furthermore, a first measuring means provided in the wheel mounting portion raising means for measuring the height position of the wheel mounting portion, and a camber angle of the axle provided through the wheel mounting portion provided in the wheel mounting portion raising means. The first measuring unit and the first mounting unit at a predetermined interval from the position at which the wheel mounting part is started to rise to the predetermined height position by the wheel mounting part raising unit. Based on the measurement control means for measuring the height position by the measurement means and the measurement of the camber angle by the second measurement means, and on the basis of the measured values by the first measurement means and the second measurement means, Camber angle calculating means for calculating a camber angle corresponding to the position of the wheel mounting portion at the time.
[0018]
When the toe angle is measured by the apparatus of the present invention, the vehicle body support means first supports the vehicle body. At this time, the vehicle body only needs to be supported with the wheel mounting portion being movable up and down. Thus, specifically, for example, a hanger that conveys the vehicle body in the vehicle body assembly line of the automobile can be used as the vehicle body support means.
[0019]
Next, the wheel attachment portion raising means raises the wheel attachment portion of the vehicle body supported by the vehicle body support means. At this time, the wheel attachment portion raising means raises the wheel attachment portion to a predetermined height position set below the position of the wheel attachment portion when the automobile is running.
[0020]
The measurement control means measures the height position of the wheel mounting portion by the first measuring means and the toe angle of the wheel mounting portion by the second measuring means when the wheel mounting portion is raised by the wheel mounting portion raising means. And measure. At this time, the measurement control means measures the position where the rising of the wheel mounting portion by the wheel mounting portion lifting means is started by the first measuring means, and further, the wheel mounting portion is raised to a predetermined height position. The height position of the wheel mounting portion is measured at every predetermined interval until it is done. On the other hand, the said measurement control means measures the toe angle in each height position by the said 2nd measurement means simultaneously with the measurement of each height position of a wheel attaching part.
[0021]
Subsequently, the toe angle calculating means calculates a toe angle corresponding to the position of the wheel mounting portion when the automobile is running, based on the measurement values obtained by the first measuring means and the second measuring means. Thus, by raising the wheel mounting portion to the predetermined height position, the toe angle at the position of the wheel mounting portion when the vehicle is running is calculated, so that the toe angle is not applied to the vehicle body as in the prior art. The angle can be measured, and the toe angle at the time of traveling of the automobile can be obtained quickly and reliably with a simple apparatus configuration.
[0022]
In addition, the apparatus for measuring the camber angle of the present invention is configured in the same manner as the toe angle measuring apparatus described above, so that a predetermined height set below the position of the wheel mounting portion when the automobile is running is set. The position and camber angle of the wheel mounting part that is raised to the position are measured, and the camber angle calculating means calculates the camber angle at the position of the wheel mounting part at the time of traveling. Therefore, the camber angle can be measured without any problem, and the camber angle can be quickly obtained while the vehicle is running with a simple apparatus configuration.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram showing a schematic configuration of an alignment measuring apparatus according to the present embodiment, FIG. 2 is an operation explanatory diagram of a wheel mounting portion raising means, FIG. 3 is an explanatory diagram of second measuring means, and FIG. 4 is a toe angle measuring method. FIG. 5 is a diagram showing the relationship between the position of the wheel mounting portion and the toe angle, FIG. 6 is a flowchart showing a method for measuring the camber angle, and FIG. 7 shows the relationship between the position of the wheel mounting portion and the camber angle. FIG.
[0024]
In FIG. 1, reference numeral 1 denotes a hanger (vehicle body support means) that supports a vehicle body 2 and conveys the vehicle body 2 along an assembly line (not shown). The alignment measuring apparatus 3 according to the present embodiment is provided below the conveyance path of the vehicle body 2 by the hanger 1. The vehicle body 2 conveyed to a position immediately above the alignment measuring device 3 is assembled with a steering device and a suspension device 4 (not shown) on the assembly line, and the steering position of the steering device is adjusted to the neutral position. In addition, the wheel attachment portion 5 provided on the vehicle body 2 via the suspension device 4 is not attached to the wheel, and is hung so as to be able to be raised and lowered by the suspension support of the vehicle body 2 by the hanger 1.
[0025]
As shown in FIG. 1, the alignment measuring device 3 includes a wheel mounting part raising unit 6 that raises the wheel mounting part 5, a first measuring unit 7 that measures the height position of the wheel mounting part 5, and the wheel mounting. And a second measuring means 8 for measuring the toe angle and the camber angle of the unit 5. The first measurement means 7 and the second measurement means 8 are connected to a measurement control means (not shown) that controls measurement at a plurality of positions described later. Further, the measurement control means is connected to calculation means (toe angle calculation means, camber angle calculation means) (not shown), and the calculation means is based on a plurality of measurement values (described later) collected via the measurement control means. The angle and camber angle are calculated.
[0026]
As shown in FIGS. 1 and 2, the wheel mounting portion raising means 6 includes a contact member 9 that contacts the wheel mounting portion 5 from below, and a liftable lifting plate 10 that integrally supports the contact member 9. And a cylinder 11 for raising the wheel mounting portion 5 that is in contact with the contact member 9 via the elevating plate 10.
[0027]
As shown in FIG. 1, the cylinder 11 is supported on a support table 13 that is supported on an upper part of a lifting platform 12 so as to be slidable in the vehicle width direction. The elevator 12 is moved up and down by a so-called pantograph method. For example, the vehicle body 2 conveyed by the hanger 1 descends when passing over the alignment measuring device 3, and the alignment measuring device 3 and the vehicle body 2 being conveyed are moved. Interference can be prevented.
[0028]
The support table 13 is slidably supported on a rail 14 extending in the vehicle width direction at the upper part of the elevator 12 and is slid by a driving means (not shown). When the vehicle body 2 is positioned immediately above the alignment measuring device 3, the driving means performs alignment between the wheel mounting portion 5 of the vehicle body 2 and the contact member 9.
[0029]
As shown in FIGS. 1 and 2, the first measuring means 7 is a laser sensor provided on the support table 13, and the axial position of the wheel mounting portion 5 is measured by measuring the rising distance of the lifting plate 10. Measure. Further, as shown in FIG. 3, the second measuring means 8 is constituted by three laser sensors (first sensor 15, second sensor 16, third sensor 17), and a support member 18 (shown in FIG. 2). The cylinder 11 is supported and lifted by the cylinder 11. The first sensor 15, the second sensor 16, and the third sensor 17 oppose the three points e, f, and g of the wheel mounting portion 5, respectively. The first sensor 15 is the distance to the point e of the wheel mounting part 5, the second sensor 16 is the distance to the point f of the wheel mounting part 5, and the third sensor 17 is the distance to the point g of the wheel mounting part 5. Measure each one. The vertical displacement between point e and the center point between points f and g is measured from the difference in distance measured by first sensor 15, second sensor 16, and third sensor 17, and the camber angle is calculated from this displacement. Is detected. Further, the horizontal displacement between the point f and the point g is measured from the difference in distance measured by the second sensor 16 and the third sensor 17, and the toe angle is detected from this displacement.
[0030]
Next, the foil alignment measuring method according to the present embodiment will be described. As shown in FIG. 1, when the vehicle body 2 supported by the hanger 1 is transported immediately above the alignment measuring device 3, the lifting platform 12 is raised and the wheel mounting portion lifting means 6 is brought close to the wheel mounting portion 5. .
[0031]
Next, as shown in FIG. 2, the lift plate 10 is raised by the cylinder 11, and the contact member 9 contacts the wheel mounting portion 5. At this time, the axial center position of the wheel mounting portion 5 where the ascent starts is measured by the first measuring means 7. Note that the wheel mounting portion 5 at this time is in a position depending on the vehicle body 2, and the measured vehicle type of the present embodiment is somewhat less than −90 mm with respect to the position of the wheel mounting portion 5 during travel (0 mm). In the down position.
[0032]
Further, the lift plate 10 is further raised by the cylinder 11, and the wheel attachment portion 5 is raised until the axial center position of the wheel attachment portion 5 is -60 mm with respect to the position of the wheel attachment portion 5 during traveling. . In the present embodiment, the position of −90 mm is the measurement start position.
[0033]
On the other hand, when the wheel mounting portion 5 is lifted by the wheel mounting portion lifting means 6, a plurality of positions of the wheel mounting portion 5 and toe angles and camber angles corresponding to the respective positions are measured by the control of the measurement control means. Is done. In the present embodiment, the first measurement means indicates that the wheel attachment portion 5 is positioned at −90 mm, −80 mm, −70 mm, and −60 mm with respect to the position of the wheel attachment portion 5 during traveling by the control of the measurement control means. The toe angle and the camber angle at each position are measured by the second measuring means 8.
[0034]
In this embodiment, the vehicle body 2 supported by the hanger 1 is lifted by 30 mm from the position of −90 mm even if the wheel mounting part 5 is lifted to a position of −60 mm with respect to the position of the wheel mounting part 5 during traveling. However, it does not float away from the hanger 1. Thus, the maximum ascending position of the wheel mounting portion 5 is set to a position where the vehicle body 2 is not lifted and the state supported by the hanger 1 is reliably maintained.
[0035]
And after the wheel mounting part 5 is raised by the wheel mounting part raising means 6, the position of the wheel mounting part 5 and the toe angle and the camber angle are measured, and then the calculation means makes the wheel mounting part 5 A toe angle and a camber angle corresponding to the position are calculated.
[0036]
Here, calculation of the toe angle corresponding to the position of the wheel mounting portion 5 during traveling by the calculation means will be described. First, in STEP 1 shown in FIG. 4, the wheel mounting portion 5 by the wheel mounting portion lifting means 6 is lifted, and the axial center position (a = −90 mm) and the toe angle b of the wheel mounting portion 5 at the measurement start position are measured. Subsequently, the toe angle b is measured at predetermined intervals (every 10 mm) until the axial center position of the wheel mounting portion 5 reaches a predetermined position (a = -60 mm). From the position and toe angle measured at this time, as shown in FIG. 5, first, the coordinates (a, b) of the toe angle measured when the axial center position of the wheel mounting portion 5 is −90 mm are set to the first. The reference coordinate J is assumed. Further, the coordinates (a, b) of the toe angle measured when the axial center position of the wheel mounting portion 5 is −80 mm are the coordinates of the toe angle (a, b) measured when the first measuring coordinate J 1 is −70 mm ( a, b) is the second measurement coordinate J 2 , and the toe angle coordinate (a, b) measured at −60 mm is the third measurement coordinate J 3 .
[0037]
Next, as shown in FIG. 5, the slope Δtoe j st = -80 of the straight line connecting the first reference coordinate J and the first measurement coordinate J 1 , the first reference coordinate J and the second measurement coordinate J 2. The slope Δtoe j st = −70 of the straight line connecting the two and the slope Δtoe j st = −60 of the straight line connecting the first reference coordinate J and the third measurement coordinate J 3 are calculated (STEP 2 in FIG. 4). Hereinafter, the slope calculated at this time is referred to as an actually measured slope (Δtoe j ).
[0038]
On the other hand, in the calculating means, the correct amount of change in the toe angle associated with the rise of the wheel mounting portion 5 by the wheel mounting portion raising means 6 for each vehicle type is recorded as a basic characteristic curve T shown in FIG. Further, in the basic characteristic curve T, as shown in FIG. 5, the coordinates of the correct toe angle when the axial center position of the wheel mounting portion 5 is −90 mm are set as the second reference coordinates N. Similarly, the wheel mounting The correct toe angle coordinate when the axial center position of the portion 5 is −80 mm is the first set coordinate N 1 , and the correct toe angle coordinate when the axis position is −70 mm is the second set coordinate N 2 , −60 mm. The correct toe angle coordinate is set as the third set coordinate N 3 . Then, as shown in FIG. 5, the slope Δtoe n st = -80 of the straight line connecting the second reference coordinate N and the first set coordinate N 1 , the second reference coordinate N and the second set coordinate N 2. the slope of the line Δtoe n st = -70 connecting the bets, the second reference coordinates n and the third set coordinates n 3 and the slope of the line Δtoe n st = -60 connecting is calculated in advance, respectively (STEP3 see FIG. 4 ) And the result is stored. Hereinafter, the inclination stored in advance is referred to as a basic inclination (Δtoe n ).
[0039]
Subsequently, in STEP 4 of FIG. 4, the difference (m) between each measured inclination (Δtoe j ) and each basic inclination (Δtoe n ) is calculated.
[0040]
[Expression 1]
m -80 = Δtoe n st = -80 -Δtoe j st = -80 (1)
[0041]
[Expression 2]
m −70 = Δtoe n st = −70 −Δto e j st = −70 (2)
[0042]
[Equation 3]
m -60 = Δtoe n st = -60 −Δtoe j st = -60 (3)
[0043]
As a result, the differences m -80 , m -70 , and m -60 of the respective inclinations are obtained. The present inventor conducted various tests that the difference (m) between each measured inclination (Δtoe j ) and each basic inclination (Δtoe n ) at each position of the axis of the wheel mounting portion 5 shows a constant change amount. I know. Therefore, the inclination difference m 0 at the axial center position ( 0 mm) of the wheel mounting portion 5 during traveling is estimated from the calculated differences m −80 , m −70 and m −60 (STEP 5 in FIG. 4).
[0044]
Then, based on the value of m 0 , the toe angle y at the axial center position (0 mm) of the wheel mounting portion 5 during traveling is calculated by Equation (4) representing the inclination Δtoe j st = 0 (FIG. 4). STEP 6).
[0045]
[Expression 4]
y = α (x−a) + b (4)
[0046]
In the equation (4), α is an inclination Δtoe j st = 0 at the axial center position x of the wheel mounting portion 5 during traveling (α = Δtoe n st = 0 + m 0 ). In addition, the toe angle y of the axial center position (x = 0) of the wheel mounting portion 5 at the time of traveling in Formula (4) can be expressed by Formula (5).
[0047]
[Equation 5]
y = −αa + b (5)
[0048]
Next, calculation of the camber angle corresponding to the position of the wheel mounting portion 5 during traveling by the calculation means will be described. In the present embodiment, the measurement of the camber angle and the measurement of the toe angle are performed simultaneously. And the camber angle corresponding to the position of the wheel mounting part 5 at the time of driving | running | working is calculated | required by the said calculating means similarly to the case of the toe angle mentioned above.
[0049]
That is, in STEP 1 shown in FIG. 6, the axial center position (a = −90 mm) of the wheel mounting portion 5 and the camber angle b at the time when the lifting of the wheel mounting portion 5 by the wheel mounting portion lifting means 6 is started are measured. Subsequently, the camber angle b is measured at predetermined intervals (every 10 mm) until the axial center position of the wheel mounting portion 5 reaches a predetermined position (a = -60 mm). From the position and camber angle measured at this time, as shown in FIG. 7, first, the coordinates (a, b) of the camber angle measured when the axial center position of the wheel mounting portion 5 is −90 mm are set to the first. The reference coordinate J is assumed. Further, the coordinates (a, b) of the camber angle measured when the axial center position of the wheel mounting portion 5 is −80 mm are the coordinates of the camber angle (a, b) measured at the first measurement coordinate J 1 , −70 mm ( Let a, b) be the second measurement coordinate J 2 , and the camber angle measured at −60 mm be the third measurement coordinate J 3 .
[0050]
Next, as shown in FIG. 7, the slope Δcam j st = -80 of the straight line connecting the first reference coordinate J and the first measurement coordinate J 1 , the first reference coordinate J and the second measurement coordinate J 2. The slope Δcam j st = −70 of the straight line connecting the two and the slope Δcam j st = −60 of the straight line connecting the first reference coordinate J and the third measurement coordinate J 3 is calculated (STEP 2 in FIG. 6). Hereinafter, the inclination calculated at this time is referred to as an actually measured inclination (Δcam j ).
[0051]
On the other hand, in the calculating means, the correct amount of change in the camber angle accompanying the raising of the wheel mounting portion 5 by the wheel mounting portion raising means 6 for each vehicle type is recorded as a basic characteristic curve C shown in FIG. Further, in the basic characteristic curve C, as shown in FIG. 7, the coordinates of the correct camber angle when the axial center position of the wheel mounting portion 5 is −90 mm is set as the second reference coordinate N. Similarly, the wheel mounting When the axial center position of the portion 5 is −80 mm, the correct camber angle coordinate is the first set coordinate N 1 , and when the correct camber angle coordinate is −70 mm, the correct camber angle coordinate is the second set coordinate N 2 , −60 mm. The correct camber angle coordinate is the third set coordinate N 3 . As shown in FIG. 7, the slope Δcam n st = −80 of the straight line connecting the second reference coordinate N and the first set coordinate N 1 , the second reference coordinate N and the second set coordinate N 2. The straight line slope Δcam n st = −70 and the straight line slope Δcam n st = −60 connecting the second reference coordinate N and the third set coordinate N 3 are respectively calculated in advance (STEP 3 in FIG. 6). The result is stored. Hereinafter, the inclination stored in advance is referred to as a basic inclination (Δcam n ).
[0052]
Subsequently, in STEP 4 of FIG. 6, a difference (m) between each measured inclination (Δcam j ) and each basic inclination (Δcam n ) is calculated. The calculation of the difference (m) is the same as in the case of the toe angle measurement described above.
[0053]
[Formula 6]
m -80 = Δcam n st = -80 −Δcam j st = -80 (6)
[0054]
[Expression 7]
m −70 = Δcam n st = −70 −Δcam j st = −70 (7)
[0055]
[Equation 8]
m -60 = Δcam n st = -60 −Δcam j st = -60 (8)
[0056]
As a result, the differences m -80 , m -70 , and m -60 of the respective inclinations are obtained. In the case of the camber angle, as in the toe angle, the difference (m) between each measured inclination (Δcam j ) and each basic inclination (Δcam n ) at each position of the axis of the wheel mounting portion 5 is constant. It has been confirmed by various tests by the present inventors that the amount of change is shown. Therefore, an estimated value m 0 of the inclination difference at the axial center position (0 mm) of the wheel mounting portion 5 during traveling is obtained from the calculated differences m -80 , m -70 , and m -60 (see FIG. 6). (STEP 5).
[0057]
From this, the camber angle y at the axial center position (0 mm) of the wheel mounting portion 5 during traveling is calculated using STEP (5) in FIG.
[0058]
As described above, according to the present embodiment, the toe angle and the camber angle at the axial center position of the wheel mounting portion 5 during traveling can be calculated very quickly without applying the same load to the vehicle body during traveling. Moreover, the toe angle and the camber angle can be obtained only by raising the wheel mounting portion 5 to a predetermined position (in this embodiment, a position of −60 mm from the travel time) without removing the vehicle body 2 from the hanger 1. The alignment can be measured efficiently and the productivity can be improved.
[0059]
Note that the measurement start position and the interval between the measurement positions described above are appropriately determined according to the characteristics of the suspension of the vehicle model to be measured, and have the dimensions employed in the measurement of the toe angle and the camber angle in this embodiment. It is not limited. In addition, the measurement accuracy can be increased as the interval between the measurement positions is set shorter.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic configuration of an alignment measurement apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining the operation of the wheel mounting portion raising means.
FIG. 3 is an explanatory diagram of second measuring means.
FIG. 4 is a flowchart illustrating a toe angle measuring method.
FIG. 5 is a diagram showing a relationship between a position of a wheel mounting portion and a toe angle.
FIG. 6 is a flowchart illustrating a method for measuring a camber angle.
FIG. 7 is a diagram showing a relationship between a position of a wheel mounting portion and a camber angle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hanger (vehicle body support means), 2 ... Vehicle body, 3 ... Wheel alignment measuring apparatus, 5 ... Wheel attachment part, 6 ... Wheel attachment part raising means, 7 ... 1st measurement means, 8 ... 2nd measurement means.

Claims (4)

自動車のホイルのトー角を測定する自動車のホイルアライメント測定方法において、
車輪取付部を昇降自在として自動車車体を支持し、該自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇工程と、
該車輪取付部上昇工程により上昇される車輪取付部の位置とトー角とを測定する測定工程とを備え、
該測定工程は、該車輪取付部上昇工程による車輪取付部の上昇開始時に測定された車輪取付部の位置と該位置において測定されたトー角とからなる座標を第1の基準座標とし、該車輪取付部が前記所定の高さ位置に上昇されるまでの間の所定間隔毎に測定された車輪取付部の位置と各位置において測定されたトー角とからなる複数の座標を測定座標として、第1の基準座標と各測定座標とを結ぶ各直線の傾きを算出する第1演算工程と、
前記第1の基準座標における車輪取付部の位置と該位置に対応して予め定められた正しいトー角とからなる座標を第2の基準座標とし、前記各測定座標における車輪取付部の各位置と各位置に対応して予め定められた正しいトー角とからなる複数の座標を設定座標として、予め算出された第2の基準座標と各設定座標とを結ぶ各直線の傾きと、第1の基準座標と各測定座標とを結ぶ各直線の傾きとの差に基づいて、自動車の走行時における車輪取付部の位置のトー角の推定値を算出する第2演算工程とを備えることを特徴とする自動車のホイルアライメント測定方法。
In the method of measuring the wheel alignment of a car that measures the toe angle of the car wheel,
A wheel mounting portion raising step for supporting the vehicle body so that the wheel mounting portion can be raised and lowered, and raising the wheel mounting portion to a predetermined height position set below the position of the wheel mounting portion when the vehicle is running;
A measuring step for measuring the position and toe angle of the wheel mounting portion raised by the wheel mounting portion raising step,
The measuring step uses, as a first reference coordinate, a coordinate composed of the position of the wheel mounting portion measured at the start of ascent of the wheel mounting portion in the wheel mounting portion raising step and the toe angle measured at the position. A plurality of coordinates consisting of the position of the wheel mounting portion measured at predetermined intervals until the mounting portion is raised to the predetermined height position and the toe angle measured at each position are used as measurement coordinates. A first calculation step of calculating an inclination of each straight line connecting one reference coordinate and each measurement coordinate;
The coordinates consisting of the position of the wheel mounting portion in the first reference coordinates and the correct toe angle predetermined in correspondence with the position are set as the second reference coordinates, and each position of the wheel mounting portion in the respective measurement coordinates The slope of each straight line connecting the second reference coordinate calculated in advance and each set coordinate is set to a plurality of coordinates including a correct toe angle predetermined corresponding to each position, and the first reference And a second calculation step of calculating an estimated value of the toe angle of the position of the wheel mounting portion when the automobile is running based on the difference between the inclination of each straight line connecting the coordinates and each measurement coordinate. Method for measuring wheel alignment of automobiles.
自動車のホイルのキャンバー角を測定する自動車のホイルアライメント測定方法において、
車輪取付部を昇降自在として自動車車体を支持し、該自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇工程と、
該車輪取付部上昇工程により上昇される車輪取付部の位置とキャンバー角とを測定する測定工程とを備え、
該測定工程は、該車輪取付部上昇工程による車輪取付部の上昇開始時に測定された車輪取付部の位置と該位置において測定されたキャンバー角とからなる座標を第1の基準座標とし、該車輪取付部が前記所定の高さ位置に上昇されるまでの間の所定間隔毎に測定された車輪取付部の位置と各位置において測定されたキャンバー角とからなる複数の座標を測定座標として、第1の基準座標と各測定座標とを結ぶ各直線の傾きを算出する第1演算工程と、
前記第1の基準座標における車輪取付部の位置と該位置に対応して予め定められた正しいキャンバー角とからなる座標を第2の基準座標とし、前記各測定座標における車輪取付部の各位置と各位置に対応して予め定められた正しいキャンバー角とからなる複数の座標を設定座標として、予め算出された第2の基準座標と各設定座標とを結ぶ各直線の傾きと、第1の基準座標と各測定座標とを結ぶ各直線の傾きとの差に基づいて、自動車の走行時における車輪取付部の位置のキャンバー角の推定値を算出する第2演算工程とを備えることを特徴とする自動車のホイルアライメント測定方法。
In the method of measuring the wheel alignment of a vehicle for measuring the camber angle of a vehicle wheel,
A wheel mounting portion raising step for supporting the vehicle body so that the wheel mounting portion can be raised and lowered, and raising the wheel mounting portion to a predetermined height position set below the position of the wheel mounting portion when the vehicle is running;
A measuring step of measuring the position and camber angle of the wheel mounting portion raised by the wheel mounting portion raising step,
The measuring step uses, as a first reference coordinate, a coordinate composed of the position of the wheel mounting portion measured at the start of the lifting of the wheel mounting portion in the wheel mounting portion rising step and the camber angle measured at the position, A plurality of coordinates consisting of the position of the wheel mounting portion measured at predetermined intervals until the mounting portion is raised to the predetermined height position and the camber angle measured at each position are used as measurement coordinates. A first calculation step of calculating an inclination of each straight line connecting one reference coordinate and each measurement coordinate;
The coordinates consisting of the position of the wheel mounting portion in the first reference coordinates and the correct camber angle predetermined corresponding to the position are set as the second reference coordinates, and each position of the wheel mounting portion in each measurement coordinate The slope of each straight line connecting the second reference coordinates calculated in advance and the set coordinates, and the first reference, with a plurality of coordinates consisting of a predetermined correct camber angle corresponding to each position as the set coordinates. And a second calculation step of calculating an estimated value of the camber angle of the position of the wheel mounting portion when the automobile is running based on the difference between the coordinates and the slope of each straight line connecting each measurement coordinate. Method for measuring wheel alignment of automobiles.
自動車のホイルのトー角を測定する自動車のホイルアライメント測定装置において、
車輪取付部を昇降自在として自動車車体を支持する車体支持手段と、
該車体支持手段により支持された自動車車体の下方位置に設けられ、自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇手段と、
該車輪取付部上昇手段に設けられて車輪取付部の高さ位置を測定する第1測定手段と、
前記車輪取付部上昇手段に設けられて車輪取付部を介して車軸のトー角を測定する第2測定手段と、
前記車輪取付部上昇手段による車輪取付部の上昇が開始された位置から該車輪取付部が所定の高さ位置に上昇されるまでの間の所定間隔毎に前記第1測定手段による高さ位置の測定と前記第2測定手段によるトー角の測定とを行なう測定制御手段と、
前記第1測定手段と前記第2測定手段とによる各測定値に基づいて、自動車の走行時における車輪取付部の位置に対応するトー角を算出するトー角算出手段とを備えることを特徴とする自動車のホイルアライメント測定装置。
In an automobile wheel alignment measuring device that measures the toe angle of an automobile foil,
Vehicle body support means for supporting the vehicle body by allowing the wheel mounting portion to move up and down;
A wheel mounting part lift that is provided at a lower position of the vehicle body supported by the vehicle body support means and raises the wheel mounting part to a predetermined height position set lower than the position of the wheel mounting part during traveling of the automobile. Means,
First measuring means provided in the wheel mounting portion raising means for measuring the height position of the wheel mounting portion;
Second measuring means provided on the wheel mounting portion raising means for measuring the toe angle of the axle through the wheel mounting portion;
The height position by the first measuring means is changed at a predetermined interval from the position at which the wheel attachment portion is raised by the wheel attachment portion raising means until the wheel attachment portion is raised to a predetermined height position. Measurement control means for performing measurement and toe angle measurement by the second measurement means;
And a toe angle calculating means for calculating a toe angle corresponding to the position of the wheel mounting portion when the vehicle is running based on the measured values obtained by the first measuring means and the second measuring means. Automotive wheel alignment measuring device.
自動車のホイルのキャンバー角を測定する自動車のホイルアライメント測定装置において、
車輪取付部を昇降自在として自動車車体を支持する車体支持手段と、
該車体支持手段により支持された自動車車体の下方位置に設けられ、自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇手段と、
該車輪取付部上昇手段に設けられて車輪取付部の高さ位置を測定する第1測定手段と、
前記車輪取付部上昇手段に設けられて車輪取付部を介して車軸のキャンバー角を測定する第2測定手段と、
前記車輪取付部上昇手段による車輪取付部の上昇が開始された位置から該車輪取付部が所定の高さ位置に上昇されるまでの間の所定間隔毎に前記第1測定手段による高さ位置の測定と前記第2測定手段によるキャンバー角の測定とを行なう測定制御手段と、
前記第1測定手段と前記第2測定手段とによる各測定値に基づいて、自動車の走行時における車輪取付部の位置に対応するキャンバー角を算出するキャンバー角算出手段とを備えることを特徴とする自動車のホイルアライメント測定装置。
In an automobile foil alignment measuring device for measuring the camber angle of an automobile foil,
Vehicle body support means for supporting the vehicle body by allowing the wheel mounting portion to move up and down;
A wheel mounting part lift that is provided at a lower position of the vehicle body supported by the vehicle body support means and raises the wheel mounting part to a predetermined height position set lower than the position of the wheel mounting part during traveling of the automobile. Means,
First measuring means provided in the wheel mounting portion raising means for measuring the height position of the wheel mounting portion;
Second measuring means provided in the wheel mounting portion raising means for measuring the camber angle of the axle through the wheel mounting portion;
The height position by the first measuring means is changed at a predetermined interval from the position at which the wheel attachment portion is raised by the wheel attachment portion raising means until the wheel attachment portion is raised to a predetermined height position. Measurement control means for measuring and measuring the camber angle by the second measurement means;
And a camber angle calculating means for calculating a camber angle corresponding to the position of the wheel mounting portion when the vehicle is running based on the measured values by the first measuring means and the second measuring means. Automotive wheel alignment measuring device.
JP2002163257A 2002-06-04 2002-06-04 Method and apparatus for measuring wheel alignment of automobile Expired - Fee Related JP3881287B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002163257A JP3881287B2 (en) 2002-06-04 2002-06-04 Method and apparatus for measuring wheel alignment of automobile
CNB038121212A CN100487368C (en) 2002-06-04 2003-06-03 Method for measuring wheel positioning of car
EP03730788A EP1512941B1 (en) 2002-06-04 2003-06-03 Method for measuring wheel alignment of car
US10/512,946 US7062860B2 (en) 2002-06-04 2003-06-03 Method and device for measuring wheel alignment of car
PCT/JP2003/007003 WO2003102503A1 (en) 2002-06-04 2003-06-03 Method and device for measuring wheel alignment of car
DE60334990T DE60334990D1 (en) 2002-06-04 2003-06-03 METHOD FOR MEASURING THE WHEELBASE OF A CAR
AU2003241945A AU2003241945A1 (en) 2002-06-04 2003-06-03 Method and device for measuring wheel alignment of car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163257A JP3881287B2 (en) 2002-06-04 2002-06-04 Method and apparatus for measuring wheel alignment of automobile

Publications (2)

Publication Number Publication Date
JP2004012195A JP2004012195A (en) 2004-01-15
JP3881287B2 true JP3881287B2 (en) 2007-02-14

Family

ID=30431790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163257A Expired - Fee Related JP3881287B2 (en) 2002-06-04 2002-06-04 Method and apparatus for measuring wheel alignment of automobile

Country Status (1)

Country Link
JP (1) JP3881287B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236699A (en) * 2008-03-27 2009-10-15 Honda Motor Co Ltd Method of measuring wheel alignment of vehicle and its device
JP2009236700A (en) * 2008-03-27 2009-10-15 Honda Motor Co Ltd Wheel simulator

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPD20040224A1 (en) * 2004-09-07 2004-12-07 Spanesi S P A EQUIPMENT FOR DETERMINING THE STRUCTURE OF THE WHEELS OF A VEHICLE
JP4740600B2 (en) 2005-01-11 2011-08-03 本田技研工業株式会社 Toe angle measuring device and measuring method
JP4985290B2 (en) * 2007-10-01 2012-07-25 日産自動車株式会社 Suspension alignment measurement and adjustment device
JP4867059B2 (en) * 2008-03-28 2012-02-01 本田技研工業株式会社 Displacement detection method and apparatus used therefor
US8069576B2 (en) 2008-03-17 2011-12-06 Honda Motor Co., Ltd. Vehicle wheel alignment measuring method and apparatus
JP7040245B2 (en) * 2018-04-11 2022-03-23 住友ゴム工業株式会社 How to estimate the dynamic camber angle of a tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009236699A (en) * 2008-03-27 2009-10-15 Honda Motor Co Ltd Method of measuring wheel alignment of vehicle and its device
JP2009236700A (en) * 2008-03-27 2009-10-15 Honda Motor Co Ltd Wheel simulator
JP4609905B2 (en) * 2008-03-27 2011-01-12 本田技研工業株式会社 Method and apparatus for measuring vehicle wheel alignment
JP4609906B2 (en) * 2008-03-27 2011-01-12 本田技研工業株式会社 Wheel simulator

Also Published As

Publication number Publication date
JP2004012195A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
WO2005010463A1 (en) Method and device for measuring automobile wheel alignment
US7062860B2 (en) Method and device for measuring wheel alignment of car
JP3881287B2 (en) Method and apparatus for measuring wheel alignment of automobile
JP4732911B2 (en) Chassis dynamometer vehicle fixing device
CN108622232B (en) System for adjusting the position of a movable roof panel
JP3934487B2 (en) Wheel alignment adjustment method for automobiles
JP2001270668A (en) Installation accuracy measuring device for guide rail and installation accuracy measuring method
JP4128920B2 (en) Method and apparatus for measuring car camber angle
JP4695994B2 (en) Chassis dynamometer vehicle fixing device
JP4609905B2 (en) Method and apparatus for measuring vehicle wheel alignment
JP4128919B2 (en) Method and apparatus for measuring toe angle of automobile
JP4128933B2 (en) Measuring method for automobile wheel alignment
JP4646042B2 (en) Wheel alignment measurement method for automobiles
JP2009236701A (en) Wheel alignment measuring method of automobile, and device therefor
JP6372738B2 (en) Vehicle weight estimation device
JP5422404B2 (en) Method for arranging tires in automobiles
JP3082067B2 (en) Deflection correction device for lifting device
KR100774755B1 (en) Position checking holding device for over head conveyer transferred vehicle body
JP2880251B2 (en) Vehicle wheel alignment adjustment method
CN114673867A (en) Positioning instrument for mounting electromechanical equipment
JP2016070828A (en) Vehicle inspection device
JPH05285744A (en) Suspension mounting device
TH60230A (en) Methods and devices for measuring automobile wheel alignment
JP2001096388A (en) Method and equipment of clamping for joining crude bar
JP2015206591A (en) Vehicular weight estimation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees