JP2004012195A - Method and device for measuring wheel alignment of automobile - Google Patents

Method and device for measuring wheel alignment of automobile Download PDF

Info

Publication number
JP2004012195A
JP2004012195A JP2002163257A JP2002163257A JP2004012195A JP 2004012195 A JP2004012195 A JP 2004012195A JP 2002163257 A JP2002163257 A JP 2002163257A JP 2002163257 A JP2002163257 A JP 2002163257A JP 2004012195 A JP2004012195 A JP 2004012195A
Authority
JP
Japan
Prior art keywords
wheel mounting
mounting portion
coordinates
wheel
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002163257A
Other languages
Japanese (ja)
Other versions
JP3881287B2 (en
Inventor
Kiyonobu Hara
原 清信
Katsuhiro Yamaguchi
山口 克裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002163257A priority Critical patent/JP3881287B2/en
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to EP03730788A priority patent/EP1512941B1/en
Priority to CNB038121212A priority patent/CN100487368C/en
Priority to DE60334990T priority patent/DE60334990D1/en
Priority to US10/512,946 priority patent/US7062860B2/en
Priority to AU2003241945A priority patent/AU2003241945A1/en
Priority to PCT/JP2003/007003 priority patent/WO2003102503A1/en
Publication of JP2004012195A publication Critical patent/JP2004012195A/en
Application granted granted Critical
Publication of JP3881287B2 publication Critical patent/JP3881287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for measuring wheel alignment of an automobile by which the productivity of the automobile can be improved by quickly measuring the wheel alignment of the automobile with high accuracy without applying the same load as that applied to the car body of the automobile when the automobile is run to the car body. <P>SOLUTION: The vertically movable wheel attaching section 5 of the car body 2 is raised to a prescribed height position set lower than the position of the section 5 when the automobile is run by supporting the car body 2. The position of the ascending wheel attaching section 5 and the toe-angle and camber angle of the wheel attached to the section 5 are measured and the estimated values of the toe-angle and camber angle at the position of the wheel attaching section 5 when the automobile is run are calculated based on the measured values. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のホイルアライメント測定方法及びその装置に関する。
【0002】
【従来の技術】
従来、自動車のホイルアライメントを測定する技術として、特許第2938984号公報に示されているものが知られている。該公報のものは、自動車車体を組立る組立ラインにおいて車輪を取り付けることなく車輪取付部を介してホイルアライメントを測定し、これによって生産性の向上を図るものである。
【0003】
この種のホイルアライメント測定方法は、自動車車体の組立ラインにおいて、ハンガーにより搬送される車体に操舵装置及び懸架装置が組付けられた後に、先ず、車体をハンガーから離脱させ、懸架装置が組付けられたことによって該車体に設けられた車輪取付部を介して該車体を昇降自在に支承する。次いで、該車体を引き下げる引下げ手段に備えるチェーン等の連結具を車体の前後に連結して車体を下方に引下げ、該車体に所定荷重を付与する。これにより、懸架装置は、車輪取付部からの反力によって所定荷重に相当する付勢力が付与され、車体はその車軸に車輪を組付けた完成時の走行状態に最も近い状態で固定される。そして、この状態を維持し、車輪取付部を介してホイルアライメントを測定する。
【0004】
しかし、このような従来の方法によると、車体に対して走行状態に最も近い状態を再現させなければならなず、ホイルアライメントを測定するに先立って、ハンガから離脱させた車体を引下げ手段により下方に引っ張る作業が必要となるために、測定にかかる工数が比較的多く効率が悪い不都合がある。
【0005】
また、引下げ手段により車体を下方に引っ張るとき、引下げ手段に備えるチェーン等の連結位置によっては、4つの車輪取付部に均等に荷重をかけることが困難であり、アライメントの測定精度が低下するおそれがある。
【0006】
【発明が解決しようとする課題】
かかる不都合を解消して本発明は、車輪取付部に走行時と同じ荷重をかけることなく、迅速且つ精度良くホイルアライメントを測定することができて生産性を向上することができるホイルアライメントの測定方法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
かかる目的を達成するために、自動車のホイルのトー角を測定する本発明の自動車のホイルアライメント測定方法は、先ず、車輪取付部を昇降自在として自動車車体を支持し、該自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇工程を行なう。
【0008】
車輪取付部を上昇させる高さ位置においては、例えば、車体の組立ラインにおいて該車体がハンガーにより支持されているとき、車輪取付部に追従して上昇しハンガーから離脱するようなことのない高さ位置とすることが挙げられる。これにより、車体はハンガーから浮き上がることなく安定した支持状態でのトー角測定が可能となる。
【0009】
次いで、該車輪取付部上昇工程により上昇される車輪取付部の位置とトー角とを測定する測定工程が行なわれ、該測定工程においては第1演算工程及び第2演算工程が行なわれる。
【0010】
即ち、前記第1演算工程においては、先ず、車輪取付部上昇工程による車輪取付部の上昇が開始された位置と該位置のトー角とを測定し、測定された位置とトー角からなる座標を第1の基準座標とする。次いで、車輪取付部が前記所定の高さ位置に上昇されるまでの間の所定間隔毎に車輪取付部の位置と各位置のトー角とを測定し、測定された各位置と夫々の位置におけるトー角からなる複数の座標を測定座標とする。そして、第1の基準座標と各測定座標とを結ぶ各直線の傾きを算出する。
【0011】
前記第2演算工程においては、先ず、予め算出された第2の基準座標と各設定座標とを結ぶ各直線の傾きと、第1の基準座標と各測定座標とを結ぶ各直線の傾きとの差を算出する。第2の基準座標は、前記第1の基準座標の車輪取付部の位置(即ち、車輪取付部上昇工程による車輪取付部の上昇が開始された位置)と該位置に対応して予め定められた正しいトー角とからなる座標である。
【0012】
各設定座標は、前記各測定座標における車輪取付部の各位置(即ち、該車輪取付部が前記所定の高さ位置に上昇されるまでの間の所定間隔毎に測定された車輪取付部の位置)と各位置に対応して予め定められた正しいトー角とからなる座標である。
【0013】
なお、本発明者は、トー角及びキャンバー角の変化量に関する各種の試験を行ない、第2の基準座標と各設定座標とを結ぶ各直線の傾きと、第1の基準座標と各測定座標とを結ぶ各直線の傾きとの差が、車輪取付部の位置に対して一定の変化をすることを知見した。
【0014】
そこで、該第2演算工程においては、第2の基準座標と各設定座標とを結ぶ各直線の傾きと、第1の基準座標と各測定座標とを結ぶ各直線の傾きとの差に基づいて、自動車の走行時における車輪取付部の位置のトー角の推定値を算出する。こうすることにより、実際に車輪取付部を自動車の走行時の位置とすることなく、走行時における車輪取付部の位置のトー角を演算により得ることができ、車体に走行時と同じ荷重を付与する工程を不要として短時間に効率よくトー角の測定を行なうことができる。
【0015】
また、自動車のホイルのキャンバー角を測定する本発明の自動車のホイルアライメント測定方法は、前述したトー角の測定と同様にしてキャンバー角を測定する。従って本発明によれば、車輪取付部上昇工程により自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで上昇される車輪取付部の位置とキャンバー角とを測定するだけで、走行時における車輪取付部の位置のキャンバー角を演算により得ることができ、車体に走行時と同じ荷重を付与する工程を不要として短時間に効率よくキャンバー角の測定を行なうことができる。
【0016】
また、トー角を測定する本発明の装置は、車輪取付部を昇降自在として自動車車体を支持する車体支持手段と、該車体支持手段により支持された自動車車体の下方位置に設けられ、自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇手段と、該車輪取付部上昇手段に設けられて車輪取付部の高さ位置を測定する第1測定手段と、前記車輪取付部上昇手段に設けられて車輪取付部を介して車軸のトー角を測定する第2測定手段と、前記車輪取付部上昇手段による車輪取付部の上昇が開始された位置から該車輪取付部が所定の高さ位置に上昇されるまでの間の所定間隔毎に前記第1測定手段による高さ位置の測定と前記第2測定手段によるトー角の測定とを行なう測定制御手段と、前記第1測定手段と前記第2測定手段とによる各測定値に基づいて、自動車の走行時における車輪取付部の位置に対応するトー角を算出するトー角算出手段とを備える。
【0017】
また、キャンバー角を測定する本発明の装置は、前記トー角の測定装置と同様に、車体支持手段と車輪取付部上昇手段とを備える。更に、該車輪取付部上昇手段に設けられて車輪取付部の高さ位置を測定する第1測定手段と、前記車輪取付部上昇手段に設けられて車輪取付部を介して車軸のキャンバー角を測定する第2測定手段と、前記車輪取付部上昇手段による車輪取付部の上昇が開始された位置から該車輪取付部が所定の高さ位置に上昇されるまでの間の所定間隔毎に前記第1測定手段による高さ位置の測定と前記第2測定手段によるキャンバー角の測定とを行なう測定制御手段と、前記第1測定手段と前記第2測定手段とによる各測定値に基づいて、自動車の走行時における車輪取付部の位置に対応するキャンバー角を算出するキャンバー角算出手段とを備える。
【0018】
本発明の装置によってトー角を測定するときには、先ず、前記車体支持手段が自動車車体を支持する。このとき、車体は車輪取付部を昇降自在として支持されていればよい。これにより、具体的には、例えば、自動車の車体組立ラインにおいて車体を搬送するハンガーを車体支持手段とすることができる。
【0019】
次いで、前記車輪取付部上昇手段が、車体支持手段により支持された車体の車輪取付部を上昇させる。このとき、車輪取付部上昇手段は、車輪取付部を自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで上昇させる。
【0020】
そして、前記測定制御手段が、前記車輪取付部上昇手段による車輪取付部の上昇時に、前記第1測定手段による車輪取付部の高さ位置の測定と前記第2測定手段による車輪取付部のトー角の測定とを行なう。このとき、前記測定制御手段は、前記車輪取付部上昇手段による車輪取付部の上昇が開始された位置を前記第1測定手段によって測定し、更に、該車輪取付部が所定の高さ位置に上昇されるまでの間の所定間隔毎に車輪取付部の高さ位置を測定する。一方、前記測定制御手段は、車輪取付部の各高さ位置の測定と同時に、各高さ位置におけるトー角を前記第2測定手段により測定する。
【0021】
続いて、前記トー角算出手段が、前記第1測定手段と前記第2測定手段とによる各測定値に基づいて、自動車の走行時における車輪取付部の位置に対応するトー角を算出する。これにより、車輪取付部を前記所定の高さ位置まで上昇させることで、自動車の走行時における車輪取付部の位置におけるトー角が算出されるので、従来のように車体に荷重をかけることなくトー角が測定でき、装置構成を簡単として確実に自動車の走行時におけるトー角を迅速に得ることができる。
【0022】
また、本発明のキャンバー角を測定する装置においても、前述したトー角の測定装置と同様に構成することで、自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで上昇される車輪取付部の位置とキャンバー角とが測定され、キャンバー角算出手段によって、走行時における車輪取付部の位置のキャンバー角が算出されるので、従来のように車体に荷重をかけることなくキャンバー角が測定でき、装置構成を簡単として確実に自動車の走行時におけるキャンバー角を迅速に得ることができる。
【0023】
【発明の実施の形態】
本発明の一実施形態を図面に基づいて説明する。図1は本実施形態のアライメント測定装置の概略構成を示す説明図、図2は車輪取付部上昇手段の作動説明図、図3は第2測定手段の説明図、図4はトー角の測定方法を示すフローチャート、図5は車輪取付部の位置とトー角との関係を示す線図、図6はキャンバー角の測定方法を示すフローチャート、図7は車輪取付部の位置とキャンバー角との関係を示す線図である。
【0024】
図1において、1は自動車車体2を支持するハンガ(車体支持手段)であり、図示しない組立ラインに沿って該車体2を搬送する。本実施形態のアライメント測定装置3は、該ハンガ1による車体2の搬送路の下方に設けられている。該アライメント測定装置3の直上位置に搬送される車体2は、組立ラインにおいて図示しない操舵装置及び懸架装置4が組付けられ、操舵装置のステアリング位置が中立位置に調整されている。また、車体2に懸架装置4を介して設けられた車輪取付部5は、車輪が未だ取り付けられていず、ハンガ1による車体2の吊り下げ支持によって昇降自在に垂れ下がった状態とされている。
【0025】
該アライメント測定装置3は、図1に示すように、車輪取付部5を上昇させる車輪取付部上昇手段6と、車輪取付部5の高さ位置を測定する第1測定手段7と、該車輪取付部5のトー角及びキャンバー角を測定する第2測定手段8とを備えている。第1測定手段7と第2測定手段8とは、後述する複数位置における測定を制御する図示しない測定制御手段に接続されている。更に、該測定制御手段は、図示しない演算手段(トー角算出手段、キャンバー角算出手段)に接続されており、該演算手段は測定制御手段を介して採取された後述する複数の測定値からトー角及びキャンバー角を算出する。
【0026】
前記車輪取付部上昇手段6は、図1及び図2に示すように、車輪取付部5にその下方から当接する当接部材9と、該当接部材9を一体に支持する昇降自在の昇降板10と、該昇降板10を介して当接部材9に当接された車輪取付部5を上昇させるシリンダ11とを備えている。
【0027】
図1に示すように、該シリンダ11は昇降台12の上部に車幅方向に摺動自在に支持された支持テーブル13に支持されている。昇降台12は所謂パンタグラフ方式により昇降され、例えば、ハンガ1によって搬送される車体2が、アライメント測定装置3の上方を通過する際に下降して、アライメント測定装置3と搬送中の車体2との干渉が防止できるようになっている。
【0028】
支持テーブル13は、昇降台12の上部に車幅方向に延設されたレール14に摺動自在に支持され、図示しない駆動手段によって摺動される。該駆動手段は、アライメント測定装置3の直上に車体2が位置したとき、該車体2の車輪取付部5と当接部材9との位置合わせを行なうものである。
【0029】
前記第1測定手段7は、図1及び図2に示すように、前記支持テーブル13に設けられたレーザセンサであり、昇降板10の上昇距離を計測することによって車輪取付部5の軸心位置を測定する。また、前記第2測定手段8は、図3に示すように、3つのレーザセンサ(第1センサ15、第2センサ16、第3センサ17)によって構成され、支持部材18(図2示)に一体に支持されて前記シリンダ11により昇降される。第1センサ15、第2センサ16、及び第3センサ17は、車輪取付部5の3つの点e,f,gに夫々対峙している。そして、第1センサ15は車輪取付部5のe点までの距離、第2センサ16は車輪取付部5のf点までの距離、第3センサ17は車輪取付部5のg点までの距離を夫々計測する。第1センサ15、第2センサ16及び第3センサ17とによって計測される距離の違いからe点とf点乃至g点間の中心点との垂直方向の変位を測定し、この変位からキャンバー角を検出する。また、第2センサ16と第3センサ17とによって計測される距離の違いからf点とg点との水平方向の変位を測定し、この変位からトー角を検出する。
【0030】
次に、本実施形態によるホイルアライメント測定方法を説明する。図1に示すように、ハンガ1に支持された車体2がアライメント測定装置3の直上に搬送されると、昇降台12が上昇し、車輪取付部上昇手段6が車輪取付部5に近接される。
【0031】
次いで、図2に示すように、シリンダ11により昇降板10が上昇され、当接部材9が車輪取付部5に当接する。このとき、上昇が開始される車輪取付部5の軸心位置は、前記第1測定手段7により測定される。なお、このときの車輪取付部5は、車体2から垂れ下がった位置にあり、本実施形態の被測定車種については、走行時の車輪取付部5の位置(0mm)に対して−90mmより幾分下方位置にある。
【0032】
そして、更にシリンダ11により昇降板10が上昇され、車輪取付部5の軸心位置が、走行時の車輪取付部5の位置に対して−60mmの位置になるまで車輪取付部5が上昇される。なお、本実施形態においては、−90mmの位置が測定開始位置とされる。
【0033】
一方、車輪取付部上昇手段6によって車輪取付部5が上昇されているとき、前記測定制御手段の制御によって、車輪取付部5の複数の位置と各位置に対応するトー角とキャンバー角とが測定される。本実施形態では、前記測定制御手段の制御により、走行時の車輪取付部5の位置に対して−90mm、−80mm、−70mm、−60mmに車輪取付部5が位置したことを第1測定手段7の測定により検出し、各位置でのトー角とキャンバー角とを第2測定手段8により測定する。
【0034】
なお、本実施形態においてハンガ1に支持された車体2は、走行時の車輪取付部5の位置に対して−60mmの位置に車輪取付部5を上昇させても(−90mmの位置から30mm上昇させても)、ハンガ1から離反して浮き上がることがない。このように、車輪取付部5の最大上昇位置は、車体2の浮き上がりがなくハンガ1に支持された状態が確実に維持される位置に設定される。
【0035】
そして、車輪取付部上昇手段6によって車輪取付部5が上昇されつつ該車輪取付部5の位置とトー角及びキャンバー角とが測定された後、前記演算手段により、走行時の車輪取付部5の位置に対応するトー角及びキャンバー角が算出される。
【0036】
ここで、前記演算手段による走行時の車輪取付部5の位置に対応するトー角の算出について説明する。先ず、図4に示すSTEP1において、車輪取付部上昇手段6による車輪取付部5が上昇され、測定開始位置での車輪取付部5の軸心位置(a=−90mm)とトー角bとを測定し、続いて、車輪取付部5の軸心位置が所定位置(a=−60mm)となるまで、所定間隔毎に(10mm毎に)トー角bを測定する。このとき測定された位置とトー角から、図5に示すように、先ず、車輪取付部5の軸心位置が−90mmのときに測定されたトー角の座標(a,b)を第1の基準座標Jとする。更に、車輪取付部5の軸心位置が−80mmのときに測定されたトー角の座標(a,b)を第1の測定座標J、−70mmのときに測定されたトー角の座標(a,b)を第2の測定座標J、−60mmのときに測定されたトー角の座標(a,b)を第3の測定座標Jとする。
【0037】
次いで、図5に示すように、第1の基準座標Jと第1の測定座標Jとを結ぶ直線の傾きΔtoej st=−80、第1の基準座標Jと第2の測定座標Jとを結ぶ直線の傾きΔtoej st=−70、第1の基準座標Jと第3の測定座標Jとを結ぶ直線の傾きΔtoej st=−60を夫々算出する(図4のSTEP2)。以下、このとき算出された傾きを実測傾き(Δtoe)と言う。
【0038】
一方、演算手段においては、自動車の車種毎の車輪取付部上昇手段6による車輪取付部5の上昇に伴う正しいトー角の変化量が、図5に示す基本特性カーブTとして記録されている。更に、基本特性カーブTにおいて、図5に示すように、車輪取付部5の軸心位置が−90mmのときの正しいトー角の座標が第2の基準座標Nとされ、同じように、車輪取付部5の軸心位置が−80mmのときの正しいトー角の座標が第1の設定座標N、−70mmのときの正しいトー角の座標が第2の設定座標N、−60mmのときにの正しいトー角の座標が第3の設定座標Nとされる。そして、図5に示すように、第2の基準座標Nと第1の設定座標Nとを結ぶ直線の傾きΔtoen st=−80、第2の基準座標Nと第2の設定座標Nとを結ぶ直線の傾きΔtoen st=−70、第2の基準座標Nと第3の設定座標Nとを結ぶ直線の傾きΔtoen st=−60が夫々予め算出され(図4のSTEP3参照)、その結果が記憶されている。以下、予め記憶されている傾きを基本傾き(Δtoe)と言う。
【0039】
続いて、図4のSTEP4において、各実測傾き(Δtoe)と各基本傾き(Δtoe)との差(m)を算出する。
【0040】
【数1】
−80=Δtoen st=−80−Δtoej st=−80………(1)
【0041】
【数2】
−70=Δtoen st=−70−Δto ej st=−70………(2)
【0042】
【数3】
−60=Δtoen st=−60−Δtoej st=−60………(3)
【0043】
これにより、各傾きの差m−80、m−70、m−60が求められる。本発明者は、車輪取付部5の軸心の各位置での各実測傾き(Δtoe)と各基本傾き(Δtoe)との差(m)が一定の変化量を示すことを各種の試験により知見している。従って、算出された各傾きの差m−80、m−70、m−60から走行時の車輪取付部5の軸心位置(0mm)における傾き差mを推定する(図4のSTEP5)。
【0044】
そして、上記のmの値を基に、傾きΔtoej st=0を表す数式(4)により走行時の車輪取付部5の軸心位置(0mm)におけるトー角yが算出される(図4のSTEP6)。
【0045】
【数4】
y=α(x−a)+b ………(4)
【0046】
数式(4)においてαは走行時の車輪取付部5の軸心位置xにおける傾きΔtoej st=0である(α=Δtoen st=0+m)。なお、数式(4)における走行時の車輪取付部5の軸心位置(x=0)のトー角yは、数式(5)によって表すことができる。
【0047】
【数5】
y=−αa+b ………(5)
【0048】
次に、前記演算手段による走行時の車輪取付部5の位置に対応するキャンバー角の算出について説明する。本実施形態においてはキャンバー角の測定とトー角の測定とが同時に行なわれる。そして、走行時の車輪取付部5の位置に対応するキャンバー角は、前述したトー角の場合と同様にして前記演算手段により求められる。
【0049】
即ち、図6に示すSTEP1において、車輪取付部上昇手段6による車輪取付部5の上昇が開始された時点での車輪取付部5の軸心位置(a=−90mm)とキャンバー角bとを測定し、続いて、車輪取付部5の軸心位置が所定位置(a=−60mm)となるまで、所定間隔毎に(10mm毎に)キャンバー角bを測定する。このとき測定された位置とキャンバー角から、図7に示すように、先ず、車輪取付部5の軸心位置が−90mmのときに測定されたキャンバー角の座標(a,b)を第1の基準座標Jとする。更に、車輪取付部5の軸心位置が−80mmのときに測定されたキャンバー角の座標(a,b)を第1の測定座標J、−70mmのときに測定されたキャンバー角の座標(a,b)を第2の測定座標J、−60mmのときに測定されたキャンバー角を第3の測定座標Jとする。
【0050】
次いで、図7に示すように、第1の基準座標Jと第1の測定座標Jとを結ぶ直線の傾きΔcamj st=−80、第1の基準座標Jと第2の測定座標Jとを結ぶ直線の傾きΔcamj st=−70、第1の基準座標Jと第3の測定座標Jとを結ぶ直線の傾きΔcamj st=−60を夫々算出する(図6のSTEP2)。以下、このとき算出された傾きを実測傾き(Δcam)と言う。
【0051】
一方、演算手段においては、自動車の車種毎の車輪取付部上昇手段6による車輪取付部5の上昇に伴う正しいキャンバー角の変化量が、図7に示す基本特性カーブCとして記録されている。更に、基本特性カーブCにおいて、図7に示すように、車輪取付部5の軸心位置が−90mmのときの正しいキャンバー角の座標が第2の基準座標Nとされ、同じように、車輪取付部5の軸心位置が−80mmのときの正しいキャンバー角の座標が第1の設定座標N、−70mmのときの正しいキャンバー角の座標が第2の設定座標N、−60mmのときにの正しいキャンバー角の座標が第3の設定座標Nとされる。そして、図7に示すように、第2の基準座標Nと第1の設定座標Nとを結ぶ直線の傾きΔcamn st=−80、第2の基準座標Nと第2の設定座標Nとを結ぶ直線の傾きΔcamn st=−70、第2の基準座標Nと第3の設定座標Nとを結ぶ直線の傾きΔcamn st=−60が夫々予め算出され(図6のSTEP3)、その結果が記憶されている。以下、予め記憶されている傾きを基本傾き(Δcam)と言う。
【0052】
続いて、図6のSTEP4において、各実測傾き(Δcam)と各基本傾き(Δcam)との差(m)を算出する。差(m)の算出についても、前述したトー角の測定の場合と同様である。
【0053】
【数6】
−80=Δcamn  st=−80−Δcamj st=−80………(6)
【0054】
【数7】
−70=Δcamn st=−70−Δcamj st=−70………(7)
【0055】
【数8】
−60=Δcamn st=−60−Δcamj st=−60………(8)
【0056】
これにより、各傾きの差m−80、m−70、m−60が求められる。そして、キャンバー角の場合にもトー角と同様に、車輪取付部5の軸心の各位置での各実測傾き(Δcam)と各基本傾き(Δcam)との差(m)は一定の変化量を示すことが本発明者による各種の試験により確認されている。従って、算出された各傾きの差m−80、m−70、m−60から走行時の車輪取付部5の軸心位置(0mm)における傾き差の推定値mが求められる(図6のSTEP5)。
【0057】
このことから、前記数式(5)を用い、図6のSTEP6において走行時の車輪取付部5の軸心位置(0mm)におけるキャンバー角yを算出する。
【0058】
以上のように、本実施形態によれば車体に走行時と同じ荷重を付与することなく極めて迅速に走行時の車輪取付部5の軸心位置におけるトー角及びキャンバー角を算出することができる。しかも、車体2をハンガ1から離脱させることなく、車輪取付部5を所定位置(本実施形態では走行時から−60mmの位置)に上昇させるだけでトー角及びキャンバー角を得ることができるので、効率よくアライメントの測定が行なえ生産性を向上させることができる。
【0059】
なお、前述した測定開始位置及び各測定位置の間隔は、被測定車種のサスペンションの特性に応じて適宜決定されるものであって、本実施形態のトー角及びキャンバー角の測定において採用した寸法に限られるものではない。また、測定位置の間隔においては、短く設定するほど測定精度を上げることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態のアライメント測定装置の概略構成を示す説明図。
【図2】車輪取付部上昇手段の作動説明図。
【図3】第2測定手段の説明図。
【図4】トー角の測定方法を示すフローチャート。
【図5】車輪取付部の位置とトー角との関係を示す線図。
【図6】キャンバー角の測定方法を示すフローチャート。
【図7】車輪取付部の位置とキャンバー角との関係を示す線図。
【符号の説明】
1…ハンガ(車体支持手段)、2…車体、3…ホイルアライメント測定装置、5…車輪取付部、6…車輪取付部上昇手段、7…第1測定手段、8…第2測定手段。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring a wheel alignment of an automobile.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a technique for measuring a wheel alignment of an automobile, one disclosed in Japanese Patent No. 2938984 is known. In the publication, wheel alignment is measured via a wheel mounting portion without mounting wheels on an assembly line for assembling an automobile body, thereby improving productivity.
[0003]
In this type of wheel alignment measuring method, in an assembly line of an automobile body, after a steering device and a suspension device are assembled to a vehicle body conveyed by a hanger, first, the vehicle body is detached from the hanger, and the suspension device is assembled. Thus, the vehicle body is supported to be able to move up and down via a wheel mounting portion provided on the vehicle body. Next, a connecting member such as a chain provided in a pulling-down means for lowering the vehicle body is connected to the front and rear of the vehicle body to lower the vehicle body downward to apply a predetermined load to the vehicle body. As a result, the suspension device is provided with an urging force corresponding to a predetermined load by a reaction force from the wheel mounting portion, and the vehicle body is fixed in a state closest to a running state at the time of completion when the wheels are assembled to the axle. Then, while maintaining this state, the wheel alignment is measured via the wheel mounting portion.
[0004]
However, according to such a conventional method, it is necessary to reproduce the state closest to the running state with respect to the vehicle body, and before the wheel alignment is measured, the vehicle body detached from the hanger is lowered by the lowering means. In this case, there is a disadvantage that the number of steps required for the measurement is relatively large and the efficiency is low.
[0005]
Further, when the vehicle body is pulled down by the pulling-down means, it is difficult to evenly apply a load to the four wheel mounting portions depending on the connection position of the chain or the like provided in the pulling-down means, and the measurement accuracy of the alignment may be reduced. is there.
[0006]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention solves such a disadvantage by providing a wheel alignment measuring method that can quickly and accurately measure a wheel alignment without applying the same load to a wheel mounting portion and can improve productivity. And an apparatus therefor.
[0007]
[Means for Solving the Problems]
In order to achieve this object, a method for measuring the toe angle of a wheel of a vehicle according to the present invention comprises the steps of: first supporting a vehicle body such that a wheel mounting portion is vertically movable; A wheel mounting part raising step of raising the wheel mounting part to a predetermined height set below the position of the mounting part is performed.
[0008]
In the height position where the wheel mounting portion is raised, for example, when the vehicle body is supported by a hanger in an assembly line of the vehicle body, the height is such that the vehicle body follows the wheel mounting portion and does not separate from the hanger. Position. As a result, the toe angle can be measured in a stable supporting state without lifting the vehicle body from the hanger.
[0009]
Next, a measuring step of measuring the position and toe angle of the wheel mounting portion raised in the wheel mounting portion raising step is performed, and in the measuring step, a first calculation step and a second calculation step are performed.
[0010]
That is, in the first calculation step, first, a position at which the ascending of the wheel mounting portion in the wheel mounting portion elevating step is started and a toe angle of the position are measured, and coordinates consisting of the measured position and the toe angle are calculated. Let it be the first reference coordinate. Next, the position of the wheel mounting portion and the toe angle of each position are measured at predetermined intervals until the wheel mounting portion is raised to the predetermined height position, and the measured position and the toe angle at each position are measured. A plurality of coordinates consisting of toe angles are defined as measurement coordinates. Then, the inclination of each straight line connecting the first reference coordinates and each measurement coordinate is calculated.
[0011]
In the second calculation step, first, the inclination of each straight line connecting the second reference coordinate calculated in advance and each set coordinate, and the inclination of each straight line connecting the first reference coordinate and each measured coordinate are calculated. Calculate the difference. The second reference coordinates are predetermined corresponding to the position of the wheel mounting portion of the first reference coordinates (that is, the position where the lifting of the wheel mounting portion by the wheel mounting portion raising step is started) and the position. This is a coordinate consisting of the correct toe angle.
[0012]
Each set coordinate is the position of the wheel mounting portion at each of the measurement coordinates (that is, the position of the wheel mounting portion measured at predetermined intervals until the wheel mounting portion is raised to the predetermined height position). ) And a correct toe angle predetermined for each position.
[0013]
In addition, the inventor performs various tests on the amount of change in the toe angle and the camber angle, and determines the inclination of each straight line connecting the second reference coordinates and each set coordinate, the first reference coordinates, and each measurement coordinate. It has been found that the difference from the inclination of each straight line connecting the constant changes with the position of the wheel mounting portion.
[0014]
Therefore, in the second calculation step, based on a difference between a slope of each straight line connecting the second reference coordinate and each set coordinate and a slope of each straight line connecting the first reference coordinate and each measured coordinate. Then, the estimated value of the toe angle of the position of the wheel mounting portion when the vehicle is running is calculated. By doing so, the toe angle of the position of the wheel mounting portion during traveling can be obtained by calculation without actually setting the wheel mounting portion to the position at the time of traveling of the vehicle, and the same load as when traveling is applied to the vehicle body The toe angle can be measured efficiently in a short period of time by eliminating the need for the step of performing.
[0015]
Further, the method for measuring the wheel alignment of the vehicle of the present invention for measuring the camber angle of the vehicle wheel measures the camber angle in the same manner as the above-described measurement of the toe angle. Therefore, according to the present invention, the camber angle and the position of the wheel mounting portion that is raised to a predetermined height position set below the position of the wheel mounting portion when the vehicle is running by the wheel mounting portion raising step are measured. Just by doing, the camber angle of the position of the wheel mounting part at the time of traveling can be obtained by calculation, and the step of applying the same load to the vehicle body as at the time of traveling is unnecessary, and the camber angle can be measured efficiently in a short time. it can.
[0016]
Further, the apparatus of the present invention for measuring the toe angle is provided at a position below the vehicle body supported by the vehicle body supporting means for supporting the vehicle body by allowing the wheel mounting portion to move up and down, and Wheel mounting portion raising means for raising the wheel mounting portion to a predetermined height position set below the position of the wheel mounting portion at the time, and the height position of the wheel mounting portion provided in the wheel mounting portion raising means Measuring means for measuring the toe angle of the axle via the wheel mounting part provided on the wheel mounting part raising means, and raising the wheel mounting part by the wheel mounting part raising means. The height position is measured by the first measuring means and the toe angle is measured by the second measuring means at predetermined intervals from when the wheel mounting portion is raised to the predetermined height position from the position at which the vehicle starts. Measurement system And means, based on the measurements by said said first measuring means second measuring means, and a toe angle calculating means for calculating the toe angle corresponding to the position of the wheel mount during running of the automobile.
[0017]
Further, the device of the present invention for measuring a camber angle includes a vehicle body supporting means and a wheel mounting portion raising means, similarly to the toe angle measuring device. Further, a first measuring means provided on the wheel mounting part raising means for measuring a height position of the wheel mounting part, and a camber angle of the axle measured via the wheel mounting part provided on the wheel mounting part raising means. The first measuring means and the first mounting means at predetermined intervals between a position at which the wheel mounting portion is raised by the wheel mounting portion raising device and a position at which the wheel mounting portion is raised to a predetermined height position. Measurement control means for measuring the height position by the measurement means and measurement of the camber angle by the second measurement means; and running of the vehicle based on the respective measurement values by the first and second measurement means. Camber angle calculation means for calculating a camber angle corresponding to the position of the wheel mounting portion at the time.
[0018]
When the toe angle is measured by the device of the present invention, first, the vehicle body supporting means supports the vehicle body. At this time, the vehicle body only needs to be supported so that the wheel mounting portion can be raised and lowered. Thus, specifically, for example, a hanger that conveys the vehicle body on the vehicle body assembly line can be used as the vehicle body support means.
[0019]
Next, the wheel mounting part raising means raises the wheel mounting part of the vehicle body supported by the vehicle body supporting means. At this time, the wheel mounting part raising means raises the wheel mounting part to a predetermined height position set below the position of the wheel mounting part when the automobile is running.
[0020]
The measurement control means measures the height position of the wheel mounting part by the first measuring means and the toe angle of the wheel mounting part by the second measuring means when the wheel mounting part is raised by the wheel mounting part raising means. Measurement. At this time, the measurement control means measures, by the first measuring means, a position at which the lifting of the wheel mounting portion by the wheel mounting portion lifting means is started, and further raises the wheel mounting portion to a predetermined height position. The height position of the wheel mounting portion is measured at predetermined intervals until the operation is performed. On the other hand, the measurement control means measures the toe angle at each height position by the second measurement means simultaneously with the measurement of each height position of the wheel mounting portion.
[0021]
Subsequently, the toe angle calculating means calculates a toe angle corresponding to the position of the wheel mounting portion when the vehicle is running, based on the measured values obtained by the first measuring means and the second measuring means. As a result, the toe angle at the position of the wheel mounting portion when the vehicle is running is calculated by raising the wheel mounting portion to the predetermined height position, so that the toe angle is not applied to the vehicle body as in the related art. The angle can be measured, and the toe angle when the automobile is running can be obtained quickly without fail by simplifying the device configuration.
[0022]
Further, the camber angle measuring device of the present invention is also configured in the same manner as the above-described toe angle measuring device, so that the predetermined height set below the position of the wheel mounting portion when the automobile is running. The camber angle and the position of the wheel mounting portion raised to the position are measured, and the camber angle calculating means calculates the camber angle of the position of the wheel mounting portion during traveling. The camber angle can be measured without the need, and the device configuration can be simplified, and the camber angle at the time of traveling of the automobile can be quickly obtained.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a schematic configuration of an alignment measuring apparatus according to the present embodiment, FIG. 2 is an explanatory view of an operation of a wheel mounting unit raising means, FIG. 3 is an explanatory view of a second measuring means, and FIG. 5 is a diagram showing the relationship between the position of the wheel mounting portion and the toe angle, FIG. 6 is a flowchart showing the method of measuring the camber angle, and FIG. 7 is a diagram showing the relationship between the position of the wheel mounting portion and the camber angle. FIG.
[0024]
In FIG. 1, reference numeral 1 denotes a hanger (vehicle support means) for supporting a vehicle body 2, which conveys the vehicle body 2 along an assembly line (not shown). The alignment measuring device 3 of the present embodiment is provided below a transport path of the vehicle body 2 by the hanger 1. The vehicle body 2 conveyed to a position directly above the alignment measuring device 3 has a steering device and a suspension device 4 (not shown) assembled on an assembly line, and the steering position of the steering device is adjusted to a neutral position. The wheel mounting portion 5 provided on the vehicle body 2 via the suspension device 4 has no wheels mounted yet, and is hung up and down by the hanging support of the vehicle body 2 by the hanger 1.
[0025]
The alignment measuring device 3 includes, as shown in FIG. 1, a wheel mounting unit raising unit 6 for raising the wheel mounting unit 5, a first measuring unit 7 for measuring a height position of the wheel mounting unit 5, A second measuring means 8 for measuring the toe angle and the camber angle of the section 5. The first measuring means 7 and the second measuring means 8 are connected to measurement control means (not shown) for controlling measurement at a plurality of positions, which will be described later. Further, the measurement control means is connected to calculation means (not shown) (toe angle calculation means, camber angle calculation means), and the calculation means obtains a toe from a plurality of measurement values, which will be described later, collected via the measurement control means. Calculate the angle and camber angle.
[0026]
As shown in FIGS. 1 and 2, the wheel mounting portion lifting means 6 includes a contact member 9 that contacts the wheel mounting portion 5 from below, and a vertically movable lifting plate 10 that integrally supports the contact member 9. And a cylinder 11 for raising the wheel mounting portion 5 which is in contact with the contact member 9 via the lifting plate 10.
[0027]
As shown in FIG. 1, the cylinder 11 is supported on a support table 13 which is slidably supported in the vehicle width direction on an upper part of a lift 12. The elevating table 12 is moved up and down by a so-called pantograph method. For example, when the vehicle body 2 transported by the hanger 1 passes over the alignment measuring device 3, the vehicle body 2 moves down and moves between the alignment measuring device 3 and the transporting vehicle body 2. Interference can be prevented.
[0028]
The support table 13 is slidably supported by rails 14 extending in the vehicle width direction above the elevator 12 and slid by driving means (not shown). When the vehicle body 2 is located directly above the alignment measuring device 3, the drive means aligns the wheel mounting portion 5 of the vehicle body 2 with the contact member 9.
[0029]
The first measuring means 7 is a laser sensor provided on the support table 13 as shown in FIGS. 1 and 2, and measures an ascending distance of the elevating plate 10 to thereby determine an axial center position of the wheel mounting portion 5. Is measured. The second measuring means 8 is composed of three laser sensors (a first sensor 15, a second sensor 16, and a third sensor 17) as shown in FIG. 3, and is provided on a support member 18 (shown in FIG. 2). It is supported integrally and is raised and lowered by the cylinder 11. The first sensor 15, the second sensor 16, and the third sensor 17 face three points e, f, and g of the wheel mounting portion 5, respectively. The first sensor 15 is a distance to the point e of the wheel mounting portion 5, the second sensor 16 is a distance to the point f of the wheel mounting portion 5, and the third sensor 17 is a distance to the point g of the wheel mounting portion 5. Measure each. From the difference in distance measured by the first sensor 15, the second sensor 16, and the third sensor 17, the vertical displacement between the point e and the center point between the points f to g is measured, and the camber angle is calculated from the displacement. Is detected. The horizontal displacement between the point f and the point g is measured from the difference in the distance measured by the second sensor 16 and the third sensor 17, and the toe angle is detected from the displacement.
[0030]
Next, the wheel alignment measuring method according to the present embodiment will be described. As shown in FIG. 1, when the vehicle body 2 supported by the hanger 1 is conveyed directly above the alignment measuring device 3, the lift 12 rises, and the wheel mounting unit lifting means 6 approaches the wheel mounting unit 5. .
[0031]
Next, as shown in FIG. 2, the lift plate 10 is lifted by the cylinder 11, and the contact member 9 contacts the wheel mounting portion 5. At this time, the axis position of the wheel mounting portion 5 at which the ascending is started is measured by the first measuring means 7. Note that the wheel mounting portion 5 at this time is at a position hanging down from the vehicle body 2, and for the vehicle type to be measured in the present embodiment, the position (0 mm) of the wheel mounting portion 5 during traveling is somewhat smaller than −90 mm. It is in the lower position.
[0032]
Then, the lifting plate 10 is further raised by the cylinder 11, and the wheel mounting portion 5 is raised until the axial position of the wheel mounting portion 5 becomes a position of -60 mm with respect to the position of the wheel mounting portion 5 during traveling. . In the present embodiment, the position at -90 mm is the measurement start position.
[0033]
On the other hand, when the wheel mounting part 5 is raised by the wheel mounting part raising means 6, the plurality of positions of the wheel mounting part 5 and the toe angle and the camber angle corresponding to each position are measured by the control of the measurement control means. Is done. In the present embodiment, the first measuring unit determines that the wheel mounting unit 5 is located at −90 mm, −80 mm, −70 mm, and −60 mm with respect to the position of the wheel mounting unit 5 during traveling under the control of the measurement control unit. The toe angle and the camber angle at each position are measured by the second measuring means 8.
[0034]
In this embodiment, even if the vehicle body 2 supported by the hanger 1 is raised to a position of −60 mm with respect to the position of the wheel mounting portion 5 during traveling (up by 30 mm from the position of −90 mm) Even if it does), it does not float away from the hanger 1. As described above, the maximum rising position of the wheel mounting portion 5 is set to a position where the vehicle body 2 does not rise and the state supported by the hanger 1 is reliably maintained.
[0035]
Then, after the position of the wheel mounting portion 5 and the toe angle and the camber angle are measured while the wheel mounting portion 5 is being lifted by the wheel mounting portion raising means 6, the calculating means calculates the position of the wheel mounting portion 5 during traveling. A toe angle and a camber angle corresponding to the position are calculated.
[0036]
Here, the calculation of the toe angle corresponding to the position of the wheel mounting portion 5 during traveling by the calculating means will be described. First, in STEP 1 shown in FIG. 4, the wheel mounting portion 5 is raised by the wheel mounting portion raising means 6, and the axial position (a = -90 mm) of the wheel mounting portion 5 at the measurement start position and the toe angle b are measured. Then, the toe angle b is measured at predetermined intervals (every 10 mm) until the axial center position of the wheel mounting portion 5 reaches a predetermined position (a = -60 mm). From the position and toe angle measured at this time, as shown in FIG. 5, first, the coordinates (a, b) of the toe angle measured when the axial center position of the wheel mounting portion 5 is -90 mm are set to the first position. The reference coordinates are J. Furthermore, the coordinates (a, b) of the toe angle measured when the axial center position of the wheel mounting portion 5 is −80 mm are the first measured coordinates J 1 , and the coordinates of the toe angle measured when the axis position is −70 mm ( Let a, b) be the second measurement coordinate J 2 , and the toe angle coordinate (a, b) measured at −60 mm be the third measurement coordinate J 3 .
[0037]
Then, as shown in FIG. 5, the slope Δtoe st = −80 of the straight line connecting the first reference coordinate J and the first measurement coordinate J 1 , the first reference coordinate J and the second measurement coordinate J 2 the slope of the line Δtoe j st = -70 connecting bets, the slope of the line Δtoe j st = -60 respectively calculates connecting the first reference coordinates J and the third measurement coordinates J 3 (STEP2 in FIG. 4). Hereinafter, the inclination calculated at this time is referred to as an actually measured inclination (Δtoe j ).
[0038]
On the other hand, in the calculation means, the correct amount of change of the toe angle in accordance with the elevation of the wheel mounting part 5 by the wheel mounting part raising means 6 for each type of automobile is recorded as a basic characteristic curve T shown in FIG. Further, in the basic characteristic curve T, as shown in FIG. 5, the coordinates of the correct toe angle when the axial center position of the wheel mounting portion 5 is -90 mm are set as the second reference coordinates N. When the coordinates of the correct toe angle when the axial center position of the part 5 is -80 mm are the first set coordinates N 1 , and when the correct toe angle coordinates are -70 mm are the second set coordinates N 2 , -60 mm coordinates of the correct toe angle of is set to the third set coordinates N 3. Then, as shown in FIG. 5, the second reference coordinates N and the first set coordinates N 1 and the slope of the line Δtoe n st = -80 connecting the second reference coordinates N and a second set coordinates N 2 the slope of the line Δtoe n st = -70 connecting the bets, the second reference coordinates n and the third set coordinates n 3 and the slope of the line Δtoe n st = -60 connecting is calculated in advance, respectively (STEP3 see FIG. 4 ), And the result is stored. Hereinafter referred inclination stored in advance as a basic slope (Δtoe n).
[0039]
Then, in STEP4 shown in FIG. 4, it calculates a difference (m) between the measured slope (Δtoe j) and each basic slope (Δtoe n).
[0040]
(Equation 1)
m− 80 = Δtoenst = −80− Δtoejst = −80 (1)
[0041]
(Equation 2)
m− 70 = Δtoenst = −70− Δtoejst = −70 (2)
[0042]
[Equation 3]
m− 60 = Δtoenst = −60− Δtoejst = −60 (3)
[0043]
Thereby, differences m- 80 , m- 70 , and m- 60 of the respective slopes are obtained. The present inventors have tested various difference (m) to exhibit a certain amount of change in the measured inclination and (Δtoe j) and each basic slope (Δtoe n) at each position of the axis of the wheel mounting portion 5 I know it. Therefore, the inclination difference m0 at the axial center position ( 0 mm) of the wheel mounting portion 5 during traveling is estimated from the calculated differences m- 80 , m- 70 , and m- 60 of the inclinations (STEP5 in FIG. 4).
[0044]
Then, based on the value of m 0 , the toe angle y at the axial center position (0 mm) of the wheel mounting portion 5 during traveling is calculated by Expression (4) representing the inclination Δtoe jst = 0 (FIG. 4). STEP6).
[0045]
(Equation 4)
y = α (x−a) + b (4)
[0046]
Formula alpha (4) the slope Δtoe j st = 0 at a central axial position x of the wheel mount 5 during running (α = Δtoe n st = 0 + m 0). In addition, the toe angle y of the axial center position (x = 0) of the wheel mounting portion 5 at the time of traveling in Expression (4) can be expressed by Expression (5).
[0047]
(Equation 5)
y = −αa + b (5)
[0048]
Next, the calculation of the camber angle corresponding to the position of the wheel mounting portion 5 during traveling by the arithmetic means will be described. In the present embodiment, the measurement of the camber angle and the measurement of the toe angle are performed simultaneously. Then, the camber angle corresponding to the position of the wheel mounting portion 5 during traveling is obtained by the calculation means in the same manner as in the case of the toe angle described above.
[0049]
That is, in STEP 1 shown in FIG. 6, the axial position (a = −90 mm) of the wheel mounting portion 5 and the camber angle b at the time when the raising of the wheel mounting portion 5 by the wheel mounting portion raising means 6 is started are measured. Then, the camber angle b is measured at predetermined intervals (every 10 mm) until the axial center position of the wheel mounting portion 5 reaches a predetermined position (a = -60 mm). From the position and camber angle measured at this time, first, as shown in FIG. 7, the coordinates (a, b) of the camber angle measured when the axial center position of the wheel mounting portion 5 is -90 mm is the first. The reference coordinates are J. Further, the coordinates (a, b) of the camber angle measured when the axial center position of the wheel mounting portion 5 is −80 mm are the first measured coordinates J 1 , the coordinates of the camber angle measured when the axis position is −70 mm ( a, b) is the second measurement coordinate J 2 , and the camber angle measured at −60 mm is the third measurement coordinate J 3 .
[0050]
Next, as shown in FIG. 7, the inclination Δcam jst = −80 of the straight line connecting the first reference coordinate J and the first measurement coordinate J 1 , the first reference coordinate J and the second measurement coordinate J 2. the slope of the line Δcam j st = -70 connecting bets, the slope of the line Δcam j st = -60 respectively calculates connecting the first reference coordinates J and the third measurement coordinates J 3 (STEP2 in FIG. 6). Hereinafter, the inclination calculated at this time is referred to as an actually measured inclination (Δcam j ).
[0051]
On the other hand, in the calculation means, the correct amount of change in the camber angle due to the elevation of the wheel mounting part 5 by the wheel mounting part raising means 6 for each type of automobile is recorded as a basic characteristic curve C shown in FIG. Further, in the basic characteristic curve C, as shown in FIG. 7, the coordinates of the correct camber angle when the axial center position of the wheel mounting portion 5 is -90 mm are set as the second reference coordinates N. When the correct camber angle coordinate when the axial center position of the part 5 is −80 mm is the first set coordinate N 1 , and when the correct camber angle coordinate is −70 mm is the second set coordinate N 2 , −60 mm coordinates of the correct camber angle of is set to the third set coordinates N 3. Then, as shown in FIG. 7, the inclination Δcam nst = −80 of the straight line connecting the second reference coordinate N and the first set coordinate N 1 , the second reference coordinate N and the second set coordinate N 2 The slope Δcam nst = −70 and the slope Δcam nst = −60 connecting the second reference coordinate N and the third set coordinate N 3 are calculated in advance (STEP 3 in FIG. 6). , And the result is stored. Hereinafter, the inclination stored in advance is referred to as a basic inclination (Δcam n ).
[0052]
Subsequently, in STEP 4 of FIG. 6, a difference (m) between each actually measured slope (Δcam j ) and each basic slope (Δcam n ) is calculated. The calculation of the difference (m) is the same as in the case of the toe angle measurement described above.
[0053]
(Equation 6)
m− 80 = Δcam nst = −80− Δcamjst = −80 (6)
[0054]
(Equation 7)
m− 70 = Δcam nst = −70 −Δcamjst = −70 (7)
[0055]
(Equation 8)
m− 60 = Δcam nst = −60− Δcamjst = −60 (8)
[0056]
Thereby, differences m- 80 , m- 70 , and m- 60 of the respective slopes are obtained. In the case of the camber angle, similarly to the toe angle, the difference (m) between each measured inclination (Δcam j ) and each basic inclination (Δcam n ) at each position of the axis of the wheel mounting portion 5 is constant. It has been confirmed by various tests by the present inventor to show the amount of change. Thus, the difference m -80 of each tilt calculated, m -70, estimate m 0 of the slope difference at a central axial position (0 mm) of the wheel mount 5 during running from m -60 is obtained (FIG. 6 (STEP 5).
[0057]
From this, the camber angle y at the axial center position (0 mm) of the wheel mounting portion 5 during traveling is calculated in STEP 6 of FIG.
[0058]
As described above, according to the present embodiment, the toe angle and the camber angle at the axial position of the wheel mounting portion 5 during traveling can be calculated very quickly without applying the same load to the vehicle body as during traveling. Moreover, the toe angle and the camber angle can be obtained only by raising the wheel mounting portion 5 to a predetermined position (a position -60 mm from the traveling time in the present embodiment) without detaching the vehicle body 2 from the hanger 1. Alignment can be measured efficiently and productivity can be improved.
[0059]
The above-described measurement start position and the interval between the measurement positions are appropriately determined according to the characteristics of the suspension of the vehicle type to be measured, and are set to the dimensions adopted in the measurement of the toe angle and the camber angle in the present embodiment. It is not limited. In addition, as the interval between the measurement positions is set shorter, the measurement accuracy can be increased.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic configuration of an alignment measuring device according to an embodiment of the present invention.
FIG. 2 is an explanatory view of the operation of a wheel mounting portion raising means.
FIG. 3 is an explanatory diagram of a second measuring means.
FIG. 4 is a flowchart showing a toe angle measuring method.
FIG. 5 is a diagram showing a relationship between a position of a wheel mounting portion and a toe angle.
FIG. 6 is a flowchart showing a method for measuring a camber angle.
FIG. 7 is a diagram showing a relationship between a position of a wheel mounting portion and a camber angle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hanger (body support means), 2 ... Body, 3 ... Wheel alignment measuring device, 5 ... Wheel mounting part, 6 ... Wheel mounting part raising means, 7 ... First measuring means, 8 ... Second measuring means.

Claims (4)

自動車のホイルのトー角を測定する自動車のホイルアライメント測定方法において、
車輪取付部を昇降自在として自動車車体を支持し、該自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇工程と、
該車輪取付部上昇工程により上昇される車輪取付部の位置とトー角とを測定する測定工程とを備え、
該測定工程は、該車輪取付部上昇工程による車輪取付部の上昇開始時に測定された車輪取付部の位置と該位置において測定されたトー角とからなる座標を第1の基準座標とし、該車輪取付部が前記所定の高さ位置に上昇されるまでの間の所定間隔毎に測定された車輪取付部の位置と各位置において測定されたトー角とからなる複数の座標を測定座標として、第1の基準座標と各測定座標とを結ぶ各直線の傾きを算出する第1演算工程と、
前記第1の基準座標における車輪取付部の位置と該位置に対応して予め定められた正しいトー角とからなる座標を第2の基準座標とし、前記各測定座標における車輪取付部の各位置と各位置に対応して予め定められた正しいトー角とからなる複数の座標を設定座標として、予め算出された第2の基準座標と各設定座標とを結ぶ各直線の傾きと、第1の基準座標と各測定座標とを結ぶ各直線の傾きとの差に基づいて、自動車の走行時における車輪取付部の位置のトー角の推定値を算出する第2演算工程とを備えることを特徴とする自動車のホイルアライメント測定方法。
In a vehicle wheel alignment measuring method for measuring a toe angle of a vehicle wheel,
A wheel mounting portion raising step of raising and lowering the wheel mounting portion to a predetermined height set below the position of the wheel mounting portion during traveling of the vehicle, supporting the vehicle body so that the wheel mounting portion can be raised and lowered,
Measuring step of measuring the position and toe angle of the wheel mounting part raised by the wheel mounting part raising step,
The measuring step includes, as first reference coordinates, coordinates including a position of the wheel mounting portion measured at the start of the lifting of the wheel mounting portion in the wheel mounting portion raising step and a toe angle measured at the position. A plurality of coordinates consisting of the position of the wheel mounting portion measured at predetermined intervals until the mounting portion is raised to the predetermined height position and the toe angle measured at each position as measurement coordinates, A first calculation step of calculating the inclination of each straight line connecting the reference coordinates of Step 1 and each measurement coordinate;
Coordinates consisting of the position of the wheel mounting portion in the first reference coordinates and a correct toe angle predetermined in correspondence with the position are defined as second reference coordinates, and the position of the wheel mounting portion in each of the measurement coordinates is Using a plurality of coordinates consisting of a correct toe angle predetermined for each position as set coordinates, the inclination of each straight line connecting the second calculated reference coordinates and each set coordinate, and the first reference A second calculating step of calculating an estimated value of the toe angle of the position of the wheel mounting portion when the vehicle is running, based on the difference between the coordinates and the inclination of each straight line connecting the measured coordinates. How to measure the wheel alignment of a car.
自動車のホイルのキャンバー角を測定する自動車のホイルアライメント測定方法において、
車輪取付部を昇降自在として自動車車体を支持し、該自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇工程と、
該車輪取付部上昇工程により上昇される車輪取付部の位置とキャンバー角とを測定する測定工程とを備え、
該測定工程は、該車輪取付部上昇工程による車輪取付部の上昇開始時に測定された車輪取付部の位置と該位置において測定されたキャンバー角とからなる座標を第1の基準座標とし、該車輪取付部が前記所定の高さ位置に上昇されるまでの間の所定間隔毎に測定された車輪取付部の位置と各位置において測定されたキャンバー角とからなる複数の座標を測定座標として、第1の基準座標と各測定座標とを結ぶ各直線の傾きを算出する第1演算工程と、
前記第1の基準座標における車輪取付部の位置と該位置に対応して予め定められた正しいキャンバー角とからなる座標を第2の基準座標とし、前記各測定座標における車輪取付部の各位置と各位置に対応して予め定められた正しいキャンバー角とからなる複数の座標を設定座標として、予め算出された第2の基準座標と各設定座標とを結ぶ各直線の傾きと、第1の基準座標と各測定座標とを結ぶ各直線の傾きとの差に基づいて、自動車の走行時における車輪取付部の位置のキャンバー角の推定値を算出する第2演算工程とを備えることを特徴とする自動車のホイルアライメント測定方法。
In a wheel alignment measurement method of a vehicle for measuring a camber angle of a vehicle wheel,
A wheel mounting portion raising step of raising and lowering the wheel mounting portion to a predetermined height position set below the position of the wheel mounting portion during traveling of the vehicle, supporting the vehicle body by freely raising and lowering the wheel mounting portion,
Measuring step of measuring the position and camber angle of the wheel mounting portion raised by the wheel mounting portion raising step,
The measuring step includes, as first reference coordinates, coordinates including a position of the wheel mounting portion measured at the time of starting the raising of the wheel mounting portion in the wheel mounting portion raising step and a camber angle measured at the position. A plurality of coordinates consisting of the position of the wheel mounting portion measured at predetermined intervals until the mounting portion is raised to the predetermined height position and the camber angle measured at each position as measurement coordinates, A first calculation step of calculating the inclination of each straight line connecting the reference coordinates of Step 1 and each measurement coordinate;
Coordinates consisting of the position of the wheel mounting portion in the first reference coordinates and the correct camber angle predetermined in correspondence with the position are defined as the second reference coordinates, and each position of the wheel mounting portion in each of the measurement coordinates is Using a plurality of coordinates consisting of a predetermined correct camber angle corresponding to each position as set coordinates, the inclination of each straight line connecting the second reference coordinates calculated in advance and each set coordinate, and the first reference A second calculating step of calculating an estimated value of the camber angle of the position of the wheel mounting portion when the vehicle is running, based on the difference between the inclination of each straight line connecting the coordinates and each measured coordinate. How to measure the wheel alignment of a car.
自動車のホイルのトー角を測定する自動車のホイルアライメント測定装置において、
車輪取付部を昇降自在として自動車車体を支持する車体支持手段と、
該車体支持手段により支持された自動車車体の下方位置に設けられ、自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇手段と、
該車輪取付部上昇手段に設けられて車輪取付部の高さ位置を測定する第1測定手段と、
前記車輪取付部上昇手段に設けられて車輪取付部を介して車軸のトー角を測定する第2測定手段と、
前記車輪取付部上昇手段による車輪取付部の上昇が開始された位置から該車輪取付部が所定の高さ位置に上昇されるまでの間の所定間隔毎に前記第1測定手段による高さ位置の測定と前記第2測定手段によるトー角の測定とを行なう測定制御手段と、
前記第1測定手段と前記第2測定手段とによる各測定値に基づいて、自動車の走行時における車輪取付部の位置に対応するトー角を算出するトー角算出手段とを備えることを特徴とする自動車のホイルアライメント測定装置。
In a vehicle wheel alignment measurement device that measures the toe angle of a vehicle wheel,
Vehicle body supporting means for supporting the vehicle body by allowing the wheel mounting portion to move up and down,
A wheel mounting part lift provided at a position below the vehicle body supported by the vehicle body supporting means and raising the wheel mounting part to a predetermined height position set below the position of the wheel mounting part during traveling of the vehicle Means,
First measuring means provided on the wheel mounting portion raising means for measuring the height position of the wheel mounting portion;
A second measuring means provided on the wheel mounting part raising means for measuring the toe angle of the axle via the wheel mounting part;
The height position by the first measuring means is set at predetermined intervals from a position at which the wheel mounting portion is raised by the wheel mounting portion raising means to a position at which the wheel mounting portion is raised to a predetermined height position. Measurement control means for performing measurement and measurement of the toe angle by the second measurement means;
And a toe angle calculating means for calculating a toe angle corresponding to the position of the wheel mounting part when the vehicle is running, based on the respective measurement values obtained by the first measuring means and the second measuring means. Car wheel alignment measurement device.
自動車のホイルのキャンバー角を測定する自動車のホイルアライメント測定装置において、
車輪取付部を昇降自在として自動車車体を支持する車体支持手段と、
該車体支持手段により支持された自動車車体の下方位置に設けられ、自動車の走行時における車輪取付部の位置よりも下方に設定された所定の高さ位置まで車輪取付部を上昇させる車輪取付部上昇手段と、
該車輪取付部上昇手段に設けられて車輪取付部の高さ位置を測定する第1測定手段と、
前記車輪取付部上昇手段に設けられて車輪取付部を介して車軸のキャンバー角を測定する第2測定手段と、
前記車輪取付部上昇手段による車輪取付部の上昇が開始された位置から該車輪取付部が所定の高さ位置に上昇されるまでの間の所定間隔毎に前記第1測定手段による高さ位置の測定と前記第2測定手段によるキャンバー角の測定とを行なう測定制御手段と、
前記第1測定手段と前記第2測定手段とによる各測定値に基づいて、自動車の走行時における車輪取付部の位置に対応するキャンバー角を算出するキャンバー角算出手段とを備えることを特徴とする自動車のホイルアライメント測定装置。
In a vehicle wheel alignment measurement device that measures the camber angle of the vehicle wheel,
Vehicle body supporting means for supporting the vehicle body by allowing the wheel mounting portion to move up and down,
A wheel mounting part lift provided at a position below the vehicle body supported by the vehicle body supporting means and raising the wheel mounting part to a predetermined height position set below the position of the wheel mounting part during traveling of the vehicle Means,
First measuring means provided on the wheel mounting portion raising means for measuring the height position of the wheel mounting portion;
A second measuring means provided on the wheel mounting part raising means for measuring the camber angle of the axle via the wheel mounting part;
The height position by the first measuring means is set at predetermined intervals from a position at which the wheel mounting portion is raised by the wheel mounting portion raising means to a position at which the wheel mounting portion is raised to a predetermined height position. Measurement control means for performing measurement and measurement of the camber angle by the second measurement means,
A camber angle calculating means for calculating a camber angle corresponding to the position of the wheel mounting portion when the vehicle is running, based on the measured values of the first measuring means and the second measuring means. Car wheel alignment measurement device.
JP2002163257A 2002-06-04 2002-06-04 Method and apparatus for measuring wheel alignment of automobile Expired - Fee Related JP3881287B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002163257A JP3881287B2 (en) 2002-06-04 2002-06-04 Method and apparatus for measuring wheel alignment of automobile
CNB038121212A CN100487368C (en) 2002-06-04 2003-06-03 Method for measuring wheel positioning of car
DE60334990T DE60334990D1 (en) 2002-06-04 2003-06-03 METHOD FOR MEASURING THE WHEELBASE OF A CAR
US10/512,946 US7062860B2 (en) 2002-06-04 2003-06-03 Method and device for measuring wheel alignment of car
EP03730788A EP1512941B1 (en) 2002-06-04 2003-06-03 Method for measuring wheel alignment of car
AU2003241945A AU2003241945A1 (en) 2002-06-04 2003-06-03 Method and device for measuring wheel alignment of car
PCT/JP2003/007003 WO2003102503A1 (en) 2002-06-04 2003-06-03 Method and device for measuring wheel alignment of car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002163257A JP3881287B2 (en) 2002-06-04 2002-06-04 Method and apparatus for measuring wheel alignment of automobile

Publications (2)

Publication Number Publication Date
JP2004012195A true JP2004012195A (en) 2004-01-15
JP3881287B2 JP3881287B2 (en) 2007-02-14

Family

ID=30431790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002163257A Expired - Fee Related JP3881287B2 (en) 2002-06-04 2002-06-04 Method and apparatus for measuring wheel alignment of automobile

Country Status (1)

Country Link
JP (1) JP3881287B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512291A (en) * 2004-09-07 2008-04-24 スパネシ ソシエタ ペル アチオニ Device for determining vehicle wheel alignment
JP2009085810A (en) * 2007-10-01 2009-04-23 Nissan Motor Co Ltd Alignment measuring/regulating device for suspension
JP2009236840A (en) * 2008-03-28 2009-10-15 Honda Motor Co Ltd Displacement quantity detecting method, and device used therefor
US7661198B2 (en) 2005-01-11 2010-02-16 Honda Motor Co., Ltd. Toe angle measuring instrument and toe angle measuring method
US8069576B2 (en) 2008-03-17 2011-12-06 Honda Motor Co., Ltd. Vehicle wheel alignment measuring method and apparatus
JP2019184445A (en) * 2018-04-11 2019-10-24 住友ゴム工業株式会社 Method of estimating dynamic camber angle of tire

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4609906B2 (en) * 2008-03-27 2011-01-12 本田技研工業株式会社 Wheel simulator
JP4609905B2 (en) * 2008-03-27 2011-01-12 本田技研工業株式会社 Method and apparatus for measuring vehicle wheel alignment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008512291A (en) * 2004-09-07 2008-04-24 スパネシ ソシエタ ペル アチオニ Device for determining vehicle wheel alignment
US7661198B2 (en) 2005-01-11 2010-02-16 Honda Motor Co., Ltd. Toe angle measuring instrument and toe angle measuring method
JP2009085810A (en) * 2007-10-01 2009-04-23 Nissan Motor Co Ltd Alignment measuring/regulating device for suspension
US8069576B2 (en) 2008-03-17 2011-12-06 Honda Motor Co., Ltd. Vehicle wheel alignment measuring method and apparatus
JP2009236840A (en) * 2008-03-28 2009-10-15 Honda Motor Co Ltd Displacement quantity detecting method, and device used therefor
JP2019184445A (en) * 2018-04-11 2019-10-24 住友ゴム工業株式会社 Method of estimating dynamic camber angle of tire
JP7040245B2 (en) 2018-04-11 2022-03-23 住友ゴム工業株式会社 How to estimate the dynamic camber angle of a tire

Also Published As

Publication number Publication date
JP3881287B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
WO2005010463A1 (en) Method and device for measuring automobile wheel alignment
WO2003102503A1 (en) Method and device for measuring wheel alignment of car
CN104534998B (en) A kind of automobile basic parameter measurement apparatus and its measuring method
JP2004012195A (en) Method and device for measuring wheel alignment of automobile
JP4732911B2 (en) Chassis dynamometer vehicle fixing device
CN213481245U (en) Automatic calibration system suitable for contact net
CN212721389U (en) Surface level calibrating device for platform scale
JP3934487B2 (en) Wheel alignment adjustment method for automobiles
CN106840698B (en) Axle load simulation control method of brake table lifting height axle loading force correlation model
JP4128920B2 (en) Method and apparatus for measuring car camber angle
JP2006276007A (en) Wheel alignment method and wheel for measurement
JP4646042B2 (en) Wheel alignment measurement method for automobiles
JPH0481634A (en) Method and apparatus for measuring wheel alignment of vehicle
JP4646041B2 (en) Method and apparatus for measuring vehicle wheel alignment
JP4695994B2 (en) Chassis dynamometer vehicle fixing device
JP2005049210A (en) Method for measuring static toe angle of automobile and apparatus therefor
JP2018017627A (en) Calibration device for measurement sensor in wheel alignment measurement device for four-wheel car
JP2005114486A (en) Wheel alignment measuring method for automobile
CN112504124B (en) Automatic calibration system suitable for contact net
JP6485142B2 (en) Automatic horizontal support device for work vehicles
JP5422404B2 (en) Method for arranging tires in automobiles
JP2801244B2 (en) Vehicle suspension characteristics measurement method
JP2740232B2 (en) Vehicle roll testing machine
JP2880251B2 (en) Vehicle wheel alignment adjustment method
JP7172638B2 (en) VEHICLE WHEEL ALIGNMENT MEASURING DEVICE AND METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees