JP3880451B2 - Rsvpを用いた移動通信システム - Google Patents
Rsvpを用いた移動通信システム Download PDFInfo
- Publication number
- JP3880451B2 JP3880451B2 JP2002144883A JP2002144883A JP3880451B2 JP 3880451 B2 JP3880451 B2 JP 3880451B2 JP 2002144883 A JP2002144883 A JP 2002144883A JP 2002144883 A JP2002144883 A JP 2002144883A JP 3880451 B2 JP3880451 B2 JP 3880451B2
- Authority
- JP
- Japan
- Prior art keywords
- state
- rsvp
- node
- message
- mobile communication
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
- H04W28/10—Flow control between communication endpoints
- H04W28/12—Flow control between communication endpoints using signalling between network elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/72—Admission control; Resource allocation using reservation actions during connection setup
- H04L47/724—Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/824—Applicable to portable or mobile terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/826—Involving periods of time
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/26—Resource reservation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
- Small-Scale Networks (AREA)
Description
【発明の属する技術分野】
本発明は、リソース予約プロトコル(Resource Reservation Protocol:RSVP)を用いた移動通信システムにおける、リソース制御方法に関する。
【0002】
【従来の技術】
近年、移動通信技術の急速な発展によって、無線区間におけるデータ転送レートは飛躍的な向上を遂げている。このため、音声や低レートのパケット通信といった従来のサービスに加えて、ビデオ又は音楽のような大容量のリアルタイムデータの配信が可能になろうとしている。今後、大容量通信技術を用いた多彩なサービスが提供されると考えられる。大容量サービスをその品質を確保しつつ実現するためには、無線区間だけでなくネットワーク内の全てのノードにおいて、要求される品質(QoS)を確保することが要求される。
【0003】
リソース予約プロトコル(RSVP)は、通信時のQoSを確保するためのプロトコルの一つであり、IETF(Internet Engineering Task Force)がRFC2205により規定したものである。
【0004】
RSVPは、あるエンド−エンド間における通信の単位をセッション、各セッションにおけるデータストリームをフローと定義し、フローが通過するネットワーク内の全てのノードにおいて、帯域等のネットワークリソースを予め確保するためのプロトコルである。
【0005】
フローの受信システムは送信システムとの間でRSVPメッセージの交換を行い、この過程において、受信システムと送信システムの間に存在する全てのノード(IPネットワークにおけるルータなど)上のリソースが予約される。さらに、RSVPでは、IPネットワークのような動的なネットワークに柔軟に対応できるように、各ノードにおける予約状態を「RSVPソフト状態」により管理しており、このRSVPソフト状態は定期的に発行されるリフレッシュメッセージにより常に最新の状態に更新される。
【0006】
RSVPは主にIPネットワークで使用されている。移動通信システムにおける使用例は未だなく、具体的な実施方法や問題点などはまだ明らかになっていない点が多い。
【0007】
現在の移動通信システムにRSVPを適用することを仮定した場合のシステム例の概略を図1に示す。移動端末106は、コアネットワーク(Core Network:CN)101、無線ネットワークノード103〜105から構成される無線アクセスネットワーク(Radio Access Network:RAN)102を経由してサーバ100にアクセスし、データのダウンロード等を行う。
【0008】
コアネットワーク101内の各ノードにはRSVPが実装されているものとし、無線ネットワークノード103〜105のそれぞれにもRSVPが実装されている。このようなシステムにおいて、移動端末106がサーバ100からデータのダウンロードを開始し、終了するまでの動作を簡単に説明する。
【0009】
図2は、RSVPの処理シーケンスを簡単に示したものである。図2は、移動端末がサーバから配信されるデータをダウンロードする様子を示したものであり、RSVPに関する処理としては、大別して以下の3つに分けることができる。(1) セッション開始時におけるダウンロードパス上のリソース予約処理
(2) ダウンロード中における、ソフト状態のリフレッシュ
(3) セッション終了時のリソース開放処理
セッションを開始する際には、移動端末は適切なプロトコルを用いてデータ配信グループに参加するための処理を行う。サーバは、この処理を受け付けると、フローに関する経路情報(パスの予約内容)等を格納した“PATH”と呼ばれるRSVPメッセージを移動端末に対して送信する。PATHメッセージは、移動端末へ到達する途中の全てのRSVPノード(コアネットワーク101内におけるRSVPを実装したノード,及び図1におけるRSVPが実装された無線ネットワークノード)上で解読され、そのRSVPノード上にRSVPソフト状態の一つであるPATH状態(パスの予約状態)を確立してゆく。
【0010】
移動端末は、PATHメッセージを受信すると、リソース予約に関する情報(リソースの予約内容)を格納した“RESV”と呼ばれるRSVPメッセージをサーバに対して送信する。PATHメッセージのときと同様に、RESVメッセージはサーバへ到達する途中の全てのRSVPノード上で解読され、そのノード上にRSVPソフト状態の一つであるRESV状態(リソースの予約状態)を確立してゆく。
【0011】
このように、移動端末とサーバ間でPATHメッセージとRESVメッセージとの交換を行うことにより、移動端末とサーバとの間のパス上に存在する全ノードにおけるリソース予約が完了する。
【0012】
リソースの予約が完了すると、サーバは移動端末に対してデータの送信を開始する。この間、各ノード上のRSVPのリソース予約状態(RSVPソフト状態)は、常に最新の情報に更新(リフレッシュ)される。このため、RSVPが定めるタイマ(リフレッシュタイマ)に基づき、サーバはPATHメッセージを移動端末へ定期的に送信し、移動端末はRESVメッセージをサーバへ定期的に送信する。
【0013】
これによって、移動端末の移動あるいはネットワークノードの故障等によりフローの経路が動的に変化したり、移動端末によるリソース獲得要求(リソースの予約内容)が変更された場合でも、リソースの予約状態は常にそれに追随することができる。
【0014】
セッションを終了する場合には、移動端末はサーバに対して“RSVP TEAR”と呼ばれるRSVPメッセージを、サーバは移動端末に対して“PATHTEAR”と呼ばれるRSVPメッセージを送出する。セッション上の各ノードは、RSVP TEARメッセージ、PATH TEARメッセージを受信すると、ノード上のリソース予約状態、パス状態の開放処理を行う。
【0015】
なお、図2には記載していないが、セッション終了時には、必ずしもRSVPTEARメッセージ、PATH TEARメッセージを送信する必要はない。各ノードの予約状態は、所定時間内にリフレッシュメッセージを受信しない場合には、自律で状態を開放するからである。
【0016】
【発明が解決しようとする課題】
上述した通り、動的に変化するネットワーク環境の中で、データフローに対して常に最適なQoSを確保するためには、パス(フロー)上の各ノードにおけるリソースの予約状態を常に最新に更新する必要がある。このため、サーバ及び移動端末は、一定時間毎に及び予約状態が変化する毎に、リフレッシュ用のPATHメッセージ又はRESVメッセージ(これらをまとめて指す場合には「リフレッシュメッセージ」と表記することもある)を送信しなければならない。移動通信システムにおいては、特に、このリフレッシュ動作が問題となってくる。
【0017】
移動通信システムが通常の通信システムとその性質を異にする要因は、端末装置(移動端末)の位置が頻繁に変更される点にある。即ち、移動端末がその位置を変えると、パスの経路の変化や無線状態の変化が起こる。このため、移動端末とサーバとの間でネットワーク内に必要なリソースを予約した後も、移動端末の移動による状態の変化に応じて頻繁に予約状態をリフレッシュする必要がある。さらに、上述したように、予約状態が変化しない場合でも、定常的にリフレッシュメッセージの交換を行う必要がある。
【0018】
このように頻繁に通信経路や無線状態が変化することが予想される移動通信システムにおいては、これらの状態の変化に対してリソースの予約状態が追随するためにリフレッシュメッセージの送信間隔はごく短いものでなくてはならない。
【0019】
これらの理由から、図1に示した移動端末とサーバとの間では非常に多くのリフレッシュメッセージが交換されることになる。すると、このリフレッシュ動作がコアネットワーク及び移動通信ネットワークのリソースを圧迫するという問題を引き起こす可能性があった。
【0020】
また、サーバ等のデータ配信ノード(データ送信/受信ノード)は、コアネットワーク内に存在するのが一般的である。このような場合において、サーバと移動端末との間で頻繁にリフレッシュメッセージのやりとりを行ったとしても、実際に予約状態が変更されるのは移動端末に近い部分だけであるということが有り得る。この場合、コアネットワーク内の各ノードにおける予約状態にはなんらの変更がなく、同じ予約状態が単に更新されるだけとなる。コアネットワーク内のトポロジーは無線アクセスネットワークに比べて頻繁に変化するものではないと考えられるからである。従って、コアネットワーク内の各ノードが頻繁にリフレッシュメッセージを受信しても、それらは無駄にネットワークリソースを消費するだけで実効的には意味のないものとなってしまう。
【0021】
言い換えると、図1に示した移動通信システムでは、リソースの予約状態のリフレッシュ周期が無線アクセスネットワークに合わせて短く設定された場合には、予約状態は無線アクセスネットワークの状態変化に適正に追随することができるが、無駄なリフレッシュメッセージがコアネットワークに流れ込み、ネットワークリソースを浪費する(図3(A)参照)。一方、リフレッシュ周期がコアネットワークに合わせて長く設定された場合には、コアネットワークにおいて無駄なリフレッシュメッセージが減少するが、予約状態が無線アクセスネットワークの状態変化に追随できなくなる(図3(B)参照)。
【0022】
以上のように、移動通信システムにRSVPの実装を試みた場合、2つの矛盾した要求を同時に実現する必要がある。すなわち、同一パス上であるにもかかわらず、移動端末に近い側では、移動端末の移動性に伴い、頻繁にリフレッシュメッセージを交換する必要があり、サーバに近い側では、逆にリフレッシュメッセージは最小限に抑え、ネットワークリソースを節約する必要がある。
【0023】
本発明の目的は、ネットワークリソースの予約状態をネットワークの状態変化に柔軟に追随させることができる一方で、ネットワークリソースの有効利用を図ることができるRSVPを用いた移動通信システムを提供することである。
【0024】
【課題を解決するための手段】
本発明は、上記目的を達成するために以下の構成を採用する。
【0025】
本発明は、RSVPを用いた移動通信システムであり、リソース予約プロトコルを実装したコアネットワークに接続される移動通信ネットワークと、
前記移動通信ネットワークに含まれる複数の無線ネットワークノードと、
前記コアネットワーク及び前記移動通信ネットワークを通過するデータ送信ノードとデータ受信ノードとの間のデータのフローに対するネットワークリソースをリソース予約プロトコルに基づいて予約する手段と、
前記フローに係るネットワークリソースの予約状態をリフレッシュする領域を前記フローが通過する所定の無線ネットワークノードを境としてコアネットワーク側と移動通信ネットワーク側とに分割し、前記移動通信ネットワーク側に対するリフレッシュを前記コアネットワーク側に対するリフレッシュの頻度よりも高い頻度で行うリフレッシュ制御手段と、
を含む。
【0026】
本発明によれば、リフレッシュ制御手段が移動通信ネットワーク側のリフレッシュをコアネットワーク側よりも高い頻度で行う。これによって、移動通信ネットワーク側の予約状態を移動通信ネットワークの状態の変化に追随させることができる。一方、コアネットワーク側のリフレッシュの頻度が移動通信ネットワーク側よりも抑えられることにより、無駄なリフレッシュメッセージの転送によるネットワークリソースの浪費を抑えることができる。
【0027】
本発明のリフレッシュ制御手段は、前記移動通信ネットワーク側に対するリフレッシュを前記コアネットワーク側に対するリフレッシュの周期よりも短い周期で行う、ように構成するのが好ましい。
【0028】
また、本発明は、前記フローに対する前記移動通信ネットワークの状態の変化に応じて、前記境界となる無線ネットワークノードとしての境界ノードを変更する境界ノード変更手段をさらに含む、ように構成するのが好ましい。
【0029】
このようにすれば、移動通信ネットワークの状態の変化に応じてリフレッシュが頻繁に行われる移動通信ネットワーク側の大きさを制御できる。これによって、リフレッシュメッセージの交換を頻繁に行う必要のある領域を可能な限り小さくすることができるので、移動通信ネットワークにおけるネットワークリソースの有効利用を図ることができる。
【0030】
本発明における境界ノード変更手段は、現在の境界ノードが所定時間内に得た前記移動通信ネットワーク側におけるネットワークリソースの予約状態の変化の回数が上限値を上回った場合に、現在の境界ノードよりもコアネットワーク側に存する他の無線ネットワークノードを境界ノードに変更する、ように構成するのが好ましい。
【0031】
また、本発明における境界ノード変更手段は、現在の境界ノードが所定時間内に得た前記移動通信ネットワーク側におけるネットワークリソースの予約状態の変化の回数が下限値を下回った場合に、現在の境界ノードよりも移動通信ネットワーク側に存する他の無線ネットワークノードを境界ノードに変更する、ように構成するのが好ましい。
【0032】
【発明の実施の形態】
以下、図面を用いて本発明の実施形態を説明する。実施形態の構成は例示であり、本発明は実施形態の構成に限定されない。
【0033】
〔概要〕
図4は、本発明による移動通信システムの例を示す図である。図4において、移動通信システムは、コアネットワーク(CN)10と、無線アクセスネットワーク(RAN)20とを備える。CN10は複数のノード(図示せず)を含んでおり、RAN20は複数の無線ネットワークノード21(CN10と移動端末40との間に位置する無線ネットワークノード群)を含んでいる。
【0034】
CN10はデータ送受信ノード30(例えば、データを配信するサーバ;以下、単に「ノード30」という)を収容(接続)している。ノード30がRAN20に接続される移動端末40との間でCN10及びRAN20を介してデータ通信を行う場合、例えば、ノード30から送信されるデータ(パケット)は、CN10及びRAN20において、IP宛先アドレスのような宛先情報に基づいて決定される転送経路(パス又はフロー)を通って移動端末40に伝達される。
【0035】
データのパス(フロー)は、CN10において少なくとも1つのノードを通過し、RAN20において少なくとも1つの無線ネットワークノード21を通過する。パスが通過する(パス上に位置する)CN10内のノード及び無線ネットワークノード21は、ノード30からのデータを受信すると、そのデータに付加された宛先情報(IP宛先アドレス)に基づいて、そのデータを次ホップに相当するノード(次ノード)に転送する。このような転送処理がパス上の各ノードにて行われることにより、ノード30からのデータが移動端末40に到達する。移動端末40からノード30へデータを伝達する場合も、同様である。
【0036】
上述したデータ通信(データの送受信)に対し、所望のQoSを確保するため、パス(フロー)が通過する各ノードは、RSVPを用いてパスに係るネットワークリソースを予約する。また、リソースの予約状態のリフレッシュを行う。このため、CN10の各ノード及びRAN20の各無線ネットワークノード21は、RSVPに基づいてフローに対するネットワークリソースを予約する手段としての機能を実装している。
【0037】
ノード30から移動端末40へデータを伝送するためのフローについてリソースの予約処理が行われる場合には、PATHメッセージがノード30から移動端末40へ向けて送信され、RESVメッセージが移動端末40からノード30へ向けて送信される。また、ノード30は、予約状態(PATH状態)をリフレッシュするためのPATHメッセージを周期的に移動端末40へ向けて送信し、移動端末40は、予約状態(RESV状態)をリフレッシュするためのRESVメッセージを周期的にノード30へ向けて送信する。
【0038】
これに対し、移動端末40からノード30へデータを伝達するためのフローについてリソースの予約処理が行われる場合には、PATHメッセージが移動端末40からノード30へ向けて送信され、RESVメッセージがノード30から移動端末40へ向けて送信される。また、移動端末40は予約状態(PATH状態)をリフレッシュするためのPATHメッセージを周期的にノード30へ向けて送信し、ノード30は予約状態(RESV状態)をリフレッシュするためのRESVメッセージを周期的に移動端末40へ向けて送信する。
【0039】
即ち、フローの上流側のエンドに相当するノードはPATHメッセージを下流側のエンドに相当するノードへ向けて送信し、フローの下流側のエンドに相当するノードはRESVメッセージをフローの上流側のエンドに相当するノードへ向けて送信する。
【0040】
従って、フローが通過するCN10及びRAN20内の各ノードは、フローの上流側からPATHメッセージを受信し、フローの下流側からRESVメッセージを受信する。以降の説明は、ノード30(データ送信ノード)から移動端末40(データ受信ノード)へ向けてデータを伝送するためのフローを想定して説明する。但し、本発明は、移動端末40(データ送信ノード)からノード30(データ受信ノード)へデータを伝送するためのフローについてのリソース予約処理についても適用することができる。
【0041】
即ち、本発明は、データ送信ノードとデータ受信ノードとの間でのコアネットワーク及び移動通信ネットワークを介したデータフローに対して適用されるものであり、このときのデータフローのデータの伝送方向を問わない。
【0042】
CN10の各ノード及びRAN20の各無線ネットワークノード21は、予約状態のリフレッシュ動作として、次の動作を行う。即ち、各ノードは、ノード30及び/又は移動端末40からのリフレッシュ用のRSVPメッセージ(PATHメッセージ,RESVメッセージ;以下、これらをまとめて指す場合には、「リフレッシュメッセージ」と表記する)を受信すると、そのリフレッシュメッセージを次ホップに相当するノードに転送する。このとき、メッセージに含まれた予約状態に変化(ネットワークのトポロジ(パスのルート)変更,リソース獲得要求(内容)の変更等)がある場合には、その予約状態を確保するためのネットワークリソースの予約処理を実行する。
【0043】
本発明による移動通信システムでは、ノード30と移動端末40との間のデータのパス(フロー)のような、CN10及びRAN20を通過するパスについてリソースの予約処理を行う領域が、そのパス上の所定の無線ネットワークノード21を境としてノード30側(CN側)とその逆側としての移動端末40側(RAN側)とに分割され、各領域毎に独立したリソースの予約処理を行う。
【0044】
即ち、パス上の所定の無線ネットワークノード21が、ノード30との間でCN側のリソースの予約処理(リフレッシュを含む)を行い、移動端末40との間でRAN側のリソースの予約処理(リフレッシュを含む)を行う。以下、二つの領域の境となる無線ネットワークノード21を、必要に応じて「境界ノード」と呼ぶ。
【0045】
そして、境界ノードは、RAN側のリソースの予約状態のリフレッシュを、CN側のリソースの予約状態のリフレッシュよりも高い頻度で行う。このように、移動通信システムは、リフレッシュ制御手段を有している。これによって、CN側とRAN側とでリフレッシュメッセージの送信間隔を変えることができ、CN10及びRAN20に応じた頻度で予約状態のリフレッシュを行うことができる。
【0046】
従って、CN側では、無駄なリフレッシュメッセージの送受信が抑えられるので、ネットワークリソースの有効利用及びノードに対する処理負荷の軽減を図ることができる。一方、RAN側では、頻繁にリフレッシュメッセージの送受信(交換)が行われるようにすることで、移動端末40の移動等に伴うRAN20の状態変化や予約内容の変化等にリソースの予約状態を追随させることができる。
【0047】
このようにして、ノード30と移動端末40との間の通信のQoSを確保することができ、安定した品質の通信サービスを提供することができる。
【0048】
さらに、本発明では、ノード30と移動端末40との間のパス(フロー)が複数の無線ネットワークノード21を通過する場合において、境界ノードとなる無線ネットワークノード21が、CN10又はRAN20の状態に応じて変更される。
【0049】
上記を実現するため、RAN20内の少なくとも1つの無線ネットワークノード21は二重化されたRSVP処理部22を備える。RSVP処理部22は、例えば、CN側RSVP処理部604と、RAN側RSVP処理部605とからなる。
【0050】
二重化されたRSVP処理部22を持つ無線ネットワークノード21(以下、「無線ネットワークノード21A」と表記する)は、CN10及び/又はRAN20の状態に応じて、単一のRSVP処理部を持つ無線ネットワークノードとして動作する場合(シングルRSVP状態)と、2つの独立した動作を行うRSVP処理部を持つ無線ネットワークノードとして動作する場合(マルチRSVP状態)との2通りの状態をとる。
【0051】
シングルRSVP状態では、RSVP処理部22は、RSVPメッセージに対して単一のRSVP処理部として振る舞う。このため、無線ネットワークノード21Aの振る舞いは、単一のRSVP処理部を持つノード(例えば、CN10内のノード)と同様となる。
【0052】
マルチRSVP状態では、二重化されたRSVP処理部22のうち、一方(CN側RSVP処理部604)はノード30からのRSVPメッセージを終端し、もう一方(RAN側RSVP処理部605)は移動端末40からのRSVPメッセージを終端する。また、マルチRSVP状態では、CN側RSVP処理部604は、ノード30(RAN側)へリフレッシュメッセージを周期的に送信し、RAN側RSVP処理部605は、移動端末40(CN側)へリフレッシュメッセージを周期的に送信する。RAN側へのリフレッシュメッセージの送信周期は、CN側よりも短くなっている。
【0053】
このように、無線ネットワークノード21Aは、マルチRSVP状態となることによって、上記した境界ノードとして機能する。このため、境界ノードは「マルチRSVPノード」とも呼ばれる。
【0054】
また、RSVP処理部22を構成する2つのRSVP処理部(CN側RSVP処理部604及びRAN側RSVP処理部605)は、RSVPによるリソース予約処理に関する情報を共有し、互いに必要な情報をやりとりする。これによって、RSVP処理部22は、無線ネットワークノード21があたかも単一のRSVP処理部を実装しているかのように振る舞う。
【0055】
さらに、複数の無線ネットワークノード21Aのうち、マルチRSVP状態となる無線ネットワークノード(マルチRSVPノード)は、CN10又はRAN20の状態に応じてフロー単位で動的に移行することができる。
【0056】
上述したように、本発明による移動通信システムは、マルチRSVP状態の無線ネットワークノード21A(マルチRSVPノード)を境にして、CN側とRAN側のRSVP処理、特にリフレッシュメッセージの送信間隔を相互に独立に設定する。
【0057】
これによって、状態変化の小さいCN10と状態変化(特に経路変化)の非常に大きいRAN20とが、それぞれのシステムに応じた適切な周期でリフレッシュメッセージの交換を行うことができる。従って、リフレッシュメッセージによるネットワークリソースの浪費を抑えながら、適切なリソースの予約状態の管理及び更新を行うことができる(図5参照)。
【0058】
さらに、本発明による移動通信システムは、以下を含む。
(1)無線ネットワークノード21がマルチRSVPノードとして動作する際の、2つのRSVP処理部(CN側RSVP処理部604とRAN側RSVP処理部605)間のマッピング制御を行うための構成および方法。
(2)システム(CN10及び/又はRAN20)の状態に応じて、フロー毎にマルチRSVPノードを遷移させるための構成および方法。
【0059】
〔無線ネットワークノードの状態遷移〕
無線ネットワークノード21Aがフロー毎にシングルRSVP状態とマルチRSVP状態との間を遷移する概念について説明する。図6は、無線ネットワークノード21Aの状態遷移を示す図である。
【0060】
無線ネットワークノード21Aは、CN10及び/又はRAN20の状態に応じて、RAN側RSVP状態500と、マルチRSVP状態501と、CN側RSVP状態502との間で遷移する。図6中の各状態500〜502は、以下の機能を有する。
【0061】
[マルチRSVP状態501]
無線ネットワークノード21Aは、フローのリソース予約処理についてマルチRSVPノードとなる場合には、マルチRSVP状態501になる。マルチRSVP状態501では、無線ネットワークノード21Aは、RSVPに基づくリソースの予約処理の対象となるフローに対して、移動端末40側(RAN側)とノード30側(CN側)とのRSVP(セッション)を独立に終端する。
【0062】
即ち、マルチRSVPノードは、ノード30と移動端末40との間のフローについて、ノード30とマルチRSVPノードとの間でのRSVPセッションと、マルチRSVPノードと移動端末40との間でのRSVPセッションとを確立し、セッション毎に独立したリソース予約処理及びリフレッシュ動作を行う。
【0063】
但し、無線ネットワークノード21A内のRSVP処理部22を構成するRAN側RSVP処理部605とCN側RSVP処理部604とは、RSVPに関する情報管理手段を共有する。
【0064】
即ち、RAN側RSVP処理部605とCN側RSVP処理部604とは、1つのフローに対するCN側のセッションとRAN側のセッションと同じセッション識別子(セッションID)で管理し、各セッションにおける予約状態(ソフト状態;PATH状態及びRESV状態)を相互に交換し、一方のセッションにおける予約状態を他方のセッションにおける予約状態にマッピングする。
【0065】
これによって、RAN側RSVP処理部605及びCN側RSVP処理部604は、無線ネットワークノード21Aがあたかも1つのRSVP処理部を備えているかのように動作する。即ち、RSVP処理部22は、フローに対して、見かけ上(ノード30又は移動端末40からの観点(ビュー)において)、一つのRSVPセッションによるリソースの予約処理が行われているように処理を行う。
【0066】
このようなマルチRSVP状態501の無線ネットワークノード21A,即ちマルチRSVPノードは、唯一、無線ネットワークノード21Aの状態遷移を行うかどうかの決定権を持つ。
【0067】
このため、マルチRSVPノードは、常にリソース予約処理の対象のフローに対する予約状態の変化を監視し、既定の条件が満たされる場合には、近隣の無線ネットワークノード21Aに対して適切な状態遷移指示を発行することができる。
【0068】
また、マルチRSVPノードは、RESVメッセージ及びPATHメッセージに対して以下の処理を行う。
〈1〉RAN側からRESVメッセージを受信し終端する。
〈2〉RESVメッセージを生成しCN側に送信する。
〈3〉CN側からPATHメッセージを受信し終端する。
〈4〉PATHメッセージを生成しRAN側に送信する。
【0069】
但し、上記した〈1〉〜〈4〉の処理は、ノード30から移動端末40へデータを伝送するためのフローに対する処理であり、この場合には、マルチRSVPノードは、移動端末40(RAN側)からRESVメッセージのみを受信し、ノード30(CN側)からはPATHメッセージのみを受信する。また、リソース予約処理の対象のフローのデータ伝送方向が上記フローと逆方向の場合には、上記した〈1〉〜〈4〉の処理における「RAN側」と「CN側」とが入れ替わる。
【0070】
[RAN側RSVP状態500]
無線ネットワークノード21Aは、リソース予約処理の対象のフロー上において、マルチRSVP状態501の無線ネットワークノード21A(マルチRSVPノード)よりも下流側(RAN側)に位置する場合には、シングルRSVP状態の一つとしてのRAN側RSVP状態500となる。RAN側RSVP状態500では、無線ネットワークノード21Aは、単一のRSVP処理部を持つノードとして動作する。即ち、フローの上流側及び下流側から夫々受信するRSVPメッセージを逆側へ転送する。
【0071】
RAN側のリソースの予約状態(ソフト状態;「RSVP状態」とも呼ぶ)のリフレッシュ周期(リフレッシュメッセージの送信間隔)はCN側に比べて短く、頻繁に予約状態のリフレッシュが行われる。
【0072】
RAN側RSVP状態500の無線ネットワークノード21Aは、RESVメッセージとPATHメッセージについては、以下の処理を行う。但し、データがノード30から移動端末40へ伝送される場合(ノード30→移動端末40のフロー)であるものとする。
〈1〉RAN側からRESVメッセージを受信しCN側に転送する。
〈2〉CN側からPATHメッセージを受信しRAN側に転送する。
【0073】
[CN側RSVP状態502]
無線ネットワークノード21Aは、リソース予約処理の対象のフロー上において、マルチRSVP状態501の無線ネットワークノード21A(マルチRSVPノード)よりも上流側(CN側)に位置する場合には、シングルRSVP状態の一つとしてのCN側RSVP状態502となる。CN側RSVP状態502では、無線ネットワークノード21Aは、単一のRSVP処理部を持つノードとして動作する。即ち、フローの上流側及び下流側から夫々受信するRSVPメッセージを逆側へ転送する。
【0074】
CN側のリソースの予約状態(ソフト状態又はRSVP状態)のリフレッシュ周期(リフレッシュメッセージの送信間隔)はRAN側に比べて長く、予約状態は頻繁にリフレッシュされない。
【0075】
CN側RSVP状態502の無線ネットワークノード21Aは、RESVメッセージとPATHメッセージについては、以下の処理を行う。但し、データがノード30から移動端末40へ伝送される場合(ノード30→移動端末40のフロー)であるものとする。
〈1〉RAN側からRESVメッセージを受信しCN側に転送する。
〈2〉CN側からPATHメッセージを受信し移動端末側に転送する。
【0076】
ところで、マルチRSVPノードは、以下のように動作する。即ち、マルチRSVPノードは、リソースの予約処理対象のフローに対する予約状態の変化を常に監視する。RAN側で予約状態の変化が多く発生しない場合には、RAN側(移動端末40)から送信されてくるリフレッシュメッセージは、マルチRSVPノードで管理しているRAN側の予約状態を頻繁に変化させない。
【0077】
このように、マルチRSVPノードがRAN側から受信したリフレッシュメッセージで示される予約状態に変化がない場合(リフレッシュメッセージに含まれた予約状態と現在マルチRSVPノードで管理している予約状態とが同じである場合)には、マルチRSVPノードは、RAN側からのリフレッシュメッセージをここで終端し、CN側へ転送しない。
【0078】
従って、RAN側での移動端末40の移動性に起因する膨大なリフレッシュメッセージがCN側に流れ込み、CN側のネットワークリソースを圧迫することを防止することができる。
【0079】
一方、マルチRSVPノードは、RAN側から受信した(終端した)リフレッシュメッセージで示される予約状態に変化がある場合(リフレッシュメッセージに含まれた予約状態と現在マルチRSVPノードで管理している予約状態とが異なる場合)には、上記受信したリフレッシュメッセージと同内容のリフレッシュメッセージを生成しCN側へ送信する。なぜなら、処理対象のフローに対するRAN側の予約状態の変化をCN側に反映させる必要があるからである。
【0080】
従って、マルチRSVPノードは、予約状態の変化を示すリフレッシュメッセージをRAN側から頻繁に受信する場合には、リフレッシュメッセージを受信する毎に、この予約状態の変化を示すリフレッシュメッセージを生成しCN側に送信しなければならない。このような場合には、マルチRSVPノードがCN側で不要なリフレッシュメッセージを終端するという機能を殆ど果たさなくなる。
【0081】
このため、マルチRSVPノードは、所定時間内におけるRAN側からの予約状態の変化を示すリフレッシュメッセージの受信数が所定の上限値を上回る場合には、フローの上流(CN側)に位置する近隣の他の無線ネットワークノード21A(以下、「上流ノード」と表記)に状態遷移指示メッセージを与えてその上流ノードの状態をマルチRSVP状態501に遷移させ、自らはRAN側RSVP状態500に遷移する。
【0082】
その後、RAN側RSVP状態500となった無線ネットワークノード21Aは、RAN側からのリフレッシュメッセージを上流ノードへ単に転送するのみで済む(リフレッシュメッセージの終端及び生成を行わなくて済む)ようになる。
【0083】
また、マルチRSVPノードは、RAN側から受信するリフレッシュメッセージが予約状態の変化を示さない場合には、そのリフレッシュメッセージを終端する(転送を停止する)。このようなリフレッシュメッセージは、マルチRSVPノードがRAN側から受信する意味を持たないものであり、マルチRSVPノード及びその下流近傍(例えば、リフレッシュメッセージをマルチRSVPノードへ転送する無線ネットワークノード)のネットワークリソースを浪費するだけである。
【0084】
そこで、マルチRSVPノードで管理するRAN側の予約状態がRAN側からのリフレッシュメッセージで殆ど変化しない場合,即ち、所定時間内におけるRAN側からの予約状態の変化を示すリフレッシュメッセージの受信数が所定の下限値を下回る場合には、マルチRSVPノードは、フローの下流(RAN側)に位置する近隣の他の無線ネットワークノード21A(以下、「下流ノード」と表記)に状態遷移指示メッセージを与えてその下流ノードの状態をマルチRSVP状態501に遷移させ、自らはCN側RSVP状態502に遷移する。
【0085】
このように、移動通信システムは、移動通信ネットワークの状態の変化に応じて境界ノードを変更する境界ノード変更手段を備える。これによって、無用のリフレッシュメッセージの転送処理が抑えられ、この処理に使用されていたネットワークリソースを他の用途に有効に利用することが可能になる。
【0086】
上記のように、ノードの状態遷移を行う否かの判断は、全てマルチRSVPノードが行う。従って、RAN側RSVP状態500又はCN側RSVP状態502の無線ネットワークノード21Aは、マルチRSVPノードからの状態遷移指示を受け取ることにより、マルチRSVP状態501に遷移し、新たなマルチRSVPノードとして動作する。
【0087】
〔無線ネットワークノード21A〕
次に、上記したような動作を可能にするための無線ネットワークノード21Aの一実施形態について説明する。図7は、無線ネットワークノード21Aの一実施形態を示す図である。
【0088】
無線ネットワークノード21Aは、CN側のRSVPセッションを終端するCN側RSVP処理部604と、RAN側のRSVPセッションを終端するRAN側RSVP処理部605と、図6で述べたような状態遷移に関する処理を行う状態遷移制御部606と、他の無線ネットワークノード21又は21Aとのインターフェースである外線インターフェース部603と、従来の無線信号処理及びRSVPメッセージに基づくリソースの予約処理を行う信号処理部602と、主制御部600とを有し、これらは互いに装置内バス601により接続されている。CN側RSVP処理部604とRAN側RSVP処理部605とが、二重化されたRSVP処理部22を構成する。
【0089】
また、無線ネットワークノード21Aは、状態記憶部としての状態管理共通テーブル607を有する。状態管理共通テーブル607はRSVPソフト状態や、これに関連する情報をフロー単位で格納する。状態管理共通テーブル607は、CN側RSVP処理部604,RAN側RSVP処理部605,及び状態遷移制御部606により共通に参照される情報格納手段である。
【0090】
また、無線ネットワークノード21Aは、システムデータ格納テーブル608を有する。システムデータ格納テーブル608は、無線ネットワークノード21Aに固有のパラメータを格納している。主制御部600は、無線ネットワークノード21Aの再起動時等に必要なパラメータを取得し、必要な部位に設定する。
【0091】
〈状態管理共通テーブル〉
状態管理共通テーブル607は、フロー毎に生成される1以上のエントリ(レコード)を格納するようになっており、エントリは、フローに対するセッションID、ノード状態、状態変化回数、第1のタイマとしてのPATHリフレッシュタイマ、第2のタイマとしてのRESVリフレッシュタイマ、RSVPソフト状態を設定するための複数の領域を持つ。夫々の情報の説明は次の通りである。
【0092】
なお、図7に示す状態管理共通テーブル607は、ノード30を上流とし移動端末40を下流とするフローについて、移動端末40から送信されてくるリフレッシュメッセージ(RESVメッセージ)に基づいて無線ネットワークノード21Aが状態遷移を行うための情報を格納している。
【0093】
[セッションID]
セッションIDは、フロー毎に付与される識別子であり、無線ネットワークノード21A(装置)の内部でフローを識別するために使用される。本実施形態では、1つのフローに対するRAN側のRSVPセッションとCN側のRSVPセッションとについて、同じセッションIDが使用される。
【0094】
[ノード状態]
ノード状態は、セッションIDで特定されるフローに対する無線ネットワークノード21Aの状態を示す。ノード状態として、“マルチRSVP状態”,“RAN側RSVP状態”,及び“CN側RSVP状態”の何れかが格納される。
【0095】
[状態遷移監視タイマ]
状態遷移監視タイマは、フローに対するRAN側のセッションに対するRSVPソフト状態が変化した回数(状態変化回数)を定期的に監視するためのタイマである。このタイマは定期的に所定の時間を計時し、所定の時間が計時される毎に、その所定の時間内における状態変化回数が参照される。
【0096】
[状態変化回数]
状態変化回数は、RAN側のセッションに対するRSVP状態が変化した回数である。状態変化回数として格納された値に基づいて、無線ネットワークノード21Aが状態遷移を行うか否かの制御が行われる。状態変化回数は、状態遷移監視タイマがタイムアウトになる毎にリセットされ、クリアされる(“0”にされる)。
【0097】
[PATHリフレッシュタイマ]
PATHリフレッシュタイマは、リフレッシュメッセージとしてのPATHメッセージをRAN側(移動端末40)へ周期的に送信するための時間を計時するタイマである。PATHリフレッシュタイマは、セッションに対応するノード状態がマルチRSVP状態である場合にのみ使用される。PATHリフレッシュタイマにより計時される時間(タイマ値)として、PATHリフレッシュ周期が用いられる。PATHリフレッシュタイマの満了(タイムアウト)は、RAN側RSVP処理部605で検出され、このとき、PATHメッセージがRAN側へ送信される。
【0098】
[RESVリフレッシュタイマ]
RESVリフレッシュタイマは、リフレッシュメッセージとしてのRESVメッセージをCN側(ノード30)へ周期的に送信するための時間を計時するタイマである。RESVリフレッシュタイマは、PATHリフレッシュタイマと同様に、セッションに対応するノード状態がマルチRSVP状態である場合にのみ使用される。RESVリフレッシュタイマにより計時される時間(タイマ値)として、RESVリフレッシュ周期が用いられる。RESVリフレッシュタイマの満了(タイムアウト)は、CN側RSVP処理部604で検出され、このとき、RESVメッセージがCN側へ送信される。
【0099】
[RSVPソフト状態]
RSVPソフト状態は、RESVメッセージやPATHメッセージ内に格納されたリソースの予約処理に係る情報であり、少なくともリソースの予約状態を示す情報がRSVPソフト状態として格納される。
【0100】
〈システムデータ格納テーブル〉
システムデータ格納テーブル608は、ノード種別、状態変化回数上限閾値、状態変化回数下限閾値、PATHリフレッシュ周期、RESVリフレッシュ周期を格納するための領域を持つ。それぞれの情報の説明は以下の通りである。
【0101】
[ノード種別]
ノード種別は、無線ネットワークノード21Aがゲートウェイノードか否かを示す情報である。ゲートウェイノードは、フローに対するセッションが新規に追加された際にマルチRSVP状態となる無線ネットワークノード21Aとして定義される。
【0102】
[状態変化回数上限閾値]
状態変化回数上限閾値は、ノード状態がマルチRSVP状態であるセッションに対する無線ネットワークノード21Aの状態遷移のトリガとなる閾値である。状態変化回数が状態変化上限閾値を上回った場合には、無線ネットワークノード21Aは、自身の上流の近隣に位置する他の無線ネットワークノード21Aに対し、当該セッションについてマルチRSVP状態へ遷移することを指示するための状態遷移指示メッセージを送信し、自らはRAN側RSVP状態に遷移する。
【0103】
[状態変化回数下限閾値]
状態変化回数下限閾値は、ノード状態がマルチRSVP状態であるセッションに対する無線ネットワークノード21Aの状態遷移のトリガとなる閾値である。状態変化回数が状態変化下限閾値を下まわった場合には、無線ネットワークノード21Aは、自身の下流の近隣に位置する他の無線ネットワークノード21Aに対し、当該セッションについてマルチRSVP状態へ遷移することを指示するための状態遷移指示メッセージを送信し、自らはCN側RSVP状態に遷移する。
【0104】
[PATHリフレッシュ周期]
PATHリフレッシュ周期は、PATHリフレッシュタイマ値として使用されるタイマ値を示す情報である。通常、PATHリフレッシュ周期として、RESVリフレッシュ周期よりも小さな値が設定される。RAN側でのリフレッシュをCN側よりも頻繁に行うためである。
【0105】
[RESVリフレッシュ周期]
RESVリフレッシュ周期は、RESVリフレッシュタイマ値として使用されるタイマ値を示す情報である。通常、RESVリフレッシュ周期として、PATHリフレッシュ周期よりも大きな値が設定される。CN側に送信されるリフレッシュメッセージ(RESVメッセージ)の送信間隔を長くしてCN側のリソースの浪費を抑えるためである。
【0106】
[状態遷移監視周期]
状態遷移監視周期は、状態遷移監視タイマ値として使用されるタイマ値を示す情報である。
【0107】
〈状態遷移制御部〉
次に状態遷移制御部606について説明する。状態遷移制御部606は、状態管理共通テーブル607を参照することにより、セッション毎にRSVPソフト状態を識別し、RSVPソフト状態に応じて主に以下の処理を行う。
【0108】
状態遷移制御部606は、状態管理共通テーブル607内においてノード状態がマルチRSVP状態であるセッションの全てに対し、状態遷移監視タイマで計時される一定時間(状態遷移監視タイマ値)毎に状態変化回数を0クリアする。これは、ある単位時間(状態遷移監視タイマ値)内に発生する状態変化の回数を測定するためである。0クリアのタイミングはセッション毎に共通となっていても、異なっていても良い。
【0109】
また、状態遷移制御部606は、マルチRSVP状態のセッションに関して、RAN側RSVP処理部605又はCN側RSVP処理部604からRSVP状態変化通知を受け取ると、状態変化回数に1を加算する。続いて、状態遷移制御部606は、加算後の値を状態変化回数上限閾値及び状態変化回数下限閾値と夫々比較する。このとき、状態遷移制御部606は、加算後の値が上限閾値を上まわる、又は下限閾値を下まわった場合には、そのセッションに対するノード状態を遷移させる。
【0110】
さらに、状態遷移制御部606は、近隣のマルチRSVPノードから或るセッションについてノード状態を遷移するための状態遷移指示メッセージを受け取った場合に、そのセッションに対するノード状態をマルチRSVP状態に設定する。 また、状態遷移制御部606は、セッションが新規に追加される場合にも、ノード状態を設定する。
【0111】
〈RSVPメッセージに対する処理〉
次に、無線ネットワークノード21AにおけるRSVPメッセージに対する処理について説明する。図7において、無線ネットワークノード21Aは、RAN側(移動端末側)及びCN側から送信されてくる全てのRSVPメッセージを外線インターフェイス部603で受信する。RSVPメッセージは、上述したように、PATHメッセージ,RESVメッセージ,PATH TEARメッセージ,RESV TEARメッセージの何れかである。
【0112】
CN側RSVP処理部604は、CN側からのRSVPメッセージの全てを外線インターフェイス部603から受け取り、受け取ったRSVPメッセージに対する処理を行う。一方、RAN側RSVP処理部605は、RAN側からのRSVPメッセージの全てを受け取り、受け取ったRSVPメッセージに対する処理を行う。
【0113】
《RESVメッセージに対する動作例》
以下、リフレッシュメッセージであるRESVメッセージに対する無線ネットワークノード21Aの動作について説明する。図8は、無線ネットワークノード21Aにおいて、RESVメッセージの処理が行われる際の動作の流れを示す図である。なお、本実施形態では、RESVメッセージは移動端末側(RAN側)からのみ送信されてくるものとする。
【0114】
RAN側RSVP処理部605は、ステップS700でRESVメッセージを受信すると、このRESVメッセージからセッションIDを抽出し、このセッションIDが状態管理共通テーブル607内に格納されているか否かをチェックする(ステップS701,S702)。
【0115】
ステップS702において、抽出されたセッションIDと同一のセッションIDが状態管理共通テーブル607内に存在する場合(S702;YES)には、RAN側RSVP処理部605は、RESVメッセージに格納されているRSVPソフト状態と、セッションIDに対応する状態管理共通テーブル607内のRSVPソフト状態とを比較し(ステップS703)、RSVPソフト状態として示されるリソースの予約状態が変化したかどうかを判定する(ステップS704)。
【0116】
このとき、予約状態が変化していない場合(S704;NO)には、RAN側RSVP処理部605は、セッションIDに対応するノード状態を参照し、ノード状態がマルチRSVP状態か否かを判定する(ステップS704a)。ノード状態がマルチRSVP状態であれば(S704a;YES)、RAN側RSVP処理部605は、このRESVメッセージに対する処理を終了する。
【0117】
即ち、RAN側RSVP処理部605は、RESVメッセージを終端し、この転送を停止する。これによって、予約状態の変化を示さないリフレッシュメッセージがCN側へ転送されることが防止される。
【0118】
一方、ステップS704aにおいて、ノード状態がマルチRSVP状態でなければ(S704a;NO)、RAN側RSVP処理部605は、RESVメッセージをCN側へ転送し(ステップS713)、このRESVメッセージに対する処理を終了する。
【0119】
一方、ステップS704で予約状態が変化したと判定された場合(S704;YES)には、RAN側RSVP処理部605は、状態管理共通テーブル607内の当該セッションIDに対応するRSVPソフト状態(リソースの予約状態)を更新する(ステップS705)。
【0120】
続いて、RAN側RSVP処理部605は、そのセッションIDに対応するノード状態を参照し、ノード状態がマルチRSVP状態かどうかを調べる(ステップS712)。このとき、ノード状態がマルチRSVP状態でなければ(S712;NO)、RAN側RSVP処理部605は、RESVメッセージをCN側へ転送し(ステップS713)、このRESVメッセージに対する処理を終了する。このステップS713の処理は、シングルRSVP状態(RAN側RSVP状態500又はCN側RSVP状態502)としての処理である。
【0121】
一方、ステップS712でセッションIDに対応するノード状態がマルチRSVP状態であると判定された場合(S712;YES)には、RAN側RSVP処理部605は、以下の2つの処理を並列に行う。
【0122】
第1に、RAN側RSVP処理部605は、状態遷移制御部606に対してセッションIDを渡し、セッションIDに対するRSVPソフト状態が変化したことを通知する(ステップS714)。この通知を受けた状態遷移制御部606は、状態管理共通テーブル607内の、通知されたセッションIDに対応する状態変化回数に1を加算する(ステップS715)。
【0123】
第2に、RAN側RSVP処理部605は、CN側RSVP処理部604にセッションIDを渡し、セッションのRSVPソフト状態が変化したことを通知する(ステップS716)。
【0124】
RAN側RSVP処理部605からの通知を受けとったCN側RSVP処理部604は、状態管理共通テーブル607内の、通知されたセッションIDに対応するRSVPソフト状態(リソースの予約状態)を取得し、これを含むRESVメッセージを生成し、CN側へ送信する(ステップS717)。その後、CN側RSVP処理部604は、通知されたセッションIDに対応するRESVリフレッシュタイマをリセットする(ステップS718)。
【0125】
なお、RAN側RSVP処理部605は、ステップS715及びS716の処理が終了すると、このRESVメッセージに対する処理を終了し、次のRESVメッセージを受け付ける状態になる。
【0126】
ところで、ステップS702において、RESVメッセージから抽出されたセッションIDが状態管理共通テーブル607内で管理されているセッションIDのいずれとも一致しない場合(S702;NO)には、RAN側RSVP処理部605は、抽出したセッションIDと、RESVメッセージに格納されているRSVP情報(RSVPソフト状態;リソースの予約状態)を状態管理共通テーブル607に追加する(ステップS706)。その後、RAN側RSVP処理部605は、新規セッションを追加したことを状態遷移制御部606に通知する(ステップS707)。
【0127】
状態遷移制御部606は、新規セッション追加の通知をRAN側RSVP処理部605から受け取ると、システムデータ格納テーブル608に格納されているノード種別を参照し(ステップS708)、この無線ネットワークノード21Aがゲートウェイノードかどうかをチェックする(ステップS709)。
【0128】
このとき、ノード種別がゲートウェイノードであれば(S709;YES)、状態遷移制御部606は、追加されたセッションに対するノード状態をマルチRSVP状態に設定する(ステップS710)。これによって、無線ネットワークノード21Aは、追加されたセッションに対してマルチRSVPノードとして振る舞う。
【0129】
一方、ノード種別がゲートウェイノードでなければ(S709;NO)、状態遷移制御部606は、追加されたセッションに対するノード状態をRAN側RSVP状態に設定する(ステップS711)。その後、上述したステップS712以降の処理が行われる。
【0130】
ところで、ノード状態がマルチRSVP状態であるセッションについては、上述したステップS700〜S718までの一連の処理から独立して、CN側RSVP処理部604が周期的にRESVメッセージを生成しCN側へ送信する処理が行われる。
【0131】
すなわち、ステップS719において、あるマルチRSVP状態のセッションに対応するRESVリフレッシュタイマ(第1のタイマ)がタイムアウトになると(S719;YES)、CN側RSVP処理部604は、第1の処理部として、このセッションに対応するRSVPソフト状態(リソースの予約状態)を状態管理共通テーブル607から取得し、これを含むRESVメッセージを生成しCN側へ送信する(ステップS720)。
【0132】
その後、ステップS721にて、CN側RSVP処理部604は、タイムアウトになったRESVリフレッシュタイマをリセットする。これによって、CN側には、リソースの予約状態をリフレッシュするためのRESVメッセージが周期的に送信される。
【0133】
《PATHメッセージに対する動作例》
無線ネットワークノード21AにおけるPATHメッセージに対する処理は、以下に示すように、RESVメッセージに対する処理と同様に行われる。図9は、無線ネットワークノード21Aにおいて、PATHメッセージの処理が行われる際の動作の流れを示す図である。なお、PATHメッセージはノード30側(CN側)からのみ送信されてくるものとする。
【0134】
CN側RSVP処理部604は、ステップS730でPATHメッセージを受信すると、このPATHメッセージからセッションIDを抽出し、このセッションIDが状態管理共通テーブル607内に格納されているか否かをチェックする(ステップS731,S732)。
【0135】
ステップS732において、抽出されたセッションIDと同一のセッションIDが状態管理共通テーブル607内に存在する場合(S732;YES)には、CN側RSVP処理部604は、PATHメッセージに格納されているRSVPソフト状態と、セッションIDに対応する状態管理共通テーブル607内のRSVPソフト状態とを比較する(ステップS733)。
【0136】
続いて、CN側RSVP処理部604は、比較結果に基づいてRSVPソフト状態,即ち予約状態が変化したかどうかを判定する(ステップS734)。このとき、予約状態が変化していない場合(S734;NO)には、このセッションIDに対応するノード状態がマルチRSVP状態か否かを判定する(ステップS734a)。このとき、ノード状態がマルチRSVP状態であれば(S734a;YES)、CN側RSVP処理部604は、このPATHメッセージに対する処理を終了し、無駄なPATHメッセージがRAN側へ流れるのを防止する。
【0137】
一方、ステップS734aにおいて、ノード状態がマルチRSVP状態でなければ(S734a;NO)、CN側RSVP処理部604は、PATHメッセージをCN側へ転送し(ステップS743)、このPATHメッセージに対する処理を終了する。ステップS743の処理は、シングルRSVP状態(RAN側RSVP状態500又はCN側RSVP状態502)としての処理である。
【0138】
一方、CN側RSVP処理部604は、ステップS734において予約状態が変化したと判定した場合(S734;YES)には、状態管理共通テーブル607内の当該セッションのRSVPソフト状態を更新する(ステップS735)。
【0139】
その後、CN側RSVP処理部604は、そのセッションIDに対応するノード状態を参照し、マルチRSVP状態かどうかを調べる(ステップS742)。このとき、ノード状態がマルチRSVP状態でなければ(S742;NO)、CN側RSVP処理部604は、PATHメッセージをRAN側へ転送する(S743)。
【0140】
一方、ステップS742で当該セッションのノード状態がマルチRSVP状態であったと判定された場合(S742;YES)には、CN側RSVP処理部604は、ステップS746において、RAN側RSVP処理部605にセッションIDを渡し、セッションのRSVPソフト状態が変化したことを通知する。なお、CN側RSVP処理部604は、S746の処理が終了すると、このPATHメッセージに対する処理を終了し、次のPATHメッセージを受け付ける状態になる。
【0141】
CN側RSVP処理部604からの通知を受けたRAN側RSVP処理部605は、状態管理共通テーブル607内の、通知されたセッションIDに対応するRSVPソフト状態を取得し、これを含むPATHメッセージを生成し、CN側へ送信する(ステップS747)。その後、ステップS748において、CN側RSVP処理部604は、通知されたセッションIDに対応するPATHリフレッシュタイマをリセットする。
【0142】
ところで、ステップS732において、PATHメッセージから抽出したセッションIDが状態管理共通テーブル607内に格納されているセッションIDのいずれとも一致しない場合(S732;NO)には、CN側RSVP処理部604は、抽出したセッションIDと、PATHメッセージに含まれている情報(RSVPソフト状態に相当する情報)とを、状態管理共通テーブル607内に追加する(ステップS736)。その後、CN側RSVP処理部604は、新規セッションを追加したことを状態遷移制御部606に通知する(ステップS737)。
【0143】
新規セッション追加の通知を受けとった状態遷移制御部606は、システムデータ格納テーブル608に格納されているノード種別を参照し(ステップS738)、この無線ネットワークノード21Aがゲートウェイノードかどうかをチェックする(ステップS739)。
【0144】
このとき、ノード種別がゲートウェイノードであれば(S739;YES)、状態遷移制御部606は、追加されたセッションに対するノード状態をマルチRSVP状態に設定する(ステップS740)。
【0145】
一方、ノード種別がゲートウェイノードでなければ(S739;NO)、状態遷移制御部606は、追加されたセッションに対するノード状態をRAN側RSVP状態500に設定する(ステップS741)。ステップS740又はS741の処理が終了すると、処理がステップS742に進む。
【0146】
ノード状態がマルチRSVP状態であるセッションについては、上述したステップS730〜S743,S746〜S748までの処理から独立して、周期的にPATHメッセージを生成しRAN側へ送信する処理が行われる。
【0147】
すなわち、ステップS749において、あるマルチRSVP状態のセッションのPATHリフレッシュタイマ(第2のタイマ)がタイムアウトになると(S749;YES)、CN側RSVP処理部604は、第2の処理部として、このセッションに対応するRSVPソフト状態を状態管理共通テーブル607から取得し、これを含むPATHメッセージを生成しRAN側へ送信する(ステップS750)。その後、ステップS751にて、CN側RSVP処理部604は、タイムアウトになったPATHリフレッシュタイマをリセットする。
【0148】
本実施形態では、データ送信ノード(例えばサーバ30)からデータ受信ノード(例えば移動端末40)へのデータフローに対する新たなセッションが追加される場合には、各無線ネットワークノード21Aが新規のPATHメッセージを受信することによって、そのノードの状態の設定が行われる(S736〜S741)。このとき、CN10からRAN20への入口に相当する無線ネットワークノード21Aがゲートウェイノードに決定されるようになっている。
【0149】
従って、新規なセッションが追加された時点では、フロー上の複数の無線ネットワークノード21Aの状態は、マルチRSVP状態501かRAN側RSVP状態500との一方になる。その後、当該セッションの状態変化回数が少ない(例えば、移動端末40の移動範囲が小さい等)場合に、マルチRSVP状態501が下流側(移動端末40側)へ移動する。このとき、CN側RSVP状態502の無線ネットワークノード21Aが出現する。
【0150】
なお、図8及び図9に示したように、無線ネットワークノード21Aが状態遷移を行うか否かの判断は、RAN側からのリフレッシュメッセージ(RESVメッセージ)による予約状態の変化の回数に基づいて行われる。このため、状態管理共通テーブル607は、PATHメッセージに関する状態変化回数及び状態遷移監視タイマを持たず、ステップS714及びS715に相当する処理が行われないようになっている。CN10の経路変化は頻繁には起こらず、CN側からの状態変化を示すPATHメッセージが頻繁に送信されることはないものと考えられるからである。但し、状態管理共通テーブル607がPATHメッセージに関する状態変化回数及び状態遷移監視タイマをさらに格納し、CN側からのPATHメッセージについてステップS714及びS715に相当する処理が行われるようにしても良い。
【0151】
なお、CN側RSVP処理部604及びRAN側RSVP処理部605は、受信したリフレッシュメッセージ(RESVメッセージ又はPATHメッセージ)により予約状態が変化した場合には、その予約状態に応じたリソースの予約処理を行う。また、RSVP処理部22の代わりに単一のRSVP処理部を持つノードでも、リフレッシュメッセージにより予約状態が変化した場合には、その予約状態に応じたリソースの予約処理を行う。
【0152】
また、図8及び図9に示す動作によると、マルチRSVPノードから送信されるRESVメッセージは、CN側における1以上のノード(中継ノード)を介してノード30に受信される。一方、マルチRSVPノードから送信されるPATHメッセージは、RAN側における1以上の無線ネットワークノード(中継ノード)を介して移動端末40に受信される。
【0153】
〈状態遷移制御における動作例〉
次に、無線ネットワークノード21Aにおいて、ノード状態の遷移に関する処理が行われる際の処理の流れについて説明する。
【0154】
図7に示す状態遷移制御部606は、状態管理共通テーブル607内で管理されているセッションのうち、ノード状態がマルチRSVP状態であるセッションについて、図10に示すような処理を行う。図10は、無線ネットワークノード21Aにおける状態遷移制御の例を示すフローチャートである。
【0155】
図10において、状態遷移制御部606は、周期的にマルチRSVP状態にあるセッションについて、状態変化回数を、状態変化回数上限閾値及び状態変化回数下限閾値と比較する(ステップS800〜S803)。
【0156】
即ち、状態遷移制御部606は、状態管理共通テーブル607で管理しているセッションの状態遷移監視タイマがタイムアウトになると(S800)、そのセッションIDに対応するノード状態を参照し、ノード状態がマルチRSVP状態か否かを参照し、マルチRSVP状態であれば、このセッションの状態変化回数を状態変化回数上限閾値及び状態変化回数下限閾値と夫々比較する(S801)。そして、状態遷移制御部606は、状態変化回数が上限閾値以上か否かを判定し(S802)、上限閾値以上でなければ(S802;NO)、状態変化回数が下限閾値以下か否かを判定する(S803)。なお、状態遷移監視タイマがタイムアウトになったセッションのノード状態がマルチRSVP状態でない場合には、図10に示す処理は終了する。
【0157】
状態変化回数が上限閾値以上でもなく(S802;NO)、下限閾値以下でもない場合(S803;NO)には、状態遷移制御部606は、ステップS811にて、状態管理共通テーブル607内の該当セッションIDに対応する状態変化回数を初期化する。その後、処理がステップS800に戻る。
【0158】
状態変化回数が下限閾値以下であった場合(S803;YES)には、状態遷移制御部606は、状態遷移指示メッセージを生成し、このメッセージの宛先に相当する下流ノードへ送信する(ステップS804)。その後、状態遷移制御部606は、下流ノードからの状態遷移完了通知を所定時間待つ(ステップS805)。
【0159】
一方、状態変化回数が上限閾値以上であった場合には、状態遷移制御部606は状態遷移指示メッセージを生成し、このメッセージの宛先に相当する上流ノードへ送信する(ステップS807)。その後、状態遷移制御部606は、上流ノードからの状態遷移完了通知を所定時間待つ(ステップS808)。
【0160】
状態遷移制御部606は、ステップS805において下流ノードからの状態遷移完了通知を所定時間内に受信しなかった場合(S805;NO)、および、ステップS808において上流ノードからの状態遷移完了通知を受信しなかった場合(S808;NO)には、状態管理テーブル607内の該当セッションIDに対する状態変化回数を初期化し(ステップS811)、処理をステップS800に戻す。
【0161】
一方、状態遷移制御部606は、状態遷移完了通知を所定時間内に下流ノードから受信した場合(S805;YES)には、状態管理共通テーブル607内の該当セッションIDに対するノード状態をCN側RSVP状態に更新する(ステップS806)。これによって、当該セッションに対する無線ネットワークノード21Aの状態がマルチRSVP状態からCN側RSVP状態に遷移する。
【0162】
同様に、状態遷移制御部606は、状態遷移完了通知を所定時間内に上流ノードから受信した場合(S808;YES)には、状態管理共通テーブル607内の該当セッションIDに対するノード状態をRAN側RSVP状態に更新する(ステップS809)。これによって、当該セッションに対する無線ネットワークノード21Aの状態がマルチRSVP状態からRAN側RSVP状態に遷移する。
【0163】
その後、状態遷移制御部606は、状態管理共通テーブル607内の該当セッションIDに対するPATHリフレッシュタイマ及びRESVリフレッシュタイマを初期化(リセット)する(ステップS810)。続いて、状態遷移制御部606は、状態管理共通テーブル607内の該当セッションIDに対応する状態変化回数を初期化(リセット)する(ステップS811)。
【0164】
なお、上述した動作では、状態遷移制御部606は、状態遷移監視タイマ値を単位時間とし、この単位時間内における予約状態の変化回数(状態変化回数)に基づいて無線ネットワークノード21Aの状態遷移についての判定を行っている。これに代えて、無線ネットワークノード21Aの状態遷移についての判定が、通信(フロー)確立時からのRAN側の状態変化の積算回数を用いて行われるようにしてもよい。
【0165】
〈状態遷移メッセージ受信による動作例〉
次に、無線ネットワークノード21Aが、ステップS804又はS807で送信された状態遷移指示メッセージを受信した際の動作について説明する。状態遷移指示メッセージは、RSVPメッセージの一つとして送信され、宛先に相当する無線ネットワークノード21Aの外線インターフェイス部603で受信され、CN側RSVP処理部604又はRAN側RSVP処理部605に渡される。
【0166】
図11は、無線ネットワークノード21Aによる状態遷移指示メッセージ受信時の処理フローの例を示す図である。ステップS900において、CN側RSVP処理部604又はRAN側RSVP処理部605は、RSVPメッセージを受信すると、このRSVPメッセージが状態遷移指示メッセージかどうかを判定する(ステップS901)。
【0167】
このとき、RSVPメッセージが状態遷移指示メッセージでない場合(S901;NO)には、CN側RSVP処理部604又はRAN側RSVP処理部605は、図7又は図8に示したような通常のRSVPメッセージに対する処理を行う(ステップS902)。
【0168】
これに対し、RSVPメッセージが状態遷移指示メッセージであった場合(S901;YES)には、RSVP処理部は、状態遷移制御部606に状態遷移指示メッセージを転送する(ステップS903)。
【0169】
状態遷移制御部606は、CN側RSVP処理部604又はRAN側RSVP処理部605から転送された状態遷移指示メッセージを受け取ると、この状態遷移指示メッセージから送信元IPアドレスとセッションIDを抽出する(ステップS904)。
【0170】
次に、状態遷移制御部606は、状態管理共通テーブル607から抽出したセッションIDと同じセッションIDを持つエントリを検出し、このエントリのセッションIDに対応するノード状態をマルチRSVP状態に設定する(ステップS905)。
【0171】
次に、状態遷移制御部606は検出したエントリの状態遷移監視タイマ,状態変化回数,PATHリフレッシュタイマ及びRESVリフレッシュタイマを初期化(リセット)する(ステップS906)。
【0172】
そして、状態遷移制御部606は、ステップS904で抽出したIPアドレスを宛先として、状態遷移完了通知メッセージを返信する(ステップS907)。
【0173】
〈状態遷移指示/完了通知メッセージ〉
次に、図10及び11に示した動作において送受信される状態遷移指示メッセージ及び状態遷移完了通知メッセージ(状態遷移指示/完了通知メッセージ)について説明する。これらのメッセージは、本発明において導入されるものであるため、新しく定義する必要がある。この際、送信元アドレス、送信先(宛先)アドレス、メッセージ識別子、制御対象となるフロー(セッション)の4つの情報が最低でも必要となる。
【0174】
図12に、IPv6パケットを使用した状態遷移指示/完了通知メッセージの一例を示す。図12では、状態遷移指示/完了通知メッセージのフォーマットとしてRSVPメッセージに準じたものを使用している。すなわち、状態遷移指示/完了通知メッセージは、IPv6ヘッダ、RSVP共通ヘッダ、RSVPオブジェクトから構成される。
【0175】
状態遷移指示メッセージにおいて、IPv6ヘッダ内の送信元アドレスには、状態遷移指示メッセ−ジを生成・送信する無線ネットワークノード21AのIPアドレスが格納される。
【0176】
また、送信先アドレスには、下流ノード又は上流ノードに相当する無線ネットワークノード21AのIPアドレスが格納される。IPアドレスとして、状態管理共通テーブル607の該当するセッションに対応するRSVPソフト状態に格納されているネクスト・ホップ・アドレス(Next Hop Address)又はプレビアス・ホップ・アドレス(Previous Hop Address)が用いられる。
【0177】
具体的には、状態遷移制御部606は、上流ノードへ状態遷移指示メッセージを送信する場合には、プレビアス・ホップ・アドレスを送信先アドレスとして用いる。一方、状態遷移制御部606は、下流ノードへ状態遷移指示メッセージを送信する場合には、ネクスト・ホップ・アドレスを送信先アドレスとして用いる。
【0178】
また、状態遷移指示メッセージ又は状態遷移応答メッセージであることを識別するため、RSVP共通ヘッダ内のRSVPタイプが使用される。具体的には、RSVPタイプ領域に対応する状態遷移指示メッセージ及び状態遷移完了通知メッセージの2つ分のメッセージタイプが定義され、送信対象のメッセージに応じたメッセージタイプがRSVPタイプ領域に格納される。
【0179】
そして、状態遷移の対象となるセッションを指定するため、RSVPオブジェクトとしてセッションオブジェクトが利用される。
【0180】
〔実施形態の作用〕
本発明の実施形態によると、RSVPに基づくリソースの予約状態のリフレッシュ動作が、所定の無線ネットワークノード21Aを境とするコアネットワーク側(CN側)と移動通信ネットワーク側(RAN側)とで独立して行われる。
【0181】
これによって、トポロジーの変更すなわち状態変化の少ないCN側では、リフレッシュ周期をRAN側よりも長く設定することによって、ネットワークリソースの浪費を最小限に抑えることができる。一方、移動端末40の移動に伴う状態変化が頻繁に起こることが想定されるRAN側では、リフレッシュ周期をCN側よりも短くすることで、リソースの予約状態を常に移動端末40の動きに追随させることができ、所望の通信品質(QoS)を確保することが可能となる。
【0182】
さらに、本発明の実施形態によると、フローに対するRSVP処理を二重化させるポイント(境界ノード;マルチRSVPノード)を移動端末40の状態によってダイナミックに(動的に)変更することができる。
【0183】
即ち、移動端末40の移動範囲が広範囲に渡る場合(マルチRSVPノードが頻繁に予約状態の変化を示すRESVメッセージを受信する場合)には、フローに対するRSVPの二重化ポイント(マルチRSVPノード)をCN10近い側へ移行させる。一方、移動端末40の移動範囲がそれほど広くない場合(マルチRSVPノードが予約状態の変化を示すRESVメッセージを殆ど受信しない場合)には、移動端末40に近い側にRSVPの二重化ポイント(マルチRSVPノード)を移行させる。
【0184】
即ち、移動通信網(RAN)は、移動端末40の状態(位置変化等)に応じて、最も適切な二重化ポイント(マルチRSVPノード)を自動的に判別し、無線ネットワークノード21Aの状態を遷移させていくのである。これにより、通信の品質を最大限確保しながらも、ネットワークリソースの消費量を最小限に抑えることができる。
【0185】
以上の機能により、移動端末40のユーザは常に最適に予約されたリソースを使用することで品質の高い大容量通信サービスの提供を受けることができる。一方、ネットワークリソースの浪費を抑えることにより、このような大容量通信サービスを実現するためのインフラ設備も最低限の規模及びコストで構築可能となる。
【0186】
〔その他〕
上述した実施形態は、以下の発明を開示する。
(付記1)リソース予約プロトコルを実装したコアネットワークに接続される移動通信ネットワークと、
前記移動通信ネットワークに含まれる複数の無線ネットワークノードと、
前記コアネットワーク及び前記移動通信ネットワークを通過するデータ送信ノードとデータ受信ノードとの間のデータのフローに対するネットワークリソースをリソース予約プロトコルに基づいて予約する手段と、
前記フローに係るネットワークリソースの予約状態をリフレッシュする領域を前記フローが通過する所定の無線ネットワークノードを境としてコアネットワーク側と移動通信ネットワーク側とに分割し、前記移動通信ネットワーク側に対するリフレッシュを前記コアネットワーク側に対するリフレッシュの頻度よりも高い頻度で行うリフレッシュ制御手段と、
を含むRSVPを用いた移動通信システム。(1)
(付記2)前記リフレッシュ制御手段は、前記移動通信ネットワーク側に対するリフレッシュを前記コアネットワーク側に対するリフレッシュの周期よりも短い周期で行う、付記1記載のRSVPを用いた移動通信システム。(2)
(付記3)前記フローに対する前記移動通信ネットワークの状態の変化に応じて、前記境界となる無線ネットワークノードとしての境界ノードを変更する境界ノード変更手段をさらに含む、付記1記載のRSVPを用いた移動通信システム。(3)
(付記4)前記境界ノード変更手段は、現在の境界ノードが所定時間内に得た前記移動通信ネットワーク側におけるネットワークリソースの予約状態の変化の回数が上限値を上回った場合に、現在の境界ノードよりもコアネットワーク側に存する他の無線ネットワークノードを境界ノードに変更する、付記3記載のRSVPを用いた移動通信システム。(4)
(付記5)前記境界ノード変更手段は、現在の境界ノードが所定時間内に得た前記移動通信ネットワーク側におけるネットワークリソースの予約状態の変化の回数が下限値を下回った場合に、現在の境界ノードよりも移動通信ネットワーク側に存する他の無線ネットワークノードを境界ノードに変更する、付記3記載のRSVPを用いた移動通信システム。(5)
(付記6)前記リフレッシュ制御手段は、前記コアネットワーク側と前記移動通信ネットワーク側との境となる無線ネットワークノードに設けられた状態記憶部とRSVP処理部とを含み、
前記状態記憶部は、少なくとも前記フローに対する前記移動通信ネットワーク側のネットワークリソースの予約状態を格納し、
前記RSVP処理部は、前記移動通信ネットワーク側からネットワークリソースの予約状態をリフレッシュするためのリフレッシュメッセージを受信し、このリフレッシュメッセージに含まれたネットワークリソースの予約状態が前記状態記憶部に格納されている予約状態からの変化を示さない場合には、このリフレッシュメッセージの転送を停止する、付記1記載のRSVPを用いた移動通信システム。
(付記7)前記RSVP処理部は、前記移動通信ネットワーク側から受信したリフレッシュメッセージに含まれたネットワークリソースの予約状態が前記状態記憶部に格納されている予約状態からの変化を示す場合には、この予約状態で前記状態記憶部に格納された予約状態を更新し、この予約状態を含む前記コアネットワーク側のネットワークリソースの予約状態をリフレッシュするためのリフレッシュメッセージを生成し、前記コアネットワーク側へ送信する、付記6記載のRSVPを用いた移動通信システム。
(付記8)前記リフレッシュ制御手段は、
第1の時間を計時する第1のタイマと、
第1の時間よりも短い第2の時間を計時する第2のタイマと、
前記第1のタイマが第1の時間を計時する毎に、前記コアネットワーク側のネットワークリソースの予約状態をリフレッシュするためのリフレッシュメッセージを生成して前記コアネットワーク側へ送信する第1の処理部と、
前記第1の処理部から独立して、前記第2のタイマが第2の時間を計時する毎に、前記移動通信ネットワーク側のネットワークリソースの予約状態をリフレッシュするためのリフレッシュメッセージを生成して前記移動通信ネットワーク側へ送信する第2の処理部とを含む、付記1記載のRSVPを用いた移動通信システム。
(付記9)前記コアネットワーク側と前記移動通信ネットワーク側との境となる無線ネットワークノードは、状態監視部と、所定の時間を計時する状態監視タイマと、前記状態監視タイマが所定の時間を計時する間に前記移動通信ネットワーク側から受信された複数のリフレッシュメッセージによる予約状態の変化回数を記憶する状態変化回数記憶部と、変化回数の閾値を記憶する閾値記憶部とをさらに含み、
前記状態監視部は、前記状態監視タイマが所定の時間を計時する毎に、前記状態変化回数記憶部に記憶された変化回数が前記閾値記憶部に記憶された閾値を上回っているか否かを判定し、変化回数が閾値を上回っている場合には、この無線ネットワークノードのコアネットワーク側に存する他の無線ネットワークノードに、この無線ネットワークノードの代わりに前記境となることを指示するメッセージを発行し送信する、付記7記載のRSVPを用いた移動通信システム。
(付記10)前記コアネットワーク側と前記移動通信ネットワーク側との境となる無線ネットワークノードは、状態監視部と、所定の時間を計時する状態監視タイマと、前記状態監視タイマが所定の時間を計時する間に前記移動通信ネットワーク側から受信された複数のリフレッシュメッセージによる予約状態の変化回数を記憶する状態変化回数記憶部と、変化回数の閾値を記憶する閾値記憶部とをさらに含み、
前記状態監視部は、前記状態監視タイマが所定の時間を計時する毎に、前記状態変化回数記憶部に記憶された変化回数が前記閾値記憶部に記憶された閾値を下回っているか否かを判定し、変化回数が閾値を下回っている場合には、この無線ネットワークノードの移動通信ネットワーク側に存する他の無線ネットワークノードに、この無線ネットワークノードの代わりに前記境となることを指示するメッセージを発行し送信する、付記7記載のRSVPを用いた移動通信システム。
【0187】
【本発明の効果】
本発明によれば、ネットワークリソースの予約状態をネットワークの状態変化に柔軟に追随させることができる一方で、ネットワークリソースの有効利用を図ることができる。
【図面の簡単な説明】
【図1】図1は、移動通信システムにRSVPを用いることを想定した場合の例を示す図である。
【図2】図2は、図1に示したようなシステムにおけるRSVP処理イメージを示す図である。
【図3】図3は、従来の方式に基づいたRSVPネットワークを示す図である。
【図4】図4は、本発明による移動通信システムの実施形態を示す図である。
【図5】図5は、移動通信システムに適したRSVPネットワークを示す図である。
【図6】図6は、無線ネットワークノードの状態遷移を示す図である。
【図7】図7は、無線ネットワークノードの一実施形態を示す図である。
【図8】図8は、無線ネットワークノードによるRESVメッセージの処理フローの例を示す図である。
【図9】図9は、無線ネットワークノードによるPATHメッセージの処理フローの例を示す図である。
【図10】図10は、無線ネットワークノードにおける状態遷移制御の処理フローの例を示す図である。
【図11】図11は、無線ネットワークノードによる状態遷移指示メッセージ受信時の処理フローの例を示す図である。
【図12】図12は、IPv6パケットを使用した状態遷移指示/応答メッセージフォーマットの一例を示す図である。
【符号の説明】
10 コアネットワーク(CN)
20 無線アクセスネットワーク(RAN)
21,21A 無線ネットワークノード
30 データ送信/受信ノード
40 移動端末
22 二重化RSVP処理部
604 CN側RSVP処理部
605 RAN側RSVP処理部
606 状態遷移制御部
607 状態管理共通テーブル
608 システムデータ格納テーブル
Claims (5)
- リソース予約プロトコルを実装したコアネットワークに接続される移動通信ネットワークと、
前記移動通信ネットワークに含まれる複数の無線ネットワークノードと、
前記コアネットワーク及び前記移動通信ネットワークを通過するデータ送信ノードとデータ受信ノードとの間のデータのフローに対するネットワークリソースをリソース予約プロトコルに基づいて予約する手段と、
前記フローに係るネットワークリソースの予約状態をリフレッシュする領域を前記フローが通過する所定の無線ネットワークノードを境としてコアネットワーク側と移動通信ネットワーク側とに分割し、前記移動通信ネットワーク側に対するリフレッシュを前記コアネットワーク側に対するリフレッシュの頻度よりも高い頻度で行うリフレッシュ制御手段と、
を含むRSVPを用いた移動通信システム。 - 前記リフレッシュ制御手段は、前記移動通信ネットワーク側に対するリフレッシュを前記コアネットワーク側に対するリフレッシュの周期よりも短い周期で行う、請求項1記載のRSVPを用いた移動通信システム。
- 前記フローに対する前記移動通信ネットワークの状態の変化に応じて、前記境界となる無線ネットワークノードとしての境界ノードを変更する境界ノード変更手段をさらに含む、請求項1記載のRSVPを用いた移動通信システム。
- 前記境界ノード変更手段は、現在の境界ノードが所定時間内に得た前記移動通信ネットワーク側におけるネットワークリソースの予約状態の変化の回数が上限値を上回った場合に、現在の境界ノードよりもコアネットワーク側に存する他の無線ネットワークノードを境界ノードに変更する、請求項3記載のRSVPを用いた移動通信システム。
- 前記境界ノード変更手段は、現在の境界ノードが所定時間内に得た前記移動通信ネットワーク側におけるネットワークリソースの予約状態の変化の回数が下限値を下回った場合に、現在の境界ノードよりも移動通信ネットワーク側に存する他の無線ネットワークノードを境界ノードに変更する、請求項3記載のRSVPを用いた移動通信システム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002144883A JP3880451B2 (ja) | 2002-05-20 | 2002-05-20 | Rsvpを用いた移動通信システム |
US10/301,054 US7499436B2 (en) | 2002-05-20 | 2002-11-21 | Mobile communication system using resource reservation protocol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002144883A JP3880451B2 (ja) | 2002-05-20 | 2002-05-20 | Rsvpを用いた移動通信システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003338839A JP2003338839A (ja) | 2003-11-28 |
JP3880451B2 true JP3880451B2 (ja) | 2007-02-14 |
Family
ID=29417088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002144883A Expired - Fee Related JP3880451B2 (ja) | 2002-05-20 | 2002-05-20 | Rsvpを用いた移動通信システム |
Country Status (2)
Country | Link |
---|---|
US (1) | US7499436B2 (ja) |
JP (1) | JP3880451B2 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7792119B2 (en) * | 2000-05-22 | 2010-09-07 | Telefonaktiebolaget L M Ericsson (Publ) | Method for a connection through a core network |
US20050180426A1 (en) * | 2004-02-18 | 2005-08-18 | Yoshifumi Sakata | Network resource-reserving apparatus and method |
US8000248B2 (en) * | 2004-10-14 | 2011-08-16 | Telefonaktiebolaget L M Ericsson (Publ) | Router and method for refreshing quality of service reservation |
KR101265954B1 (ko) * | 2005-07-11 | 2013-05-23 | 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 | 아이피 터널링 경로 상의 터널 시그널링을 수행하는 방법및 장치 |
US20080161941A1 (en) * | 2006-12-29 | 2008-07-03 | Motorola, Inc. | Graph-theoretic technique of analyzing and optimizing policy deployment |
TW201002003A (en) * | 2008-05-05 | 2010-01-01 | Koninkl Philips Electronics Nv | Methods and devices for managing a network |
JP2010028777A (ja) * | 2008-07-24 | 2010-02-04 | Fujitsu Ltd | リソース予約方法およびリソース予約装置 |
US8675371B2 (en) * | 2009-08-07 | 2014-03-18 | Advanced Processor Architectures, Llc | Distributed computing |
US11042211B2 (en) | 2009-08-07 | 2021-06-22 | Advanced Processor Architectures, Llc | Serially connected computing nodes in a distributed computing system |
US9645603B1 (en) | 2013-09-12 | 2017-05-09 | Advanced Processor Architectures, Llc | System clock distribution in a distributed computing environment |
US9429983B1 (en) | 2013-09-12 | 2016-08-30 | Advanced Processor Architectures, Llc | System clock distribution in a distributed computing environment |
US9432321B2 (en) * | 2011-12-19 | 2016-08-30 | Alcatel Lucent | Method and apparatus for messaging in the cloud |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11103303A (ja) | 1997-09-26 | 1999-04-13 | Sony Corp | ネットワーク資源予約制御方法および装置、受信端末、送信端末、並びに中継装置 |
NL1008767C2 (nl) * | 1998-03-31 | 1999-10-01 | Regiplan B V | Simulatie-inrichting voor het simuleren van beelden van ten minste één bouwwerk. |
GB2341059A (en) * | 1998-08-28 | 2000-03-01 | Nokia Oy Ab | Internet protocol flow detection |
FI108389B (fi) * | 1999-04-15 | 2002-01-15 | Sonera Smarttrust Oy | Tilaajaidentiteettimoduulin hallinta |
US6570851B1 (en) * | 1999-07-01 | 2003-05-27 | Nokia Telecommunications Oy | Receiver driven differentiated service marking for unicast and multicast applications |
JP3636948B2 (ja) | 1999-10-05 | 2005-04-06 | 株式会社日立製作所 | ネットワークシステム |
US6714987B1 (en) * | 1999-11-05 | 2004-03-30 | Nortel Networks Limited | Architecture for an IP centric distributed network |
US20010027490A1 (en) * | 2000-01-25 | 2001-10-04 | Gabor Fodor | RSVP handling in 3G networks |
JP2001224070A (ja) | 2000-02-09 | 2001-08-17 | Fujitsu Ltd | モバイル通信システム及びその方法 |
US6654610B1 (en) * | 2000-05-05 | 2003-11-25 | Lucent Technologies Inc. | Two-way packet data protocol methods and apparatus for a mobile telecommunication system |
US20020087699A1 (en) * | 2000-07-31 | 2002-07-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic QoS management in differentiated services using bandwidth brokers, RSVP aggregation and load control protocols |
US7870196B2 (en) * | 2000-11-08 | 2011-01-11 | Nokia Corporation | System and methods for using an application layer control protocol transporting spatial location information pertaining to devices connected to wired and wireless internet protocol networks |
GB0028029D0 (en) * | 2000-11-17 | 2001-01-03 | Koninkl Philips Electronics Nv | Method and related system and appartus for providing travel-related information to a mobile communications device |
US7082116B2 (en) * | 2000-12-28 | 2006-07-25 | Nortel Networks Limited | Methods and systems implementing mobility support in a packet-based wireless access network |
US20020147717A1 (en) * | 2001-01-26 | 2002-10-10 | Barros Mark Alexander | Communication device, system, method, and computer program product for sorting data based on proximity |
US20020162106A1 (en) * | 2001-04-30 | 2002-10-31 | Pickover Clifford Alan | Method and system for information insertion |
US7287070B2 (en) * | 2001-05-25 | 2007-10-23 | Interdigital Technology Corporation | Determining control of an internet communication between a sender and receiver |
US7027400B2 (en) * | 2001-06-26 | 2006-04-11 | Flarion Technologies, Inc. | Messages and control methods for controlling resource allocation and flow admission control in a mobile communications system |
US20030074443A1 (en) * | 2001-10-15 | 2003-04-17 | Makonnen Melaku | Last mile quality of service broker (LMQB) for multiple access networks |
AU2003217301A1 (en) * | 2002-02-04 | 2003-09-02 | Flarion Technologies, Inc. | A method for extending mobile ip and aaa to enable integrated support for local access and roaming access connectivity |
US7277455B2 (en) * | 2002-06-10 | 2007-10-02 | Qualcomm Incorporated | Packet flow processing in a communication system |
-
2002
- 2002-05-20 JP JP2002144883A patent/JP3880451B2/ja not_active Expired - Fee Related
- 2002-11-21 US US10/301,054 patent/US7499436B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003338839A (ja) | 2003-11-28 |
US20030214910A1 (en) | 2003-11-20 |
US7499436B2 (en) | 2009-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3743521B2 (ja) | パケット通信網 | |
Lee et al. | INSIGNIA: An IP-based quality of service framework for mobile ad hoc networks | |
US7693093B2 (en) | QoS-aware handover procedure for IP-based mobile ad-hoc network environments | |
JP5053390B2 (ja) | 無線通信システムにおけるストリーミングメディアサービスのためのプロキシベースのシグナリングアーキテクチャ | |
US7289453B2 (en) | Adaptive quality-of-service reservation and pre-allocation for mobile systems | |
Koodli et al. | Fast handovers and context transfers in mobile networks | |
JP3202928B2 (ja) | 通信ネットワークにおいて呼びを確立するシステム | |
US8711818B2 (en) | High performance data transport system and method | |
AU2004307494B2 (en) | Bidirectional QoS reservation within an in-band signaling mechanism | |
US7430609B2 (en) | Managing access to streams hosted on duplicating switches | |
JP3880451B2 (ja) | Rsvpを用いた移動通信システム | |
US20030067941A1 (en) | Precedence-based routing/re-routing | |
EP2395700B1 (en) | Managing access to stream hosted on duplicating switches | |
JP4880775B2 (ja) | 通信ベアラに関する装置及び方法 | |
WO2005079024A1 (ja) | データ通信ネットワークにおけるシグナリング管理 | |
WO2015070383A1 (zh) | 一种链路聚合的方法、装置和系统 | |
JPWO2003009533A1 (ja) | インタフェース装置及びその制御方法 | |
EP1780973A1 (en) | Method and apparatus for session setup in dynamic networks | |
JP3614744B2 (ja) | IP通信をサポートする異なるネットワーク内の端末間にQoSセッションを構築する方法 | |
JP4630298B2 (ja) | 機能分散型通信装置、構成要素結合制御方法、およびプログラム | |
Curran et al. | A framework for the transmission of streaming media to mobile devices | |
Pei et al. | Distributed flow admission control for multimedia services over wireless ad hoc networks | |
KR100484495B1 (ko) | 모바일 ip망에서의 자원 예약 기능을 구비한 단말장치,자원 예약 장치 및 방법 | |
JP2004164494A (ja) | プログラム配置方法およびその方法を利用可能なパケット転送装置ならびに端末装置 | |
Curran | Minimizing the Handoff Latency in Ad-Hoc Networks When Streaming Media to Mobile Devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061107 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131117 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |