JP3879458B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3879458B2
JP3879458B2 JP2001257141A JP2001257141A JP3879458B2 JP 3879458 B2 JP3879458 B2 JP 3879458B2 JP 2001257141 A JP2001257141 A JP 2001257141A JP 2001257141 A JP2001257141 A JP 2001257141A JP 3879458 B2 JP3879458 B2 JP 3879458B2
Authority
JP
Japan
Prior art keywords
defrosting
time
heat exchanger
air conditioner
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001257141A
Other languages
Japanese (ja)
Other versions
JP2003065638A (en
Inventor
正之 野中
厚 大塚
幸夫 太田
秀行 松島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001257141A priority Critical patent/JP3879458B2/en
Publication of JP2003065638A publication Critical patent/JP2003065638A/en
Application granted granted Critical
Publication of JP3879458B2 publication Critical patent/JP3879458B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプサイクルを用いて暖房運転及び冷房運転等を行う空気調和装置に係り、特に、暖房運転中に室外熱交換器に付着する霜を除去するための除霜運転の制御に関する。
【0002】
【従来の技術】
一般に、ヒートポンプサイクルを用いて暖房運転をおこなう空気調和装置においては、暖房運転時は、圧縮機の吐出する高温高圧の冷媒を室内熱交換器に導き、室内空気に放熱して凝縮し、室内空気を暖めた後、減圧器を介して、低温低圧の冷媒として、室外熱交換器に導き、室外空気より吸熱して蒸発し、低圧のガス冷媒となって圧縮機に戻り、再度、圧縮機により圧縮されて高温高圧の冷媒となって、上記のように循環し、室内を暖房運転する。
【0003】
このとき、室外空気の保有水分が多い場合は、それが室外熱交換器に露となって付着するが、室外熱交換器の温度が低い場合は、それが霜となって、室外熱交換器の通風路をふさぎ、通風状態を悪化させ、ますます、付着する霜の量が増大するという問題をもっている。同時に、室外熱交換器の熱交換効率も大幅に低下するため、暖房性能も大幅に低下するという問題を持っている。
【0004】
このような事態を防止するために、現在の空気調和装置は、冷媒の流れを逆転させ、高温高圧の冷媒を室外熱交換器に流入させて、付着した霜を除去する機能(除霜運転)を備えている。
【0005】
除霜運転は、室外熱交換器の温度、室外熱交換器の温度低下量などを検出し、例えば温度低下量が所定値以上になると除霜運転が開始される。
【0006】
しかし、上記のように単に例えば温度低下量のみで除草運転の開始を判断すると、外気の湿度によっては大して着霜していないにも拘らず頻繁に除霜運転モードに入ってしまい、この期間は暖房が行われないことから室内温度が低下してしまうという問題があった。この頻繁な除霜運転動作の発生を防止するために、除霜動作禁止時間を設けて、この時間中は除霜運転動作をさせないように制御している。
【0007】
しかし、この除霜禁止時間を一定値に固定すると、本来除霜運転を行わなければならない場合にもかかわらず除霜運転が起動されなかったり、不必要であっても除霜運転が起動されてしまうといった問題があった。
【0008】
そこで、特開2000−104975号公報、特開平10−103818号公報に記載された技術は、除霜動作禁止時間を常に一定の値に固定するのではなく、外気温を検出して外気温の低下につれて、除霜動作禁止時間の値を増加させるようにし、空気中の水分量が少ない低外気温時には、除霜に入り難くしている。
【0009】
【発明が解決しようとする課題】
しかしながら、着霜量が多いときには、除霜運転によって多量の水(ドレン水)が生じる。通常は、室外熱交換器下部に、露受け皿が設けられ、除霜運転によって生じたドレン水は、この露受け皿に受けられた後、ユニット外へ排出される。ドレン水の量が多く、ユニット外へ排出される前に、次の暖房運転が開始されると、低温となる室外ユニット部分に残されたドレン水が氷結を始める。このような場合に、そのまま、暖房運転を長時間継続すると、氷結が益々進展して次回の除霜運転によっても、氷結状態が残ってしまう。この残った氷によって新しく発生したドレン水の排出が妨げられ、露受け皿へのドレン水残留量が増大し、それに伴って、さらに氷結しやすくなるという悪循環が生じる。
【0010】
氷結によって暖房性能の低下が生じるのみならず、ヒートポンプサイクル状態が悪化するので、ヒートポンプサイクルを構成する機器寿命にも悪影響を及ぼすなどの問題がある。
【0011】
また、着霜量が多いときは、除霜運転によっても完全に除霜しきれず、一部が室外熱交換器に付着したまま、いわゆる残霜状態となることもあり、上記と同様の問題をはらんでいる。
【0012】
本発明の目的は、除霜運転によって生じる上記ドレン水または残霜の氷結を抑制し得る空気調和装置を提供することにある。
【0013】
【課題を解決するための手段】
上記目的は、圧縮機と、四方弁と、室外熱交換器と、減圧手段と、室内熱交換器とがこの順に冷媒配管によって接続される冷凍サイクルと、圧縮機、四方弁、室内熱交換器、減圧手段、室外熱交換器の順に冷媒を通流させる暖房運転機能と、圧縮機、四方弁、室外熱交換器、減圧手段、室内熱交換器の順に冷媒を通流させる除霜運転機能と、除霜運転終了後暖房運転を許可する時間を外気温度に応じて変化させる機能とを備えた空気調和装置において、前記暖房運転を許可する時間は、高い外気温度と低い外気温度との間に最も長い許可時間を有することにより達成される。
【0014】
また上記目的は、圧縮機と、四方弁と、室外熱交換器と、減圧手段と、室内熱交換器とがこの順に冷媒配管によって接続される冷凍サイクルと、圧縮機、四方弁、室内熱交換器、減圧手段、室外熱交換器の順に冷媒を通流させる暖房運転機能と、圧縮機、四方弁、室外熱交換器、減圧手段、室内熱交換器の順に冷媒を通流させる除霜運転機能と、除霜運転終了後暖房運転を許可する時間を外気温度に応じて変化させる機能とを備えた空気調和装置において、高い外気温度と低い外気温度との間に最も長い許可時間を有するものであり、直前の除霜所要時間に応じて変化させることによって達成される。
【0016】
【発明の実施の形態】
以下、本発明を図面に基づいて詳細に説明する。図7は、本発明の一実施例にかかる空気調和装置の構成概略例を示している。まず、冷凍サイクルの構成について説明する。圧縮機1は四方弁2と冷媒配管によって接続され、四方弁2の一方は、室外熱交換器7と冷媒配管によって接続されている。また、四方弁2の他方は室内熱交換器3と冷媒配管によって接続されている。そして、室外熱交換器7と室内熱交換器3は電動膨張弁やキャピラリチュウブ等の減圧装置6を介して冷媒配管によって接続されている。
【0017】
暖房運転時、圧縮機1より吐出された高温高圧の冷媒は、接続配管を経由して、四方弁2、室内熱交換器3、減圧手段6、室外熱交換器7、四方弁2の順に、図示実線矢印の方向に沿って流れ、低温低圧の冷媒となって、圧縮機に吸入される。この間、室内熱交換器3では、室内送風機4の作用により、冷媒は室内空気と熱交換し放熱することで室内の空気を暖める、すなわち、室内を暖房する。室外熱交換器7では、室外送風機8の作用により、冷媒は室外空気と熱交換し吸熱して、室内側暖房のための熱エネルギーを吸収する。
【0018】
除霜運転開始の指令が出されると、四方弁2を切り換え、圧縮機の吐出する高温冷媒を図示破線矢印の方向に循環させる。すなわち、四方弁2、室外熱交換器7、減圧手段6、室内熱交換器3、四方弁2の順に循環させ、圧縮機1に吸入させる。これにより、高温高圧の冷媒が室外熱交換器7に流入するので、室外熱交換器7に付着した霜を融解して除去することが可能となる。
【0019】
制御装置11は、概略、図8のように構成されている。演算制御手段100をメインに、演算制御手段の動作を指定するプログラム類を格納するROM101、演算制御動作のための一時データ記憶メモリRAM102、電源遮断によって消去されては不都合な作業用データ、調整用データを格納する書き換え可能な不揮発性メモリEEPROM103からなっている。制御装置11は、RAM102を作業領域として、ROM101に格納されたプログラムデータの指示に従って動作する。また、空気調和装置の動作制御のためのセンサ類104(図7でいえば、室内空気温度センサ9、室外空気温度センサ9、室外熱交換器温度センサ9、図示していないが、圧縮機の速度制御のためのフィードバック信号および空気調和装置の操作手段からの信号入力など)から、必要な情報を取り込み、空気調和装置の動作制御に利用する。さらに、空気調和装置の動作制御のためのアクチュエータ類105(図7でいえば、圧縮機1、四方弁2、減圧器6、室内ファン(モータ)4、室外ファン(モータ)8に駆動信号を出力し、所望の空気調和装置動作をさせる。さらに、リモコン106と赤外線などで接続され、空気調和装置操作者からの空気調和装置の運転・停止、送風量制御指令、演算制御のための調整用データの受信などを行い、機器の動作装置制御に反映する。
【0020】
暖房運転中、制御装置11は、室内空気温度センサ5、室外空気温度センサ11、室外空気温度センサ10などの情報を取り込み、最適な暖房条件となるように、室内送風機4、室外送風機8、圧縮機1などの運転停止、速度制御を行う。暖房運転中に、除霜条件が成立すると、四方弁2によって、冷媒流量を、図7に示めした破線矢印のごとく切り換え、除霜運転を行う。除霜運転中は、室内送風機4の運転を停止し、室内居住者に不快感、寒冷感を与えないようにする。室外送風機8の運転も停止し、室外熱交換器7に付着した霜に冷媒の熱エネルギーが十分に伝達されるようにする。制御装置11は、除霜完了を検知すれば、また、四方弁2を切り換え、前記した暖房運転に戻す。
【0021】
次に、本発明にかかる制御装置11の、特に、除霜制御動作につき、図1、図2、図3を用いて詳細に説明する。図1は、制御装置11の基本動作内容を示している。まず、電源投入によって、動作を開始し、ブロック1000において、空気調和装置の動作制御のための初期設定を行う。次のブロック1040、1050も、本来は、初期設定に属するものであるが、本発明の主要部であるので、特に分離して示したものである。
【0022】
ブロック1040において、除霜フラグを解除し、運転モードを暖房運転に設定する。次のブロック1050において、電源投入時の予め定められた除霜禁止時間タイマーを設定する。次に、ブロック1100において、その右側のブロック群を電源がオフになるまで、無限に繰り返し実行する。この、右側のブロック群が、基本的に、空気調和装置の、特に、本実施例の場合は、暖房運転および除霜制御動作を行う。右側のブロック(1200、1250、1300、1310、2000、4000)について説明する。
【0023】
まず、ブロック1200において、空気調和装置の運転制御に必要な各種センサ類から得られる測定データを読み込み、前記したリモコンからの指令データ(運転指示)を読み込む。次に、ブロック1250において、空気調和装置の運転制御のタイミング処理に必要なタイマのカウントアップを行う。タイマのカウントアップのためには、ここでは詳述しないが、1msec 毎の定時割り込み処理などを動作させて、100msecなどの基本時間を作成する。この基本時間を用いて、タイマに設定されている値に1ずつを加えるまたは1ずつを減じる等の処理を施すことによって、設定されている全てのタイマ時間処理を行う。タイマに設定されている値が0でないときは、タイマは時間測定中であり、値が0であるときは、タイマの設定時間が経過したことを表す。
【0024】
次に、ブロック1300の判別部では、除霜フラグをチェックし、運転モードが暖房運転であるか除霜運転であるかに対応して、それぞれ右側のブロックの処理を行い、その後、ブロック1200の処理に戻り繰り返す。
【0025】
判別部(ブロック1300)の判断結果が暖房運転モードであったときは、ブロック1310において暖房運転制御を行う。ブロック1310において、暖房運転中(圧縮機を起動して暖房サイクルを動作させた)となったときは、暖房運転中の状態を設定する。それ以外の詳細は、本実施例との関係が薄いので説明を省略する。その状態を受けて、次の除霜開始手段であるブロック2000において、除霜開始を判断する除霜開始制御を行う。これについては、図2を用いて後述する。ブロック1300において、除霜運転モードであったときは、除霜終了を判断して除霜終了手段であるブロック4000において、除霜終了制御を行う。これについても、図3を用いて後述する。以上のようにして、暖房運転及び除霜運転動作が行われる。ここで、ブロック1040、1050、2000、4000が、除霜制御に関連するブロックである。
【0026】
図2を用いて、除霜開始手段(ブロック)2000の除霜開始制御の内容を詳細に説明する。除霜開始手段2000に入ると、まず、ブロック2050において、暖房運転中か否かを判別する。暖房運転中でない場合は、ブロック2060によって、何もせずに、終了する。暖房運転中の場合は、除霜禁止時間経過判別手段であるブロック2070に移る。ここで、除霜禁止時間タイマがまだ経過中である場合(タイムアップしていない場合)は、ブロック2080によって、何もせずに終了する。タイマ動作が終了していれば、着霜検知手段であるブロック2110によって着霜の有無を検出する。着霜なしの場合は、ブロック2120によって、何もせずに終了する。着霜有りの場合は、ブロック2150に移る。すなわち、除霜禁止時間経過後、着霜が検知されたときに除霜運転を行うようにする。なお、ここで、着霜検知手段の検知は、着霜が検知できるものであれば何でもよい。例えば、室外熱交換器温度が設定された温度よりも低くなった場合に着霜していると判断するもの、空気調和装置の暖房能力の低下(室内機の冷媒吸込み温度と吹出し温度の差に圧縮機回転数、冷媒比熱、冷媒密度を積算して得られる)を検知し着想を判定するもの、室外熱交換器温度の変化量が設定値よりも大きくなったときに着霜していると判断するもの、若しくは室外空気温度と室外熱交換器温度とを比較して設定された値よりも大きい場合に着霜していると判断するもの等々多くの公知技術に示された着霜検知技術用いることができる。ブロック2150において、除霜フラグを設定する。これらブロック2070〜2150は、除霜開始判断手段を構成する。
【0027】
続いて、ブロック2160から2170を行う。すなわち、まず、除霜サイクル切り換え手段であるブロック2160において、四方弁2の切換、室内ファン4および室外ファン8の送風停止などのアクチュエータ切換信号を出力し、図7破線矢印に示す除霜サイクルに切り換える。ついで、除霜時間上限設定手段であるブロック2170において、除霜時間上限タイマを設定し、タイムアップ後に除霜運転を終了する。この設定の結果は、図1の除霜終了手段であるブロック4000において利用される。この場合は、除霜フラグが設定されているので、図1の制御ループは、次回から、除霜運転処理側を実行する。
【0028】
次に、図1の除霜終了手段4000の動作を、図3を用いて詳細に説明する。除霜運転状態にあるとき(除霜運転が行われているとき)、ブロック4100において、除霜開始手段2000によって設定された除霜時間上限タイマの経過が判別される。ここで、タイマが経過済み(タイムアップ)なら、ブロック4100によって無条件に除霜運転を終了させるため除霜フラグを解除する。タイマが動作中なら、ブロック4120において、室外熱交換器温度が調べられ、除霜開始時に低温であったものが、除霜終了と判断される温度まで上昇していれば、除霜フラグを解除する。上昇していなければ、まだ除霜動作中であるので、そのまま4140のブロックによって終了する。このブロック4100〜4140は、除霜終了判別手段を構成する。除霜フラグの解除があったときは、ブロック4190以下の処理をおこなう。すなわち、除霜禁止時間設定手段であるブロック4190において、次回の除霜運転がすぐに開始されてしまうことを禁止するための除霜禁止時間タイマーを設定する(図6における外気温−除霜禁止時間パターンによる、詳細は後述)。最後に、暖房サイクル切り換え手段であるブロック4200において、四方弁2の切換などのアクチュエータ切換信号を出力し、図7実線矢印に示す暖房サイクルに切り換えて、処理を終了する。この場合は、除霜フラグが解除されているので、図1の制御ループは、次回から、暖房運転処理側を実行する。
【0029】
このようにして、ドレン水の結氷または残霜の問題が生じる外気温の低い状態においては、次の除霜禁止時間を短く設定するようにし、除霜禁止時間中に着霜が大きく進展せず、したがって除霜運転によって生じる残霜またはドレン水の結氷が進展する前に、着霜量の少ない状態で、除霜運転動作を行うようにし、空気調和装置の暖房性能を低下させることなく、また、空気調和装置の構成機器に悪影響を与えることなく、快適な空調(暖房運転)をおこなえるようにする。
【0030】
次の実施例は、除霜運転開始から除霜運転終了までの時間である除霜所要時間を計測して、その長短によって次の除霜禁止時間を設定しようとするものである。すなわち、除霜に要した時間である除霜所要時間が長い場合、着霜量が多い外気条件であると判断し、短い場合着霜量が少ない外気条件であると判断して、これに基づいて、次回除霜運転に入ることが可能となる時間(着霜条件が整っていなければ、この時間が経過しても除霜運転には入らない)を設定する。すなわち、除霜所要時間に基づいて、最低限除霜運転が禁止される時間、換言すると、暖房運転が確保される最低の時間が決定されるのである。
【0031】
図2及び図3に示した実施例との相違点を図4および図5を用いて詳細に説明する。図4に示した実施例は、図2に示した実施例に対して、ブロック2180の除霜所要時間判別タイマー設定の設定ブロックを追加している。これは、除霜所要時間を計時するためのものである。
【0032】
図5に示す実施例は、図3に示す実施例における除霜禁止時間タイマー設定手段であるブロック4190の代わりに、ブロック4150の除霜所要時間判別手段(除霜に要した時間を計時するブロック)、この計時結果により除霜禁止時間を設定するブロック4160及びブロック4170を設けている。
【0033】
上記ブロック4150の判別結果により、除霜所要時間が長かった場合はブロック4160において図6に示すtime0を、短かかった場合は、ブロック4170において図6に示す室外温度に応じて決まるパターンから求められる次の除霜禁止時間(最小暖房許可時間)を求め、この除霜禁止時間をタイマーに設定する。
【0034】
このようにして、除霜所要時間の長短を計測し、除霜所要時間の短いときは、図6の除霜禁止時間パターンにて、除霜所要時間の長い場合は、図6の最短時間であるTime0によって次の除霜禁止時間を設定するようにしたので、着霜量が多かったときは、次の除霜運転が着霜が過大となる前に除霜禁止時間に定められた短い時間が経過後除霜運転が可能になり、着霜量が少ないときにはなるべく除霜運転に入らないようにしている。除霜禁止時間を図6に示した外気温−除霜禁止時間パターンに従うのみとした第1の実施例に比べてさらにこの機能を設けたことによって、前回除霜運転時の残存するドレン水または残霜が結氷して空気調和装置の性能、機器へ不具合をおこすことが少なくなる。
【0035】
図6に示した除霜禁止時間(最小暖房許可時間)について詳細に説明する。前述した特開平10−103818号公報に記載された除霜禁止時間の考え方は、外気温度がプラスから0度までは、空気中の水分が多く、氷点下となる室外熱交換器に露付した水分が霜として付着する可能性が大きいと判断して除霜禁止時間を短く設定している。そして、外気温度が氷点下になるに従い、空気中の水分が氷結しているので、室外熱交換器に着霜する確率が低いと判断して暖房運転をなるべく長く行わせるために除霜禁止時間が長くなるようにしている。
【0036】
図6に示すパターンにおいても、外気温度がプラスから0度(T0)までは着霜確率が高いと判断して最小除霜禁止時間であるTime0としている。そして、更に外気温が低下して、氷点下であるT1までの間は、漸次Time1まで除霜禁止時間を増加させる。
【0037】
しかし、上記公知技術では、さらに外気温度が低温になったとき、着霜しにくいことは確かではあるが、一旦着霜し長時間低温状態で放置しておくと結氷し簡単に融解させることが困難となってしまう。
【0038】
そこで、本実施例では、更に低下して、外気温がT2になるまでの間は、漸次、Time2まで除霜禁止時間を減少させる。その後、更に低下しても、Time2を保つように除霜禁止時間を設定することとした。なお、外気温度、除霜禁止時間の設定値は、例えば、次のような値である。
【0039】
T0=0℃、T1=−5℃、T2=−10℃、Time0=40分、Time1=180分、Time2=70分。
【0040】
特に、本実施例では、除霜禁止時間の設定条件を下式のようにした。
【0041】
Time0<Time2<Time1
このような関係によって、高温では着霜しやすく、温度が下がるにつれて着霜しにくくなるので、禁止時間を漸次増大させるが、更に低温となると、着霜はしにくくなるが一旦着霜してしまうと結氷の問題生じるので、結氷が進展する前に、着霜の少ない間に、除霜禁止時間が経過すると除霜動作をするように、Time2の値を定めている。なお、図では、外気温T0とT1の間、及びT1とT2の間を直線で結んで説明しているが、必ずしも直線である必要はなく、漸次増加または減少の条件を満たすものであればよいことはいうまでもない。
【0042】
次に第3の実施例について詳細に説明する。空気調和装置の使用領域は、どんどん寒冷地などへ広がっているが、すべての空気調和装置の除霜制御パターン、特に、除霜禁止時間を、一定のパターンで処理しようとすれば無理がある場合がある。図9は、空気調和装置操作者の使用するリモコンを示す。
【0043】
リモコンには、例として、運転ボタン200、時刻増加ボタン210、時刻減少ボタン220、設定時間後運転開始のための時間送信ボタン230、設定時間後運転停止のための時間送信ボタン240、設定時間、運転状態などを表示するための液晶表示装置300、赤外線送信部400などが配置されている。
【0044】
通常は、リモコンのボタンを操作して、空気調和装置の運転・停止、送風量調節、定時間後運転開始する定時間後起動タイマの設定、定時間後運転を停止する定時間後停止タイマの設定などを行う。例えば、リモコンの運転ボタンを押すと、赤外線信号がリモコンより空気調和装置の制御装置11の送られ、特に図1のブロック1200にて、受信し、運転指令が生成される。運転中に受信すると、タイマモード(定時間後停止)指令が生成される。タイマモード中に受信すると、停止指令が生成されるなどと状態が循環し、ブロックの暖房運転制御部分で解読され、適切な運転が行われる。本実施例では、地域特性にあった最適な除霜条件を作り出すために、図6に示す除霜禁止時間 Time0、Time1、Time2を、地域特性に合わせてリモコンから修正することができるようにする。この場合、Time0、Time1、Time2の除霜禁止時間は、制御装置11の図8に示すEEPROM103に格納している。除霜禁止時間を、図9のリモコン106の時刻増加ボタン210、および時刻減少ボタン220を使って調整し、その値を液晶表示装置に表示させる。所望の、例えば、Time0の時間が準備できれば、時刻増加ボタン210とタイマ入ボタン230を同時押しして、制御装置11に送信する。制御装置11は、図1の前記ブロック1200において受信し、受信データをEEPROM103の該当データと置換する。同時押しをやめればデータの変更を終了する。なお、制御装置が、リモコンへのアンサーバック機能を備えたものについては、リモコンにアンサーバック信号を送信し、リモコンがその結果を液晶表示装置300または図示しないLEDに表示するようにしてもよい。Time1の修正についても同じようにできるが、この場合は、時刻増加ボタン210とタイマ切ボタン240を同時押しして、Time1を表現するように変更する。本実施例では、2つのボタンの2重押しによって、設定機能の変更を扱うように説明したが、これは、それに限定されるものではなく、何らかの変更または調整機能を実現できるものであれば、その実現方法を限定するものではない。
【0045】
本実施例によれば、空気調和装置の動作制御手順の中に、除霜開始手段および除霜終了手段を備える除霜制御手段を設け、除霜終了手段を、除霜の終了を判別する除霜終了判別手段、図6に例示する外気温度をパラメータとする所定の除霜禁止時間パターンによって次の除霜開始までの除霜禁止時間を設定する除霜禁止時間設定手段および暖房運転への復帰をさせる暖房サイクル切り換え手段によって構成し、除霜開始手段を、前記除霜禁止時間の経過を判別する除霜禁止時間経過判別手段、除霜禁止時間の経過後、着霜を検知する着霜検知手段、除霜サイクルへの切り換えを行う除霜サイクル切り換え手段、除霜上限時間を設定する除霜上限時間設定手段および除霜所要時間判別タイマーを設定する除霜所要時間設定手段によって構成したので、ドレン水の結氷または残霜の問題が生じる外気温の低い状態においては、次の除霜禁止時間を短く設定するようなり、除霜禁止時間中に着霜が大きく進展せず、したがって除霜運転によって生じる残霜またはドレン水の結氷が進展する前に着霜量の少ない状態で、除霜運転動作を行うようになり、空気調和装置の暖房性能を低下させることなく、また、空気調和装置の構成機器に悪影響を与えることなく、快適な空調(暖房運転)をおこなえるようになった。
【0046】
さらに、第2の実施例では、空気調和装置の制御装置の中に、暖房運転中に動作する除霜開始手段と除霜運転中に動作する除霜終了手段からなる除霜制御手段を設け、除霜終了手段を、除霜の終了を判別する除霜終了判別手段、除霜所要時間の長短を判別する除霜所要時間判別手段、除霜所要時間の長短に応じ、除霜所要時間短の場合は図6に例示する外気温度をパラメータとする所定の除霜禁止時間パターンによって、長の場合は、図6に例示する外気温度をパラメータとする所定の除霜禁止時間パターンの最短時間によって除霜禁止時間を設定する除霜禁止時間設定手段および暖房運転への復帰をさせる暖房サイクル切り換え手段によって構成し、除霜開始手段を、前記除霜禁止時間の経過を判別する除霜禁止時間経過判別手段、除霜禁止時間の経過後、着霜を検知する着霜検知手段、除霜サイクルへの切り換えを行う除霜サイクル切り換え手段、除霜上限時間を設定する除霜上限時間設定手段および除霜所要時間判別タイマーを設定する除霜所要時間設定手段によって構成したので、着霜量が多く、ドレン水の結氷または残霜の問題が生じる場合においては、外気温の状態に関わらず次の除霜禁止時間を強制的に短く設定するようにし、除霜禁止時間中に着霜が大きく進展せず、したがって除霜運転によって生じる残霜またはドレン水の結氷が進展する前に、着霜量の少ない状態で、除霜運転動作を行うようにし、空気調和装置の暖房性能を低下させることなく、また、空気調和装置の構成機器に悪影響を与えることなく、快適な空調(暖房運転)をおこなえるようになった。
【0047】
また、第3の実施例では、空気調和装置の操作手段、例えば、リモコンから、地域特性にあわせることができるように、除霜禁止時間パターンを調整できるようにしたので、さらに効果的な性能を発揮する空気調和装置を提供することができるようになった。
【0048】
【発明の効果】
以上本発明によれば、除霜運転によって生じる上記ドレン水または残霜の氷結を抑制し得る空気調和装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施例である除霜制御を含む制御動作全体の処理手順。
【図2】本発明の一実施例である除霜開始手段の処理手順。
【図3】本発明の一実施例である除霜終了手段の処理手順。
【図4】本発明の別の実施例の除霜開始手段の処理手順。
【図5】本発明の別の実施例の除霜終了手段の処理手順。
【図6】本発明の一実施例である除霜禁止時間パターン。
【図7】空気調和装置のハードウエア構成図。
【図8】制御装置の構成ブロック図。
【図9】リモコンの構成ブロック図。
【符号の説明】
1…圧縮機、2…四方弁、3…室内熱交換器、4…室内送風機、5…室内空気温度センサ、6…減圧手段、7…室外熱交換器、8…室外送風機、9…室外熱交換器温度センサ、10…室外空気温度センサ、11…制御装置、100…演算制御手段、101…ROM、102…RAM、103…EEPROM、106…リモコン、2000…除霜開始手段、4000…除霜終了手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner that performs a heating operation and a cooling operation using a heat pump cycle, and more particularly to control of a defrosting operation for removing frost attached to an outdoor heat exchanger during a heating operation.
[0002]
[Prior art]
In general, in an air conditioner that performs a heating operation using a heat pump cycle, during the heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor is led to the indoor heat exchanger, dissipates heat to the indoor air, and is condensed. After being heated, the refrigerant is led to the outdoor heat exchanger as a low-temperature and low-pressure refrigerant through the decompressor, absorbs heat from the outdoor air, evaporates, returns to the compressor as a low-pressure gas refrigerant, and again by the compressor. The refrigerant is compressed to become a high-temperature and high-pressure refrigerant and circulates as described above, and the room is heated.
[0003]
At this time, if the outdoor air has a lot of moisture, it adheres to the outdoor heat exchanger as dew, but if the temperature of the outdoor heat exchanger is low, it becomes frost and the outdoor heat exchanger The problem is that the amount of frost adhering is increasingly increased by blocking the ventilation path of the air, worsening the ventilation state. At the same time, since the heat exchange efficiency of the outdoor heat exchanger is greatly reduced, the heating performance is also greatly reduced.
[0004]
In order to prevent such a situation, the current air conditioner reverses the flow of the refrigerant, flows the high-temperature and high-pressure refrigerant into the outdoor heat exchanger, and removes attached frost (defrosting operation). It has.
[0005]
The defrosting operation detects the temperature of the outdoor heat exchanger, the temperature decrease amount of the outdoor heat exchanger, and the like. For example, when the temperature decrease amount becomes a predetermined value or more, the defrosting operation is started.
[0006]
However, as described above, for example, when it is determined that the weeding operation is started only by the amount of decrease in temperature, the defrosting operation mode is frequently entered although it is not frosted depending on the humidity of the outside air. There was a problem that the room temperature was lowered because heating was not performed. In order to prevent the frequent occurrence of the defrosting operation, a defrosting operation prohibition time is provided, and control is performed so that the defrosting operation is not performed during this time.
[0007]
However, if this defrosting prohibition time is fixed to a certain value, the defrosting operation is not started even when the defrosting operation must be performed or the defrosting operation is started even if unnecessary. There was a problem such as.
[0008]
Therefore, the techniques described in Japanese Patent Laid-Open Nos. 2000-104975 and 10-103818 do not always fix the defrosting operation prohibition time to a constant value, but detect the outside air temperature and detect the outside air temperature. As the temperature decreases, the value of the defrosting operation prohibition time is increased so that defrosting is difficult to occur at a low outside air temperature with a small amount of moisture in the air.
[0009]
[Problems to be solved by the invention]
However, when the amount of frost formation is large, a large amount of water (drain water) is generated by the defrosting operation. Usually, a dew receiving tray is provided at the lower part of the outdoor heat exchanger, and drain water generated by the defrosting operation is received by the dew receiving tray and then discharged outside the unit. If the amount of drain water is large and the next heating operation is started before being discharged out of the unit, the drain water left in the outdoor unit portion that becomes low temperature begins to freeze. In such a case, if the heating operation is continued as it is for a long time, the icing is further progressed and the icing state remains even in the next defrosting operation. The remaining ice prevents the newly generated drain water from being discharged, and the amount of drain water remaining in the dew tray increases, resulting in a vicious cycle in which it becomes more likely to freeze.
[0010]
Not only does the heating performance decrease due to freezing, but the heat pump cycle state deteriorates, so that there are problems such as adversely affecting the life of the equipment constituting the heat pump cycle.
[0011]
In addition, when the amount of frost formation is large, the defrosting operation cannot completely remove the frost, and a part of the frost may remain attached to the outdoor heat exchanger, resulting in a so-called residual frost state. I am in trouble.
[0012]
The objective of this invention is providing the air conditioning apparatus which can suppress the freezing of the said drain water or residual frost which arises by a defrost operation.
[0013]
[Means for Solving the Problems]
The object is to provide a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression means, and an indoor heat exchanger are connected in this order by refrigerant piping, a compressor, a four-way valve, and an indoor heat exchanger. A heating operation function for flowing the refrigerant in the order of the decompression means and the outdoor heat exchanger, and a defrosting operation function for allowing the refrigerant to flow in the order of the compressor, the four-way valve, the outdoor heat exchanger, the pressure reduction means, and the indoor heat exchanger, In the air conditioner having a function of changing the time for permitting the heating operation after the defrosting operation according to the outside air temperature, the time for permitting the heating operation is between the high outside air temperature and the low outside air temperature. This is achieved by having the longest grant time.
[0014]
In addition, the object is to provide a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression means, and an indoor heat exchanger are connected in this order by refrigerant piping, a compressor, a four-way valve, and an indoor heat exchange. Heating operation function that allows refrigerant to flow in the order of the compressor, decompression means, outdoor heat exchanger, and defrosting operation function that causes the refrigerant to flow in the order of the compressor, four-way valve, outdoor heat exchanger, decompression means, and indoor heat exchanger And an air conditioner having a function of changing the time for permitting the heating operation after the defrosting operation according to the outside air temperature, Have the longest permission time between high and low outside temperature, This is achieved by changing the time required for the last defrosting.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 7 shows a schematic configuration example of an air conditioner according to an embodiment of the present invention. First, the configuration of the refrigeration cycle will be described. The compressor 1 is connected to the four-way valve 2 by a refrigerant pipe, and one side of the four-way valve 2 is connected to the outdoor heat exchanger 7 and the refrigerant pipe. The other side of the four-way valve 2 is connected to the indoor heat exchanger 3 by a refrigerant pipe. And the outdoor heat exchanger 7 and the indoor heat exchanger 3 are connected by refrigerant | coolant piping via pressure reduction apparatuses 6, such as an electric expansion valve and a capillary tube.
[0017]
During the heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor 1 passes through the connecting pipe in the order of the four-way valve 2, the indoor heat exchanger 3, the decompression means 6, the outdoor heat exchanger 7, and the four-way valve 2. It flows along the direction of the solid line arrow in the figure, becomes a low-temperature and low-pressure refrigerant, and is sucked into the compressor. In the meantime, in the indoor heat exchanger 3, the indoor air blower 4 heats the indoor air by exchanging heat with the indoor air and radiating heat by the action of the indoor blower 4, that is, the room is heated. In the outdoor heat exchanger 7, due to the action of the outdoor blower 8, the refrigerant exchanges heat with outdoor air and absorbs heat to absorb heat energy for indoor heating.
[0018]
When a command to start the defrosting operation is issued, the four-way valve 2 is switched, and the high-temperature refrigerant discharged from the compressor is circulated in the direction of the broken arrow in the figure. That is, the four-way valve 2, the outdoor heat exchanger 7, the decompression means 6, the indoor heat exchanger 3, and the four-way valve 2 are circulated in this order and are sucked into the compressor 1. Thereby, since the high-temperature and high-pressure refrigerant flows into the outdoor heat exchanger 7, it becomes possible to melt and remove the frost attached to the outdoor heat exchanger 7.
[0019]
The control device 11 is schematically configured as shown in FIG. Mainly the arithmetic control unit 100, a ROM 101 for storing programs for specifying the operation of the arithmetic control unit, a temporary data storage memory RAM 102 for the arithmetic control operation, work data that is inconvenient if it is erased by turning off the power, and adjustment It consists of a rewritable nonvolatile memory EEPROM 103 for storing data. The control device 11 operates in accordance with an instruction of program data stored in the ROM 101 using the RAM 102 as a work area. Further, sensors 104 for controlling the operation of the air conditioner (in FIG. 7, the indoor air temperature sensor 9, the outdoor air temperature sensor 9, the outdoor heat exchanger temperature sensor 9, although not shown, Necessary information is taken in from a feedback signal for speed control and a signal input from the operation means of the air conditioner, and used for operation control of the air conditioner. Furthermore, actuators 105 for controlling the operation of the air conditioner (in FIG. 7, the compressor 1, the four-way valve 2, the pressure reducer 6, the indoor fan (motor) 4 and the outdoor fan (motor) 8 are given drive signals. Outputs the desired air conditioner operation, and is connected to the remote controller 106 by infrared rays, etc., for adjustment for air conditioner operation / stop, air flow control command, and arithmetic control from the air conditioner operator. Receive data, etc., and reflect it in the operation device control of the device.
[0020]
During the heating operation, the control device 11 takes in information such as the indoor air temperature sensor 5, the outdoor air temperature sensor 11, the outdoor air temperature sensor 10, and the like, and the indoor blower 4, the outdoor blower 8, and the compression so as to obtain optimum heating conditions. Shut down the machine 1 and perform speed control. When the defrosting condition is satisfied during the heating operation, the refrigerant flow is switched by the four-way valve 2 as indicated by the broken line arrow shown in FIG. During the defrosting operation, the operation of the indoor blower 4 is stopped so as not to give uncomfortable feeling and cold feeling to the indoor occupants. The operation of the outdoor blower 8 is also stopped so that the heat energy of the refrigerant is sufficiently transmitted to the frost attached to the outdoor heat exchanger 7. When detecting the completion of defrosting, the control device 11 switches the four-way valve 2 and returns to the heating operation described above.
[0021]
Next, in particular, the defrosting control operation of the control device 11 according to the present invention will be described in detail with reference to FIGS. 1, 2, and 3. FIG. 1 shows the basic operation contents of the control device 11. First, the operation is started by turning on the power, and in block 1000, initial setting for operation control of the air conditioner is performed. The next blocks 1040 and 1050 originally belong to the initial setting, but are the main parts of the present invention, and are therefore shown separately.
[0022]
In block 1040, the defrost flag is canceled and the operation mode is set to the heating operation. In the next block 1050, a predetermined defrosting prohibition time timer at power-on is set. Next, in block 1100, the right block group is repeatedly executed indefinitely until the power is turned off. This right block group basically performs the heating operation and the defrosting control operation of the air conditioner, particularly in this embodiment. The right block (1200, 1250, 1300, 1310, 2000, 4000) will be described.
[0023]
First, in block 1200, measurement data obtained from various sensors necessary for operation control of the air conditioner is read, and command data (operation instruction) from the above-described remote controller is read. Next, in block 1250, a timer necessary for timing processing of operation control of the air conditioner is counted up. In order to count up the timer, although not described in detail here, a basic interrupt time such as 100 msec is created by operating a scheduled interrupt process every 1 msec. Using this basic time, all the timer time processes that have been set are performed by performing processes such as adding 1 to the value set in the timer or subtracting 1 from each other. When the value set in the timer is not 0, the timer is measuring time, and when the value is 0, it indicates that the set time of the timer has elapsed.
[0024]
Next, the determination unit of block 1300 checks the defrost flag, performs the processing of the right block according to whether the operation mode is the heating operation or the defrost operation, and then the block 1200 Return to processing and repeat.
[0025]
When the determination result of the determination unit (block 1300) is the heating operation mode, the heating operation control is performed in block 1310. In block 1310, when the heating operation is being performed (the compressor is started to operate the heating cycle), the state during the heating operation is set. Other details are not described here because they are not related to this embodiment. In response to the state, in block 2000 which is the next defrost start means, defrost start control for determining the start of defrost is performed. This will be described later with reference to FIG. In block 1300, when it is in the defrosting operation mode, the end of defrosting is determined and defrosting end control is performed in block 4000 which is a defrosting end means. This will also be described later with reference to FIG. As described above, the heating operation and the defrosting operation are performed. Here, blocks 1040, 1050, 2000, and 4000 are blocks related to defrost control.
[0026]
The content of the defrost start control of the defrost start means (block) 2000 will be described in detail with reference to FIG. When the defrosting start means 2000 is entered, first, at block 2050, it is determined whether or not the heating operation is being performed. If the heating operation is not being performed, the process ends without doing anything at block 2060. When the heating operation is being performed, the process proceeds to block 2070 which is a defrosting prohibition time lapse determination unit. Here, if the defrosting prohibition time timer is still in progress (if the time has not expired), the process ends without doing anything at block 2080. If the timer operation has ended, the presence or absence of frost is detected by block 2110 which is a frost detection means. If there is no frost formation, block 2120 ends without doing anything. If there is frost formation, the process moves to block 2150. That is, the defrosting operation is performed when frost formation is detected after the defrosting prohibition time has elapsed. Here, the detection of the frost detection means may be anything as long as frost can be detected. For example, when the outdoor heat exchanger temperature is lower than the set temperature, it is judged that frost is formed, the heating capacity of the air conditioner is reduced (the difference between the refrigerant suction temperature and the blowout temperature of the indoor unit) Detecting the idea by detecting compressor rotation speed, refrigerant specific heat, refrigerant density, and frosting when the amount of change in outdoor heat exchanger temperature exceeds the set value The frost detection technology shown in many known techniques such as the one to judge, or the one that judges that frost is formed when the outdoor air temperature and the outdoor heat exchanger temperature are larger than the set value Can be used. At block 2150, a defrost flag is set. These blocks 2070 to 2150 constitute defrost start determining means.
[0027]
Subsequently, blocks 2160 to 2170 are performed. That is, first, in block 2160 which is a defrosting cycle switching means, an actuator switching signal such as switching of the four-way valve 2 and stop of blowing of the indoor fan 4 and the outdoor fan 8 is output, and the defrosting cycle indicated by the broken line arrow in FIG. Switch. Next, in block 2170 as defrosting time upper limit setting means, a defrosting time upper limit timer is set, and the defrosting operation is terminated after the time is up. The result of this setting is used in block 4000, which is a defrosting termination unit in FIG. In this case, since the defrost flag is set, the control loop in FIG. 1 executes the defrost operation processing side from the next time.
[0028]
Next, operation | movement of the defrost completion | finish means 4000 of FIG. 1 is demonstrated in detail using FIG. When it is in the defrosting operation state (when the defrosting operation is being performed), in block 4100, the passage of the defrosting time upper limit timer set by the defrosting start means 2000 is determined. Here, if the timer has elapsed (time up), the block 4100 cancels the defrost flag in order to end the defrost operation unconditionally. If the timer is in operation, the outdoor heat exchanger temperature is checked in block 4120, and if the temperature is low at the start of defrosting and rises to a temperature that is determined to be the end of defrosting, the defrost flag is cleared. To do. If it has not risen, the defrosting operation is still in progress, and the process is terminated by the block 4140 as it is. The blocks 4100 to 4140 constitute defrosting end determining means. When the defrost flag is released, the processing after block 4190 is performed. That is, in block 4190 which is a defrosting prohibition time setting means, a defrosting prohibition time timer for prohibiting the next defrosting operation from being started immediately is set (outside air temperature-defrosting prohibition in FIG. 6). Details according to the time pattern will be described later). Finally, in block 4200 which is the heating cycle switching means, an actuator switching signal such as switching of the four-way valve 2 is output, and the processing is switched to the heating cycle indicated by the solid line arrow in FIG. In this case, since the defrost flag is cancelled, the control loop of FIG. 1 executes the heating operation processing side from the next time.
[0029]
In this way, in a state where the outside air temperature where the problem of icing or residual frost on the drain water occurs is low, the next defrosting prohibition time is set short, and frosting does not progress greatly during the defrosting prohibition time. Therefore, the defrosting operation is performed in a state where the amount of frost formation is small before the residual frost generated by the defrosting operation or the icing of the drain water progresses, and without reducing the heating performance of the air conditioner. Comfortable air conditioning (heating operation) can be performed without adversely affecting the components of the air conditioner.
[0030]
In the next embodiment, the time required for defrosting, which is the time from the start of the defrosting operation to the end of the defrosting operation, is measured, and the next defrosting prohibition time is set according to the length. That is, when the defrosting time required for defrosting is long, it is determined that the outside air condition has a large amount of frost formation, and when it is short, it is determined that the outside air condition has a small amount of frost formation. Then, a time during which it is possible to enter the next defrosting operation (if the frosting condition is not satisfied, the defrosting operation is not entered even if this time has elapsed) is set. That is, based on the defrosting required time, the minimum time for which the defrosting operation is prohibited, in other words, the minimum time for which the heating operation is ensured is determined.
[0031]
Differences from the embodiment shown in FIGS. 2 and 3 will be described in detail with reference to FIGS. In the embodiment shown in FIG. 4, a setting block for setting a defrosting time determination timer in block 2180 is added to the embodiment shown in FIG. This is for measuring the time required for defrosting.
[0032]
In the embodiment shown in FIG. 5, instead of the block 4190 which is the defrosting prohibition time timer setting means in the embodiment shown in FIG. 3, the defrosting time determination means (block for measuring the time required for defrosting) in block 4150. ), And a block 4160 and a block 4170 for setting the defrosting prohibition time based on the timing result are provided.
[0033]
Based on the determination result of the block 4150, when the defrosting time is long, the time 0 shown in FIG. 6 is obtained in the block 4160, and when it is short, it is obtained from the pattern determined according to the outdoor temperature shown in FIG. The next defrosting prohibition time (minimum heating permission time) is obtained, and this defrosting prohibition time is set in the timer.
[0034]
In this way, the length of the time required for defrosting is measured. When the time required for defrosting is short, the defrosting prohibition time pattern shown in FIG. 6 is used. When the time required for defrosting is long, the shortest time shown in FIG. Since the next defrosting prohibition time is set by a certain Time 0, when the amount of frost formation is large, the short time set as the defrosting prohibition time before the next defrosting operation becomes excessive After the elapse of time, the defrosting operation becomes possible, and when the amount of frost formation is small, the defrosting operation is avoided as much as possible. By providing this function as compared with the first embodiment in which the defrosting prohibition time only follows the outside air temperature-defrosting prohibition time pattern shown in FIG. 6, the remaining drain water at the previous defrosting operation or It is less likely that residual frost freezes and causes problems with the performance and equipment of the air conditioner.
[0035]
The defrosting prohibition time (minimum heating permission time) shown in FIG. 6 will be described in detail. The concept of the defrosting prohibition time described in Japanese Patent Laid-Open No. 10-103818 described above is that moisture is exposed to an outdoor heat exchanger that has a lot of moisture in the air and is below freezing point when the outside air temperature is from plus to 0 degrees. The defrosting prohibition time is set short because it is determined that there is a high possibility that the frost will adhere as frost. And as the outside air temperature becomes below freezing point, the moisture in the air is frozen, so it is judged that the probability of frost formation on the outdoor heat exchanger is low, and the defrosting prohibition time is set to make the heating operation as long as possible. Try to be long.
[0036]
Also in the pattern shown in FIG. 6, it is determined that the frost formation probability is high from outside to 0 degrees (T0), and Time 0 that is the minimum defrosting prohibition time is set. Then, the defrosting prohibition time is gradually increased to Time 1 until the outside air temperature is further lowered and T1 is below freezing point.
[0037]
However, in the above-mentioned known technology, it is certain that frost formation is difficult when the outside air temperature is further lowered. However, once the frost is formed and left in a low temperature state for a long time, it freezes and can be easily melted. It becomes difficult.
[0038]
Therefore, in this embodiment, the defrosting prohibition time is gradually reduced to Time2 until the temperature further decreases and the outside air temperature reaches T2. Thereafter, the defrosting prohibition time is set so as to maintain Time 2 even if the time further decreases. In addition, the setting value of outside temperature and defrost prohibition time is the following values, for example.
[0039]
T0 = 0 ° C., T1 = −5 ° C., T2 = −10 ° C., Time 0 = 40 minutes, Time 1 = 180 minutes, Time 2 = 70 minutes.
[0040]
In particular, in the present embodiment, the defrosting prohibition time setting condition is expressed by the following equation.
[0041]
Time0 <Time2 <Time1
Due to this relationship, frosting is likely to occur at high temperatures, and frosting is difficult to occur as the temperature decreases, so the prohibition time is gradually increased. However, frosting is difficult to occur at lower temperatures, but once frosting occurs. Therefore, the value of Time 2 is determined so that the defrosting operation is performed when the defrosting prohibition time elapses while the frost formation is low before the icing progresses. In the figure, the outside air temperatures T0 and T1 and between T1 and T2 are described by straight lines. However, they are not necessarily straight lines, so long as they satisfy the condition of gradually increasing or decreasing. Needless to say, it is good.
[0042]
Next, the third embodiment will be described in detail. The use area of the air conditioner is expanding to cold regions, etc., but it is impossible to process the defrost control pattern of all air conditioners, especially the defrost prohibition time with a certain pattern. There is. FIG. 9 shows a remote control used by the air conditioner operator.
[0043]
For example, the remote control includes an operation button 200, a time increase button 210, a time decrease button 220, a time transmission button 230 for starting operation after a set time, a time transmission button 240 for stopping operation after a set time, a set time, A liquid crystal display device 300 for displaying an operation state and the like, an infrared transmitter 400, and the like are arranged.
[0044]
Normally, the remote control button is operated to start / stop the air conditioner, adjust the air flow, set the start timer after a fixed time to start the operation after a fixed time, and set the stop timer after the fixed time to stop the operation after a fixed time. Make settings. For example, when an operation button on the remote control is pressed, an infrared signal is sent from the remote control to the control device 11 of the air conditioner, and in particular, received at block 1200 in FIG. 1, and an operation command is generated. When received during operation, a timer mode (stop after fixed time) command is generated. When it is received during the timer mode, the state circulates when a stop command is generated, etc., and is decoded by the heating operation control portion of the block, and appropriate operation is performed. In the present embodiment, in order to create an optimum defrosting condition suitable for the regional characteristics, the defrosting prohibition times Time0, Time1, and Time2 shown in FIG. 6 can be corrected from the remote controller according to the regional characteristics. . In this case, the defrosting prohibition times of Time 0, Time 1, and Time 2 are stored in the EEPROM 103 shown in FIG. The defrosting prohibition time is adjusted by using the time increase button 210 and the time decrease button 220 of the remote controller 106 in FIG. 9, and the value is displayed on the liquid crystal display device. When a desired time, for example, Time 0 is prepared, the time increase button 210 and the timer on button 230 are simultaneously pressed and transmitted to the control device 11. The control device 11 receives the data at the block 1200 in FIG. 1 and replaces the received data with the corresponding data in the EEPROM 103. If the simultaneous pressing is stopped, the data change ends. If the control device has an answer back function for the remote control, an answer back signal may be transmitted to the remote control, and the remote control may display the result on the liquid crystal display device 300 or an LED (not shown). Time1 can be modified in the same manner. In this case, the time increase button 210 and the timer off button 240 are pressed simultaneously to change Time1. In the present embodiment, it has been described that the change of the setting function is handled by double pressing of the two buttons. However, this is not limited thereto, and any change or adjustment function can be realized. The realization method is not limited.
[0045]
According to the present embodiment, the defrosting control unit including the defrosting start unit and the defrosting end unit is provided in the operation control procedure of the air conditioner, and the defrosting end unit is configured to remove the defrosting. Defrosting determination means, defrosting prohibition time setting means for setting a defrosting prohibition time until the next start of defrosting by a predetermined defrosting prohibition time pattern with the outside air temperature illustrated in FIG. 6 as a parameter, and return to heating operation The defrosting start unit is configured by a heating cycle switching unit that performs defrosting, and the defrosting start unit is configured to determine the elapse of the defrosting prohibition time. Means, a defrost cycle switching means for switching to a defrost cycle, a defrost upper limit time setting means for setting a defrost upper limit time, and a defrost required time setting means for setting a defrost required time determination timer. Therefore, when the outside air temperature is low and the problem of icing or residual frost in the drain water occurs, the next defrosting prohibition time is set to be short, and frost formation does not progress greatly during the defrosting prohibition time. The defrosting operation is performed in a state where the amount of frost formation is small before the frost generated from the frost operation or the icing of the drain water progresses, and without reducing the heating performance of the air conditioner, the air conditioning Comfortable air conditioning (heating operation) can be performed without adversely affecting the components of the equipment.
[0046]
Further, in the second embodiment, in the control device of the air conditioner, a defrost control means including a defrost start means that operates during the heating operation and a defrost end means that operates during the defrost operation is provided, The defrosting end means includes a defrosting end determining means for determining the end of the defrosting, a defrosting required time determining means for determining the length of the defrosting required time, and a defrosting required time short according to the length of the defrosting required time. In the case of a long time, it is removed by the predetermined defrosting prohibition time pattern using the outside air temperature as a parameter illustrated in FIG. The defrosting prohibition time setting means for setting the defrosting prohibition time and the heating cycle switching means for returning to the heating operation, and the defrosting start time determining means for determining the passage of the defrosting prohibition time. Means, no defrosting After elapse of time, frost detection means for detecting frost formation, defrost cycle switching means for switching to the defrost cycle, defrost upper limit time setting means for setting the defrost upper limit time, and defrosting time determination timer Since the defrosting time setting means is set, if the amount of frost formation is large and the problem of icing or residual frost in the drain water occurs, the next defrosting prohibition time is compulsory regardless of the outside air temperature. The frost formation does not significantly progress during the defrosting prohibition time, and therefore the defrosting is performed in a state where the amount of frost formation is small before the residual frost generated by the defrosting operation or the icing of the drain water progresses. Comfortable air conditioning (heating operation) can be performed without deteriorating the heating performance of the air conditioner and without adversely affecting the components of the air conditioner.
[0047]
Further, in the third embodiment, the defrosting prohibition time pattern can be adjusted from the operating means of the air conditioner, for example, a remote controller so that it can be adjusted to the regional characteristics. An air conditioner that can be exhibited can be provided.
[0048]
【The invention's effect】
As mentioned above, according to this invention, the air conditioning apparatus which can suppress the freezing of the said drain water or residual frost which arises by a defrost operation can be provided.
[Brief description of the drawings]
FIG. 1 is a processing procedure of overall control operation including defrost control according to an embodiment of the present invention.
FIG. 2 shows a processing procedure of a defrosting start unit that is an embodiment of the present invention.
FIG. 3 shows a processing procedure of a defrosting end unit that is an embodiment of the present invention.
FIG. 4 is a processing procedure of a defrosting start unit according to another embodiment of the present invention.
FIG. 5 shows a processing procedure of a defrosting end unit according to another embodiment of the present invention.
FIG. 6 is a defrosting prohibition time pattern according to an embodiment of the present invention.
FIG. 7 is a hardware configuration diagram of the air conditioner.
FIG. 8 is a configuration block diagram of a control device.
FIG. 9 is a configuration block diagram of a remote controller.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Four way valve, 3 ... Indoor heat exchanger, 4 ... Indoor fan, 5 ... Indoor air temperature sensor, 6 ... Decompression means, 7 ... Outdoor heat exchanger, 8 ... Outdoor fan, 9 ... Outdoor heat Exchanger temperature sensor, 10 ... outdoor air temperature sensor, 11 ... control device, 100 ... calculation control means, 101 ... ROM, 102 ... RAM, 103 ... EEPROM, 106 ... remote control, 2000 ... defrosting start means, 4000 ... defrosting Termination means.

Claims (2)

圧縮機と、四方弁と、室外熱交換器と、減圧手段と、室内熱交換器とがこの順に冷媒配管によって接続される冷凍サイクルと、圧縮機、四方弁、室内熱交換器、減圧手段、室外熱交換器の順に冷媒を通流させる暖房運転機能と、圧縮機、四方弁、室外熱交換器、減圧手段、室内熱交換器の順に冷媒を通流させる除霜運転機能と、除霜運転終了後暖房運転を許可する時間を外気温度に応じて変化させる機能とを備えた空気調和装置において、前記暖房運転を許可する時間は、高い外気温度と低い外気温度との間に最も長い許可時間を有するものである空気調和装置。  A refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression means, and an indoor heat exchanger are connected in this order by refrigerant piping, a compressor, a four-way valve, an indoor heat exchanger, a decompression means, Heating operation function for flowing refrigerant in order of outdoor heat exchanger, defrosting operation function for allowing refrigerant to flow in order of compressor, four-way valve, outdoor heat exchanger, decompression means, indoor heat exchanger, and defrosting operation In the air conditioner having a function of changing the time for permitting the heating operation after the completion according to the outside air temperature, the time for permitting the heating operation is the longest permitted time between the high outside air temperature and the low outside air temperature. An air conditioner that has 圧縮機と、四方弁と、室外熱交換器と、減圧手段と、室内熱交換器とがこの順に冷媒配管によって接続される冷凍サイクルと、圧縮機、四方弁、室内熱交換器、減圧手段、室外熱交換器の順に冷媒を通流させる暖房運転機能と、圧縮機、四方弁、室外熱交換器、減圧手段、室内熱交換器の順に冷媒を通流させる除霜運転機能と、除霜運転終了後暖房運転を許可する時間を外気温度に応じて変化させる機能とを備えた空気調和装置において、高い外気温度と低い外気温度との間に最も長い許可時間を有するものであり、直前の除霜所要時間に応じて変化するものである空気調和装置。  A refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a decompression means, and an indoor heat exchanger are connected in this order by refrigerant piping, a compressor, a four-way valve, an indoor heat exchanger, a decompression means, Heating operation function for flowing refrigerant in order of outdoor heat exchanger, defrosting operation function for allowing refrigerant to flow in order of compressor, four-way valve, outdoor heat exchanger, decompression means, indoor heat exchanger, and defrosting operation In the air conditioner having a function of changing the time for permitting the heating operation after the completion according to the outside air temperature, the air conditioner has the longest permitted time between the high outside temperature and the low outside temperature, An air conditioner that changes according to the time required for frost.
JP2001257141A 2001-08-28 2001-08-28 Air conditioner Expired - Lifetime JP3879458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001257141A JP3879458B2 (en) 2001-08-28 2001-08-28 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001257141A JP3879458B2 (en) 2001-08-28 2001-08-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2003065638A JP2003065638A (en) 2003-03-05
JP3879458B2 true JP3879458B2 (en) 2007-02-14

Family

ID=19084850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001257141A Expired - Lifetime JP3879458B2 (en) 2001-08-28 2001-08-28 Air conditioner

Country Status (1)

Country Link
JP (1) JP3879458B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035981A (en) * 2016-08-30 2018-03-08 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100465555C (en) * 2005-07-26 2009-03-04 三菱电机株式会社 Refrigerating air conditioner
JP4614209B2 (en) * 2005-12-28 2011-01-19 日立アプライアンス株式会社 Cooling system
JP2008224135A (en) * 2007-03-13 2008-09-25 Mitsubishi Electric Corp Refrigerating device
JP4624385B2 (en) * 2007-07-20 2011-02-02 三菱電機株式会社 Air conditioner
JP5076811B2 (en) * 2007-11-01 2012-11-21 パナソニック株式会社 Air conditioner
CN103542651B (en) * 2013-08-26 2016-06-15 宁波奥克斯空调有限公司 A kind of control method of heat pump air conditioner defrosting
JP5999171B2 (en) * 2014-12-26 2016-09-28 ダイキン工業株式会社 Air conditioner
JP2023006234A (en) * 2021-06-30 2023-01-18 株式会社デンソー heat pump cycle device
CN116007132B (en) * 2022-12-14 2024-07-19 珠海格力电器股份有限公司 Dehumidification defrosting control method and device, fresh air conditioning system and unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035981A (en) * 2016-08-30 2018-03-08 日立ジョンソンコントロールズ空調株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2003065638A (en) 2003-03-05

Similar Documents

Publication Publication Date Title
JP5471873B2 (en) Air conditioner
JP4654828B2 (en) Air conditioner
KR102597558B1 (en) Air Conditioner with Evaporator Cleaning function
JP2010085047A (en) Air conditioner
CN103851752A (en) Air conditioner and control method thereof
JP2007155261A (en) Air conditioner
JP2010210223A (en) Air conditioner
JP3879458B2 (en) Air conditioner
JP2009047344A (en) Air conditioning device
KR101203995B1 (en) Air conditioner and Defrosting Driving Method thereof
JPH04270876A (en) Defrosting controller for heat pump type air-conditioning machine
KR100696121B1 (en) Method for defrosting of Air conditioner for simultaneously heating and cooling
JP2007285614A (en) Air conditioner
KR20080035878A (en) Air-conditioner and defrosting method of the same air-conditioner
JP2006226568A (en) Air conditioner
KR20070030072A (en) Defrost control method of heat pump air-conditioner
JPH06281201A (en) Air conditioner
JP6852984B2 (en) Heat pump system and power limiting system equipped with it
JPH11257719A (en) Method of controlling air conditioner, and its device
KR20060098299A (en) Air conditioner and defrost control method of the same
KR20070009080A (en) Control process for defrost in air conditioner
JPH04356647A (en) Control device for air conditioner
JPS63213765A (en) Refrigerator
CN112856717A (en) Air conditioner, control method thereof and storage medium
JPH0828930A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R151 Written notification of patent or utility model registration

Ref document number: 3879458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term