JP3879264B2 - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
JP3879264B2
JP3879264B2 JP20271098A JP20271098A JP3879264B2 JP 3879264 B2 JP3879264 B2 JP 3879264B2 JP 20271098 A JP20271098 A JP 20271098A JP 20271098 A JP20271098 A JP 20271098A JP 3879264 B2 JP3879264 B2 JP 3879264B2
Authority
JP
Japan
Prior art keywords
capacitor
case body
ultrasonic sensor
insulating resin
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20271098A
Other languages
Japanese (ja)
Other versions
JP2000023288A (en
Inventor
潤一 越野
昭三 大寺
英俊 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP20271098A priority Critical patent/JP3879264B2/en
Publication of JP2000023288A publication Critical patent/JP2000023288A/en
Application granted granted Critical
Publication of JP3879264B2 publication Critical patent/JP3879264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は超音波センサに関する。特に、自動車のバックソナーやコーナーソナー等に使用される超音波センサに関する。
【0002】
【従来の技術】
超音波センサは、超音波を利用してセンシングを行うものであり、圧電振動素子から超音波パルス信号を間欠的に送信し、周辺に存在する障害物からの反射波を圧電振動素子で受信することにより物体を検知するものである。しかし、このような超音波センサにあっては、その圧電振動素子の静電容量が温度変化に対して大きく変動し、共振特性が大きく変化するものであることから、何らかの温度補償をしなければ、超音波センサの温度ドリフトが大きくなってしまう。そのため、超音波センサ内に温度補償用のコンデンサを内蔵させることによって温度ドリフトの低減を図ることが行われている。
【0003】
温度補償用の単板コンデンサを内蔵した公知の超音波センサの構造を図7の断面図に示す(特開平8−237796号公報)。この超音波センサ51にあっては、有底筒状をした金属ケース52の前面に薄肉部52aが位置しており、圧電振動素子53は薄肉部52aの内面に密着して固定され、圧電振動素子53の振動面上に形成された一方の電極は薄肉部52aと導通している。また、2本の信号入出力用の信号線54,54の先端は、温度補償用の単板コンデンサ55の外部電極に接続されており、単板コンデンサ55の両外部電極と圧電振動素子53の他方の電極及び金属ケースもそれぞれ信号線56,56によって接続されている。こうして信号線54,56に接続された圧電振動素子53と単板コンデンサ55を金属ケース52内部に納めた状態で、金属ケース52の内部にフェルト等の吸音材57と、シリコンゴムやウレタンゴム等の弾性を有する絶縁性樹脂58を充填して金属ケース52の内部を封止している。従って、圧電振動素子53は金属ケース52(薄肉部52a)と吸音材57に囲まれた空間に配置され、単板コンデンサ55は絶縁性樹脂58内に封止され、一体構造の超音波センサ51が組み立てられている。
【0004】
そして、温度補償用コンデンサを内蔵することによって自ら温度ドリフトの低減を図ると共に、絶縁性部材により封止されることによって防滴型の構造となっている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のような構造の超音波センサにあっては、以下に説明するような問題があった。
(1) 圧電振動素子の振動を阻害せず、かつ感度出力を大きくするためには、圧電振動素子及び単板コンデンサに接続されて超音波センサの外部へ引き出される信号線は、特に細くて柔かいものを採用することが感度特性の上で望ましい。しかし、この細くて柔らかい信号線を金属ケースの狭い空間内で圧電振動素子や単板コンデンサに半田付け等で電気的に接続することは非常に難しく、超音波センサの製造効率が悪かった。この結果、信号線と圧電振動素子や単板コンデンサとの結線チェックも必要となり、工程が煩雑になる問題があった。
【0006】
(2) また、単板コンデンサは、絶縁性樹脂を充填するまでは金属ケース内で宙に浮いた状態となっているので、信号線と接続した後、金属ケース内に絶縁性樹脂を注入する際、その注入圧によって単板コンデンサが信号線から外れて導通を損なう恐れがあった。
【0007】
(3) 絶縁性樹脂の注入時に単板コンデンサが信号線から外れなかったとしても、製造工程上、次のような問題が発生する。
超音波センサは、間欠的に超音波パルス信号を作成し、増幅した後、超音波パルス信号を送信し、障害物からの反射波を受信し、増幅する。そして、その受信パルスから障害物の存在を検知したり、あるいは、超音波パルス信号を送信してから受信するまでの経過時間から障害物までの距離を演算するものである。従って、近距離での検知も可能にするためには、超音波パルス信号を送信した後、超音波センサ内に発生する残響波は受信波を受信するまでに速やかに収束させる必要がある。しかし、圧電振動素子に接続された信号線が交差していたり、絶縁性樹脂に封止された信号線が残留張力を持っていたりすると、出力側への振動の漏れが増大し、超音波センサの残響特性が劣化する。
【0008】
また、信号線に外部から張力が加わった際、その張力が超音波センサの内部に伝達して信号線が単板コンデンサや圧電振動素子から外れて超音波センサが破壊しないようにするためには、信号線に加わった張力を絶縁性樹脂によって内部分散させなければならず、それには信号線を絶縁性樹脂の中心部から外部へ引き出さなければならない。
【0009】
そのためには、超音波センサの製造工程においては、ケース本体に絶縁性樹脂を注入した後も、信号線が交差したり信号線に張力が残留したりすることがないよう、単板コンデンサや信号線を一定位置に(特に、信号線がケース本体の中心から引き出されるように)安定に保持したままで絶縁性樹脂を硬化させる必要がある。
【0010】
しかしながら、絶縁性樹脂が硬化する以前には、単板コンデンサを支持する手段としては信号線しかないから、単板コンデンサを信号線で吊り下げた状態に保持して絶縁性樹脂が硬化するのを待つしかなく、信号線に張力が生じるのを避けることができず、単板コンデンサや信号線の位置も動き易くて不安定であった。この結果、超音波センサの組み立てが困難になり、品質特性及び信頼性の点でも問題があった。
【0011】
(4) また、この構造の超音波センサでは、単板コンデンサは信号線と信号線の電気的導通を得るための中継端子としての機能を有しているから、半田付け等の作業に必要な面積の外部電極を有する単板コンデンサを用いる必要があり、超音波センサ全体の小型化に十分対応できず、単板コンデンサを金属ケース内に完全に収納することが困難となり、単板コンデンサの外部電極を絶縁性樹脂で完全に被覆することが困難であった。
【0012】
本発明は叙上の従来例の欠点に鑑みてなされたものであり、その目的とするところは、超音波センサの製造を容易にするとともにその特性及び信頼性を向上させることにある。
【0013】
【発明の開示】
本発明にかかる超音波センサは、絶縁性材料からなる略筒状をしたケース本体の前面開口部に金属板を設け、当該金属板の内面に圧電振動素子を接合させ、前記ケース本体に一体形成した一対の導電部材をそれぞれ前記圧電振動素子の各電極に導通させ、前記ケース本体の後端部において前記各導電部材の一部を前記ケース本体の後端面上に露出させ、前記各導電部材の露出部分から信号線を取り出し、前記ケース本体から露出した前記各導電部材の端部間を跨ぐようにコンデンサを実装したことを特徴としている。
【0014】
本発明の超音波センサにあっては、ケース本体の後端部において前記各導電部材の一部を前記ケース本体の後端面上に露出させ、前記ケース本体から露出した前記各導電部材の端部間を跨ぐようにコンデンサを実装しているので、簡単に温度補償用のコンデンサを自動実装することができる。信号線も導電部材の露出部分に接続することによって容易に接続できる。従って、超音波センサの製造を容易にし、製造効率を向上させることができる。
【0015】
また、コンデンサや信号線は、ケース本体と一体形成された導電部材に接続されるので、確実に取り付けることができ、ケース本体内に樹脂を注入してコンデンサや信号線の一部を封止する場合でも、コンデンサや信号線が導電部材から外れる恐れがほとんどない。よって、超音波センサの不良品率を低下させ、信頼性を向上させることができる。
【0016】
また、ケース本体に樹脂を注入する場合でも、信号線に張力が加わることのない状態で、しかもコンデンサ及び信号線を一定位置に保持したままで樹脂を硬化させることができるので、信号線に生じる残留応力を抑制し、残響特性を安定化させることができる。さらに、信号線に外部から張力が加わった場合でも、効果的に張力を分散させて超音波センサの破壊を防止することができる。よって、残響特性のばらつきを低減し、接続信頼性を向上させて超音波センサの特性と信頼性を向上させることができる。
【0017】
さらには、信号線はコンデンサに接続するのでなく、ケース本体に一体形成された導電部材に接続しているので、小さなコンデンサを用いることができ、超音波センサの小型化に寄与する。
【0018】
前記露出部分は、本発明のある実施態様においては、前記ケース本体の後端面に沿って延出され、前記コンデンサは前記ケースの後端面上において前記露出部分の端部間を跨ぐように実装されている。
また、本発明の別な実施態様においては、前記ケース本体内が絶縁性樹脂により充填され、前記信号線の一部が前記絶縁性樹脂に埋め込まれている。かかる実施態様によれば、信号線に引張力が加わっても信号線が導電部材から外れにくくなる。よって、ユーザーが超音波センサを取付け作業する時に、信号線に掛かる引張力のために超音波センサが破壊しにくくなり、作業性が向上する。
また、本発明のさらに別な実施態様においては、前記ケース本体の後端面の一部に凹部を形成し、この凹部内にコンデンサを納めてコンデンサの各電極を前記凹部内において前記ケース本体から露出した各導電部材の端部に導通させ、絶縁性樹脂によって前記コンデンサを封止している。かかる実施態様によれば、この凹部内を絶縁性樹脂で封止することによってコンデンサの半田接続部を簡単に被覆でき、接続部の信頼性をより高くすることができる。
また、本発明のさらに別な実施態様においては、前記ケース本体の後端面にその全周にわたって切り欠かれた環状の凹部を形成し、当該凹部内に前記コンデンサを納めてコンデンサの各電極を前記各導電部材の端部に導通させ、絶縁性樹脂によって前記コンデンサを封止している。かかる実施態様によれば、この環状の凹部内を絶縁性樹脂で封止することによってコンデンサの半田接続部を簡単に被覆でき、接続部の信頼性をより高くすることができる。
【0019】
【発明の実施の形態】
(第1の実施形態)
図1(a)(b)は本発明の一実施形態による超音波センサ1の構造を示す平面図及び断面図、図2は同上のセンサケース2を分解して示す断面図である。この超音波センサ1の構造を組み立て手順をまじえて説明する。圧電振動素子5を収納するセンサケース2は有底筒状をしており、このセンサケース2は、絶縁性樹脂、例えばポリフェニレンサルファイド(PPS)や液晶ポリマー等のエンジニアリングプラスチックからなる略円筒状のケース本体3と、円板状をしたアルミニウム等の金属板(振動板)4から構成されている。図2に示しているように、ケース本体3の前端開口の内周には環状の窪み部6が凹設されており、窪み部6内には振動を発生し反射波を受信する金属板4が嵌合して有底筒状のセンサケース2が構成されている。ケース本体3内には、洋白、42ニッケルなどの金属材料からなる導電部材7,8が一部(つまり、先端側半部7a,8a)をインサートされており、一方の導電部材8の先端は窪み部6内に露出し、他方の導電部材7の先端はケース本体3の内周面から端面開口へ向けて突出している。導電部材7,8として洋白、42ニッケルなどの金属材料を用いることにより導電部材強度が向上し、柔らかな信号線を用いる場合のような断線の恐れが小さくなる。また、両導電部材7,8の中央部には信号線を接続するための電極パッド9,9が設けられており、2つの電極パッド9,9はケース本体3の後端面上の反対側で互いに対向するように配置されている。さらに、ケース本体3の後端面で露出している2つの電極パッド9,9からは、ケース本体3の後端面に沿って導電部材7,8の基端側半部7b,8bが円弧状に延出しており、両基端側半部7b,8bの先端どうしは小さな間隔をあけて対向している。
【0020】
圧電振動素子5は両主面に電極10a,10bを形成されており、金属板4の内面中央部には、圧電振動素子5の一方の電極10aが導電接着剤により接合されている。このようにしてケース本体3を導電部材7,8と一体成形すると共に金属板4に圧電振動素子5を一体化した後、圧電振動素子5を接合された金属板4の外周部をケース本体3の窪み部6に嵌めて接着剤で接着し、それによってセンサケース2を組み立てると共にセンサケース2内に圧電振動素子5を納める。ついで、一方の導電部材7の先端を圧電振動素子5の電極10bに半田付けする。他方の導電部材8の先端は金属板4に圧接して金属板4に導通している(この導電部材8の先端と金属板4も導電接着剤などで接合させてもよい)ので、2本の導電部材7,8は圧電振動素子5の両面に導通することになる。
【0021】
導電部材7,8の基端間に跨がせてチップコンデンサ11を乗せ、チップコンデンサ11の電極12,12を各導電部材7,8の基端部に半田付けしてチップコンデンサ11をケース本体3の後端面に実装する。ついで、電極パッド9,9に信号線13,13の端部を半田付けする。こうして、圧電振動素子5は、信号線13,13及び導電部材7,8を通じて、電圧を印加されると共に受波信号を取り出される。また、温度補償用のチップコンデンサ11は圧電振動素子5と並列に接続されることになる。
【0022】
こうして各部品の実装や接続が終わったら、ケース本体3内にフェルト等の吸音材14を入れて圧電振動素子5の近傍を吸音材14で覆い、吸音材14のあとからケース本体3内にシリコンゴムやウレタンゴム等の弾性を有する絶縁性樹脂15を充填し硬化させる。この絶縁性樹脂15としては、合成樹脂発泡体を用いてもよい。なお、チップコンデンサ11を絶縁性樹脂15で覆って封止してもよい。
【0023】
また、ケース本体3内に絶縁性樹脂15を充填する際、信号線13,13の一部を絶縁性樹脂15内に埋め込むようにすれば、信号線13,13に引張力が加わっても信号線13,13が電極パッド9,9から外れにくくできる。これにより、ユーザーが超音波センサ1を取付け作業する時に、信号線13,13に掛かる引張力のために超音波センサ1が破壊しにくくなり、作業性が向上する。さらに、導電部材7,8を伝ってくる振動が絶縁性樹脂15によって緩和されるので、残響特性が向上する。
【0024】
しかして、この超音波センサ1にあっては、導電部材7,8及び金属板4を介して圧電振動素子5に交流電圧を印加して金属板4を振動させ、音波を発生させる。逆に、受信した反射音波により金属板4が変形することによって発生する歪を圧電振動素子5によって電気信号に変換し、導電部材7等を介して信号を取り出し、障害物等の検出を行なう。
【0025】
このような構造の超音波センサ1にあっては、ケース本体3の端面に導電部材7,8を配設し、ケース本体3の端面で導電部材7,8間にチップコンデンサ11を実装するようにしたので、チップコンデンサ11を安定的に搭載することができるようになる。また、導電部材7,8はケース本体3に埋設もしくは植設して位置決めされているから、配線経路が固定されることになり、チップコンデンサ11の搭載精度も向上する。よって、既存のチップ部品搭載機によるチップコンデンサ11の自動搭載が可能となり製造が容易になる。さらに、温度補償用コンデンサをチップコンデンサ11とすることで、超音波センサ1の小型化が可能になる。
【0026】
また、導電部材7,8がケース本体3に埋設もしくは植設されているから、信号伝達経路が固定されることになり、信号伝達経路(導電部材7,8)が交差したり残留張力を持ったりすることがなく、超音波センサの残響特性が安定する。
【0027】
(第2の実施形態)
図3(a)(b)は本発明のさらに別な実施形態による超音波センサ21を示す平面図及び断面図、図4はケース本体3の一部破断した断面図(ケース本体3の外周面に沿った湾曲した断面の断面図)である。この実施形態にあっては、ケース本体3の基端部内周面を部分的に切り欠き、チップコンデンサ11を納めることができる大きさの凹部22を設けてある。また、導電部材7,8の電極パッド9,9よりも基端側(基端側半部7b,8b)もケース本体3内にインサートされており、導電部材7,8の基端側半部7b,8bの先端は凹部22内に露出し、先端どうしが隙間を隔てて互いに対向している。
【0028】
しかして、圧電振動素子5を接合された金属板4をケース本体3に取り付けてセンサケース2内に圧電振動素子5を納めた後、チップコンデンサ11を凹部22内に納めて導電部材7,8の先端間に配置し、チップコンデンサ11の電極12,12を各導電部材7,8の先端に半田付けしている。さらに、電極パッド9,9に信号線13,13の端を半田付けし、ケース本体3内に吸音材14を入れた後、絶縁性樹脂15をケース本体3の後端面まで充填すると、凹部22内にも絶縁性樹脂15が充填されてチップコンデンサ11の全体が絶縁性樹脂15内に封止され、チップコンデンサ11の接続部分の耐湿性が向上する。
【0029】
チップコンデンサ11の半田付け接続部を絶縁性樹脂15で封止することは耐湿性を向上させるのに効果的である。この実施形態では、ケース本体3に設けた凹部22にチップコンデンサ11を実装しているので、凹部22内に絶縁性樹脂15を充填することにより、絶縁性樹脂15をセンサケース2の外へ漏らすことなく、容易に絶縁性樹脂15でチップコンデンサ11を封止することができる。よって、ケース本体3内への絶縁性樹脂15の充填と同時に、温度補償用のチップコンデンサ11の電極の被覆が可能となり、簡単に耐湿性能等の信頼性を向上させることが可能となる。
【0030】
(第3の実施形態)
図5(a)(b)は本発明のさらに別な実施形態による超音波センサ31を示す平面図及び断面図、図6はこの超音波センサ31における吸音材14及び絶縁性樹脂15をケース本体3に入れる前の状態を示す平面図である。この実施形態にあっては、ケース本体3の基端部内周面を全周にわたって切り欠いて環状の凹部23を形成している。そして、先端側半部7a,8aをケース本体3内にインサートされた導電部材7,8の電極パッド9,9を凹部23の底面に露出させ、導電パッドの基端側半部7b,8bを凹部23の底面に沿って延出させ、凹部23の底面で基端側半部7b,8bの先端どうしを互いに対向させている。この実施形態でも、導電部材7,8間に実装されたチップコンデンサ11は凹部23内に納められて絶縁性樹脂15内に全体を封止されている。さらに、この導電性部材も絶縁性樹脂15内に封止されて露出しなくなる。
【0031】
このように凹部23をケース本体3の全周に設けても、第2の実施形態と同様、
ケース本体3内への絶縁性樹脂15の充填と同時に、温度補償用のチップコンデンサ11の電極の被覆が可能となり、簡単に耐湿性能等の信頼性を向上させることが可能となる。また、この実施形態では、導電部材7,8と信号線13,13の接続部分も絶縁性樹脂15内に埋まるので、信号線13,13の接続信頼性も向上する。
【図面の簡単な説明】
【図1】(a)(b)は本発明の一実施形態による超音波センサの構造を示す平面図及び断面図である。
【図2】同上の超音波センサのケース本体と金属板を示す断面図である。
【図3】(a)(b)は本発明の別な実施形態による超音波センサの構造を示す平面図及び断面図である。
【図4】同上の超音波センサのケース本体の一部破断した断面図である。
【図5】(a)(b)は本発明のさらに別な実施形態による超音波センサの構造を示す平面図及び断面図である。
【図6】同上の超音波センサの吸音材及び絶縁性樹脂を入れる前の状態を示す平面図である。
【図7】従来例の超音波センサの構造を示す断面図である。
【符号の説明】
3 ケース本体
4 金属板
5 圧電振動素子
7,8 導電部材
11 チップコンデンサ
13 信号線
22,23 凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic sensor. In particular, the present invention relates to an ultrasonic sensor used for automobile back sonar and corner sonar.
[0002]
[Prior art]
The ultrasonic sensor performs sensing using ultrasonic waves, intermittently transmits ultrasonic pulse signals from the piezoelectric vibration element, and receives reflected waves from obstacles existing in the vicinity by the piezoelectric vibration element. Thus, an object is detected. However, in such an ultrasonic sensor, the capacitance of the piezoelectric vibration element greatly fluctuates with respect to the temperature change, and the resonance characteristics change greatly. The temperature drift of an ultrasonic sensor will become large. Therefore, it is attempted to reduce temperature drift by incorporating a temperature compensation capacitor in the ultrasonic sensor.
[0003]
A structure of a known ultrasonic sensor incorporating a single-plate capacitor for temperature compensation is shown in a sectional view of FIG. 7 (Japanese Patent Laid-Open No. 8-237796). In this ultrasonic sensor 51, a thin portion 52a is positioned on the front surface of a bottomed cylindrical metal case 52, and the piezoelectric vibration element 53 is fixed in close contact with the inner surface of the thin portion 52a. One electrode formed on the vibration surface of the element 53 is electrically connected to the thin portion 52a. The ends of the two signal input / output signal lines 54 and 54 are connected to the external electrodes of the single plate capacitor 55 for temperature compensation, and both the external electrodes of the single plate capacitor 55 and the piezoelectric vibration element 53 are connected. The other electrode and the metal case are also connected by signal lines 56 and 56, respectively. With the piezoelectric vibration element 53 and the single plate capacitor 55 connected to the signal lines 54 and 56 thus housed in the metal case 52, the sound absorbing material 57 such as felt, silicon rubber, urethane rubber, etc. The inside of the metal case 52 is sealed by being filled with an insulating resin 58 having the above elasticity. Accordingly, the piezoelectric vibration element 53 is disposed in a space surrounded by the metal case 52 (thin wall portion 52a) and the sound absorbing material 57, and the single plate capacitor 55 is sealed in the insulating resin 58, so that the ultrasonic sensor 51 having an integral structure is provided. Is assembled.
[0004]
A temperature compensation capacitor is built in to reduce temperature drift by itself, and a drip-proof structure is formed by sealing with an insulating member.
[0005]
[Problems to be solved by the invention]
However, the ultrasonic sensor having the above structure has the following problems.
(1) In order to increase the sensitivity output without hindering the vibration of the piezoelectric vibration element, the signal line connected to the piezoelectric vibration element and the single plate capacitor and drawn to the outside of the ultrasonic sensor is particularly thin and soft. It is desirable in terms of sensitivity characteristics to adopt one. However, it is very difficult to electrically connect this thin and soft signal line to a piezoelectric vibration element or a single plate capacitor in a narrow space of a metal case by soldering or the like, and the manufacturing efficiency of the ultrasonic sensor is poor. As a result, it is necessary to check the connection between the signal line and the piezoelectric vibration element or the single plate capacitor, which causes a problem that the process becomes complicated.
[0006]
(2) In addition, the single plate capacitor is in a floating state in the metal case until it is filled with the insulating resin. After connecting the signal line, the insulating resin is injected into the metal case. At this time, the injection pressure may cause the single plate capacitor to be disconnected from the signal line and impair conduction.
[0007]
(3) Even if the single plate capacitor does not come off the signal line during the injection of the insulating resin, the following problems occur in the manufacturing process.
The ultrasonic sensor intermittently creates and amplifies an ultrasonic pulse signal, transmits the ultrasonic pulse signal, receives the reflected wave from the obstacle, and amplifies it. Then, the presence of an obstacle is detected from the received pulse, or the distance to the obstacle is calculated from the elapsed time from transmission of the ultrasonic pulse signal to reception. Therefore, in order to enable detection at a short distance, it is necessary to quickly converge the reverberant wave generated in the ultrasonic sensor after receiving the ultrasonic pulse signal before receiving the received wave. However, if the signal lines connected to the piezoelectric vibration element cross each other or if the signal line sealed with insulating resin has residual tension, the leakage of vibration to the output side increases, and the ultrasonic sensor The reverberation characteristics of are degraded.
[0008]
In addition, when tension is applied to the signal line from the outside, the tension is transmitted to the inside of the ultrasonic sensor so that the signal line is not detached from the single plate capacitor or the piezoelectric vibration element and the ultrasonic sensor is not destroyed. The tension applied to the signal line must be internally dispersed by the insulating resin, and for this purpose, the signal line must be pulled out from the center of the insulating resin.
[0009]
For this purpose, in the manufacturing process of the ultrasonic sensor, even after injecting the insulating resin into the case body, the signal lines do not cross or the tension does not remain on the signal lines. It is necessary to cure the insulating resin while keeping the wire in a fixed position (in particular, so that the signal wire is drawn from the center of the case body).
[0010]
However, before the insulating resin is cured, there is only a signal line as a means for supporting the single plate capacitor. Therefore, the insulating resin is cured by holding the single plate capacitor suspended by the signal line. There is no choice but to wait for the signal line to be tensioned, and the position of the single-plate capacitor and the signal line is easy to move and unstable. As a result, it is difficult to assemble the ultrasonic sensor, and there are problems in terms of quality characteristics and reliability.
[0011]
(4) Moreover, in the ultrasonic sensor of this structure, the single plate capacitor has a function as a relay terminal for obtaining electrical continuity between the signal line and the signal line. It is necessary to use a single-plate capacitor with an external electrode of the area, and it is not possible to sufficiently cope with the miniaturization of the entire ultrasonic sensor, making it difficult to completely store the single-plate capacitor in a metal case, It was difficult to completely cover the electrode with an insulating resin.
[0012]
The present invention has been made in view of the drawbacks of the conventional examples described above, and an object of the present invention is to facilitate the manufacture of an ultrasonic sensor and improve its characteristics and reliability.
[0013]
DISCLOSURE OF THE INVENTION
Ultrasonic sensor according to the present invention, a metal plate provided on the front opening of the case body having a substantially cylindrical shape made of an insulating material, is bonded to the piezoelectric vibrating element on the inner surface of the metal plate, integrally formed on the case body each is electrically connected to the electrodes of the piezoelectric vibrating element a pair of conductive member that, a portion of each of the conductive members at the rear end of the case body is exposed on the rear end surface of the case body, wherein each of the conductive members A signal line is taken out from the exposed portion, and a capacitor is mounted so as to straddle between the ends of the conductive members exposed from the case body .
[0014]
In the ultrasonic sensor of the present invention, a part of each conductive member is exposed on the rear end surface of the case main body at the rear end of the case main body, and the end of each conductive member exposed from the case main body. Since the capacitors are mounted so as to straddle the space, it is possible to easily mount the temperature compensation capacitor automatically. The signal line can also be easily connected by connecting to the exposed portion of the conductive member. Accordingly, the ultrasonic sensor can be easily manufactured and the manufacturing efficiency can be improved.
[0015]
In addition, since the capacitor and signal line are connected to a conductive member formed integrally with the case body, it can be securely attached, and a resin is injected into the case body to seal part of the capacitor and signal line. Even in this case, there is almost no possibility that the capacitor and the signal line are detached from the conductive member. Therefore, the defective product rate of an ultrasonic sensor can be reduced and reliability can be improved.
[0016]
In addition, even when resin is injected into the case body, the resin can be cured in a state where no tension is applied to the signal line and the capacitor and the signal line are held at a fixed position, so that the signal line is generated. Residual stress can be suppressed and reverberation characteristics can be stabilized. Furthermore, even when tension is applied to the signal line from the outside, it is possible to effectively disperse the tension and prevent the ultrasonic sensor from being destroyed. Therefore, variation in reverberation characteristics can be reduced, connection reliability can be improved, and characteristics and reliability of the ultrasonic sensor can be improved.
[0017]
Furthermore, since the signal line is not connected to the capacitor but is connected to a conductive member formed integrally with the case body, a small capacitor can be used, which contributes to miniaturization of the ultrasonic sensor.
[0018]
The exposed portion, in certain embodiments of the present invention, the extended along the rear end surface of the case body, wherein the capacitor is mounted so as to bridge between the ends of the exposed portion on the rear end surface of the case ing.
Further, in another embodiment of the present invention, in the case body is filled with insulating resin, a portion of the signal line is embedded in the insulating resin. According to this embodiment, even if a tensile force is applied to the signal line, the signal line is unlikely to be detached from the conductive member. Therefore, when the user performs the installation work of the ultrasonic sensor, the ultrasonic sensor becomes difficult to break due to the tensile force applied to the signal line, and the workability is improved.
Further, in yet another embodiment of the present invention, the forming a concave portion on the rear end face of the case body, the electrodes of the capacitor pay a capacitor within this recess from the case body in the recess exposed by conducting the end of each conductive member, and sealing the capacitor with an insulating resin. According to such an embodiment, by sealing the inside of the concave portion with an insulating resin, the solder connection portion of the capacitor can be easily covered, and the reliability of the connection portion can be further increased.
Further, in still another embodiment of the present invention, an annular recess is formed on the rear end surface of the case main body, and the capacitor is accommodated in the recess. The capacitor is encapsulated with an insulating resin by conducting to the end of each conductive member. According to such an embodiment, by sealing the inside of the annular recess with the insulating resin, the solder connection portion of the capacitor can be easily covered, and the reliability of the connection portion can be further increased.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
1A and 1B are a plan view and a cross-sectional view showing the structure of an ultrasonic sensor 1 according to an embodiment of the present invention, and FIG. 2 is an exploded cross-sectional view of the sensor case 2 described above. The structure of the ultrasonic sensor 1 will be described with reference to the assembly procedure. The sensor case 2 for housing the piezoelectric vibration element 5 has a bottomed cylindrical shape, and the sensor case 2 is a substantially cylindrical case made of an insulating resin, for example, engineering plastic such as polyphenylene sulfide (PPS) or liquid crystal polymer. A main body 3 and a disk-shaped metal plate (vibrating plate) 4 such as aluminum are formed. As shown in FIG. 2, an annular recess 6 is provided in the inner periphery of the front end opening of the case body 3, and the metal plate 4 that generates vibration and receives reflected waves in the recess 6. Are fitted to form a bottomed cylindrical sensor case 2. In the case main body 3, conductive members 7, 8 made of a metal material such as white or 42 nickel are partially inserted (that is, the tip-side halves 7 a, 8 a). Is exposed in the recess 6, and the tip of the other conductive member 7 protrudes from the inner peripheral surface of the case body 3 toward the end surface opening. By using a metal material such as white or 42 nickel as the conductive members 7 and 8, the strength of the conductive member is improved, and the risk of disconnection as in the case of using a soft signal line is reduced. In addition, electrode pads 9 and 9 for connecting signal lines are provided at the center of both conductive members 7 and 8, and the two electrode pads 9 and 9 are on the opposite side on the rear end face of the case body 3. It arrange | positions so that it may mutually oppose. Furthermore, from the two electrode pads 9 and 9 exposed at the rear end surface of the case body 3, the base end side halves 7 b and 8 b of the conductive members 7 and 8 have an arc shape along the rear end surface of the case body 3. It extends, and the front-end | tips of both base end side half parts 7b and 8b oppose each other with a small space | interval.
[0020]
The piezoelectric vibration element 5 has electrodes 10a and 10b formed on both main surfaces, and one electrode 10a of the piezoelectric vibration element 5 is joined to the central portion of the inner surface of the metal plate 4 by a conductive adhesive. After the case body 3 is integrally formed with the conductive members 7 and 8 and the piezoelectric vibration element 5 is integrated with the metal plate 4 in this way, the outer peripheral portion of the metal plate 4 to which the piezoelectric vibration element 5 is bonded is connected to the case body 3. The sensor case 2 is assembled and the piezoelectric vibration element 5 is accommodated in the sensor case 2. Next, the tip of one conductive member 7 is soldered to the electrode 10 b of the piezoelectric vibration element 5. Since the tip of the other conductive member 8 is in pressure contact with the metal plate 4 and is conducted to the metal plate 4 (the tip of the conductive member 8 and the metal plate 4 may be joined with a conductive adhesive or the like) The conductive members 7 and 8 are electrically connected to both surfaces of the piezoelectric vibration element 5.
[0021]
The chip capacitor 11 is placed between the base ends of the conductive members 7 and 8, and the electrodes 12 and 12 of the chip capacitor 11 are soldered to the base ends of the respective conductive members 7 and 8 to attach the chip capacitor 11 to the case body. 3 is mounted on the rear end face. Next, the ends of the signal lines 13 and 13 are soldered to the electrode pads 9 and 9. Thus, the piezoelectric vibration element 5 is applied with a voltage and takes out a received signal through the signal lines 13 and 13 and the conductive members 7 and 8. Further, the temperature compensating chip capacitor 11 is connected in parallel with the piezoelectric vibration element 5.
[0022]
When mounting and connection of each component is completed in this manner, a sound absorbing material 14 such as felt is put in the case body 3 to cover the vicinity of the piezoelectric vibration element 5 with the sound absorbing material 14, and silicon is placed in the case body 3 after the sound absorbing material 14. An insulating resin 15 having elasticity such as rubber or urethane rubber is filled and cured. As this insulating resin 15, a synthetic resin foam may be used. The chip capacitor 11 may be covered with an insulating resin 15 and sealed.
[0023]
Further, when the insulating resin 15 is filled in the case body 3, if part of the signal lines 13, 13 is embedded in the insulating resin 15, the signal lines 13, 13 can be signaled even if a tensile force is applied. The lines 13 and 13 can be hardly detached from the electrode pads 9 and 9. Thereby, when a user attaches the ultrasonic sensor 1, the ultrasonic sensor 1 becomes difficult to break due to the tensile force applied to the signal lines 13, 13, and the workability is improved. Furthermore, since the vibration transmitted through the conductive members 7 and 8 is alleviated by the insulating resin 15, the reverberation characteristics are improved.
[0024]
In the ultrasonic sensor 1, an alternating voltage is applied to the piezoelectric vibration element 5 via the conductive members 7 and 8 and the metal plate 4 to vibrate the metal plate 4 to generate sound waves. On the contrary, the distortion generated by the deformation of the metal plate 4 by the received reflected sound wave is converted into an electric signal by the piezoelectric vibration element 5, and the signal is taken out through the conductive member 7 and the like to detect an obstacle or the like.
[0025]
In the ultrasonic sensor 1 having such a structure, the conductive members 7 and 8 are disposed on the end surface of the case body 3, and the chip capacitor 11 is mounted between the conductive members 7 and 8 on the end surface of the case body 3. As a result, the chip capacitor 11 can be stably mounted. Further, since the conductive members 7 and 8 are positioned by being embedded or implanted in the case body 3, the wiring path is fixed, and the mounting accuracy of the chip capacitor 11 is also improved. Therefore, the chip capacitor 11 can be automatically mounted by an existing chip component mounting machine, and the manufacture becomes easy. Further, the ultrasonic sensor 1 can be downsized by using the chip capacitor 11 as the temperature compensating capacitor.
[0026]
Further, since the conductive members 7 and 8 are embedded or implanted in the case body 3, the signal transmission path is fixed, and the signal transmission paths (conductive members 7 and 8) intersect or have residual tension. The reverberation characteristics of the ultrasonic sensor are stabilized.
[0027]
(Second Embodiment)
3A and 3B are a plan view and a cross-sectional view showing an ultrasonic sensor 21 according to still another embodiment of the present invention, and FIG. 4 is a partially broken cross-sectional view of the case main body 3 (an outer peripheral surface of the case main body 3). FIG. In this embodiment, the inner peripheral surface of the base end portion of the case main body 3 is partially cut away, and a recess 22 having a size capable of accommodating the chip capacitor 11 is provided. Further, the base end side (base end side half portions 7b and 8b) of the conductive members 7 and 8 from the electrode pads 9 and 9 are also inserted into the case body 3, and the base end side half portions of the conductive members 7 and 8 are inserted. The tips of 7b and 8b are exposed in the recess 22, and the tips are opposed to each other with a gap.
[0028]
Thus, after attaching the metal plate 4 to which the piezoelectric vibration element 5 is bonded to the case body 3 and placing the piezoelectric vibration element 5 in the sensor case 2, the chip capacitor 11 is placed in the recess 22 and the conductive members 7 and 8. The electrodes 12 and 12 of the chip capacitor 11 are soldered to the tips of the conductive members 7 and 8. Further, after soldering the ends of the signal lines 13 and 13 to the electrode pads 9 and 9 and putting the sound absorbing material 14 in the case body 3, the insulating resin 15 is filled to the rear end surface of the case body 3. The inside of the chip capacitor 11 is filled with the insulating resin 15 and the whole chip capacitor 11 is sealed in the insulating resin 15, so that the moisture resistance of the connection portion of the chip capacitor 11 is improved.
[0029]
Sealing the soldered connection portion of the chip capacitor 11 with the insulating resin 15 is effective in improving the moisture resistance. In this embodiment, since the chip capacitor 11 is mounted in the recess 22 provided in the case body 3, the insulating resin 15 is leaked out of the sensor case 2 by filling the recess 22 with the insulating resin 15. Therefore, the chip capacitor 11 can be easily sealed with the insulating resin 15. Therefore, simultaneously with the filling of the insulating resin 15 into the case main body 3, it becomes possible to cover the electrodes of the chip capacitor 11 for temperature compensation, and the reliability such as moisture resistance can be easily improved.
[0030]
(Third embodiment)
5A and 5B are a plan view and a cross-sectional view showing an ultrasonic sensor 31 according to still another embodiment of the present invention, and FIG. 6 shows a case main body in which the sound absorbing material 14 and the insulating resin 15 in the ultrasonic sensor 31 are attached. 3 is a plan view showing a state before entering 3. In this embodiment, the annular recess 23 is formed by cutting out the inner peripheral surface of the base end portion of the case body 3 over the entire circumference. The electrode pads 9 and 9 of the conductive members 7 and 8 inserted in the case body 3 are exposed to the bottom surface of the recess 23, and the base-end-side halves 7b and 8b of the conductive pads are It extends along the bottom surface of the recess 23, and the tips of the base-end-side halves 7 b and 8 b are opposed to each other on the bottom surface of the recess 23. Also in this embodiment, the chip capacitor 11 mounted between the conductive members 7 and 8 is housed in the recess 23 and is entirely sealed in the insulating resin 15. Further, this conductive member is also sealed in the insulating resin 15 and is not exposed.
[0031]
Thus, even if the recess 23 is provided on the entire circumference of the case body 3, as in the second embodiment,
Simultaneously with the filling of the insulating resin 15 into the case body 3, the electrode of the temperature compensating chip capacitor 11 can be covered, and the reliability such as the moisture resistance can be easily improved. Moreover, in this embodiment, since the connection part of the electrically-conductive members 7 and 8 and the signal lines 13 and 13 is also embedded in the insulating resin 15, the connection reliability of the signal lines 13 and 13 is also improved.
[Brief description of the drawings]
1A and 1B are a plan view and a cross-sectional view showing the structure of an ultrasonic sensor according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a case main body and a metal plate of the above ultrasonic sensor.
FIGS. 3A and 3B are a plan view and a cross-sectional view showing the structure of an ultrasonic sensor according to another embodiment of the present invention. FIGS.
FIG. 4 is a partially cutaway cross-sectional view of the case main body of the above ultrasonic sensor.
5A and 5B are a plan view and a cross-sectional view showing the structure of an ultrasonic sensor according to still another embodiment of the present invention.
FIG. 6 is a plan view showing a state before the sound absorbing material and the insulating resin of the ultrasonic sensor are placed.
FIG. 7 is a cross-sectional view showing the structure of a conventional ultrasonic sensor.
[Explanation of symbols]
3 Case body 4 Metal plate 5 Piezoelectric vibration elements 7 and 8 Conductive member 11 Chip capacitor 13 Signal lines 22 and 23 Recess

Claims (5)

絶縁性材料からなる略筒状をしたケース本体の前面開口部に金属板を設け、当該金属板の内面に圧電振動素子を接合させ、前記ケース本体に一体形成した一対の導電部材をそれぞれ前記圧電振動素子の各電極に導通させ、前記ケース本体の後端部において前記各導電部材の一部を前記ケース本体の後端面上に露出させ、前記各導電部材の露出部分から信号線を取り出し、前記ケース本体から露出した前記各導電部材の端部間を跨ぐようにコンデンサを実装したことを特徴とする超音波センサ。 Wherein the metal plate is provided on the front opening of the case body having a substantially cylindrical shape made of an insulating material, it is bonded to the piezoelectric vibrating element on the inner surface of the metal plate, a pair of conductive member which is integrally formed on the case body, respectively Conducting to each electrode of the piezoelectric vibration element, exposing a part of each conductive member on the rear end surface of the case body at the rear end portion of the case body, and taking out a signal line from the exposed portion of each conductive member, An ultrasonic sensor , wherein a capacitor is mounted so as to straddle between end portions of the respective conductive members exposed from the case body . 前記露出部分は、前記ケース本体の後端面に沿って延出され、前記コンデンサは前記ケースの後端面上において前記露出部分の端部間を跨ぐように実装されていることを特徴とする、請求項1に記載の超音波センサ。 The exposed portion extends along a rear end surface of the case body, and the capacitor is mounted on the rear end surface of the case so as to straddle between the end portions of the exposed portion. Item 6. The ultrasonic sensor according to Item 1. 前記ケース本体内が絶縁性樹脂により充填され、前記信号線の一部が前記絶縁性樹脂に埋め込まれていることを特徴とする、請求項1又は2に記載の超音波センサ。Wherein the case body is filled with an insulating resin, wherein a portion of the signal line is embedded in the insulating resin, the ultrasonic sensor according to claim 1 or 2. 前記ケース本体の後端面の一部に凹部を形成し、当該凹部内に前記コンデンサを納めてコンデンサの各電極を前記凹部内において前記ケース本体から露出した各導電部材の端部に導通させ、絶縁性樹脂によって前記コンデンサを封止したことを特徴とする、請求項1又は3に記載の超音波センサ。A recess is formed in a part of the rear end surface of the case body, the capacitor is placed in the recess, and each electrode of the capacitor is conducted to the end of each conductive member exposed from the case body in the recess , characterized in that seals the capacitor with an insulating resin, ultrasonic sensor according to claim 1 or 3. 前記ケース本体の後端面にその全周にわたって切り欠かれた環状の凹部を形成し、当該凹部内に前記コンデンサを納めてコンデンサの各電極を前記各導電部材の端部に導通させ、絶縁性樹脂によって前記コンデンサを封止したことを特徴とする、請求項1又は3に記載の超音波センサ。An annular recess is formed on the rear end surface of the case body, and the capacitor is placed in the recess so that each electrode of the capacitor is electrically connected to the end of each conductive member. The ultrasonic sensor according to claim 1, wherein the capacitor is sealed by the step.
JP20271098A 1998-07-01 1998-07-01 Ultrasonic sensor Expired - Fee Related JP3879264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20271098A JP3879264B2 (en) 1998-07-01 1998-07-01 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20271098A JP3879264B2 (en) 1998-07-01 1998-07-01 Ultrasonic sensor

Publications (2)

Publication Number Publication Date
JP2000023288A JP2000023288A (en) 2000-01-21
JP3879264B2 true JP3879264B2 (en) 2007-02-07

Family

ID=16461879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20271098A Expired - Fee Related JP3879264B2 (en) 1998-07-01 1998-07-01 Ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP3879264B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216037A1 (en) * 2002-04-11 2003-10-23 Endress & Hauser Gmbh & Co Kg Sound or ultrasonic sensor
JP2006203563A (en) 2005-01-20 2006-08-03 Nippon Soken Inc Ultrasonic sensor
JP4720587B2 (en) 2006-04-10 2011-07-13 株式会社デンソー Ultrasonic sensor
JP4412367B2 (en) 2007-08-21 2010-02-10 株式会社デンソー Ultrasonic sensor
JP2010050963A (en) * 2008-07-25 2010-03-04 Sumitomo Chemical Co Ltd Ultrasonic sensor case and ultrasonic sensor
JP6672877B2 (en) 2016-02-22 2020-03-25 セイコーエプソン株式会社 Ultrasonic device, ultrasonic probe, ultrasonic device, and method of manufacturing ultrasonic device

Also Published As

Publication number Publication date
JP2000023288A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
JP3721798B2 (en) Ultrasonic sensor
US9339846B2 (en) Ultrasonic sensor assembly
JP4052263B2 (en) Pressure sensor
US9176220B2 (en) Ultrasonic sensor
JPH09243447A (en) Vibration detecting sensor
KR20080073234A (en) Mount structure for sensor device
KR20010013748A (en) Acceleration sensor and acceleration apparatus using acceleration sensor
US6678164B2 (en) Pressure sensor and method for manufacturing the same
JP3824185B2 (en) Piezoacoustic transducer
JP2872170B2 (en) Vibration detection sensor
US7898151B2 (en) Ultrasonic sensor having a piezoelectric element
JP3879264B2 (en) Ultrasonic sensor
JP2010232874A (en) Ultrasonic sensor
JP4062780B2 (en) Ultrasonic sensor
JPH11187491A (en) Ultrasonic wave transmitter-receiver
KR102121421B1 (en) Assembly method of ultrasonic sensor assembly
JP2002098552A (en) Sensor
JP4228997B2 (en) Ultrasonic sensor
JP3796969B2 (en) Ultrasonic sensor
JP4081863B2 (en) Ultrasonic sensor
JP3916013B2 (en) Ultrasonic microphone and frequency adjustment method thereof
JP4126758B2 (en) Ultrasonic sensor
JP3617441B2 (en) Sensor device
KR20150004151A (en) Ultrasonic sensor assembly
JPH1164143A (en) Pressure sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees