JP4062780B2 - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
JP4062780B2
JP4062780B2 JP20271398A JP20271398A JP4062780B2 JP 4062780 B2 JP4062780 B2 JP 4062780B2 JP 20271398 A JP20271398 A JP 20271398A JP 20271398 A JP20271398 A JP 20271398A JP 4062780 B2 JP4062780 B2 JP 4062780B2
Authority
JP
Japan
Prior art keywords
ultrasonic sensor
case
diaphragm
sensor
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20271398A
Other languages
Japanese (ja)
Other versions
JP2000023296A (en
Inventor
昭三 大寺
英俊 岩谷
潤一 越野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP20271398A priority Critical patent/JP4062780B2/en
Publication of JP2000023296A publication Critical patent/JP2000023296A/en
Application granted granted Critical
Publication of JP4062780B2 publication Critical patent/JP4062780B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波センサに関する。特に、自動車のバックソナーやコーナーソナー等に使用される防滴型の超音波センサに関する。
【0002】
【従来の技術】
超音波センサは、超音波を利用してセンシングを行うものであり、圧電振動素子から超音波パルス信号を間欠的に送信し、周辺に存在する被検出物からの反射波を圧電振動素子で受信することにより物体を検知するものである。この種の超音波センサとしては、従来より図1に示す構造のものが用いられている(実用新案登録第3014800号の登録公報)。すなわち、この超音波センサ1は、金属で形成された有底筒状センサケース2の底面が振動板3となっており、振動板3の内側に、両主面に素子電極4a,4bの形成された圧電振動素子5が接合された構造となっている。センサケース2の内周面と振動板3の連結部の内面には、全周にわたって段部6が形成されている。また、圧電振動素子5の両素子電極4a,4bはリード線7やセンサケース2を介して端子8と導通させられている。
【0003】
このような構成の超音波センサ1は、圧電振動素子5に所定周波数の駆動電圧を印加し、圧電振動素子5によって振動板3を共振させ、振動板3から前方へ超音波を放射する。所要時間経過後、被検出物から反射してきた超音波が振動板3を共振させると、振動板3の振動が圧電振動素子5によって電気信号に変換される。ここで、送信(駆動電圧の印加)から受信(反射信号の検知)までの経過時間から被検出物の距離が演算される。
【0004】
超音波センサは、上記のような原理によって動作するものであるから、効率的に動作させるためには、超音波センサの感度や音圧に関する中心周波数(以下、単に周波数という)は予め決められた周波数と一致しなければならない。しかし、実際には、センサケースの製造ばらつき等によって振動板の周波数が設計周波数からずれることもある。
【0005】
そのため、上記超音波センサ1では、センサケース2の内周面と振動板3の連結部の内面に、周波数調整のための段部6を設けてあり、この段部6を図2に矢印Bで示す方向へ切削することで超音波センサ組立後の周波数調整を可能にしている。
【0006】
【発明が解決しようとする課題】
しかしながら、周波数調整のための段部6はセンサケース2の応力集中部分(内隅部)Aの近傍に位置しているため、周波数調整のために段部6を切削するとケース材料、特に振動板3に疲労劣化が発生し、センサ特性のばらつきや経時的変動が生じ、超音波センサの信頼性を低下させていた。
【0007】
さらに、段部6を図2の矢印Bの方向へ切削するためには、センサケース2の前端面を支持する必要があり、センサケース2の前端面を押さえた状態で切削工具により段部6を矢印Bの方向へ切削することになる。よって、段部6の切削時には、振動板3の厚み方向に応力が発生し、最悪の場合には振動板3が変形し、超音波センサ1の振動モードを変化させる恐れがあった。
【0008】
また、振動板の外面を研磨することによっても超音波センサの周波数調整を行うことができるが、超音波センサの指向性が曲らないようにするためには、振動板の外面を充分平坦に仕上げる必要があり、高度の技術が必要であった。
【0009】
本発明は上記従来例の欠点に鑑みてなされたものであり、その目的とするところは、ケース材料に疲労劣化を生じさせたり、振動板を変形させたりすることなく、しかも、高度な技術を要することなく超音波センサの周波数調整を行えるようにすることである。
【0010】
【発明の開示】
本発明の超音波センサは、有底筒状をしたケースの底部を振動板となし、当該振動板の内面に圧電振動素子を接合させた超音波センサにおいて、前記ケースの胴部における前記底部に対して反対側の端部と前記底部との間の中間部分に、周波数調整のための切削部を設けたことを特徴としている。
【0011】
本発明にあっては、ケースの胴部における底部に対して反対側の端部と前記底部との間の中間部分を切削することによって周波数調整しているので、従来例のようにケースの底部の内隅部分を切削することによって周波数調整を行う場合と比較すると、周波数調整によって超音波センサのケースが疲労劣化しにくく、超音波センサの特性ばらつきや経時的変動が生じにくくなる。よって、超音波センサの周波数調整によって超音波センサの信頼性を損ねることがない。
【0012】
また、従来例のように振動板の外面を切削することによって周波数調整を行う場合と比較すると、振動板に応力が加わって振動板が変形することがなく、振動モードが変化する恐れがない。しかも、振動板を切削する方法のように、周波数調整によって振動板の平坦性が損われる恐れもなく、高度な技術を要することなく周波数調整を可能にすることができる。
【0013】
また、周波数調整用の切削部をケースの胴部内周面に設ける場合には、胴部内周面から外周方向へ向けて切削するのが好ましい。あるいは、切削部をケースの胴部外周面に設ける場合には、胴部外周面から内周方向へ向けて切削するのが好ましい。このような方向に切削部を加工すれば、振動板に応力が加わらないように切削部を加工することができるので、振動板が変形して振動モードを変化させる恐れもなくなる。
【0014】
しかも、周波数調整のための切削部をケースの胴部外周面に設ければ、ケース内に吸音材や絶縁性樹脂などを充填して超音波センサを完成した後においても、超音波センサの周波数調整をすることができる。
【0015】
【発明の実施の形態】
(第1の実施形態)
図3は本発明の一実施形態による超音波センサ11の製造工程途中の構造を示す断面図である。この超音波センサ11の構造と周波数調整方法を説明する。圧電振動素子12を収納するセンサケース13は、アルミニウム等の金属材料によって、背面が開口した有底筒状に形成されている。センサケース13は、略筒状をした胴部14の前端に底面を有しており、この底面が、振動を発生し反射波を受信する薄板状の振動板15となっており、胴部14の後端部内周面には段部17が周設されている。
【0016】
圧電振動素子12は、圧電セラミック材料からなる圧電板の両主面に素子電極16a,16bを形成したものである。この圧電振動素子12は、振動板15の内面中央部に取り付けられ、圧電振動素子12の一方の素子電極16aが導電接着剤により振動板15に接合されている。一方のリード線18はセンサケース13の段部17に接続され、センサケース13を介して圧電振動素子12の一方の素子電極16aに導通されており、他方のリード線18は圧電振動素子12の他方の素子電極16bに直接はんだ付けされる。
【0017】
こうして、図3に示すように、センサケース13の振動板15内面に圧電振動素子12を取り付けてリード線18を配線した後、この超音波センサ11の周波数を計測する。計測した周波数が設計値と異なっていた場合には、図4に示すように、切削工具を用いてセンサケース13の胴部14内周面を切削加工して溝状をした切削部19を周設する。このときセンサケース13の段部17の内隅部や振動板15の外周部の内隅部は応力集中部分Cとなっているので、この応力集中部分Cを避けて切削する。また、この切削加工時には、例えばセンサケース13の胴部外周面をチャックで掴んで保持し、切削工具により胴部14の内周面から外周面へ向けて(図4に矢印Dで示す方向)彫り進めるように加工する。超音波センサ11の周波数は、この切削部19の幅や深さを変えることによって調整することができる。
【0018】
こうして超音波センサ11の周波数調整が完了したら、センサケース13内にフェルト等の吸音材(図示せず)を入れて圧電振動素子12の近傍を吸音材で覆い、吸音材のあとからセンサケース13内にシリコンゴムやウレタンゴム等の弾性を有する絶縁性樹脂(図示せず)を充填し硬化させる。この絶縁性樹脂としては、合成樹脂発泡体を用いてもよい。
【0019】
本発明の超音波センサ11にあっては、センサケース13の胴部14内周面において、応力集中部分Cから離れた位置を切削しているので、周波数調整のためにセンサケース13を切削してもセンサケース13、特に振動板15に疲労劣化が発生しにくく、センサ特性のばらつきや経時的変動を抑制することができ、超音波センサ11の信頼性を向上させることができる。
【0020】
さらに、切削部19は内周面から外周方向へ向けて切削されるので、センサケース13の外周面を保持すればよく、振動板15に応力を加える必要がない。よって、振動板15が変形して超音波センサ11の振動モードが変化する恐れがなくなる。また、振動板15の外面を研磨する従来方法と比較しても、高度な技術を要することなく超音波センサ11の周波数調整を行うことができる。
【0021】
(第2の実施形態)
図5は本発明の別な実施形態による超音波センサ21の構造を示す断面図である。この超音波センサ21では、センサケース13の振動板15に圧電振動素子12を接合し、リード線18を配線した後、センサケース13内にフェルト等の吸音材22とシリコンゴムやウレタンゴム等の弾性を有する絶縁性樹脂23を充填している。
【0022】
ついで、センサケース13の胴部14外周面に周波数調整用の切削部19を加工する。この場合もセンサケース13の外周面をチャックで掴んだ状態で、センサケース13の外周面から内周に向けて切削する。
【0023】
この実施形態にあっても、センサケース13の外周面の、応力集中部分から離れた位置を切削しているので、周波数調整のためにセンサケース13を切削してもセンサケース13、特に振動板15に疲労劣化が発生しにくく、センサ特性のばらつきや経時的変動を抑制することができ、超音波センサ21の信頼性を向上させることができる。
【0024】
さらに、切削部19は外周面から内周面へ向けて切削されるので、センサケース13の外周面を保持すればよく、振動板15に応力を加える必要がない。よって、振動板15が変形して超音波センサ21の振動モードが変化する恐れがなくなる。また、振動板15の外面を研磨する従来方法と比較しても、高度な技術を要することなく簡単な作業によって超音波センサ21の周波数調整を行うことができる。
【0025】
また、第1の実施形態と第2の実施形態とを比較すると、第1の実施形態では、センサケース13の表面に腐食防止用塗料などが塗装されている場合でも、外面の腐食防止用塗料が切削されないので、腐食防止用塗料を切削部19内に再塗装する必要がない利点がある。これに対し、第2の実施態様では、吸音材や絶縁性樹脂を充填した後で周波数調整することができるので、周波数調整後に周波数ずれが起きにくいという利点がある。
【0026】
(第3の実施形態)
また、本発明は、センサケース13の胴部14と振動板15を別個に形成した超音波センサにも適用することができる。このような超音波センサ31の構造を図6に示す。この超音波センサ31の構造を組み立て手順をまじえて説明する。圧電振動素子12を収納するセンサケース13は、絶縁性樹脂例えばポリフェニレンサルファイド(PPS)や液晶ポリマー等のエンジニアリングプラスチックからなる略円筒状の胴部14と、円板状をしたアルミニウム等の金属からなる振動板15とから構成されている。胴部14の前端開口の内周には環状の浅い窪み部33が凹設され、胴部14の後端開口の内周には環状の段部17が形成されており、前端の浅い窪み部33には、振動を発生し反射波を受信する振動板15が嵌合して有底筒状のセンサケース13が構成されている。胴部14内には、洋白、42ニッケルなどの金属材料からなる導電部材32がインサートされており、一方の導電部材32は前端部が胴部14の内周面から突出すると共に後端部が胴部14の後端面に露出し、他方の導電部材32は前端部が浅い窪み部33内に露出すると共に後端部が段部17に露出している。
【0027】
圧電振動素子12は両主面に素子電極16a,16bを形成されており、振動板15の内面中央部には、圧電振動素子12の一方の素子電極16aが導電接着剤により接合されている。このようにして胴部14を導電部材32と一体成形すると共に振動板15に圧電振動素子12を一体化した後、圧電振動素子12を接合された振動板15の外周部を胴部14の窪み部33に嵌めて接着剤で接着し、それによってセンサケース13を組み立てると共にセンサケース13内に圧電振動素子12を納める。ついで、一方の導電部材32の先端を圧電振動素子12の素子電極16bに半田付けする。他方の導電部材32の先端は振動板15に圧接して圧電振動素子12の素子電極16aに導通している(この導電部材32の先端と振動板15も導電接着剤などで接合させてもよい)ので、2本の導電部材32は圧電振動素子12の両素子電極16a,16bに導通することになる。
【0028】
この後、センサケース13の胴部14の内周面もしくは外周面を切削して切削部19を設け、超音波センサ31の周波数調整を行う。さらに、各導電部材32の後端部に信号線(図示せず)の端部を半田付けする。こうして各部品の実装や接続が終わったら、胴部14内にフェルト等の吸音材(図示せず)やシリコンゴム、ウレタンゴム等の弾性を有する絶縁性樹脂(図示せず)を充填する。
【図面の簡単な説明】
【図1】従来の超音波センサの構造を示す概略断面図である。
【図2】同上の超音波センサの周波数調整方法を説明する部分拡大断面図である。
【図3】本発明の一実施形態による超音波センサの周波数調整前の状態を示す断面図である。
【図4】同上の超音波センサの周波数調整後の状態を示す断面図である。
【図5】本発明の別な実施形態による超音波センサの周波数調整後の状態を示す断面図である。
【図6】本発明のさらに別な実施形態による超音波センサの周波数調整後の状態を示す断面図である。
【符号の説明】
12 圧電振動素子
13 センサケース
14 胴部
15 振動板
19 切削部
C 応力集中部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic sensor. In particular, the present invention relates to a drip-proof ultrasonic sensor used for automobile back sonar and corner sonar.
[0002]
[Prior art]
An ultrasonic sensor performs sensing using ultrasonic waves, intermittently transmits an ultrasonic pulse signal from the piezoelectric vibration element, and receives a reflected wave from an object to be detected in the vicinity by the piezoelectric vibration element. By doing so, an object is detected. As this type of ultrasonic sensor, one having the structure shown in FIG. 1 has been conventionally used (registered gazette of Utility Model Registration No. 3014800). That is, in this ultrasonic sensor 1, the bottom surface of the bottomed cylindrical sensor case 2 made of metal is the diaphragm 3, and the element electrodes 4 a and 4 b are formed on both main surfaces inside the diaphragm 3. The piezoelectric vibration element 5 is joined. On the inner peripheral surface of the sensor case 2 and the inner surface of the connecting portion of the diaphragm 3, a step portion 6 is formed over the entire circumference. Further, both element electrodes 4 a and 4 b of the piezoelectric vibration element 5 are electrically connected to the terminal 8 via the lead wire 7 and the sensor case 2.
[0003]
The ultrasonic sensor 1 having such a configuration applies a driving voltage of a predetermined frequency to the piezoelectric vibration element 5, causes the vibration plate 3 to resonate with the piezoelectric vibration element 5, and emits ultrasonic waves forward from the vibration plate 3. When the ultrasonic wave reflected from the object to be detected causes the diaphragm 3 to resonate after the lapse of the required time, the vibration of the diaphragm 3 is converted into an electric signal by the piezoelectric vibrating element 5. Here, the distance of the detected object is calculated from the elapsed time from transmission (application of drive voltage) to reception (reflection signal detection).
[0004]
Since the ultrasonic sensor operates according to the principle as described above, in order to operate efficiently, the center frequency (hereinafter simply referred to as frequency) relating to the sensitivity and sound pressure of the ultrasonic sensor is determined in advance. Must match the frequency. However, in practice, the frequency of the diaphragm may deviate from the design frequency due to manufacturing variations of the sensor case.
[0005]
Therefore, in the ultrasonic sensor 1, a step 6 for adjusting the frequency is provided on the inner peripheral surface of the sensor case 2 and the inner surface of the connecting portion of the diaphragm 3, and this step 6 is shown by an arrow B in FIG. The frequency adjustment after the assembly of the ultrasonic sensor is made possible by cutting in the direction indicated by.
[0006]
[Problems to be solved by the invention]
However, since the step 6 for frequency adjustment is located in the vicinity of the stress concentration portion (inner corner) A of the sensor case 2, if the step 6 is cut for frequency adjustment, the case material, particularly the diaphragm 3 suffered fatigue deterioration, resulting in variations in sensor characteristics and changes over time, reducing the reliability of the ultrasonic sensor.
[0007]
Further, in order to cut the stepped portion 6 in the direction of arrow B in FIG. 2, it is necessary to support the front end surface of the sensor case 2, and the stepped portion 6 is cut by a cutting tool while the front end surface of the sensor case 2 is pressed. Is cut in the direction of arrow B. Therefore, when cutting the stepped portion 6, stress is generated in the thickness direction of the diaphragm 3, and in the worst case, the diaphragm 3 is deformed, and there is a possibility that the vibration mode of the ultrasonic sensor 1 is changed.
[0008]
In addition, the frequency of the ultrasonic sensor can be adjusted by polishing the outer surface of the diaphragm. However, in order to prevent the directivity of the ultrasonic sensor from being bent, the outer surface of the diaphragm is sufficiently flat. It was necessary to finish and advanced technology was necessary.
[0009]
The present invention has been made in view of the drawbacks of the above-described conventional examples, and the object of the present invention is to provide advanced technology without causing fatigue deterioration in the case material or deforming the diaphragm. It is to be able to adjust the frequency of the ultrasonic sensor without necessity.
[0010]
DISCLOSURE OF THE INVENTION
Ultrasonic sensor according to the present invention, the bottom of the case where the bottomed cylindrical diaphragm and without, in the ultrasonic sensor with bonding the piezoelectric vibrating element on the inner surface of the vibration plate, the bottom portion of the body portion of said casing On the other hand, a cutting portion for adjusting the frequency is provided in an intermediate portion between the opposite end portion and the bottom portion .
[0011]
In the present invention, since the frequency is adjusted by cutting an intermediate portion between the end opposite to the bottom of the case body and the bottom, the bottom of the case as in the conventional example. Compared with the case where the frequency adjustment is performed by cutting the inner corner portion of the tube, the case of the ultrasonic sensor is less likely to be fatigue-degraded due to the frequency adjustment, and the characteristics of the ultrasonic sensor and variations over time are less likely to occur. Therefore, the reliability of the ultrasonic sensor is not impaired by adjusting the frequency of the ultrasonic sensor.
[0012]
Further, as compared with the case where the frequency is adjusted by cutting the outer surface of the diaphragm as in the conventional example , stress is not applied to the diaphragm and the diaphragm is not deformed, and the vibration mode is not changed. In addition, unlike the method of cutting the diaphragm, there is no fear that the flatness of the diaphragm is impaired by the frequency adjustment, and the frequency adjustment can be performed without requiring a high level technique.
[0013]
Moreover, when providing the cutting part for frequency adjustment in the trunk | drum inner peripheral surface of a case, it is preferable to cut toward the outer peripheral direction from a trunk | drum internal peripheral surface. Or when providing a cutting part in the trunk | drum outer peripheral surface of a case, it is preferable to cut toward an inner peripheral direction from a trunk | drum outer peripheral surface. If the cutting part is machined in such a direction, the cutting part can be machined so that no stress is applied to the diaphragm, so that there is no possibility that the diaphragm deforms and changes the vibration mode.
[0014]
Moreover, if a cutting part for adjusting the frequency is provided on the outer peripheral surface of the case body, the frequency of the ultrasonic sensor can be obtained even after the ultrasonic sensor is completed by filling the case with a sound absorbing material or insulating resin. You can make adjustments.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 3 is a cross-sectional view showing a structure during the manufacturing process of the ultrasonic sensor 11 according to the embodiment of the present invention. The structure of the ultrasonic sensor 11 and the frequency adjustment method will be described. The sensor case 13 that houses the piezoelectric vibration element 12 is formed of a metal material such as aluminum into a bottomed cylindrical shape having an open back surface. The sensor case 13 has a bottom surface at the front end of a substantially cylindrical body portion 14, and this bottom surface is a thin plate-shaped diaphragm 15 that generates vibration and receives reflected waves. A step portion 17 is provided around the inner peripheral surface of the rear end portion.
[0016]
The piezoelectric vibration element 12 has element electrodes 16a and 16b formed on both main surfaces of a piezoelectric plate made of a piezoelectric ceramic material. The piezoelectric vibration element 12 is attached to the center of the inner surface of the vibration plate 15, and one element electrode 16 a of the piezoelectric vibration element 12 is joined to the vibration plate 15 with a conductive adhesive. One lead wire 18 is connected to the step portion 17 of the sensor case 13, and is conducted to one element electrode 16 a of the piezoelectric vibration element 12 via the sensor case 13, and the other lead wire 18 is connected to the piezoelectric vibration element 12. It solders directly to the other element electrode 16b.
[0017]
Thus, as shown in FIG. 3, after attaching the piezoelectric vibrating element 12 to the inner surface of the diaphragm 15 of the sensor case 13 and wiring the lead wire 18, the frequency of the ultrasonic sensor 11 is measured. When the measured frequency is different from the design value, as shown in FIG. 4, the cutting part 19 having a groove shape is formed by cutting the inner peripheral surface of the body part 14 of the sensor case 13 using a cutting tool. Set up. At this time, since the inner corner portion of the stepped portion 17 of the sensor case 13 and the inner corner portion of the outer peripheral portion of the diaphragm 15 are the stress concentration portion C, the stress concentration portion C is cut to avoid the stress concentration portion C. Further, at the time of this cutting, for example, the outer peripheral surface of the body portion of the sensor case 13 is held by a chuck, and is directed from the inner peripheral surface of the body portion 14 to the outer peripheral surface by a cutting tool (direction indicated by arrow D in FIG. 4). Process as if carving. The frequency of the ultrasonic sensor 11 can be adjusted by changing the width and depth of the cutting portion 19.
[0018]
When the frequency adjustment of the ultrasonic sensor 11 is completed in this way, a sound absorbing material (not shown) such as felt is put in the sensor case 13 to cover the vicinity of the piezoelectric vibration element 12 with the sound absorbing material, and the sensor case 13 is placed after the sound absorbing material. The inside is filled with an insulating resin (not shown) having elasticity such as silicon rubber or urethane rubber and cured. As this insulating resin, a synthetic resin foam may be used.
[0019]
In the ultrasonic sensor 11 of the present invention, since the position away from the stress concentration portion C is cut on the inner peripheral surface of the body portion 14 of the sensor case 13, the sensor case 13 is cut for frequency adjustment. However, it is difficult for fatigue deterioration to occur in the sensor case 13, particularly the diaphragm 15, and variations in sensor characteristics and changes over time can be suppressed, and the reliability of the ultrasonic sensor 11 can be improved.
[0020]
Furthermore, since the cutting portion 19 is cut from the inner peripheral surface toward the outer peripheral direction, it is only necessary to hold the outer peripheral surface of the sensor case 13 and it is not necessary to apply stress to the diaphragm 15. Therefore, there is no possibility that the vibration plate 15 is deformed and the vibration mode of the ultrasonic sensor 11 is changed. Even if compared with the conventional method of polishing the outer surface of the diaphragm 15, the frequency of the ultrasonic sensor 11 can be adjusted without requiring advanced techniques.
[0021]
(Second Embodiment)
FIG. 5 is a sectional view showing the structure of an ultrasonic sensor 21 according to another embodiment of the present invention. In this ultrasonic sensor 21, the piezoelectric vibrating element 12 is joined to the diaphragm 15 of the sensor case 13 and the lead wire 18 is wired, and then the sound absorbing material 22 such as felt and silicon rubber, urethane rubber, or the like are placed in the sensor case 13. The insulating resin 23 having elasticity is filled.
[0022]
Next, a cutting portion 19 for adjusting the frequency is processed on the outer peripheral surface of the body portion 14 of the sensor case 13. Also in this case, cutting is performed from the outer peripheral surface of the sensor case 13 toward the inner periphery with the outer peripheral surface of the sensor case 13 held by the chuck.
[0023]
Even in this embodiment, the position away from the stress concentration portion of the outer peripheral surface of the sensor case 13 is cut. Therefore, even if the sensor case 13 is cut for frequency adjustment, the sensor case 13, particularly the diaphragm 15 is less susceptible to fatigue deterioration, can suppress variations in sensor characteristics and fluctuations over time, and can improve the reliability of the ultrasonic sensor 21.
[0024]
Furthermore, since the cutting part 19 is cut from the outer peripheral surface toward the inner peripheral surface, it is only necessary to hold the outer peripheral surface of the sensor case 13 and there is no need to apply stress to the diaphragm 15. Therefore, there is no possibility that the vibration plate 15 is deformed and the vibration mode of the ultrasonic sensor 21 is changed. Even if compared with the conventional method of polishing the outer surface of the diaphragm 15, the frequency of the ultrasonic sensor 21 can be adjusted by a simple operation without requiring a high level of technology.
[0025]
Further, when the first embodiment and the second embodiment are compared, in the first embodiment, even when the surface of the sensor case 13 is coated with a corrosion preventing paint or the like, the corrosion preventing paint on the outer surface. Is not cut, there is an advantage that it is not necessary to repaint the anticorrosion paint in the cutting part 19. On the other hand, in the second embodiment, since the frequency can be adjusted after filling the sound absorbing material or the insulating resin, there is an advantage that the frequency deviation hardly occurs after the frequency adjustment.
[0026]
(Third embodiment)
The present invention can also be applied to an ultrasonic sensor in which the body portion 14 and the diaphragm 15 of the sensor case 13 are separately formed. The structure of such an ultrasonic sensor 31 is shown in FIG. The structure of the ultrasonic sensor 31 will be described with reference to the assembly procedure. A sensor case 13 for housing the piezoelectric vibration element 12 is made of a substantially cylindrical body portion 14 made of an engineering resin such as an insulating resin such as polyphenylene sulfide (PPS) or a liquid crystal polymer, and a disk-like metal such as aluminum. And a diaphragm 15. An annular shallow recess 33 is provided in the inner periphery of the front end opening of the body portion 14, and an annular step 17 is formed on the inner periphery of the rear end opening of the body portion 14. 33 is configured with a bottomed cylindrical sensor case 13 fitted with a diaphragm 15 that generates vibration and receives reflected waves. A conductive member 32 made of a metal material such as white or 42 nickel is inserted into the body portion 14, and one of the conductive members 32 has a front end protruding from the inner peripheral surface of the body portion 14 and a rear end portion. Is exposed at the rear end surface of the body portion 14, and the other conductive member 32 is exposed at the front end portion in the shallow recess portion 33 and at the rear end portion at the stepped portion 17.
[0027]
The piezoelectric vibration element 12 has element electrodes 16a and 16b formed on both main surfaces, and one element electrode 16a of the piezoelectric vibration element 12 is bonded to the center of the inner surface of the vibration plate 15 by a conductive adhesive. In this way, the body portion 14 is integrally formed with the conductive member 32 and the piezoelectric vibration element 12 is integrated with the vibration plate 15, and then the outer peripheral portion of the vibration plate 15 to which the piezoelectric vibration element 12 is bonded is recessed in the body portion 14. The sensor case 13 is assembled by being fitted into the portion 33 and adhered with an adhesive, and the piezoelectric vibration element 12 is placed in the sensor case 13. Next, the tip of one conductive member 32 is soldered to the element electrode 16 b of the piezoelectric vibration element 12. The tip of the other conductive member 32 is in pressure contact with the vibration plate 15 and is electrically connected to the element electrode 16a of the piezoelectric vibration element 12 (the tip of the conductive member 32 and the vibration plate 15 may be joined with a conductive adhesive or the like. Therefore, the two conductive members 32 are electrically connected to both element electrodes 16a and 16b of the piezoelectric vibration element 12.
[0028]
Thereafter, the inner peripheral surface or the outer peripheral surface of the body portion 14 of the sensor case 13 is cut to provide the cutting portion 19, and the frequency of the ultrasonic sensor 31 is adjusted. Further, the end of a signal line (not shown) is soldered to the rear end of each conductive member 32. When the mounting and connection of each component are thus completed, the body portion 14 is filled with a sound absorbing material (not shown) such as felt, or an insulating resin (not shown) having elasticity such as silicon rubber or urethane rubber.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the structure of a conventional ultrasonic sensor.
FIG. 2 is a partially enlarged cross-sectional view for explaining the frequency adjustment method of the ultrasonic sensor according to the above.
FIG. 3 is a cross-sectional view showing a state before the frequency adjustment of the ultrasonic sensor according to the embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a state after frequency adjustment of the above ultrasonic sensor.
FIG. 5 is a cross-sectional view showing a state after frequency adjustment of an ultrasonic sensor according to another embodiment of the present invention.
FIG. 6 is a cross-sectional view showing a state after frequency adjustment of an ultrasonic sensor according to still another embodiment of the present invention.
[Explanation of symbols]
12 Piezoelectric Vibration Element 13 Sensor Case 14 Body 15 Diaphragm 19 Cutting Part C Stress Concentration Part

Claims (3)

有底筒状をしたケースの底部を振動板となし、当該振動板の内面に圧電振動素子を接合させた超音波センサにおいて、
前記ケースの胴部における前記底部に対して反対側の端部と前記底部との間の中間部分に、周波数調整のための切削部を設けたことを特徴とする超音波センサ。
In the ultrasonic sensor in which the bottom of the bottomed cylindrical case is a diaphragm, and a piezoelectric vibration element is bonded to the inner surface of the diaphragm,
An ultrasonic sensor, wherein a cutting portion for adjusting a frequency is provided in an intermediate portion between an end portion on the opposite side to the bottom portion of the body portion of the case and the bottom portion .
前記切削部は、前記ケースの胴部内周面から外周方向へ向けて切削されていることを特徴とする、請求項1に記載の超音波センサ。  The ultrasonic sensor according to claim 1, wherein the cutting portion is cut from an inner peripheral surface of the case portion toward an outer peripheral direction. 前記切削部は、前記ケースの胴部外周面から内周方向に向けて切削されていることを特徴とする、請求項1に記載の超音波センサ。  The ultrasonic sensor according to claim 1, wherein the cutting portion is cut from an outer peripheral surface of the body portion of the case toward an inner peripheral direction.
JP20271398A 1998-07-01 1998-07-01 Ultrasonic sensor Expired - Fee Related JP4062780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20271398A JP4062780B2 (en) 1998-07-01 1998-07-01 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20271398A JP4062780B2 (en) 1998-07-01 1998-07-01 Ultrasonic sensor

Publications (2)

Publication Number Publication Date
JP2000023296A JP2000023296A (en) 2000-01-21
JP4062780B2 true JP4062780B2 (en) 2008-03-19

Family

ID=16461931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20271398A Expired - Fee Related JP4062780B2 (en) 1998-07-01 1998-07-01 Ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP4062780B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308639A (en) 2004-04-23 2005-11-04 Denso Corp Ultrasonic sensor
CN101529927B (en) * 2006-10-20 2012-09-26 株式会社村田制作所 Ultrasonic sensor
EP2530953B1 (en) 2010-01-25 2018-03-14 Murata Manufacturing Co., Ltd. Ultrasonic vibration device
JP6123171B2 (en) 2012-05-21 2017-05-10 セイコーエプソン株式会社 Ultrasonic transducer, ultrasonic probe and ultrasonic inspection equipment
JP6592282B2 (en) * 2015-06-12 2019-10-16 アズビル株式会社 Ultrasonic sensor
JP2021197653A (en) * 2020-06-16 2021-12-27 株式会社デンソー Ultrasonic sensor

Also Published As

Publication number Publication date
JP2000023296A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
US8080922B2 (en) Ultrasonic sensor having a cover including a damping element
JP3944052B2 (en) Ultrasonic transducer and ultrasonic clearance sonar using the same
KR100975517B1 (en) Ultrasonic transducer
EP0930607B1 (en) Ultrasonic sensor comprising a cylindrical case
US7732993B2 (en) Ultrasonic sensor and method for manufacturing the same
US20080168841A1 (en) Ultrasonic sensor
JP2003023697A (en) Piezoelectric electroacoustic transducer and its manufacturing method
US20080307623A1 (en) Method of manufacturing an ultrasonic sensor
JP2009227085A (en) Mounting structure of ultrasonic sensor
JP3948484B2 (en) Ultrasonic sensor
JP4062780B2 (en) Ultrasonic sensor
US20160139250A1 (en) Surroundings-sensing device having a modular ultrasonic transducer, and motor vehicle having such a surroundings-sensing device
US11583896B2 (en) Sound transducer including a piezoceramic transducer element integrated in a vibratory diaphragm
JP4304556B2 (en) Ultrasonic sensor
JP5423295B2 (en) Ultrasonic transducer
JP2001238292A (en) Ultrasonic wave sensor
JP3879264B2 (en) Ultrasonic sensor
WO2005032211A1 (en) Ultrasonic sensor and method of manufacturing the same
JP4442632B2 (en) Ultrasonic sensor
JP4081863B2 (en) Ultrasonic sensor
JP3978875B2 (en) Ultrasonic sensor
JP4062779B2 (en) Ultrasonic sensor
JPH0711100U (en) Ultrasonic sensor oscillator holding structure
JP4228997B2 (en) Ultrasonic sensor
JP2006090809A (en) Liquid level detector and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees