JP3878732B2 - Alloy type temperature fuse manufacturing method - Google Patents

Alloy type temperature fuse manufacturing method Download PDF

Info

Publication number
JP3878732B2
JP3878732B2 JP32239797A JP32239797A JP3878732B2 JP 3878732 B2 JP3878732 B2 JP 3878732B2 JP 32239797 A JP32239797 A JP 32239797A JP 32239797 A JP32239797 A JP 32239797A JP 3878732 B2 JP3878732 B2 JP 3878732B2
Authority
JP
Japan
Prior art keywords
foil
conductor
melting point
temperature fuse
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32239797A
Other languages
Japanese (ja)
Other versions
JPH11144589A (en
Inventor
智宏 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP32239797A priority Critical patent/JP3878732B2/en
Publication of JPH11144589A publication Critical patent/JPH11144589A/en
Application granted granted Critical
Publication of JP3878732B2 publication Critical patent/JP3878732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は合金型温度ヒュ−ズの製造方法に関するものである。
【0002】
【従来の技術】
合金型温度ヒュ−ズにおいては、ヒュ−ズエレメントに低融点可溶合金片を使用し、機器の異常発熱による低融点可溶合金片の溶断で機器への給電を遮断し、機器を保護している。
近来、機器の小型化に伴い温度ヒュ−ズの薄型化が要求されている。例えば、リチウムイオン二次電池では、負極缶の上端部でガスケットを介してかしめ固定する正極蓋端部と安全弁板端部との間に平型温度ヒュ−ズを挾持することが提案されているが、この平型温度ヒュ−ズに要求される厚みは、電池の寸法上1mm以下の超薄厚である。
【0003】
図6は上記平型温度ヒュ−ズの一例を示し、中央孔31’を有する絶縁スペ−サ3’の上下にプレ−ト電極4’,4’を設け、これらのプレ−ト電極4’,4’間にヒュ−ズエレメントとしての低融点可溶合金片20’を橋設した構成である。
この平型温度ヒュ−ズの超薄型化には、低融点可溶合金片を箔状とすることが有効である。例えば、直径700μmの円形断面は厚さ100μm×幅4000μmの箔の断面と同一断面積であり、かかる箔状とすることにより低融点可溶合金片の厚さを1/7にでき、温度ヒュ−ズの超薄型には低融点可溶合金片の箔状化が有効である。
【0004】
【発明が解決しようとする課題】
上記電池に組み込んだ合金型温度ヒュ−ズにおいては、平常時でも、例えば日間温度変化や季節的温度変化等により熱応力を受けるから、低融点可溶合金箔とプレ−ト電極との間の安定な電気的接触を確保するために、その接触箇所の溶接が必要である。
しかしながら、低融点可溶合金箔とプレ−ト電極とを加熱ブロックの当接で溶接しようとすると、低融点可溶合金箔が早く溶融し、プレ−ト電極が溶着可能な温度になるまえに低融点可溶合金箔が溶断してしまい、溶接が至難である。これに対し、瞬間的な溶接、例えば、スポット抵抗溶接やレザ−溶接では前記溶断は生じ難いが、低融点可溶合金箔の溶接スポットが強力な集中熱エネルギ−で飛散してしまい、満足な溶接は望めない。
【0005】
本発明の目的は、超薄型の合金型温度ヒュ−ズのプレ−ト電極に安全に溶接できる箔状接続導体を製造することにある。
【0006】
【課題を解決するための手段】
請求項1に係る合金型温度ヒュ−ズの製造方法は、箔状導体と、該箔状導体よりも低融点でしかも厚さが箔状導体の厚さよりも大きく、かつ幅が同箔状導体の幅よりも小さな軸状導体とを溶接により接続し、而るのち接続部及び軸状導体を圧縮して箔状化することを特徴とする。
請求項2に係る合金型温度ヒュ−ズの製造方法は、箔状導体間に、該箔状導体よりも低融点でしかも厚さが箔状導体の厚さよりも大きく、かつ幅が同箔状導体の幅よりも小さな軸状導体を溶接により接続し、而るのち両接続部及び軸状導体を圧縮して箔状化してなる箔状接続導体をプレ−ト電極間に配し、各箔状導体と各プレ−ト電極との間を溶接することを特徴とする。
【0007】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1の(イ)〜図1の(ハ)は本発明に係る箔状接続導体の製造方法の一例を示し、箔状接続導体は厚さは50〜200μmの銅箔・低融点金属箔接続体である。
この銅箔・低融点金属箔接続体を製造するには、まず図1の(イ)に示すように、銅箔1に、この銅箔1よりも低融点でかつ断面積が銅箔1の断面積にほぼ等しい(0.7〜1.5倍程度)断面ほぼ円形の軸状導体2を溶接する。この溶接時の加熱には、加熱ブロックの当接による加熱、熱風加熱、直接通電加熱(アプセット溶接)等を用いることができる。
ついで、図1の(ロ)に示すように溶接部並びに軸状導体を加圧して銅箔と同じ厚さの箔状に成形する。この箔状化には、ギャップを銅箔厚さに設定した圧延ロ−ルに通す方法、プレスで圧縮する方法等を使用できる。
この箔状化の終了後は、図1の(ハ)に示すように、銅箔幅に揃えるように幅両端をトリミングし、これにて銅箔・低融点金属箔接続体の製造を終了する。
上記において、銅箔以外に低融点金属箔よりも高融点の金属箔、例えば、アルミニウム箔の使用も可能である。
また、箔状導体には、厚さが箔状導体の厚さよりも大きく、かつ幅が同箔状導体の幅よりも小さな断面角形(例えば、正方形や矩形)や長円形の低融点軸状導体も使用できる。
【0008】
本発明に係る箔状接続導体の製造方法においては、低融点金属導体を箔状化するまえの軸形状で高融点箔状導体に溶接しており、同一断面積のもとでの強度は箔形状よりも軸形状の方が高く、低融点金属が溶接温度で軟化しても、軸形状のもとでは箔形状の場合より破断し難いから、低融点金属導体と高融点導体箔とを低融点金属導体の溶断をよく防止して容易に溶接できる。更に、溶接した軸体低融点金属導体の箔状化は展延加工であり、引張り力を受けることがないから、軸体低融点金属導体の破断なく容易に箔状化できる。従って、本発明によれば、銅箔・低融点金属箔接続導体のような箔状接続導体を容易に製作できる。
【0009】
図2は本発明により製造した銅箔・低融点金属箔接続導体Aをヒュ−ズエレメントとする薄型温度ヒュ−ズの一例を示している。
図2において、3は中央孔31を有する絶縁スペ−サであり、耐熱性プラスチックフィルム(例えば、ポリエチレンテレフタレ−ト、ポリアミド、ポリイミド、ポリフエニレンサルファィド等)やセラミックスプレ−トを使用できる。4,4は絶縁スペ−サ3の上下面に接着剤41により固着したプレ−ト電極であり、金属箔、例えば銅箔を使用できる。aは本発明により製造した箔状接続導体を示し、低融点金属箔20の両端に銅箔片10を有する構成であり、低融点金属箔20を中央孔31に収容し、各銅箔片10を絶縁スペ−サ3の上下各端面と各プレ−ト電極4との間に挾み、各銅箔片10と各プレ−ト電極4との間をスポット抵抗溶接またはレザ−溶接等で溶接してある。5は中央孔31に充填したフラックスである。
【0010】
図2に示す合金型温度ヒュ−ズを製作するには、請求項1記載の発明で製造した、両端に銅箔片10を有する低融点金属箔20を絶縁スペ−サ3の中央孔31に納め、その孔31にフラックス5を充填したのち、絶縁スペ−サ3の上下面にプレ−ト電極4を接着剤41により固着すると共に各銅箔片10を各プレ−ト電極4と絶縁スペ−サ3の上下各面との間で挾持し、ついで各銅箔片10と各プレ−ト電極4とをスポット抵抗溶接またはレザ−溶接等で溶接し、これにて当該合金型温度ヒュ−ズの製作を終了する。
上記銅箔片10とプレ−ト電極4との溶接は瞬時かつスポット的に行っているから、この溶接時での低融点金属箔20への熱伝導を充分に排除でき、低融点金属箔20を安定に保持できる。
従って、請求項2記載の発明で製造した合金型温度ヒュ−ズにおいては、図6に示すような合金型温度ヒュ−ズにおいて、低融点金属箔20’をスポット的に熱エネルギ−を集中させて直接にプレ−ト電極4’に溶接する場合に生じる低融点金属の飛散を排除し得、低融点金属箔とプレ−ト電極との間の安全な溶接を介して安定な電気的導通を保証できる。
【0011】
図3は請求項2記載の発明により製作される合金型温度ヒュ−ズの別例を示している。
この合金型温度ヒュ−ズを請求項2記載の発明により製作するには、請求項1記載の発明により製造した、両端に銅箔片10,10を有する低融点金属箔20を絶縁スペ−サ3の上下面から中央孔31の内面にわたって沿わせ、中央孔31にフラックス5を充填し、絶縁スペ−サ3の上下面にプレ−ト電極4を接着剤41により固着し、各プレ−ト電極4と各銅箔片10とをスポット抵抗溶接またはレザ−溶接等で溶接し、これにて当該合金型温度ヒュ−ズの製作を終了する。
【0012】
上記図2及び図3に示す合金型温度ヒュ−ズにおいて、プレ−ト電極4の厚さは50μm〜200μm、低融点金属箔20及び銅箔片10の厚さは50μm〜200μm、絶縁スペ−サ3の厚さはほぼ100〜900μm、接着剤層41の厚さは50〜200μm、全厚さはほぼ300〜1000μmとされ、図4の(イ)及び図4の(ロ)〔図4の(イ)におけるロ−ロ断面図〕に示すように、リチウムイオン二次電池に組み込んで使用される。図4において、61及び62は負極缶63の上端部631でガスケット64を介して外周をかしめ固定した正極蓋及び安全弁板を、aはこれらの間に挾持した環状の超薄型温度ヒュ−ズをそれぞれ示している。31は上記絶縁スペ−サの中央孔を示している。
【0013】
図5に示すように、環状の一部を超薄型温度ヒュ−ズaとし、他の部分bを超薄型温度ヒュ−ズaと同じ厚さの補助絶縁スペ−サとした形態で使用することもできる。
【0014】
【発明の効果】
本発明によれば、厚さ50〜200μmの超薄低融点金属箔の両端に同じ厚みの高融点金属箔が溶接接続されてなる接続導体箔を容易に製造でき、かかる接続導体箔を平型温度ヒュ−ズのヒュ−ズエレメントとして使用することにより厚み1000μm以下の超薄型温度ヒュ−ズの製造が可能となる。
【図面の簡単な説明】
【図1】本発明に係る箔状接続導体の製造方法を示す図面である。
【図2】本発明により製造した箔状接続導体使用の温度ヒュ−ズの一例を示す図面である。
【図3】本発明により製造した箔状接続導体使用の温度ヒュ−ズの別例を示す図面である。
【図4】図2または図3に示す温度ヒュ−ズの電池内への内付け状態の一例を示す図面である。
【図5】図2または図3に示す温度ヒュ−ズの電池内への内付け状態の別例を示す図面である。
【図6】従来の平型温度ヒュ−ズを示す図面である。
【符号の説明】
1 箔状導体
2 軸状導体
A 銅箔・低融点金属箔接続導体
10 銅箔
20 低融点金属箔
3 絶縁スペ−サ
31 絶縁スペ−サの中央孔
4 プレ−ト電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an alloy-type temperature fuse .
[0002]
[Prior art]
In the alloy type temperature fuse, a low melting point soluble alloy piece is used for the fuse element, and the power supply to the device is cut off by the melting of the low melting point soluble alloy piece due to abnormal heat generation of the device to protect the device. ing.
In recent years, there has been a demand for thinner temperature fuses as devices become smaller. For example, in a lithium ion secondary battery, it has been proposed to hold a flat temperature fuse between a positive electrode lid end portion and a safety valve plate end portion that are caulked and fixed at the upper end portion of the negative electrode can via a gasket. However, the thickness required for this flat temperature fuse is an ultrathin thickness of 1 mm or less due to the size of the battery.
[0003]
FIG. 6 shows an example of the above flat temperature fuse. Plate electrodes 4 'and 4' are provided above and below an insulating spacer 3 'having a central hole 31', and these plate electrodes 4 'are provided. , 4 ', a low melting point soluble alloy piece 20' as a fuse element is bridged.
In order to make the flat temperature fuse ultra thin, it is effective to form the low melting point soluble alloy piece in a foil shape. For example, a circular cross section having a diameter of 700 μm has the same cross sectional area as a cross section of a foil having a thickness of 100 μm and a width of 4000 μm. By making such a foil shape, the thickness of the low melting point soluble alloy piece can be reduced to 1/7. It is effective to form a low melting point soluble alloy piece in the form of a foil.
[0004]
[Problems to be solved by the invention]
In the alloy type temperature fuse incorporated in the above battery, even under normal conditions, it receives thermal stress due to, for example, daily temperature change or seasonal temperature change. In order to ensure stable electrical contact, it is necessary to weld the contact point.
However, if we attempt to weld the low-melting-point soluble alloy foil and the plate electrode with the contact of the heating block, the low-melting-point soluble alloy foil is melted quickly and before the plate electrode reaches a temperature at which it can be welded. The low melting point soluble alloy foil is melted and welding is difficult. In contrast, instantaneous welding, such as spot resistance welding or laser welding, is unlikely to cause the fusing, but the welding spot of the low melting point soluble alloy foil is scattered by strong concentrated heat energy, which is satisfactory. We can't expect welding.
[0005]
It is an object of the present invention to produce a foil-like connecting conductor that can be safely welded to an ultra-thin alloy type temperature fuse plate electrode.
[0006]
[Means for Solving the Problems]
The method for producing an alloy-type temperature fuse according to claim 1 includes a foil conductor, a melting point lower than that of the foil conductor, a thickness larger than the thickness of the foil conductor, and a width of the foil conductor. A shaft-shaped conductor having a width smaller than the width is connected by welding, and then the connecting portion and the shaft-shaped conductor are compressed to form a foil.
The method for producing an alloy-type temperature fuse according to claim 2 is characterized in that the foil-shaped conductor has a lower melting point and a thickness larger than the thickness of the foil-shaped conductor, and the width is the same as the foil-shaped conductor. A shaft-shaped conductor smaller than the width of the conductor is connected by welding, and then a foil-shaped connecting conductor formed by compressing both connecting portions and the shaft-shaped conductor to form a foil is disposed between the plate electrodes. It is characterized by welding between the plate-like conductor and each plate electrode.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 (a) to 1 (c) show an example of a method for producing a foil-like connection conductor according to the present invention. The foil-like connection conductor has a thickness of 50 to 200 μm and is connected to a copper foil / low melting point metal foil. Is the body.
In order to manufacture this copper foil / low melting point metal foil assembly, first, as shown in FIG. 1A, the copper foil 1 has a lower melting point and a cross-sectional area of the copper foil 1 than the copper foil 1. The axial conductor 2 having a substantially circular cross section substantially equal to the cross sectional area (about 0.7 to 1.5 times) is welded. For heating at the time of welding, heating by contact of a heating block, hot air heating, direct current heating (upset welding) or the like can be used.
Next, as shown in FIG. 1B, the welded portion and the shaft-shaped conductor are pressed to form a foil having the same thickness as the copper foil. For forming the foil, a method of passing through a rolling roll in which the gap is set to a copper foil thickness, a method of compressing with a press, or the like can be used.
After the completion of the foil formation, as shown in FIG. 1 (c), both ends of the width are trimmed so as to be aligned with the width of the copper foil, thereby completing the production of the copper foil / low melting point metal foil connection body. .
In the above, it is possible to use a metal foil having a higher melting point than the low melting point metal foil, for example, an aluminum foil, in addition to the copper foil.
Also, the foil conductor has a rectangular cross section (for example, a square or a rectangle) or an oval low melting point axial conductor whose thickness is larger than the thickness of the foil conductor and whose width is smaller than the width of the foil conductor. Can also be used.
[0008]
In the method for manufacturing a foil-like connecting conductor according to the present invention, the low-melting point metal conductor is welded to the high-melting point foil-like conductor in the shape of the shaft before forming the foil, and the strength under the same cross-sectional area is the foil. The shaft shape is higher than the shape, and even if the low melting point metal is softened at the welding temperature, it is less likely to break than the foil shape under the shaft shape. The melting point metal conductor can be easily welded with good prevention. Further, the foil formation of the welded shaft body low-melting point metal conductor is a spreading process and is not subjected to a tensile force, so that it can be easily formed into a foil shape without breaking the shaft body low-melting point metal conductor. Therefore, according to the present invention, a foil-like connection conductor such as a copper foil / low melting point metal foil connection conductor can be easily manufactured.
[0009]
FIG. 2 shows an example of a thin temperature fuse in which the copper foil / low melting point metal foil connecting conductor A manufactured according to the present invention is a fuse element.
In FIG. 2, 3 is an insulating spacer having a central hole 31, and uses a heat-resistant plastic film (for example, polyethylene terephthalate, polyamide, polyimide, polyphenylene sulfide, etc.) or a ceramic plate. it can. Reference numerals 4 and 4 denote plate electrodes fixed to the upper and lower surfaces of the insulating spacer 3 by an adhesive 41, and a metal foil such as a copper foil can be used. a shows the foil-shaped connection conductor manufactured by this invention, is the structure which has the copper foil piece 10 in the both ends of the low melting metal foil 20, accommodates the low melting metal foil 20 in the center hole 31, and each copper foil piece 10 Is sandwiched between the upper and lower end surfaces of the insulating spacer 3 and each plate electrode 4, and the copper foil pieces 10 and each plate electrode 4 are welded by spot resistance welding or laser welding. It is. Reference numeral 5 denotes a flux filled in the central hole 31.
[0010]
In order to manufacture the alloy type temperature fuse shown in FIG. 2, the low melting point metal foil 20 having the copper foil pieces 10 at both ends manufactured in the invention of claim 1 is formed in the central hole 31 of the insulating spacer 3. After the hole 31 is filled with the flux 5, the plate electrode 4 is fixed to the upper and lower surfaces of the insulating spacer 3 with an adhesive 41, and each copper foil piece 10 is connected to each plate electrode 4 and the insulating spacer. -Hold between the upper and lower surfaces of the heater 3 and then weld each copper foil piece 10 and each plate electrode 4 by spot resistance welding, laser welding, or the like. Finishing the production.
Since the welding of the copper foil piece 10 and the plate electrode 4 is performed instantaneously and in a spot manner, the heat conduction to the low melting point metal foil 20 at the time of welding can be sufficiently eliminated, and the low melting point metal foil 20. Can be kept stable.
Therefore, in the alloy type temperature fuse manufactured in the invention of claim 2, in the alloy type temperature fuse as shown in FIG. 6, the low melting point metal foil 20 'is concentrated in a spot manner in the heat energy. Thus, it is possible to eliminate the scattering of the low melting point metal that occurs when welding directly to the plate electrode 4 ', and to provide stable electrical conduction through safe welding between the low melting point metal foil and the plate electrode. Can be guaranteed.
[0011]
FIG. 3 shows another example of an alloy type temperature fuse manufactured according to the second aspect of the present invention.
In order to produce this alloy type temperature fuse according to the invention of claim 2, the low melting point metal foil 20 having the copper foil pieces 10 and 10 produced at the both ends produced by the invention of claim 1 is insulated. 3 along the inner surface of the central hole 31 from the upper and lower surfaces, and the central hole 31 is filled with flux 5, and the plate electrode 4 is fixed to the upper and lower surfaces of the insulating spacer 3 with an adhesive 41. The electrode 4 and each copper foil piece 10 are welded by spot resistance welding, laser welding, or the like, thereby completing the production of the alloy type temperature fuse.
[0012]
In the alloy type temperature fuse shown in FIGS. 2 and 3, the thickness of the plate electrode 4 is 50 μm to 200 μm, the thickness of the low melting point metal foil 20 and the copper foil piece 10 is 50 μm to 200 μm, and the insulating space. The thickness of the substrate 3 is approximately 100 to 900 μm, the thickness of the adhesive layer 41 is 50 to 200 μm, and the total thickness is approximately 300 to 1000 μm. FIG. 4 (A) and FIG. As shown in (R) cross-sectional view in (a)], it is used by being incorporated in a lithium ion secondary battery. In FIG. 4, 61 and 62 are a positive electrode lid and a safety valve plate whose outer periphery is caulked and fixed at the upper end 631 of the negative electrode can 63 via a gasket 64, and a is an annular ultra-thin temperature fuse sandwiched between them. Respectively. Reference numeral 31 denotes a central hole of the insulating spacer.
[0013]
As shown in FIG. 5, the annular part is used as an ultra-thin temperature fuse a and the other part b is used as an auxiliary insulating spacer having the same thickness as the ultra-thin temperature fuse a. You can also
[0014]
【The invention's effect】
According to the present invention, it is possible to easily produce a connection conductor foil in which a high melting point metal foil having the same thickness is welded to both ends of an ultrathin low melting point metal foil having a thickness of 50 to 200 μm. By using it as a fuse element for a temperature fuse, an ultra-thin temperature fuse having a thickness of 1000 μm or less can be manufactured.
[Brief description of the drawings]
FIG. 1 is a drawing showing a method for producing a foil-like connecting conductor according to the present invention.
FIG. 2 is a drawing showing an example of a temperature fuse using a foil-like connection conductor manufactured according to the present invention.
FIG. 3 is a view showing another example of a temperature fuse using a foil-like connection conductor manufactured according to the present invention.
4 is a view showing an example of a state in which the temperature fuse shown in FIG. 2 or FIG. 3 is installed in the battery.
5 is a drawing showing another example of a state in which the temperature fuse shown in FIG. 2 or FIG. 3 is installed in the battery.
FIG. 6 is a view showing a conventional flat temperature fuse.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Foil-shaped conductor 2 Shaft-shaped conductor A Copper foil and low melting-point metal foil connection conductor 10 Copper foil 20 Low-melting-point metal foil 3 Insulation spacer 31 Center hole 4 of an insulation spacer 4 Plate electrode

Claims (2)

箔状導体と、該箔状導体よりも低融点でしかも厚さが箔状導体の厚さよりも大きく、かつ幅が同箔状導体の幅よりも小さな軸状導体とを溶接により接続し、而るのち接続部及び軸状導体を圧縮して箔状化することを特徴とする合金型温度ヒュ−ズの製造方法The foil-shaped conductor and a shaft-shaped conductor having a lower melting point than the foil-shaped conductor and having a thickness larger than the thickness of the foil-shaped conductor and a width smaller than the width of the foil-shaped conductor are connected by welding. After that, a method for producing an alloy-type temperature fuse, wherein the connecting portion and the shaft-like conductor are compressed into a foil shape. 箔状導体間に、該箔状導体よりも低融点でしかも厚さが箔状導体の厚さよりも大きく、かつ幅が同箔状導体の幅よりも小さな軸状導体を溶接により接続し、而るのち両接続部及び軸状導体を圧縮して箔状化してなる箔状接続導体をプレ−ト電極間に配し、各箔状導体と各プレ−ト電極との間を溶接することを特徴とする合金型温度ヒュ−ズの製造方法。 An axial conductor having a melting point lower than that of the foil conductor and larger than the thickness of the foil conductor and having a width smaller than that of the foil conductor is connected by welding between the foil conductors. After that, the foil-like connecting conductor formed by compressing both connecting portions and the shaft-like conductor to form a foil is arranged between the plate electrodes, and welding between each foil-like conductor and each plate electrode is performed. A method for producing an alloy-type temperature fuse.
JP32239797A 1997-11-06 1997-11-06 Alloy type temperature fuse manufacturing method Expired - Fee Related JP3878732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32239797A JP3878732B2 (en) 1997-11-06 1997-11-06 Alloy type temperature fuse manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32239797A JP3878732B2 (en) 1997-11-06 1997-11-06 Alloy type temperature fuse manufacturing method

Publications (2)

Publication Number Publication Date
JPH11144589A JPH11144589A (en) 1999-05-28
JP3878732B2 true JP3878732B2 (en) 2007-02-07

Family

ID=18143215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32239797A Expired - Fee Related JP3878732B2 (en) 1997-11-06 1997-11-06 Alloy type temperature fuse manufacturing method

Country Status (1)

Country Link
JP (1) JP3878732B2 (en)

Also Published As

Publication number Publication date
JPH11144589A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
JP4396787B2 (en) Thin temperature fuse and method of manufacturing thin temperature fuse
JP2003217562A (en) Coin type battery
JP3878732B2 (en) Alloy type temperature fuse manufacturing method
JP3878731B2 (en) Manufacturing method of alloy type temperature fuse
JP6365562B2 (en) Secondary battery
JP7100803B2 (en) Batteries and battery manufacturing methods
JP3754792B2 (en) Temperature fuse and temperature fuse mounting structure for secondary battery
JP2000164093A (en) Thermal fuse and its manufacture
JPH11353995A (en) Manufacture of thin thermal fuse
JP4097790B2 (en) Thin temperature fuse
JP3304179B2 (en) Thin fuse
JP3754794B2 (en) Temperature fuse and temperature fuse mounting structure for secondary battery
JP3754724B2 (en) Flat temperature fuse
CN211929597U (en) Sampling line and battery pack
JP3754770B2 (en) Thin fuse
JP2524859B2 (en) Resistance / temperature fuse and manufacturing method thereof
CN217788721U (en) Connecting piece assembly
JP3665654B2 (en) Fused fusible body used for electric wire fuses and the like and method for producing the same
JP2000200529A (en) Protection element and its manufacture
JPH0473835A (en) Thermal fuse and manufacture thereof
JP2002343211A (en) Thermal fuse
JPH0312192Y2 (en)
JP4097792B2 (en) Thin temperature fuse
US4315234A (en) Composite fusible element and electric fuse comprising the element
JP4097791B2 (en) Thin temperature fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees