JP3877361B2 - Fluidized bed reactor - Google Patents

Fluidized bed reactor Download PDF

Info

Publication number
JP3877361B2
JP3877361B2 JP31306896A JP31306896A JP3877361B2 JP 3877361 B2 JP3877361 B2 JP 3877361B2 JP 31306896 A JP31306896 A JP 31306896A JP 31306896 A JP31306896 A JP 31306896A JP 3877361 B2 JP3877361 B2 JP 3877361B2
Authority
JP
Japan
Prior art keywords
fluidization
fluidized bed
fluidized
plate
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31306896A
Other languages
Japanese (ja)
Other versions
JPH09196313A (en
Inventor
秀一 永東
孝裕 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP31306896A priority Critical patent/JP3877361B2/en
Publication of JPH09196313A publication Critical patent/JPH09196313A/en
Application granted granted Critical
Publication of JP3877361B2 publication Critical patent/JP3877361B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は流動層反応装置に係り、特に産業廃棄物や都市ごみあるいは石炭など不燃物を含む固形状物質を均一に燃焼又はガス化などの酸化反応をさせ、かつ不燃物を円滑に排出しつつ安定して熱エネルギーを回収することが可能な流動層反応装置に関するものである。
【0002】
【従来の技術】
経済発展に伴い、一般廃棄物は年々3〜4%増加しており、現在年間5000万トンに達している。この廃棄物の82%が可燃分であり、石油換算で720万トンに相当する。
【0003】
また、産業廃棄物も増加の一途をたどっており、従来、燃焼不適物として埋め立てられていた不燃物を含むプラスチック類も埋立地の負担軽減のため、今後は焼却せざるを得なくなる。そういった廃油、廃プラスチックなど可燃性産業廃棄物は年間約1700万トンもあり、発熱量は3000kcal/kg以上もあることから、これは廃棄物というより燃料というにふさわしい。
【0004】
しかしながら廃棄物の性状や形状が実に多様であり、しかも一定しておらず、さらに不定形の不燃物が混入していることから、安定した燃焼、処理が困難であり、一般廃棄物および産業廃棄物エネルギーの有効利用を阻んでいる。
【0005】
【発明が解決しようとする課題】
一般廃棄物および産業廃棄物エネルギーの有効利用をはかるため、酸化反応、例えば焼却による熱エネルギーの回収を目的として、これまで様々なシステムが開発されてきている。なかでも流動層焼却炉あるいは流動層ボイラは不燃物を含む固形状物質を均一に燃焼し、かつ不燃物を円滑に排出しつつ安定して熱エネルギーを回収することが可能なシステムとして期待されているが、以下のような課題が存在している。
【0006】
バブリング流動層においては、流動が上下方向だけであるため、焼却物の分散が不十分であり、均一で安定した燃焼は困難である。また、流動媒体より比重が大きい不燃物は炉床に広範囲に堆積し、その結果、不燃物の排出も困難となり、運転に支障をきたす。
そのため、最近は単純なバブリング流動層ではなく、流動化速度に変化を付けて濃厚流動層内で旋回流を発生させ、焼却物の混合分散を良好にして、安定した燃焼を行わせる方式がいくつか開発されている。
【0007】
しかしながら、焼却物中には種々のものが混在しており、特に廃タイヤなどを燃焼した際に発生する針金状の不燃物は、流動層内で沈降堆積しやすく、また伝熱管にからみつきやすいことから、直ちに流動不良を起こし、運転不能に陥ってしまうため、廃タイヤのように針金状の不燃物を含む産業廃棄物に関してはこれまで有効な焼却方法がないのが実情であった。
【0008】
また廃棄物を焼却する場合には、燃焼により発生するNOX等を低減させ、かつ熱回収装置の還元腐食を防止し、さらに不燃物を速やかに排出することが必要となるが、これらの点を全て満たす装置がないのが実状であった。
【0009】
本発明は上述の事情に鑑みなされたもので、不燃物を含む固形状物質を均一に燃焼又はガス化などの酸化反応をさせ、かつ針金状の不燃物を含む種々の不燃物を円滑に排出しつつ安定して熱エネルギーを回収することが可能な流動層反応装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明の第1の態様は、流動層反応炉において、流動層内にそれぞれ異なる流動化速度を与えるような散気装置を炉床部分に設け、実質的に大きな流動化速度を与えられた流動部分では流動媒体の上昇流を生じさせ、実質的に小さな流動化速度を与えられた流動部分においては流動媒体の沈降流を生じさせ、かつ実質的に小さな流動化速度を与えられた流動部分には、伝熱管を同一平面内に配置し、かつ隣接する伝熱管同士を板挟んで接続し、全体として1枚の板状伝熱面とした板型の熱回収装置を板面が垂直になるように複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置したことを特徴とするものである。
本発明の第2の態様は、流動層反応炉において、流動層内にそれぞれ異なる流動化速度を与えるような散気装置を炉床部分に設け、実質的に大きな流動化速度を与えられた流動部分では流動媒体の上昇流を生じさせ、実質的に小さな流動化速度を与えられた流動部分においては流動媒体の沈降流を生じさせ、かつ実質的に小さな流動化速度を与えられた流動部分には、系列の異なる伝熱管を同一平面内に配置した板型の熱回収装置を板面が垂直になるように複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置したことを特徴とするものである。
本発明の第3の態様は、流動層反応炉において、流動層内にそれぞれ異なる流動化速度を与えるような散気装置を炉床部分に設け、実質的に大きな流動化速度を与えられた流動部分では流動媒体の上昇流を生じさせ、実質的に小さな流動化速度を与えられた流動部分においては流動媒体の沈降流を生じさせ、かつ流動媒体の上昇流の上部に流動媒体を反転させる傾斜壁を設けると共に、該傾斜壁の下端側には実質的に最も小さな流動化速度を与えられた流動媒体沈降流を挟んで、中位の流動化速度を与える流動部分を設けることにより、該流動部分には緩やかな上昇流を生じさせ、かつ該流動部分に板型の熱回収装置を板面が垂直になるように配置したことを特徴とするものである。
本発明の第4の態様は、流動層反応炉において、内部に仕切壁を設けて複数に分割し、かつそれぞれの流動層は仕切壁の上方及び下方で連通しており、かつそれぞれの流動層には、それぞれ異なる流動化速度を与えるように散気装置を炉床部分に設け、実質的に大きな流動化速度を与えられた流動層と実質的に小さな流動化速度を与えられた流動層の間において、実質的に大きな流動化速度を与えられた流動層では流動媒体が上昇し、仕切壁を越えて実質的に小さな流動化速度を与えられた流動層に入り、そこでは移動層を形成しつつ、ゆるやかに流動媒体が沈降し、そして仕切壁下の連絡口を通して実質的に大きな流動化速度を与えられた流動層に戻る相互の循環流を生じさせ、沈降移動層を形成する流動層には、伝熱管を同一平面内に配置し、かつ隣接する伝熱管同士を板挟んで接続し、全体として1枚の板状伝熱面とした板型の熱回収装置を複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置したことを特徴とするものである。
本発明の第5の態様は、流動層反応炉において、内部に仕切壁を設けて複数に分割し、かつそれぞれの流動層は仕切壁の上方及び下方で連通しており、かつそれぞれの流動層には、それぞれ異なる流動化速度を与えるように散気装置を炉床部分に設け、実質的に大きな流動化速度を与えられた流動層と実質的に小さな流動化速度を与えられた流動層の間において、実質的に大きな流動化速度を与えられた流動層では流動媒体が上昇し、仕切壁を越えて実質的に小さな流動化速度を与えられた流動層に入り、そこでは移動層を形成しつつ、ゆるやかに流動媒体が沈降し、そして仕切壁下の連絡口を通して実質的に大きな流動化速度を与えられた流動層に戻る相互の循環流を生じさせ、沈降移動層を形成する流動層には、系列の異なる伝熱管を同一平面内に配置した板型の熱回収装置を複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置したことを特徴とするものである。
本発明の第6の態様は、流動層反応炉の炉床部に、実質的に大きな流動化速度を与える散気装置を配置するとともに、該散気装置を間に挟んで、実質的に小さな流動化速度を与える散気装置をそれぞれ相対するように配置し、さらに一方の実質的に小さな流動化速度を与えられた流動部分には、伝熱管を同一平面内に配置し、かつ隣接する伝熱管同士を板挟んで接続し、全体として1枚の板状伝熱面とした板型の熱回収装置を複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置するとともに、実質的に大きな流動化速度を与えられた流動部分を間に挟んで相対する他方の実質的に小さな流動化速度を与えられた流動部分に燃料などの可燃物を投入するとともに、実質的に大きな流動化速度を与える散気装置と、実質的に小さな流動化速度を与える散気装置の間に不燃物排出口を設けたことを特徴とするものである。
本発明の第7の態様は、流動層反応炉の炉床部に、実質的に大きな流動化速度を与える散気装置を配置するとともに、該散気装置を間に挟んで、実質的に小さな流動化速度を与える散気装置をそれぞれ相対するように配置し、さらに一方の実質的に小さな流動化速度を与えられた流動部分には、系列の異なる伝熱管を同一平面内に配置した板型の熱回収装置を複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置するとともに、実質的に大きな流動化速度を与えられた流動部分を間に挟んで相対する他方の実質的に小さな流動化速度を与えられた流動部分に燃料などの可燃物を投入するとともに、実質的に大きな流動化速度を与える散気装置と、実質的に小さな流動化速度を与える散気装置の間に不燃物排出口を設けたことを特徴とするものである。
【0011】
本発明によれば、流動層炉の炉底部には、実質的に小さな流動化速度を与える弱散気板と、実質的に大きな流動化速度を与える強散気板とを設ける。さらにその下部には空気室等の部屋があり、コネクターを通してそれぞれ流動化ガスを導入する。弱散気板の上方には弱流動化域を形成する。一方、強散気板の上方には強流動化域を形成する。該流動化ガスとしては、空気、窒素除去空気、酸素富化空気、酸素、水蒸気及びこれらの混合気体が好ましく用いられるが、これ以外のガスの適用を妨げるものではない。
このとき、弱流動化域には下降流が形成され、また強流動化域においては上昇流が形成され、その結果、流動層内全体では強流動化域で上昇し、弱流動化域で下降する旋回流が形成される。このように一つの流動層炉のなかに複数の強流動化域と弱流動化域を交互に設け、一部の弱流動化域に板型の伝熱面を配置する。
【0012】
可燃物は板型の伝熱面の無い弱流動化域に投入され、旋回流に呑込まれながら低酸素により還元性雰囲気で燃焼する。次に旋回流によって強流動化域に移り、そこでは酸化雰囲気の中で十分に燃焼し、高温になった流動媒体が次の旋回流に乗って隣の弱流動化域で沈降し、そこに配置された板型の伝熱面に熱を与える。板型の伝熱面の配置されている弱流動化域は、強流動化域で十分に燃焼したあとの流動媒体が流入してくるため酸化雰囲気であり、還元腐食の恐れは少ない。また、弱い流動化域なので伝熱面の摩耗も少ない。
【0013】
一方、可燃物に含まれる不燃物についても、伝熱面全体が一つの板状になっているため、針金のような不燃物であってもからみにくい構造であり、支障なく運転することが可能である。
板型伝熱面は同一のヘッダに連結した別々の伝熱管が同一平面内で、一方が他方と交互になるよう配置され、それぞれの伝熱管はヒレを介して接合し、1枚の面となっている。このように構成することにより少ない面数で多くの伝熱面積を稼ぐとともに、伝熱管内の圧力損失は少ないという利点がある。
【0014】
本発明の1態様では、伝熱面の配置されている弱流動化域と強流動化域との間に仕切壁を配置し、仕切壁の上下には強流動化域との連絡口を設けることによって、流動層炉を伝熱面の存在する熱回収室と存在しない主燃焼室に分割している。
【0015】
また、本発明の1態様では、流動層炉の中に複数の異なる流動化速度を有する流動化域を交互に設け、実質的な流動化速度は弱いが、流動媒体が上昇流となっている流動化域に板型の伝熱面を配置している。
【0016】
さらに、本発明の1態様では、実質的に大きな流動化速度を与える散気装置を挟んで、実質的に小さな流動化速度を与える散気装置をそれぞれ配置し、小さな流動化速度の流動部分の一方に熱回収装置を配置する。そして、大きな流動化速度を与える散気装置と小さな流動化速度を与える散気装置との間に不燃物排出口を配置する。
【0017】
このように配置することにより、一方の弱流動化域に、燃焼物を投入し、還元雰囲気で燃焼することができる。次に大きな流動化速度を与えられた強流動化域で酸化雰囲気で燃焼することができる。このように還元雰囲気燃焼と、酸化雰囲気燃焼の組合せにより、NOx低減など排ガス特性が大幅に改善される。一方、もう一つの弱流動化域に熱回収装置を配置すると、該弱流動化域は前述の様に強流動化域で十分に燃焼したあとの流動媒体が流入してくるので酸化雰囲気となるため、還元腐食の危険がない。また、燃料投入口とは強流動化域と不燃物排出口を間に介しているため、不燃物があっても途中の排出口で排出される。又、一部の不燃物が熱回収装置の伝熱面に到達しても、伝熱面が一枚のパネルになっているため、引っ掛かったりせず旋回流に乗って戻って行き、排出口から排出される。
【0018】
【発明の実施の形態】
以下、本発明の流動層反応装置に係る実施例の内、燃焼装置として用いた例を中心に図1乃至図14を参照して説明する。各図において、同一又は対応する部材は同一の符号を付して、重複する説明が省略される。
【0019】
(実施例1)
図1は本発明の第1実施例を示す縦断面図である。
流動層炉1の炉底部には、実質的に小さな流動化速度を与える弱散気板2,4と、実質的に大きな流動化速度を与える強散気板3とが設置されている。強散気板3と、弱散気板4との間には不燃物排出口28が配置されており、弱散気板4の上面と、弱散気板2及び強散気板3の上面とは不燃物排出口28に向かって下降傾斜面になっている。弱散気板2,4及び強散気板3の下部には、それぞれ空気室6,8,7が配置されており、これら空気室6,7,8にはコネクタ9,10,11を通してそれぞれ流動用空気12,13,14が導入される。
【0020】
弱散気板2,4には、それぞれ多数のノズル15,17が形成され、強散気板3には多数のノズル16が形成されている。炉1の側壁33は角筒状をなし、炉1の平面形状は矩形になっている。炉1内において、砂等の不燃性粒子からなる流動媒体は、弱散気板2,4及び強散気板3から炉内へ上向きに吹込まれる流動用空気により吹き上げられ浮遊状態となり、炉内に流動層が形成される。
【0021】
即ち、弱散気板2,4からはそれぞれノズル15,17を通して流動用空気が層内に噴出し、弱散気板2,4の上方にそれぞれ弱流動化域18,20を形成する。
一方、強散気板3からはノズル16を通して流動用空気が層内に噴出し、強散気板3の上方に強流動化域19を形成する。このとき弱流動化域18,20にはそれぞれ下降流21,23が形成され、また強流動化域19では上昇流22が形成される。その結果、流動層内全体では強流動化域19で上昇し、弱流動化域18,20で沈降する2つの旋回流が形成される。そして、弱散気板4の上方の弱流動化域20には、板型伝熱面24からなる熱回収装置が板面が垂直になるように配置されている。
【0022】
上述のように構成することにより、可燃物27を弱流動化域18に投入すると可燃物27は下降流21によって弱流動化域18に呑込まれ、熱分解を受けながら、低酸素による還元性雰囲気で燃焼し、旋回流によって強流動化域19に導入され、そこでは上昇流22に乗って多量の酸素による酸化雰囲気で十分な燃焼が行われる。このように還元雰囲気燃焼と、酸化雰囲気燃焼の組合せにより、NOX低減など排ガス特性が大幅に改善される。強流動化域19の表面付近では高温になった流動媒体の一部が弱流動化域20に向かって反転し、今度は弱流動化域20の下降流23に乗って沈降し、そこに配置された板型伝熱面24に熱を与える。
【0023】
板型伝熱面24に熱を与えたあと、流動媒体は炉底付近で下降流から水平流に転じ、強流動化域19に向かって還流する。
【0024】
このように、可燃物は板型伝熱面24の無い弱流動化域18と強流動化域19で旋回流によって十分に燃焼し、高温になった流動媒体が次の旋回流に乗って隣の弱流動化域20で沈降し、そこに配置された板型伝熱面24に熱を与える。このため板型伝熱面24の配置されている弱流動化域20は、強流動化域19で十分に燃焼したあとの流動媒体が流入してくるため酸化雰囲気であり、還元腐食の恐れは少ない。また、弱い流動化域なので伝熱面24の摩耗も少ない。
一方、可燃物に含まれる不燃物についても、伝熱面24と燃料投入口とは強流動化域19と不燃物排出口28を間に介しているため、不燃物があっても途中の排出口で排出される。又、一部の不燃物が熱回収装置の伝熱面24に到達しても、伝熱面全体が一つの板状になっているため、針金のような不燃物であってもからみにくい構造であり、支障なく運転することが可能である。
【0025】
図2は図1のII-II線に沿った断面を示すII-II線断面図である。図2に示すように、板型伝熱面24はヘッダ29に複数取り付けられており、炉壁33を貫通して炉内へ挿入されている。熱回収用の熱媒体として通常飽和水が下部ヘッダ入口32′を通して導入され、板型伝熱面24で収熱したあと上部ヘッダ出口32を通して外部へ導出される。
【0026】
図3は図1のIII-III線に沿った断面を示すIII-III線断面図であり、板型伝熱面の断面構造を示すものである。板型伝熱面24は、隣接する伝熱管25,25′をヒレ26を挟んで接合し、全体で1枚の板状になっている。
【0027】
図4は板型伝熱面の具体例の詳細を示す側面図である。同一のヘッダ29,29′に連結した異なる2系統の伝熱管25,25′を同一平面内で交互に配置し、それぞれの伝熱管はヒレ26を介して接合している。このように構成することにより、少ない面数で多くの伝熱面積を稼ぐことができるとともに、1本の伝熱管の長さが短くなるため伝熱管内の圧力損失は少ないという利点が生じる。
図5は図4のV矢視図である。図5から明らかなように、2系統の伝熱管25,25′は同一平面内に配置され、全体で1枚の板状になっている。
【0028】
図6は本発明の流動層反応装置の第2実施例を示す縦断面図である。
流動層炉1の炉底部には、中央部に山形の断面を有する弱散気板2が配置され、山形の弱散気板2の外側に強散気板3が配置されている。また、強散気板3の外側に弱散気板4が配置されている。炉1の側壁33は角筒状又は円筒状をなし、炉1の平面形状は矩形又は円形になっている。強散気板3と、弱散気板4との間には不燃物排出口28が配置されており、弱散気板4の上面と、弱散気板2及び強散気板3の上面とは不燃物排出口28に向かって下降傾斜面になっている。弱散気板2,4及び強散気板3の下部には、それぞれ空気室6,8,7が配置されており、これら空気室6,7,8にはコネクタ9,10,11を通してそれぞれ流動用空気12,13,14が導入される。炉1の平面形状が矩形の場合には、
矩形の弱散気板2、強散気板3、不燃分排出口28及び弱散気板4を平行に配置するか、矩形且つ山形の弱散気板2の稜線に関し対称的に矩形の強散気板3、不燃分排出口28及び弱散気板4を配置することにより形成される。炉1の平面形状が円形の場合には、中央が高く周縁が低い円錐形の弱散気板2、弱散気板2に同心に配置される円環形の強散気板3、弱散気板2に同心に配置される複数の部分円環形を有する不燃分排出口28、及び弱散気板2に同心に配置される円環形の強散気板4により形成される。
【0029】
弱散気板2,4からはそれぞれノズル15,17を通して流動用空気が層内に噴出し、弱散気板2,4の上方にそれぞれ弱流動化域18,20を形成する。
一方、強散気板3からはノズル16を通して流動用空気が層内に噴出し、強散気板3の上方に強流動化域19を形成する。弱散気板4の上方の弱流動化域20には、板型伝熱面24からなる熱回収装置が板面が垂直になるように配置されている。
【0030】
また板型伝熱面24の配置されている弱流動化域20と強流動化域19との間に、仕切壁34が配置され、仕切壁34の上下には強流動化域19との連絡口35,36が形成されており、流動層炉1内が伝熱面の存在する熱回収室RTHと存在しない主燃焼室RCUに分割されている。
【0031】
このとき、主燃焼室RCUにおいては、弱流動化域18に下降流21が形成され、また強流動化域19では上昇流22が形成される。その結果、主燃焼室RCU内の全体では、強流動化域19で上昇し、弱流動化域18で沈降する連続した旋回流が形成される。
【0032】
一方、流動媒体の上昇流22は仕切壁34の上端部付近で主燃焼室RCUの弱流動化域18へ向かう流れと、仕切壁34を越えて熱回収室RTHへ飛び込む反転流22′とに分離し、熱回収室RTHは実質的に小さな流動化速度を与える弱散気板4によって、緩やかな弱流動化域20を形成しているため、飛び込んだ流動媒体は下降流23となり、さらに下部の連絡口35を通って主燃焼室RCUに戻る循環流を形成している。
このとき、該流動媒体循環量及び板型伝熱面24の熱伝達率を熱回収室RTH内の流動化速度の変化によって調節することにより、流動媒体の持つ熱エネルギーの回収を調節できる。
【0033】
上述のように構成することにより、主燃焼室RCUにおいて、可燃物27を弱流動化域18に投入すると、可燃物27は下降流21によって弱流動化域18に呑込まれ、熱分解を受けながら、低酸素による還元性雰囲気で燃焼し、旋回流によって強流動化域19に導入され、そこでは上昇流22に乗って多量の酸素による酸化雰囲気で十分な燃焼が行われる。
【0034】
流動媒体の上昇流22は仕切壁34の上端部付近で主燃焼室の弱流動化域18へ向かう流れと、仕切壁34を越えて熱回収室RTHへ飛び込む反転流22′とに分解する。
熱回収室RTHへ飛び込んだ流動媒体は下降流23となり、高温の流動媒体はそこに配置された板型伝熱面24に熱を与えたあと、流動媒体は炉底付近で下降流から水平流に転じ、下部の連絡口35を通って主燃焼室RCUに戻る。
【0035】
板型伝熱面24の配置されている弱流動化域20は、強流動化域で十分に燃焼したあとの流動媒体が流入してくるため酸化雰囲気であり、還元腐食の恐れは少ない。また、弱い流動化域なので伝熱面の摩耗も少ない。
一方、可燃物に含まれる不燃物についても、伝熱面全体が一つの板状になっているため、針金のような不燃物であってもからみにくい構造であり支障なく運転することが可能である。
【0036】
(実施例3)
図7は本発明の流動層反応装置の第3実施例を示す図であり、図7(a)は縦断面図、図7(b)は図7(a)のVII(b)矢視図である。本実施例は、図6に示す実施例において板型伝熱面と仕切壁を一体化したものである。即ち、耐火材からなる仕切壁34′は、側壁33に固定された板型伝熱面24′により支持されている。その他の構成は図6に示す実施例と同様である。板型伝熱面24′が仕切壁34′を支える構造としたことにより、仕切壁34′の下部の連絡口35には、全く障害物がなくなることから、熱回収室RTHに入った不燃物は引っ掛かることなく主燃焼室RCUに戻るため、支障なく運転が可能である。
【0037】
(実施例4)
図8は本発明の流動層反応装置の第4実施例を示す縦断面図である。
流動層炉1の炉底部には、実質的に小さな流動化速度を与える弱散気板4と、実質的な大きな流動化速度を与える強散気板3とが配置されている。強散気板3と側壁33との間には不燃物排出口28が配置されており、弱散気板4と強散気板3の上面は不燃物排出口28に向かって下降傾斜面になっている。弱散気板4及び強散気板3の下部には、それぞれ空気室8,7があり、これら空気室7,8にはコネクタ10,11を通してそれぞれ流動用空気13,14が導入される。
【0038】
弱散気板4からはノズル17を通して流動用空気が層内に噴出し、弱散気板4の上方に弱流動化域20を形成する。
一方、強散気板3からはノズル16を通して流動用空気が層内に噴出し、強散気板3の上方に強流動化域19を形成する。このとき弱流動化域20には下降流23が形成され、また強流動化域19では上昇流22が形成される。その結果、流動層内全体では強流動化域19で上昇し、弱流動化域20で沈降する旋回流が形成される。弱散気流4の上方の弱流動化域20には、板型伝熱面24からなる熱回収装置が板面が垂直になるように配置されている。
【0039】
一方、強散気板3に隣接して設置された不燃物排出口28には、空気室7の側面に設けたノズル39より流動用空気が噴出するようになっており、ノズル39を通して噴出させた流動空気によって不燃物排出口28の上部に弱流動化域38を形成している。上述のように構成することにより、可燃物27を弱流動化域38に投入すると可燃物27は下降流21によって弱流動化域38に呑込まれ、熱分解を受けながら、低酸素による還元性雰囲気で燃焼し、旋回流によって強流動化域19に導入され、そこでは上昇流22に乗って多量の酸素による酸化雰囲気で十分な燃焼が行われる。このように還元雰囲気燃焼と、酸化雰囲気燃焼の組合せにより、NOX低減など排ガス特性が大幅に改善される。強流動化域19の表面付近では高温になった流動媒体の一部が弱流動化域20に向かって反転し、次に弱流動化域20の下降流23に乗って沈降し、そこに配置された板型伝熱面24に熱を与える。板型伝熱面24に熱を与えたあと、流動媒体は炉底付近で下降流から水平流に転じ、強流動化域19に向かって還流する。その際、大多数の不燃物は沈降し、排出口28からそのまま排出される。
【0040】
板型伝熱面24の配置されている弱流動化域20は、強流動化域19で十分に燃焼したあとの流動媒体が流入してくるため酸化雰囲気であり、還元腐食の恐れは少ない。また、弱い流動化域なので伝熱面の摩耗も少ない。
一方、可燃物に含まれる不燃物についても、伝熱面全体が一つの板状になっているため、針金のような不燃物であってもからみにくい構造であり、支障なく運転することが可能である。
【0041】
(実施例5)
図9は本発明の流動層反応装置の第5実施例を示す縦断面図である。本実施例は図8に示す構造を有する流動層炉を不燃物排出口28を挟んで対称となるように合わせた構造となっている。
即ち、流動層炉1の炉底部には、弱散気板4,4と、強散気板3,3とが配置されている。弱散気板4,4の間には不燃物排出口28が形成されている。板型伝熱面24は弱散気板4の上方の弱流動化域20に配置されている。可燃物27は弱流動化域38に投入される。
本実施例の作用は図8に示す実施例と同様であるため、その説明を省略する。なお、図1から図9に示す実施例においては、炉底の散気板2,3,4が傾斜しているが、水平であっても構わない。
【0042】
(実施例6)
図10は本発明の流動層反応装置の第6実施例を示す縦断面図である。本実施例は、基本的には図1に示す実施例と同じ構成であるが、板型伝熱面24が配置されている領域に上昇流を形成するように構成している。即ち、空気室7,8の側面から不燃物排出口28にノズル40を通して流動化用空気を吹き出し、不燃物排出口28の上方に実質的に小さな流動化速度による弱流動化域41を形成する。また側壁33から強散気板3の上方の位置まで延びる傾斜壁43を設け、この傾斜壁43によって上昇してくる流動媒体を反転させるようにしている。
一方、板型伝熱面24の配置されている流動化域においては、弱流動化域41に対し比較的大きな流動化速度とすることにより、弱流動化域であっても流動媒体が穏やかな上昇流42を形成し、弱流動化域41で下降流44を形成する。下降流44が最も小さな流動化速度を有し、上昇流42が中位の流動化速度を有し、上昇流22が最も大きな流動化速度を有している。
【0043】
(実施例7)
図11は本発明の流動層反応装置の第7実施例を示す縦断面図である。本実施例は、図10に示す構造を有する流動層炉を空気室6を挟んで対称となるように合わせた構造となっている。本実施例の構成及び作用は図10に示す実施例と同様であり、その説明を省略する。
【0044】
(実施例8)
図12は本発明の流動層反応装置の第8実施例を示す縦断面図である。本実施例においては、弱散気板4が側壁33に隣接して設けられ、また強散気板3が弱散気板4に連続して設けられ、弱散気板2は不燃物排出口28を挟んで配置されている。板型伝熱面24は弱散気板4の上方に配置されている。また不燃物排出口28には、空気室6,7の側面のノズル39を通して流動用空気が噴出するようになっている。その他の構成は図1に示す実施例と同様である。
【0045】
上述のように構成することにより、可燃物27を弱流動化域18に投入すると、可燃物27は下降流21によって弱流動化域18に呑込まれ、熱分解を受けながら、低酸素により還元性雰囲気で燃焼し、旋回流によって不燃物排出口28の上部にさしかかると、ノズル39から噴出する空気によって強流動化域となっているため、そこで不燃物は落下し、不燃物排出口28に呑み込まれる。
【0046】
不燃物濃度の小さくなった流動媒体は、強散気板3の上方の強流動化域19に達すると上昇流22に乗って上昇した後に反転して、板型伝熱面24の配置してある弱流動化域20に導入されるが、不燃物濃度が減少しているため、板型伝熱面24に対する不燃物による閉塞などの可能性は図1の実施例より更に低くなるという利点がある。
【0047】
(実施例9)
図13は本発明の流動層反応装置の第9実施例を示す縦断面図である。
流動層炉1の炉底部には、実質的に小さな流動化速度を与える弱散気板2と、実質的に大きな流動化速度を与える強散気板3とが配置されている。弱散気板2及び強散気板3の下部には空気室6,7が配置されており、これら空気室6,7にはコネクタ9,10を通してそれぞれ流動用空気が導入される。また側壁33から強散気板3の上方の位置まで延びる傾斜壁43を設け、上昇してくる流動媒体を反転させるようにしている。側壁33には流動用空気を不燃物排出口28に噴出するノズル45が設置されている。コネクタ9は流動用空気12に接続され、コネクタ10及びノズル45はバルブV1,V2を介して流動用空気13に接続されている。
【0048】
弱散気板2からはノズル15を通して流動用空気が層内に噴出し、弱散気板2の上方に弱流動化域18を形成する。
一方、強散気板3からはノズル16を通して流動用空気が層内に噴出し、強散気板3の上方に強流動化域19を形成する。このとき弱流動化域18には下降流21が形成され、また強流動化域19では上昇流22が形成される。その結果、流動層内全体では強流動化域19で上昇し、弱流動化域18で沈降する旋回流が形成される。
このとき強流動化域19の側面炉壁から不燃物排出口28の上部にノズル45を通して流動空気を噴出し、流動媒体の上昇流を形成する。該流動化域の炉壁は板型伝熱面46で構成されている。
【0049】
このように構成することにより、可燃物に含まれる不燃物については、伝熱面全体が一つの板状になっており、しかも壁を構成していて突起物がないため、針金のような不燃物であっても絡みにくい構造であり、支障なく運転することが可能である。
【0050】
(実施例10)
図14は本発明の流動層反応装置の第10実施例を示す縦断面図である。本実施例は図13に示す構造を有する流動層炉を空気室6を挟んで対称となるように合わせた構造となっている。本実施例の構成及び作用は図13に示す実施例と同様であり、その説明を省略する。
以上、本発明を燃焼装置として使用する場合の実施例について説明してきたが、本発明を、例えばガス化装置として用いることも可能である。その場合には流動化ガス中の酸素量が全体として投入可燃物に対する理論燃焼に必要な酸素量以下である他は、装置の構成は同じである。
【0051】
【発明の効果】
以上説明したように本発明によれば、以下に列挙する効果を奏する。
(1)これまでは、投入した可燃物に含まれる針金状の不燃物などが、流動層内で沈降堆積しやすく、また伝熱管にからみつきやすいことからすぐに流動不良を起こし運転不能に陥ってしまうため、有効なエネルギー回収方法がなかった廃タイヤなどの廃棄物について、本願のような構成で板型伝熱面を流動層内の熱回収に用いることにより、支障なく運転および熱回収が可能となり、これまで未利用だった産業廃棄物のエネルギー利用に大きく道を開くものである。
(2)可燃物を小さな流動化速度を与えられた還元雰囲気の領域に投入して還元雰囲気で燃焼させたのちに大きな流動化速度を与えられた酸化雰囲気で燃焼させることができる。すなわち、還元雰囲気燃焼と、酸化雰囲気燃焼の組み合わせにより、NOX低減など排ガス特性が改善される。そして、もう一つの弱流動化域は酸化雰囲気であるため、該流動化域に配置された熱回収装置には還元腐食を避けることが出来る。
(3)熱回収装置と可燃物投入口とは強流動化域と不燃物排出口とが間に介在しているため、不燃物は途中の排出口で排出され、熱回収装置に到達することがない。また、たとえ一部の不燃物が熱回収装置に到達しても、伝熱面が一枚のパネルになっているため、引っかかったりせず、旋回流に乗って戻って行き、排出口から排出される。
【0052】
(4)板型伝熱面の構成について異なる2系統の伝熱管を、同一平面内で一方が他方を交互に囲うようにし、それぞれの伝熱管はヒレを介して接合させることにより、少ない面積でより多くの伝熱面積を稼ぐことが可能であり、しかも管内の圧力損失は面数の多いときと変わらないという利点がある。すなわち、伝熱面積は一定のままで、しかも強制循環ポンプの所要動力を変えないで、伝熱面の個数を半分に減らすことができるため、板状に構成したことと合わせて不燃物対策には極めて効果的であり、特に燃焼した際に針金状の不燃物が発生するため運転不能に陥り、有効なエネルギー回収方法がなかった廃タイヤなどの廃棄物のエネルギー利用を初めて可能としたものである。
【図面の簡単な説明】
【図1】本発明に係る流動層反応装置の第1実施例を示す縦断面図である。
【図2】図1のII-II線断面図である。
【図3】図1のIII-III線断面図である。
【図4】本発明の板型伝熱面の具体例を示す側面図である。
【図5】図4のV矢視図である。
【図6】本発明に係る流動層反応装置の第2実施例を示す縦断面図である。
【図7】本発明に係る流動層反応装置の第3実施例を示す縦断面図である。
【図8】本発明に係る流動層反応装置の第4実施例を示す縦断面図である。
【図9】本発明に係る流動層反応装置の第5実施例を示す縦断面図である。
【図10】本発明に係る流動層反応装置の第6実施例を示す縦断面図である。
【図11】本発明に係る流動層反応装置の第7実施例を示す縦断面図である。
【図12】本発明に係る流動層反応装置の第8実施例を示す縦断面図である。
【図13】本発明に係る流動層反応装置の第9実施例を示す縦断面図である。
【図14】本発明に係る流動層反応装置の第10実施例を示す縦断面図である。
【符号の説明】
1 流動層炉
2,4 弱散気板
3 強散気板
6,7,8 空気室
9,10,11 コネクタ
12,13,14 流動用空気
15,16,17 ノズル
18,20,38,41 弱流動化域
19 強流動化域
21,23,44 下降流
22,42 上昇流
24,24′,44,46 板型伝熱面
25,25′伝熱管
26 ヒレ
27 可燃物
28 不燃物排出口
29,29′,32,32′ ヘッダ
33 側壁
34,34′仕切壁
35,36 連絡口
39,40,45 ノズル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluidized bed reactor, and in particular, causes solid substances containing incombustibles such as industrial waste, municipal waste, or coal to uniformly oxidize such as combustion or gasification, and smoothly discharge incombustibles. The present invention relates to a fluidized bed reactor capable of stably recovering thermal energy.
[0002]
[Prior art]
With the economic development, the amount of general waste is increasing by 3-4% year by year, and now reaches 50 million tons per year. 82% of this waste is combustible, equivalent to 7.2 million tons of oil.
[0003]
In addition, industrial waste continues to increase, and plastics containing incombustible materials that have been buried as incombustible materials in the past must be incinerated in the future to reduce the burden on landfills. Such combustible industrial wastes such as waste oil and plastics are about 17 million tons per year and the calorific value is more than 3000 kcal / kg, so this is more suitable for fuel than waste.
[0004]
However, the properties and shapes of the waste are very diverse, and it is not constant, and because it contains irregular incombustibles, it is difficult to achieve stable combustion and treatment. It prevents the effective use of physical energy.
[0005]
[Problems to be solved by the invention]
Various systems have been developed so far for the purpose of recovering thermal energy by oxidation reaction, for example, incineration, in order to effectively use general waste and industrial waste energy. In particular, fluidized bed incinerators or fluidized bed boilers are expected as systems that can uniformly burn solid materials containing incombustibles and recover heat energy stably while discharging incombustibles smoothly. However, the following issues exist.
[0006]
In the bubbling fluidized bed, since the flow is only in the vertical direction, the incinerated product is not sufficiently dispersed, and uniform and stable combustion is difficult. Incombustibles having a specific gravity greater than that of the fluidized medium accumulate in a wide range on the hearth. As a result, it is difficult to discharge the incombustibles, which hinders operation.
For this reason, recently, there are not many simple bubbling fluidized beds, but a number of methods that change the fluidization speed to generate a swirling flow in a dense fluidized bed, improve the mixing and dispersion of incinerated materials, and perform stable combustion. Have been developed.
[0007]
However, various incinerators are mixed, and wire-like incombustible materials generated when burning waste tires, etc., tend to settle and accumulate in the fluidized bed and entangle with heat transfer tubes. As a result, there is no effective incineration method for industrial waste containing wire-like incombustible materials such as waste tires.
[0008]
When incinerating waste, NO generated by combustion X However, there is no device that can satisfy all of these points.
[0009]
The present invention has been made in view of the above-described circumstances, and uniformly discharges various incombustible materials including wire-like incombustible materials by causing solid substances including incombustible materials to uniformly burn or gasify. An object of the present invention is to provide a fluidized bed reactor capable of stably recovering thermal energy.
[0010]
[Means for Solving the Problems]
According to a first aspect of the present invention, in a fluidized bed reactor, a gas diffuser that provides different fluidization speeds in the fluidized bed is provided in the hearth portion, and a flow that is provided with a substantially large fluidization speed. In the flow part, the flow medium is caused to rise, and in the flow part given a substantially small fluidization speed, the flow medium is settling, and in the flow part given a substantially small fluidization speed. The heat transfer tubes are arranged in the same plane, and the adjacent heat transfer tubes The A plurality of plate-type heat recovery devices that are sandwiched and connected to form a plate-like heat transfer surface as a whole are arranged so that the plate surfaces are vertical. The plate-type heat recovery device is arranged in a direction parallel to the surface formed by the swirling flow of the fluidized medium formed at different fluidization speeds. It is characterized by that.
According to a second aspect of the present invention, in a fluidized bed reactor, a gas diffuser that provides different fluidization speeds in the fluidized bed is provided in the hearth portion, and a flow that is given a substantially large fluidization speed. In the flow part, the flow medium is caused to rise, and in the flow part given a substantially small fluidization speed, the flow medium is settling, and in the flow part given a substantially small fluidization speed. A plurality of plate-type heat recovery devices with different heat transfer tubes arranged in the same plane are arranged so that the plate surfaces are vertical. The plate-type heat recovery device is arranged in a direction parallel to the surface formed by the swirling flow of the fluidized medium formed at different fluidization speeds. It is characterized by that.
According to a third aspect of the present invention, in a fluidized bed reactor, a gas diffusion device that provides different fluidization speeds in the fluidized bed is provided in the hearth part, and a flow that is provided with a substantially large fluidization speed. Inclination that causes the fluid medium to rise in the part, the fluid part to have a substantially low fluidization velocity, the fluid medium to settle, and the fluid medium to be inverted above the fluid medium. By providing a flow portion that provides a medium fluidization speed by providing a wall and sandwiching a flowing medium sedimentation flow that is given the substantially smallest fluidization speed at the lower end side of the inclined wall, A gentle upward flow is generated in the portion, and a plate-type heat recovery device is arranged in the flow portion so that the plate surface is vertical.
According to a fourth aspect of the present invention, in the fluidized bed reactor, a partition wall is provided inside and divided into a plurality of parts, and each fluidized bed communicates above and below the partition wall, and each fluidized bed In order to provide different fluidization speeds, a diffuser is provided in the hearth part, so that a fluidized bed having a substantially large fluidization speed and a fluidized bed having a substantially small fluidization speed are provided. In the meantime, in a fluidized bed given a substantially high fluidization speed, the fluidized medium rises and enters the fluidized bed given a substantially small fluidization speed across the partition wall, where it forms a moving bed However, the fluidized bed in which the fluidized medium slowly settles and forms a circulating moving bed by generating a mutual circulating flow that returns to the fluidized bed provided with a substantially high fluidization speed through the connection port under the partition wall. The heat transfer tubes on the same plane. And, and the adjacent heat transfer tubes to each other plate The A plurality of plate-shaped heat recovery devices that are connected by sandwiching them into one plate-like heat transfer surface as a whole are arranged. The plate-type heat recovery device is arranged in a direction parallel to the surface formed by the swirling flow of the fluidized medium formed at different fluidization speeds. It is characterized by that.
According to a fifth aspect of the present invention, in a fluidized bed reactor, a partition wall is provided inside and divided into a plurality of parts, and each fluidized bed communicates above and below the partition wall, and each fluidized bed In order to provide different fluidization speeds, a diffuser is provided in the hearth part, so that a fluidized bed having a substantially large fluidization speed and a fluidized bed having a substantially small fluidization speed are provided. In the meantime, in a fluidized bed given a substantially high fluidization speed, the fluidized medium rises and enters the fluidized bed given a substantially small fluidization speed across the partition wall, where it forms a moving bed However, the fluidized bed in which the fluidized medium slowly settles and forms a circulating moving bed by generating a mutual circulating flow that returns to the fluidized bed provided with a substantially high fluidization speed through the connection port under the partition wall. The same heat transfer tube A plate-type heat recovery device disposed in a plane a plurality of arranged The plate-type heat recovery device is arranged in a direction parallel to the surface formed by the swirling flow of the fluidized medium formed at different fluidization speeds. It is characterized by that.
According to a sixth aspect of the present invention, an air diffuser that provides a substantially high fluidization speed is disposed in the hearth of a fluidized bed reactor, and the air diffuser is interposed between the diffuser. A diffuser that provides a fluidization rate is disposed so as to face each other, and one of the fluidized portions provided with a substantially small fluidization rate is provided with a heat transfer tube in the same plane and adjacent to the heat transfer tube. Heat pipes to each other The Plural plate-type heat recovery devices that are connected by sandwiching them to form a single plate-like heat transfer surface as a whole The plate-type heat recovery device is arranged in a direction parallel to the surface formed by the swirling flow of the fluidized medium formed at different fluidization speeds. In addition, a combustible material such as fuel is introduced into the fluid part provided with the other substantially small fluidization speed while the fluid part provided with a substantially large fluidization speed is sandwiched therebetween, and substantially An incombustible discharge port is provided between an air diffuser that gives a large fluidization speed and an air diffuser that gives a substantially small fluidization speed.
According to a seventh aspect of the present invention, an air diffuser that provides a substantially high fluidization speed is disposed in the hearth of a fluidized bed reactor, and the air diffuser is interposed between the diffuser. A plate type in which air diffusers giving fluidization speeds are arranged opposite to each other, and one of the flow parts given substantially small fluidization speeds is provided with different heat transfer tubes in the same plane. Multiple heat recovery devices The plate-type heat recovery device is arranged in a direction parallel to the surface formed by the swirling flow of the fluidized medium formed at different fluidization speeds. In addition, a combustible material such as fuel is introduced into the fluid part provided with the other substantially small fluidization speed while the fluid part provided with a substantially large fluidization speed is sandwiched therebetween, and substantially An incombustible discharge port is provided between an air diffuser that gives a large fluidization speed and an air diffuser that gives a substantially small fluidization speed.
[0011]
According to the present invention, a weak diffuser plate that provides a substantially small fluidization rate and a strong diffuser plate that provides a substantially large fluidization rate are provided at the bottom of the fluidized bed furnace. Furthermore, there is a room such as an air chamber in the lower part, and fluidized gas is introduced through each connector. A weak fluidization zone is formed above the weak diffuser plate. On the other hand, a strong fluidization zone is formed above the strong diffuser plate. As the fluidizing gas, air, nitrogen-removed air, oxygen-enriched air, oxygen, water vapor and a mixed gas thereof are preferably used, but this does not hinder the application of other gases.
At this time, a downward flow is formed in the weak fluidization zone, and an upward flow is formed in the strong fluidization zone. As a result, the entire fluidized bed rises in the strong fluidization zone and falls in the weak fluidization zone. A swirling flow is formed. As described above, a plurality of strong fluidization zones and weak fluidization zones are alternately provided in one fluidized bed furnace, and plate-shaped heat transfer surfaces are arranged in some weak fluidization zones.
[0012]
The combustible material is put into a weakly fluidized region having no plate-like heat transfer surface, and burns in a reducing atmosphere with low oxygen while being swallowed by a swirling flow. Next, it moves to the strong fluidization zone by the swirl flow, where it burns sufficiently in the oxidizing atmosphere, and the fluid medium that has reached a high temperature rides on the next swirl flow and settles in the adjacent weak fluidization zone. Heat is applied to the heat transfer surface of the placed plate. The weakly fluidized zone where the plate-shaped heat transfer surface is arranged is an oxidizing atmosphere because the fluidized medium flows after sufficiently burning in the strong fluidized zone, and there is little risk of reductive corrosion. In addition, since the fluidization zone is weak, there is little wear on the heat transfer surface.
[0013]
On the other hand, the non-combustible material contained in the combustible material also has a structure that is hard to entangle even if it is a non-combustible material such as a wire because the entire heat transfer surface is in the form of a single plate. It is.
The plate-type heat transfer surfaces are arranged such that separate heat transfer tubes connected to the same header are arranged in the same plane, one of which is alternated with the other, and each heat transfer tube is joined via a fin, It has become. With this configuration, there are advantages that a large heat transfer area can be obtained with a small number of surfaces and that the pressure loss in the heat transfer tube is small.
[0014]
In one aspect of the present invention, a partition wall is disposed between the weak fluidization region where the heat transfer surface is disposed and the strong fluidization region, and communication ports with the strong fluidization region are provided above and below the partition wall. Thus, the fluidized bed furnace is divided into a heat recovery chamber where the heat transfer surface exists and a main combustion chamber where there is no heat transfer surface.
[0015]
Moreover, in one aspect of the present invention, fluidized zones having a plurality of different fluidization speeds are alternately provided in the fluidized bed furnace, and the fluidization medium is an upward flow although the substantial fluidization speed is weak. A plate-shaped heat transfer surface is arranged in the fluidization zone.
[0016]
Furthermore, in one aspect of the present invention, an air diffuser that provides a substantially small fluidization speed is disposed between the air diffuser that provides a substantially large fluidization speed, and a flow portion having a small fluidization speed is disposed. A heat recovery device is arranged on one side. And an incombustible material discharge port is arranged between the diffuser which gives a big fluidization speed, and the diffuser which gives a small fluidization speed.
[0017]
By arranging in this way, the combustion product can be put into one weakly fluidized region and burned in a reducing atmosphere. It can then be burned in an oxidizing atmosphere in a strong fluidization zone given a large fluidization rate. Thus, exhaust gas characteristics such as NOx reduction are greatly improved by the combination of reducing atmosphere combustion and oxidizing atmosphere combustion. On the other hand, when the heat recovery device is arranged in another weak fluidization zone, the weak fluidization zone becomes an oxidizing atmosphere because the fluidized medium flows in after sufficiently burning in the strong fluidization zone as described above. Therefore, there is no risk of reductive corrosion. Further, since the fuel input port is interposed between the strong fluidization zone and the incombustible discharge port, even if there is a non-combustible material, it is discharged at the discharge port in the middle. Also, even if some incombustible material reaches the heat transfer surface of the heat recovery device, the heat transfer surface is a single panel, so it will return to the swirl flow without being caught. Discharged from.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
In the following, a description will be given with reference to FIGS. 1 to 14 focusing on an example of a fluidized bed reactor according to the present invention used as a combustion device. In each figure, the same or corresponding members are denoted by the same reference numerals, and redundant description is omitted.
[0019]
Example 1
FIG. 1 is a longitudinal sectional view showing a first embodiment of the present invention.
At the bottom of the fluidized bed furnace 1, there are installed weakly diffused plates 2 and 4 that give a substantially small fluidization rate and a strong diffuser plate 3 that gives a substantially large fluidized rate. An incombustible discharge port 28 is disposed between the strong diffuser plate 3 and the weak diffuser plate 4, and the upper surface of the weak diffuser plate 4 and the upper surfaces of the weak diffuser plate 2 and the strong diffuser plate 3. Is a downward inclined surface toward the incombustible discharge port 28. Air chambers 6, 8, and 7 are disposed below the weakly diffused plates 2, 4 and the strong diffuser plate 3, and these air chambers 6, 7, and 8 are respectively connected through connectors 9, 10, and 11. Flowing air 12, 13, 14 is introduced.
[0020]
A large number of nozzles 15 and 17 are formed on the weak diffuser plates 2 and 4, respectively, and a large number of nozzles 16 are formed on the strong diffuser plate 3. The side wall 33 of the furnace 1 has a rectangular tube shape, and the planar shape of the furnace 1 is rectangular. In the furnace 1, the fluid medium made of non-combustible particles such as sand is blown up by the flow air that is blown upward from the weak diffuser plates 2, 4 and the strong diffuser plate 3 into the furnace, A fluidized bed is formed inside.
[0021]
That is, the air for flow is ejected from the weakly diffused plates 2 and 4 through the nozzles 15 and 17 into the layers, and the weakly fluidized zones 18 and 20 are formed above the weakly diffused plates 2 and 4, respectively.
On the other hand, the air for flowing out from the strong air diffuser plate 3 through the nozzles 16 into the layer, and a strong fluidizing zone 19 is formed above the strong air diffuser plate 3. At this time, downward flows 21 and 23 are formed in the weak fluidization zones 18 and 20, respectively, and an upward flow 22 is formed in the strong fluidization zone 19. As a result, in the fluidized bed as a whole, two swirl flows that rise in the strong fluidization zone 19 and settle in the weak fluidization zones 18 and 20 are formed. And in the weak fluidization zone 20 above the weak diffuser plate 4, a heat recovery device comprising a plate-type heat transfer surface 24 is arranged so that the plate surface is vertical.
[0022]
With the configuration described above, when the combustible material 27 is introduced into the weak fluidization zone 18, the combustible material 27 is trapped in the weak fluidization zone 18 by the downward flow 21, and is reduced by low oxygen while undergoing thermal decomposition. It burns in the atmosphere and is introduced into the strong fluidization zone 19 by the swirl flow, where it rides on the upward flow 22 and is burned sufficiently in an oxidizing atmosphere with a large amount of oxygen. In this way, by the combination of reducing atmosphere combustion and oxidizing atmosphere combustion, NO X The exhaust gas characteristics such as reduction are greatly improved. In the vicinity of the surface of the strong fluidization zone 19, a part of the fluidized medium that has become high temperature is reversed toward the weak fluidization zone 20, and is now settled on the descending flow 23 of the weak fluidization zone 20. The plate-type heat transfer surface 24 is heated.
[0023]
After applying heat to the plate-type heat transfer surface 24, the fluidized medium turns from a downward flow to a horizontal flow near the furnace bottom and returns to the strong fluidization zone 19.
[0024]
In this way, the combustible material is sufficiently combusted by the swirl flow in the weak fluidization region 18 and the strong fluidization region 19 without the plate-type heat transfer surface 24, and the fluid medium having reached a high temperature rides on the next swirl flow and adjoins it. In the weak fluidization zone 20 and heat is applied to the plate-type heat transfer surface 24 arranged there. For this reason, the weakly fluidized zone 20 where the plate heat transfer surface 24 is disposed is an oxidizing atmosphere because the fluidized medium after sufficiently burning in the strong fluidized zone 19 flows in, and there is a risk of reductive corrosion. Few. Further, since the fluidization region is weak, the heat transfer surface 24 is less worn.
On the other hand, the non-combustible material included in the combustible material also has a heat transfer surface 24 and a fuel inlet through the strong fluidization zone 19 and the non-combustible material discharge port 28. It is discharged at the exit. In addition, even if some incombustibles reach the heat transfer surface 24 of the heat recovery device, the entire heat transfer surface is in a single plate shape, so that even non-combustible materials such as wires are not easily entangled. It is possible to drive without any trouble.
[0025]
2 is a cross-sectional view taken along line II-II in FIG. 1 showing a cross section taken along line II-II. As shown in FIG. 2, a plurality of plate-type heat transfer surfaces 24 are attached to a header 29, and are inserted into the furnace through the furnace wall 33. Saturated water is usually introduced as a heat medium for heat recovery through the lower header inlet 32 ′, collected by the plate heat transfer surface 24, and then led out through the upper header outlet 32.
[0026]
3 is a cross-sectional view taken along the line III-III in FIG. 1, showing a cross-sectional structure of the plate-type heat transfer surface. The plate-shaped heat transfer surface 24 is formed as a single plate as a whole by joining adjacent heat transfer tubes 25 and 25 ′ with fins 26 interposed therebetween.
[0027]
FIG. 4 is a side view showing details of a specific example of the plate-type heat transfer surface. Two different heat transfer tubes 25, 25 ′ connected to the same header 29, 29 ′ are alternately arranged in the same plane, and the respective heat transfer tubes are joined via fins 26. By configuring in this way, a large heat transfer area can be obtained with a small number of surfaces, and the length of one heat transfer tube is shortened, so that the pressure loss in the heat transfer tube is small.
FIG. 5 is a view taken in the direction of arrow V in FIG. As is clear from FIG. 5, the two heat transfer tubes 25 and 25 'are arranged in the same plane, and are formed into one plate as a whole.
[0028]
FIG. 6 is a longitudinal sectional view showing a second embodiment of the fluidized bed reactor according to the present invention.
At the bottom of the fluidized bed furnace 1, a weak air diffuser plate 2 having a mountain-shaped cross section is disposed at the center, and a strong air diffuser plate 3 is disposed outside the mountain-shaped weak air diffuser plate 2. Further, the weak diffuser plate 4 is disposed outside the strong diffuser plate 3. The side wall 33 of the furnace 1 has a rectangular tube shape or a cylindrical shape, and the planar shape of the furnace 1 is a rectangle or a circle. An incombustible discharge port 28 is disposed between the strong diffuser plate 3 and the weak diffuser plate 4, and the upper surface of the weak diffuser plate 4 and the upper surfaces of the weak diffuser plate 2 and the strong diffuser plate 3. Is a downward inclined surface toward the incombustible discharge port 28. Air chambers 6, 8, and 7 are disposed below the weakly diffused plates 2, 4 and the strong diffuser plate 3, and these air chambers 6, 7, and 8 are respectively connected through connectors 9, 10, and 11. Flowing air 12, 13, 14 is introduced. When the planar shape of the furnace 1 is rectangular,
The rectangular weak diffuser plate 2, the strong diffuser plate 3, the incombustible discharge port 28, and the weak diffuser plate 4 are arranged in parallel, or symmetrically with respect to the ridgeline of the rectangular and mountain-shaped weak diffuser plate 2. It is formed by arranging the diffuser plate 3, the incombustible discharge port 28 and the weak diffuser plate 4. When the planar shape of the furnace 1 is circular, a conical weak diffuser plate 2 having a high center and a low peripheral edge, an annular strong diffuser plate 3 arranged concentrically with the weak diffuser plate 2, a weak diffuser The non-combustible discharge port 28 having a plurality of partial annular shapes arranged concentrically on the plate 2 and the annular strong diffusion plate 4 arranged concentrically on the weak diffusion plate 2 are formed.
[0029]
From the weakly diffused plates 2 and 4, the flow air is jetted into the bed through nozzles 15 and 17, respectively, and weakly fluidized zones 18 and 20 are formed above the weakly diffused plates 2 and 4, respectively.
On the other hand, the air for flowing out from the strong air diffuser plate 3 through the nozzles 16 into the layer, and a strong fluidizing zone 19 is formed above the strong air diffuser plate 3. In the weak fluidization zone 20 above the weak diffuser plate 4, a heat recovery device comprising a plate-type heat transfer surface 24 is arranged so that the plate surface is vertical.
[0030]
Further, a partition wall 34 is disposed between the weak fluidization zone 20 and the strong fluidization zone 19 where the plate-type heat transfer surface 24 is disposed. The partition wall 34 is connected to the strong fluidization zone 19 above and below the partition wall 34. The heat recovery chamber R in which the ports 35 and 36 are formed and the fluidized bed furnace 1 has a heat transfer surface. TH Main combustion chamber R that does not exist CU It is divided into
[0031]
At this time, the main combustion chamber R CU , A downward flow 21 is formed in the weak fluidization zone 18, and an upward flow 22 is formed in the strong fluidization zone 19. As a result, the main combustion chamber R CU As a whole, a continuous swirling flow rising in the strong fluidization zone 19 and sinking in the weak fluidization zone 18 is formed.
[0032]
On the other hand, the upward flow 22 of the fluidized medium is in the main combustion chamber R near the upper end of the partition wall 34. CU To the weak fluidization zone 18 and beyond the partition wall 34, the heat recovery chamber R TH Separated into the reverse flow 22 'jumping into the heat recovery chamber R TH Has a moderately weak fluidization zone 20 formed by the weakly diffuser plate 4 giving a substantially small fluidization speed, so that the flowing fluid medium becomes a downward flow 23 and further passes through the lower connection port 35. Main combustion chamber R CU A circulating flow is formed back to
At this time, the circulating amount of the fluid medium and the heat transfer coefficient of the plate-type heat transfer surface 24 are set as the heat recovery chamber R. TH By adjusting according to the change of the fluidization speed in the inside, recovery of the thermal energy of the fluidized medium can be adjusted.
[0033]
By configuring as described above, the main combustion chamber R CU When the combustible material 27 is introduced into the weak fluidization zone 18, the combustible material 27 is trapped in the weak fluidization zone 18 by the downward flow 21, and burns in a reducing atmosphere with low oxygen while undergoing thermal decomposition, and swirls. It is introduced into the strong fluidization zone 19 by the flow, where it rides on the upward flow 22 and sufficient combustion takes place in an oxidizing atmosphere with a large amount of oxygen.
[0034]
The upward flow 22 of the fluidized medium flows toward the weak fluidization region 18 of the main combustion chamber near the upper end portion of the partition wall 34 and the heat recovery chamber R beyond the partition wall 34. TH It breaks down into a reversal flow 22 'jumping into.
Heat recovery room R TH The fluid medium jumped into the downward flow 23, and the high temperature fluid medium heated the plate-shaped heat transfer surface 24 disposed there, and then the fluid medium turned from a downward flow to a horizontal flow near the bottom of the furnace. The main combustion chamber R through the connection port 35 CU Return to.
[0035]
The weakly fluidized zone 20 where the plate-type heat transfer surface 24 is disposed is an oxidizing atmosphere because the fluidized medium after sufficiently burning in the strong fluidized zone flows in, and there is little risk of reductive corrosion. In addition, since the fluidization zone is weak, there is little wear on the heat transfer surface.
On the other hand, the non-combustible material contained in the combustible material also has a structure that is difficult to entangle even if it is a non-combustible material such as a wire because the entire heat transfer surface is a single plate. is there.
[0036]
(Example 3)
FIG. 7 is a view showing a third embodiment of the fluidized bed reaction apparatus of the present invention, FIG. 7 (a) is a longitudinal sectional view, and FIG. 7 (b) is a view taken along arrow VII (b) of FIG. 7 (a). It is. In this embodiment, the plate heat transfer surface and the partition wall are integrated in the embodiment shown in FIG. That is, the partition wall 34 ′ made of a refractory material is supported by the plate heat transfer surface 24 ′ fixed to the side wall 33. Other configurations are the same as those of the embodiment shown in FIG. Since the plate-type heat transfer surface 24 'is configured to support the partition wall 34', there is no obstacle at the communication port 35 below the partition wall 34 '. TH Incombustible material that has entered the main combustion chamber R without being caught CU It is possible to drive without any trouble.
[0037]
Example 4
FIG. 8 is a longitudinal sectional view showing a fourth embodiment of the fluidized bed reactor according to the present invention.
At the bottom of the fluidized bed furnace 1, there are disposed a weak diffuser plate 4 that gives a substantially small fluidization rate and a strong diffuser plate 3 that gives a substantially large fluidization rate. An incombustible discharge port 28 is disposed between the strong diffuser plate 3 and the side wall 33, and the upper surfaces of the weak diffuser plate 4 and the strong diffuser plate 3 are inclined downward toward the incombustible discharge port 28. It has become. Below the weak diffuser plate 4 and the strong diffuser plate 3, there are air chambers 8 and 7, respectively, and air for flow 13 and 14 is introduced into the air chambers 7 and 8 through the connectors 10 and 11, respectively.
[0038]
From the weakly diffuser plate 4, air for flow is ejected into the bed through the nozzles 17, and a weakly fluidized region 20 is formed above the weakly diffuser plate 4.
On the other hand, the air for flowing out from the strong air diffuser plate 3 through the nozzles 16 into the layer, and a strong fluidizing zone 19 is formed above the strong air diffuser plate 3. At this time, a downward flow 23 is formed in the weak fluidization zone 20, and an upward flow 22 is formed in the strong fluidization zone 19. As a result, a swirl flow that rises in the strong fluidization zone 19 and settles in the weak fluidization zone 20 is formed in the entire fluidized bed. In the weak fluidization zone 20 above the weakly diffused air flow 4, a heat recovery device composed of a plate heat transfer surface 24 is arranged so that the plate surface is vertical.
[0039]
On the other hand, the air for flow is ejected from the nozzle 39 provided on the side surface of the air chamber 7 to the incombustible discharge port 28 installed adjacent to the strong diffuser plate 3. A weak fluidization zone 38 is formed above the incombustible discharge port 28 by the flowing air. With the configuration described above, when the combustible material 27 is introduced into the weak fluidization zone 38, the combustible material 27 is trapped in the weak fluidization zone 38 by the downward flow 21, and is reduced by low oxygen while undergoing thermal decomposition. It burns in the atmosphere and is introduced into the strong fluidization zone 19 by the swirl flow, where it rides on the upward flow 22 and is burned sufficiently in an oxidizing atmosphere with a large amount of oxygen. In this way, by the combination of reducing atmosphere combustion and oxidizing atmosphere combustion, NO X The exhaust gas characteristics such as reduction are greatly improved. In the vicinity of the surface of the strong fluidization zone 19, a part of the fluidized medium that has become hot reverses toward the weak fluidization zone 20, and then settles on the descending flow 23 of the weak fluidization zone 20 and is disposed there. The plate-type heat transfer surface 24 is heated. After applying heat to the plate-type heat transfer surface 24, the fluidized medium turns from a downward flow to a horizontal flow near the furnace bottom and returns to the strong fluidization zone 19. At that time, the majority of incombustibles settle and are discharged from the discharge port 28 as they are.
[0040]
The weakly fluidized zone 20 where the plate-type heat transfer surface 24 is disposed is an oxidizing atmosphere because the fluidized medium after sufficiently burning in the strong fluidized zone 19 flows in, and there is little risk of reductive corrosion. In addition, since the fluidization zone is weak, there is little wear on the heat transfer surface.
On the other hand, the non-combustible material contained in the combustible material also has a structure that is hard to entangle even if it is a non-combustible material such as a wire because the entire heat transfer surface is in the form of a single plate. It is.
[0041]
(Example 5)
FIG. 9 is a longitudinal sectional view showing a fifth embodiment of the fluidized bed reactor according to the present invention. In this embodiment, the fluidized bed furnace having the structure shown in FIG. 8 is combined so as to be symmetrical with the incombustible discharge port 28 interposed therebetween.
That is, the weak diffuser plates 4 and 4 and the strong diffuser plates 3 and 3 are arranged at the bottom of the fluidized bed furnace 1. An incombustible discharge port 28 is formed between the weakly diffused plates 4 and 4. The plate-type heat transfer surface 24 is disposed in the weak fluidization region 20 above the weak air diffusion plate 4. The combustible 27 is introduced into the weak fluidization zone 38.
Since the operation of this embodiment is the same as that of the embodiment shown in FIG. In addition, in the Example shown in FIGS. 1-9, although the diffuser plates 2, 3, and 4 of a furnace bottom incline, you may be horizontal.
[0042]
(Example 6)
FIG. 10 is a longitudinal sectional view showing a sixth embodiment of the fluidized bed reactor according to the present invention. The present embodiment is basically the same configuration as the embodiment shown in FIG. 1, but is configured to form an upward flow in the region where the plate heat transfer surface 24 is disposed. That is, fluidizing air is blown out from the side surfaces of the air chambers 7 and 8 through the nozzle 40 to the incombustible discharge port 28, and a weak fluidization region 41 with a substantially small fluidization speed is formed above the incombustible discharge port 28. . Further, an inclined wall 43 extending from the side wall 33 to a position above the strong diffuser plate 3 is provided, and the fluid medium rising by the inclined wall 43 is reversed.
On the other hand, in the fluidization zone where the plate-type heat transfer surface 24 is arranged, the fluidized medium is gentle even in the weak fluidization zone by setting the fluidization speed relatively high compared to the weak fluidization zone 41. An upward flow 42 is formed, and a downward flow 44 is formed in the weak fluidization zone 41. Downstream flow 44 has the lowest fluidization rate, upflow 42 has a medium fluidization rate, and upflow 22 has the highest fluidization rate.
[0043]
(Example 7)
FIG. 11 is a longitudinal sectional view showing a seventh embodiment of the fluidized bed reactor according to the present invention. In this embodiment, the fluidized bed furnace having the structure shown in FIG. 10 is combined so as to be symmetrical with the air chamber 6 interposed therebetween. The configuration and operation of this embodiment are the same as those of the embodiment shown in FIG.
[0044]
(Example 8)
FIG. 12 is a longitudinal sectional view showing an eighth embodiment of the fluidized bed reactor according to the present invention. In this embodiment, the weak diffuser plate 4 is provided adjacent to the side wall 33, the strong diffuser plate 3 is provided continuously to the weak diffuser plate 4, and the weak diffuser plate 2 serves as an incombustible discharge port. 28. The plate-type heat transfer surface 24 is disposed above the weak diffuser plate 4. In addition, air for flow is ejected to the incombustible discharge port 28 through a nozzle 39 on the side surface of the air chambers 6 and 7. Other configurations are the same as those of the embodiment shown in FIG.
[0045]
With the configuration described above, when the combustible material 27 is introduced into the weak fluidization zone 18, the combustible material 27 is trapped in the weak fluidization zone 18 by the downward flow 21, and is reduced by low oxygen while undergoing thermal decomposition. When it burns in a natural atmosphere and reaches the upper portion of the incombustible discharge port 28 by the swirling flow, it becomes a strong fluidized area by the air ejected from the nozzle 39, so that the incombustible material falls and enters the incombustible discharge port 28. It is swallowed.
[0046]
When the fluid medium having a low incombustible concentration reaches the strong fluidization region 19 above the strong diffuser plate 3, it rises on the upward flow 22 and then reverses, and the plate heat transfer surface 24 is arranged. Although introduced into a certain weak fluidization zone 20, since the concentration of incombustibles is decreasing, the possibility that the plate-type heat transfer surface 24 is blocked by incombustibles is even lower than in the embodiment of FIG. is there.
[0047]
Example 9
FIG. 13 is a longitudinal sectional view showing a ninth embodiment of the fluidized bed reactor according to the present invention.
At the bottom of the fluidized bed furnace 1, there are disposed a weak diffuser plate 2 that gives a substantially small fluidization rate and a strong diffuser plate 3 that gives a substantially large fluidization rate. Air chambers 6, 7 are arranged below the weak diffuser plate 2 and the strong diffuser plate 3, and flow air is introduced into these air chambers 6, 7 through connectors 9, 10, respectively. Further, an inclined wall 43 extending from the side wall 33 to a position above the strong diffuser plate 3 is provided so as to reverse the rising fluid medium. The side wall 33 is provided with a nozzle 45 that ejects air for flow to the incombustible discharge port 28. The connector 9 is connected to the flow air 12, and the connector 10 and the nozzle 45 are connected to the flow air 13 through valves V1 and V2.
[0048]
From the weakly diffuser plate 2, the air for flow is ejected into the bed through the nozzle 15, and a weakly fluidized region 18 is formed above the weakly diffuser plate 2.
On the other hand, the air for flowing out from the strong air diffuser plate 3 through the nozzles 16 into the layer, and a strong fluidizing zone 19 is formed above the strong air diffuser plate 3. At this time, a downward flow 21 is formed in the weak fluidization zone 18 and an upward flow 22 is formed in the strong fluidization zone 19. As a result, a swirl flow that rises in the strong fluidization zone 19 and settles in the weak fluidization zone 18 is formed in the entire fluidized bed.
At this time, flowing air is jetted from the side furnace wall of the strong fluidizing zone 19 to the upper portion of the incombustible discharge port 28 through the nozzle 45 to form an upward flow of the flowing medium. The furnace wall in the fluidized zone is composed of a plate-type heat transfer surface 46.
[0049]
By configuring in this way, the non-combustible material contained in the combustible material has a single heat transfer surface, and has a wall and no protrusions. Even if it is a thing, it has a structure that is difficult to get entangled, and can be operated without any trouble.
[0050]
(Example 10)
FIG. 14 is a longitudinal sectional view showing a tenth embodiment of the fluidized bed reactor according to the present invention. In this embodiment, the fluidized bed furnace having the structure shown in FIG. 13 is combined so as to be symmetric with respect to the air chamber 6. The configuration and operation of this embodiment are the same as those of the embodiment shown in FIG.
As mentioned above, although the Example in the case of using this invention as a combustion apparatus has been demonstrated, this invention can also be used as a gasifier, for example. In that case, the configuration of the apparatus is the same except that the amount of oxygen in the fluidized gas as a whole is less than the amount of oxygen required for theoretical combustion of the input combustible material.
[0051]
【The invention's effect】
As described above, according to the present invention, the following effects are obtained.
(1) Up to now, wire-like incombustible materials contained in the combustible material that has been charged tend to settle and accumulate in the fluidized bed and easily entangle with the heat transfer tube. Therefore, for waste tires and other waste that had no effective energy recovery method, operation and heat recovery can be performed without any problems by using the plate-type heat transfer surface for heat recovery in the fluidized bed with the configuration of the present application. Thus, it opens the way for the energy use of industrial waste that has not been used so far.
(2) Combustible material can be burned in an oxidizing atmosphere provided with a large fluidization speed after being put into a reducing atmosphere region provided with a small fluidization speed and burned in a reducing atmosphere. That is, NO is obtained by a combination of reducing atmosphere combustion and oxidizing atmosphere combustion. X The exhaust gas characteristics such as reduction are improved. Since another weak fluidization zone is an oxidizing atmosphere, reductive corrosion can be avoided in the heat recovery device arranged in the fluidization zone.
(3) Because the heat recovery device and the combustible material input port have a strong fluidization zone and an incombustible material discharge port in between, the non-combustible material must be discharged at the intermediate discharge port and reach the heat recovery device. There is no. Also, even if some incombustibles reach the heat recovery device, the heat transfer surface is a single panel, so it does not get caught and goes back in a swirling flow and is discharged from the discharge port. Is done.
[0052]
(4) Two heat transfer tubes differing in the configuration of the plate-type heat transfer surface are configured so that one side alternately surrounds the other in the same plane, and each heat transfer tube is joined via fins, thereby reducing the area. There is an advantage that more heat transfer area can be earned and the pressure loss in the pipe is the same as when there are many faces. In other words, the heat transfer area remains constant and the number of heat transfer surfaces can be reduced by half without changing the required power of the forced circulation pump. Is extremely effective, making it impossible to operate due to the generation of wire-like incombustibles, especially when burned, making it possible for the first time to use waste energy such as waste tires for which there was no effective energy recovery method. is there.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of a fluidized bed reaction apparatus according to the present invention.
2 is a cross-sectional view taken along line II-II in FIG.
3 is a cross-sectional view taken along line III-III in FIG.
FIG. 4 is a side view showing a specific example of a plate heat transfer surface of the present invention.
FIG. 5 is a view taken in the direction of arrow V in FIG.
FIG. 6 is a longitudinal sectional view showing a second embodiment of the fluidized bed reactor according to the present invention.
FIG. 7 is a longitudinal sectional view showing a third embodiment of the fluidized bed reactor according to the present invention.
FIG. 8 is a longitudinal sectional view showing a fourth embodiment of the fluidized bed reaction apparatus according to the present invention.
FIG. 9 is a longitudinal sectional view showing a fifth embodiment of the fluidized bed reactor according to the present invention.
FIG. 10 is a longitudinal sectional view showing a sixth embodiment of the fluidized bed reactor according to the present invention.
FIG. 11 is a longitudinal sectional view showing a seventh embodiment of the fluidized bed reaction apparatus according to the present invention.
FIG. 12 is a longitudinal sectional view showing an eighth embodiment of the fluidized bed reactor according to the present invention.
FIG. 13 is a longitudinal sectional view showing a ninth embodiment of the fluidized bed reactor according to the present invention.
FIG. 14 is a longitudinal sectional view showing a tenth embodiment of the fluidized bed reaction apparatus according to the present invention.
[Explanation of symbols]
1 Fluidized bed furnace
2,4 Weak diffuser
3 Strong diffuser
6,7,8 Air chamber
9, 10, 11 connectors
12, 13, 14 Flowing air
15, 16, 17 nozzles
18, 20, 38, 41 Weak fluidization zone
19 Strong liquidity zone
21,23,44 Downflow
22,42 Upflow
24, 24 ', 44, 46 Plate type heat transfer surface
25, 25 'heat transfer tube
26 Fin
27 Combustible materials
28 Incombustible outlet
29, 29 ', 32, 32' header
33 side wall
34, 34 'partition wall
35, 36 Contact
39, 40, 45 nozzles

Claims (9)

流動層反応炉において、流動層内にそれぞれ異なる流動化速度を与えるような散気装置を炉床部分に設け、
実質的に大きな流動化速度を与えられた流動部分では流動媒体の上昇流を生じさせ、実質的に小さな流動化速度を与えられた流動部分においては流動媒体の沈降流を生じさせ、
かつ実質的に小さな流動化速度を与えられた流動部分には、伝熱管を同一平面内に配置し、かつ隣接する伝熱管同士を板挟んで接続し、全体として1枚の板状伝熱面とした板型の熱回収装置を板面が垂直になるように複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置したことを特徴とする流動層反応装置。
In the fluidized bed reactor, a diffuser that provides different fluidization speeds in the fluidized bed is provided in the hearth part.
The fluidized portion provided with a substantially high fluidization velocity causes an upward flow of the fluidized medium, and the fluidized portion provided with a substantially small fluidization velocity causes a sedimentary flow of the fluidized medium,
And the substantially smaller flow rate flowing portions given, to place the heat transfer tube in the same plane, and the adjacent heat transfer tubes to each other is connected across the plates, one plate-like heat transfer as a whole A plurality of plate-shaped heat recovery devices having a plane are arranged so that the plate surfaces are vertical, and the plate-type heat recovery devices are arranged in a direction parallel to the surface formed by the swirling flow of the fluidized medium formed at different fluidization speeds. A fluidized bed reactor characterized by being arranged .
流動層反応炉において、流動層内にそれぞれ異なる流動化速度を与えるような散気装置を炉床部分に設け、
実質的に大きな流動化速度を与えられた流動部分では流動媒体の上昇流を生じさせ、実質的に小さな流動化速度を与えられた流動部分においては流動媒体の沈降流を生じさせ、
かつ実質的に小さな流動化速度を与えられた流動部分には、系列の異なる伝熱管を同一平面内に配置した板型の熱回収装置を板面が垂直になるように複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置したことを特徴とする流動層反応装置。
In the fluidized bed reactor, a diffuser that provides different fluidization speeds in the fluidized bed is provided in the hearth part.
The fluidized portion provided with a substantially high fluidization velocity causes an upward flow of the fluidized medium, and the fluidized portion provided with a substantially small fluidization velocity causes a sedimentary flow of the fluidized medium,
And the substantially smaller flow rate flowing portions given, a plate-type heat recovery apparatus disposed in the same plane different heat transfer tubes of series plurality arranged such plate surfaces are vertical leaf A fluidized bed reactor characterized in that a heat recovery device of a mold is arranged in a direction parallel to a surface formed by a swirling flow of a fluidized medium formed at different fluidization speeds .
流動層反応炉において、流動層内にそれぞれ異なる流動化速度を与えるような散気装置を炉床部分に設け、
実質的に大きな流動化速度を与えられた流動部分では流動媒体の上昇流を生じさせ、実質的に小さな流動化速度を与えられた流動部分においては流動媒体の沈降流を生じさせ、
かつ流動媒体の上昇流の上部に流動媒体を反転させる傾斜壁を設けると共に、該傾斜壁の下端側には実質的に最も小さな流動化速度を与えられた流動媒体沈降流を挟んで、中位の流動化速度を与える流動部分を設けることにより、該流動部分には緩やかな上昇流を生じさせ、かつ該流動部分に板型の熱回収装置を板面が垂直になるように配置したことを特徴とする流動層反応装置。
In the fluidized bed reactor, a diffuser that provides different fluidization speeds in the fluidized bed is provided in the hearth part.
The fluidized portion provided with a substantially high fluidization velocity causes an upward flow of the fluidized medium, and the fluidized portion provided with a substantially small fluidization velocity causes a sedimentary flow of the fluidized medium,
In addition, an inclined wall for inverting the fluidized medium is provided at the upper part of the upward flow of the fluidized medium, and the lower part of the inclined wall is sandwiched with a fluidized medium settling flow having a substantially smallest fluidization speed, By providing a fluidized portion that gives a fluidization speed of a fluid, a gentle upward flow is generated in the fluidized portion, and a plate-type heat recovery device is arranged in the fluidized portion so that the plate surface is vertical. A fluidized bed reactor characterized by the above.
流動層反応炉において、内部に仕切壁を設けて複数に分割し、かつそれぞれの流動層は仕切壁の上方及び下方で連通しており、かつそれぞれの流動層には、それぞれ異なる流動化速度を与えるように散気装置を炉床部分に設け、
実質的に大きな流動化速度を与えられた流動層と実質的に小さな流動化速度を与えられた流動層の間において、
実質的に大きな流動化速度を与えられた流動層では流動媒体が上昇し、仕切壁を越えて実質的に小さな流動化速度を与えられた流動層に入り、そこでは移動層を形成しつつ、ゆるやかに流動媒体が沈降し、そして仕切壁下の連絡口を通して実質的に大きな流動化速度を与えられた流動層に戻る相互の循環流を生じさせ、
沈降移動層を形成する流動層には、伝熱管を同一平面内に配置し、かつ隣接する伝熱管同士を板挟んで接続し、全体として1枚の板状伝熱面とした板型の熱回収装置を複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置したことを特徴とする流動層反応装置。
In a fluidized bed reactor, a partition wall is provided inside and divided into a plurality of parts, and each fluidized bed communicates above and below the partition wall, and each fluidized bed has a different fluidization speed. To provide a diffuser in the hearth
Between a fluidized bed given a substantially high fluidization rate and a fluidized bed given a substantially small fluidization rate,
In a fluidized bed provided with a substantially high fluidization speed, the fluidized medium rises and enters the fluidized bed provided with a substantially small fluidization speed across the partition wall, where a moving bed is formed, The fluid medium settles slowly and creates a reciprocal flow returning to the fluidized bed, which is given a substantially high fluidization rate through the connection port under the partition wall,
The fluidized bed that forms the sedimentation moving bed is a plate-shaped plate in which the heat transfer tubes are arranged in the same plane, and adjacent heat transfer tubes are connected with a plate interposed therebetween to form one plate-like heat transfer surface as a whole. A fluidized bed reactor comprising a plurality of heat recovery devices, and the plate-type heat recovery devices arranged in a direction parallel to a surface formed by a swirling flow of a fluidized medium formed at different fluidization speeds .
流動層反応炉において、内部に仕切壁を設けて複数に分割し、かつそれぞれの流動層は仕切壁の上方及び下方で連通しており、かつそれぞれの流動層には、それぞれ異なる流動化速度を与えるように散気装置を炉床部分に設け、
実質的に大きな流動化速度を与えられた流動層と実質的に小さな流動化速度を与えられた流動層の間において、
実質的に大きな流動化速度を与えられた流動層では流動媒体が上昇し、仕切壁を越えて実質的に小さな流動化速度を与えられた流動層に入り、そこでは移動層を形成しつつ、ゆるやかに流動媒体が沈降し、そして仕切壁下の連絡口を通して実質的に大きな流動化速度を与えられた流動層に戻る相互の循環流を生じさせ、
沈降移動層を形成する流動層には、系列の異なる伝熱管を同一平面内に配置した板型の熱回収装置を複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置したことを特徴とする流動層反応装置。
In a fluidized bed reactor, a partition wall is provided inside and divided into a plurality of parts, and each fluidized bed communicates above and below the partition wall, and each fluidized bed has a different fluidization speed. To provide a diffuser in the hearth
Between a fluidized bed given a substantially high fluidization rate and a fluidized bed given a substantially small fluidization rate,
In a fluidized bed provided with a substantially high fluidization speed, the fluidized medium rises and enters the fluidized bed provided with a substantially small fluidization speed across the partition wall, where a moving bed is formed, The fluid medium settles slowly and creates a reciprocal flow returning to the fluidized bed, which is given a substantially high fluidization rate through the connection port under the partition wall,
In the fluidized bed forming the sedimentation moving bed, a plurality of plate-type heat recovery devices having different heat transfer tubes arranged in the same plane are arranged, and the plate-type heat recovery devices are formed at different fluidization speeds. A fluidized bed reactor characterized by being arranged in a direction parallel to a surface formed by a swirling flow of a fluid medium .
前記仕切壁と板型の熱回収装置が結合し、一体化していることを特徴とする請求項4又は5記載の流動層反応装置。  6. The fluidized bed reactor according to claim 4, wherein the partition wall and the plate-shaped heat recovery device are combined and integrated. 流動層反応炉の炉床部に、実質的に大きな流動化速度を与える散気装置を配置するとともに、
該散気装置を間に挟んで、実質的に小さな流動化速度を与える散気装置をそれぞれ相対するように配置し、
さらに一方の実質的に小さな流動化速度を与えられた流動部分には、伝熱管を同一平面内に配置し、かつ隣接する伝熱管同士を板挟んで接続し、全体として1枚の板状伝熱面とした板型の熱回収装置を複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置するとともに、
実質的に大きな流動化速度を与えられた流動部分を間に挟んで相対する他方の実質的に小さな流動化速度を与えられた流動部分に燃料などの可燃物を投入するとともに、
実質的に大きな流動化速度を与える散気装置と、実質的に小さな流動化速度を与える散気装置の間に不燃物排出口を設けたことを特徴とする流動層反応装置。
In the hearth of the fluidized bed reactor, an air diffuser that provides a substantially large fluidization speed is disposed.
Arranging the air diffusers facing each other with a substantially small fluidization speed between them,
More one substantially small fluidizing velocity flow portion given, to place the heat transfer tube in the same plane, and the adjacent heat transfer tubes to each other is connected across the plate, as a whole one plate-like A plurality of plate-type heat recovery devices serving as heat transfer surfaces are arranged, and the plate-type heat recovery devices are arranged in a direction parallel to the surface formed by the swirling flow of the fluid medium formed at different fluidization speeds ,
Injecting a combustible material such as fuel into the fluid part given the other substantially small fluidization speed while sandwiching the fluid part given a substantially large fluidization speed,
A fluidized bed reactor comprising an incombustible discharge port provided between an air diffuser that provides a substantially high fluidization speed and an air diffuser that provides a substantially small fluidization speed.
流動層反応炉の炉床部に、実質的に大きな流動化速度を与える散気装置を配置するとともに、
該散気装置を間に挟んで、実質的に小さな流動化速度を与える散気装置をそれぞれ相対するように配置し、
さらに一方の実質的に小さな流動化速度を与えられた流動部分には、系列の異なる伝熱管を同一平面内に配置した板型の熱回収装置を複数配置し、該板型の熱回収装置を異なる流動化速度によって形成される流動媒体の旋回流がなす面と平行方向に配置するとともに、
実質的に大きな流動化速度を与えられた流動部分を間に挟んで相対する他方の実質的に小さな流動化速度を与えられた流動部分に燃料などの可燃物を投入するとともに、
実質的に大きな流動化速度を与える散気装置と、実質的に小さな流動化速度を与える散気装置の間に不燃物排出口を設けたことを特徴とする流動層反応装置。
In the hearth of the fluidized bed reactor, an air diffuser that provides a substantially large fluidization speed is disposed.
Arranging the air diffusers facing each other with a substantially small fluidization speed between them,
More one substantially small fluidizing velocity flow portion given, a plate-type heat recovery apparatus disposed in the same plane different heat transfer tubes of series and arranging a plurality of plate-type heat recovery device Arranged in a direction parallel to the plane formed by the swirling flow of the fluid medium formed by different fluidization speeds ,
Injecting a combustible material such as fuel into the fluid part given the other substantially small fluidization speed while sandwiching the fluid part given a substantially large fluidization speed,
A fluidized bed reactor comprising an incombustible discharge port provided between an air diffuser that provides a substantially high fluidization speed and an air diffuser that provides a substantially small fluidization speed.
燃料などの可燃物を投入する実質的に小さな流動化速度を与えられた前記流動部分が還元雰囲気であり、実質的に大きな流動化速度を与えられた前記流動部分が酸化雰囲気であるように燃焼用流動化ガスに含まれる酸素量を調節することを特徴とする請求項7又は8記載の流動層反応装置。   Combustion so that the fluidized part given a substantially small fluidization rate for introducing combustibles such as fuel is a reducing atmosphere and the fluidized part given a substantially large fluidization rate is an oxidizing atmosphere The fluidized bed reactor according to claim 7 or 8, wherein the amount of oxygen contained in the fluidizing gas is adjusted.
JP31306896A 1995-11-15 1996-11-08 Fluidized bed reactor Expired - Lifetime JP3877361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31306896A JP3877361B2 (en) 1995-11-15 1996-11-08 Fluidized bed reactor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-320967 1995-11-15
JP32096795 1995-11-15
JP31306896A JP3877361B2 (en) 1995-11-15 1996-11-08 Fluidized bed reactor

Publications (2)

Publication Number Publication Date
JPH09196313A JPH09196313A (en) 1997-07-29
JP3877361B2 true JP3877361B2 (en) 2007-02-07

Family

ID=26567438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31306896A Expired - Lifetime JP3877361B2 (en) 1995-11-15 1996-11-08 Fluidized bed reactor

Country Status (1)

Country Link
JP (1) JP3877361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035615A1 (en) * 2011-09-07 2013-03-14 荏原環境プラント株式会社 Fluidized bed furnace and waste disposal method using fluidized bed furnace

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045422A (en) * 2013-08-27 2015-03-12 株式会社Ihi Fluidized-bed boiler
JP7079627B2 (en) * 2018-03-13 2022-06-02 荏原環境プラント株式会社 Fluidized bed heat recovery device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035615A1 (en) * 2011-09-07 2013-03-14 荏原環境プラント株式会社 Fluidized bed furnace and waste disposal method using fluidized bed furnace
JPWO2013035615A1 (en) * 2011-09-07 2015-03-23 荏原環境プラント株式会社 Fluidized bed furnace and waste treatment method using fluidized bed furnace

Also Published As

Publication number Publication date
JPH09196313A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
KR100417196B1 (en) Fluidized-bed reactor
US4440098A (en) Waste material incineration system and method
JP3961022B2 (en) Fluidized bed thermal reactor
JPS5843644B2 (en) Multi-stage fluidized bed combustion method and multi-stage fluidized bed combustion furnace for carrying out the method
JPH07101088B2 (en) Non-catalytic denitration method of fluidized bed furnace
JP3877361B2 (en) Fluidized bed reactor
WO1997048950A1 (en) Method and apparatus for gasifying fluidized bed
RU2059150C1 (en) Fluidized-bed boiler and its control method
EP0321308A1 (en) Fluidized bed furnace
CA2505001A1 (en) Fluidized-bed gasification furnace
JP2007163132A (en) Method and apparatus for gasifying fluidized bed
WO2019176685A1 (en) Fluidized bed heat recovery device
JPS5839194B2 (en) Yuukibutsu no Netsubunkaihouhou Oyobi Netsubunkaisouchi
JPS59197714A (en) Fluidized-bed incinerator
JP3107544B2 (en) Swirl combustion furnace
JPH0577924B2 (en)
JP3820142B2 (en) Combustible gas generator
JPH0370124B2 (en)
JPH09303736A (en) Fluidized bed heat recovering device and its operation method
RU2041422C1 (en) Method and device for combustion of ground fuel
JPH09196312A (en) Fluid bed combustion device
JP3387989B2 (en) Fluidized bed furnace
JPH05288322A (en) Fluidized bed combustion device
JPH03271610A (en) Waste incinerator
WO1996034232A9 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term