JP3876934B2 - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3876934B2
JP3876934B2 JP24466896A JP24466896A JP3876934B2 JP 3876934 B2 JP3876934 B2 JP 3876934B2 JP 24466896 A JP24466896 A JP 24466896A JP 24466896 A JP24466896 A JP 24466896A JP 3876934 B2 JP3876934 B2 JP 3876934B2
Authority
JP
Japan
Prior art keywords
shaft core
electrolyte secondary
secondary battery
battery
power generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24466896A
Other languages
Japanese (ja)
Other versions
JPH1092469A (en
Inventor
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP24466896A priority Critical patent/JP3876934B2/en
Publication of JPH1092469A publication Critical patent/JPH1092469A/en
Application granted granted Critical
Publication of JP3876934B2 publication Critical patent/JP3876934B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、正極と負極をセパレータを介して巻回した巻回型の発電素子を備えた非水電解質二次電池に関する。
【0002】
【従来の技術】
電気自動車等の駆動機器や携帯電話等の携帯電子機器では、高率放電性能が要求されるために、エネルギー密度が高く充放電サイクル寿命も長い非水電解質(有機電解液)を用いた二次電池が広く用いられている。非水電解質二次電池は、一般に正極と負極にリチウム系の活物質が用いられ、リチウム二次電池として構成される。この非水電解質二次電池は、非水電解質の電気抵抗が水溶液電解質に比べて著しく高いため、正極と負極の面積を大きくして電極の対向面積を増大させる必要がある。従って、一般に、非水電解質二次電池は、図6に示すように、シート状の芯材に正極活物質と負極活物質を担持させた帯状の正極3と負極4を帯状の絶縁体であるセパレータ5を介して巻回することにより発電素子1を構成する巻回型のものが多い。なお、図6では、発電素子1を円筒状に形成する場合を示すが、長円状に形成される場合もある。
【0003】
上記巻回型の発電素子1は、図7に示すように、上下の端面に集電板6,7を溶接して、これらの集電板6,7にそれぞれ正極3と負極4を接続し集電を行う。また、この発電素子1は、電池容器10内に収納し、集電板6,7をそれぞれこの電池容器10の正負極端子となる容器蓋10bと容器本体10aに接続して非水電解質二次電池とする。ここで、従来の非水電解質二次電池は、発電素子1の巻回の中心部を中空にしておく場合もあるし、図7に示したように、巻軸として使用した金属製の軸芯2をそのまま残しておく場合や、巻回後に別途用意した金属製の軸芯2を挿入する場合もあった。また、発電素子1の巻回の中心部に軸芯2を置く場合にも、この軸芯2は電池容器10に固定されていなかった。
【0004】
【発明が解決しようとする課題】
ところが、電気自動車等に用いる100〜400Wh級の大容量の非水電解質二次電池では、大電流の放電時等に大量の熱が発生する。しかも、特に発電素子1の中心部では、周囲を正負極3,4やセパレータ5に囲まれているため、ここで発生した熱が電池容器10を介して外部に放出され難くなる。また、発電素子1の中心部に金属製の軸芯2がある場合には、ここで発生した熱が熱伝導性の良い軸芯2に伝わることになるが、この軸芯2は固定されていないので、電池容器10に熱が十分に伝わらず、放熱効果の向上を期待することはできなかった。このため、従来の非水電解質二次電池では、発電素子1の中心部の放熱効率が悪いために、電池温度が異常に上昇するおそれがあるという問題があった。
【0005】
また、非水電解質二次電池を電気自動車等に用いる場合には、繰り返し振動や衝撃等を受けることが多くなる。ところが、発電素子1の中心部に金属製の軸芯2を置いている場合には、この軸芯2が振動や衝撃等によって電池容器10内を移動したり飛び跳ねるおそれがあった。このため、従来の非水電解質二次電池では、金属製の軸芯2を置いている場合に、この軸芯2が振動等を受けてセパレータ5等を破損し、最悪の場合には短絡事故を発生させるという問題も生じていた。
【0006】
本発明は、かかる事情に鑑みてなされたものであり、発電素子の中心部に金属製の軸芯を配置し、この軸芯を電池容器に固着し又は挟持させることにより、発電素子の中心部で発生した熱を効率良く放熱すると共に、振動等を受けた場合にも内部が破損することのない非水電解質二次電池を提供することを目的としている。
【0007】
【課題を解決するための手段】
即ち、上記課題を解決するために、請求項1に記載の発明は、帯状の正極と負極が帯状のセパレータを介して巻回された発電素子を電池容器内に収納した非水電解質二次電池において、発電素子の巻回の中心部に金属製の軸芯が配置されると共に、この金属製の軸芯における上下端の少なくともいずれか一方が直接又は取付部材を介して電池容器の内部上面又は底面に固着され、発電要素の上下の端面には集電板が配置されたことを特徴とする。
【0008】
請求項1に記載の発明によれば、発電素子の巻回の中心部に金属製の軸芯が配置され電池容器に固着されるので、この発電素子で発生した熱が熱伝導性に優れた軸芯を介し(場合によっては取付部材も介し)効率良く電池容器に伝わり放熱されるようになる。また、この金属製の軸芯は、電池容器に固着されるので、電池が振動や衝撃等を受けた場合にも、電池内部を移動したり飛び跳ねてセパレータ等を破損するようなおそれがなくなる。
【0009】
また、請求項2に記載の発明は、帯状の正極と負極が帯状のセパレータを介して巻回された発電素子を電池容器内に収納した非水電解質二次電池において、発電素子の巻回の中心部に金属製の軸芯が配置されると共に、この金属製の軸芯の上下端が直接又は取付部材を介して電池容器の内部上面と底面との間に当接挟持され、発電要素の上下の端面には集電板が配置されたことを特徴とする。
【0010】
請求項2に記載の発明によれば、発電素子の巻回の中心部に金属製の軸芯が配置され上下端が電池容器に当接されるので、この発電素子で発生した熱が熱伝導性に優れた軸芯を介し(場合によっては取付部材も介し)効率良く電池容器に伝わり放熱されるようになる。また、この金属製の軸芯は、上下端が電池容器に挟持されるので、電池が振動や衝撃等を受けた場合にも、電池内部を移動したり飛び跳ねてセパレータ等を破損するようなおそれがなくなる。
【0011】
【0012】
さらに、請求項3に記載の発明は、帯状の正極と負極が帯状のセパレータを介して長円状に巻回された発電素子を電池容器内に収納した非水電解質二次電池において、発電素子 の巻回の中心部に横断面長円状の金属製の軸芯が配置されると共に、この金属製の軸芯の上端面の両端部にはそれぞれ突部が設けられ、これらの突部は取付部材を介して電池容器の内部上面に当接され、前記軸芯の下端面が電池容器の内側底面に直接またはリード片を介して当接押圧され、発電要素の上下の端面には集電板が配置されたことを特徴とする。
【0013】
上記請求項3に記載の発明によれば、発電素子の巻回の中心部に横断面長円状の金属製の軸芯が配置され電池容器に固着されるので、この発電素子で発生した熱が熱伝導性に優れた軸芯を介し(場合によっては取付部材も介し)効率良く電池容器に伝わり放熱されるようになる。また、この金属製の軸芯は、電池容器に固着されるので、電池が振動や衝撃等を受けた場合にも、電池内部を移動したり飛び跳ねてセパレータ等を破損するようなおそれがなくなる。
【0014】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。図1〜図2は本発明の第1実施形態を示すものであって、図1は非水電解質二次電池の構造を示す縦断面図、図2は発電素子の構成を示す斜視図である。なお、図6〜図7に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。
【0015】
本実施形態の非水電解質二次電池は、図2に示すように、発電素子1を円筒状に巻回した場合について説明する。この発電素子1は、細長い円筒形の軸芯2を中心にして帯状の正極3と負極4(図2ではセパレータ5の陰になる)を帯状のセパレータ5を介して巻回することにより構成される。なお、この軸芯2は、発電素子1の巻回後に挿入したものであってもよい。また、この軸芯2の形状は、必ずしも円筒形に限らず、角柱形等の任意の棒状とすることができる。本実施形態では、後に説明するように軸芯2が負極4に接続されるので、耐食性を考慮して、熱伝導性の優れた銅やニッケル又はこれらを主体とする合金からなる金属製のものを使用する。ただし、この軸芯2が正極3に接続される場合には、アルミニウム又はアルミニウムを主体とする合金からなる金属製のものを用いて、銅等に比べ比重を小さくし熱伝導性をさらに良好なものにすることができる。もっとも、この軸芯2は、熱伝導性に優れたものであればよいので、他の金属製のものを用いることもでき、非水電解質の種類に応じ、また、正負極3,4のいずれかに接続される場合にはその極性に応じて適宜選択することができる。正極3と負極4は、それぞれ帯状の芯材に正極活物質と負極活物質を担持させたものであり、セパレータ5は、同様の帯状の絶縁体からなる。これら正極3とセパレータ5と負極4は、それぞれ少しずつ上下にずらして巻回することにより、発電素子1の上端側には正極3の帯状の上辺のみを突出させ、下端側には負極4の帯状の下辺のみを突出させるようにしている。
【0016】
上記発電素子1の上下の端面には集電板6,7が配置され、レーザ溶接によりそれぞれ上端側に突出した正極3の上辺と下端側に突出した負極4の下辺に接続される。従って、巻回された帯状の正極3は、上端側で集電板6によって集電され、負極4は、下端側で集電板7によって集電される。また、この発電素子1の中心部に配置された軸芯2の上端には、絶縁性のキャップ8を介してばね9が嵌め込まれる。ばね9は、導電体である金属製の圧縮コイルばねを用いるので、軸芯2との絶縁のために絶縁性のキャップ8が必要となる。このキャップ8は、ばね9の上方側に配置することもできる。
【0017】
本実施形態の非水電解質二次電池は、図1に示すように、上記発電素子1を電池容器10内に収納している。電池容器10は、上面が開口した円筒形の導電体からなる容器本体10aと、この容器本体10aの上面に絶縁体を介して装着される円板状の導電体からなる容器蓋10bとで構成される。この電池容器10内に収納された発電素子1の上端側の集電板6は、リード片等を介して容器蓋10bの裏面に接続される。従って、この容器蓋10bの中央部に突設された突起が非水電解質二次電池の正極端子となる。また、この発電素子1の上端側から突出した軸芯2は、キャップ8とばね9を介して容器蓋10bの突起の裏面に当接される。発電素子1の下端側の集電板7は、リード片等を介して容器本体10aの内側底面に接続される。従って、この容器本体10aの底面が非水電解質二次電池の負極端子となる。また、この発電素子1の下端側から突出した軸芯2は、圧縮されたばね9に付勢されて、下端面が容器本体10aの内側底面に当接押圧される。ただし、この場合、軸芯2の下端面は、図1に示したように、下端側の集電板7を接続するリード片等を介して容器本体10aの内側底面に当接する場合もある。
【0018】
なお、本実施形態の場合、軸芯2は、負極端子となる容器本体10aの底面に当接されて上記のように負極4に接続されるが、キャップ8とばね9をこの軸芯2の下端側に配置すれば、正極端子となる容器蓋10bの突起の裏面に当接されて正極3に接続することができる。そして、この場合には、軸芯2として上記のようにアルミニウム等を用いることができる。
【0019】
上記構成の非水電解質二次電池は、大電流の放電時等に大量の熱が発生しても、熱伝導性に優れた軸芯2を介して発電素子1の中心部の熱が容器本体10aに伝導され速やかに外部に放熱されるので、電池温度の上昇を抑制することができる。例えば、本実施形態と同様の容量の従来の非水電解質二次電池と比較した場合に、電池温度を20%程度低減させることができた。また、キャップ8とばね9を軸芯2の下端側に配置した場合にも、軸芯2の上端面が当接する容器蓋10bに伝導されてこの熱が速やかに外部に放熱される。そして、このように軸芯2にアルミニウム等を用いると、熱伝導性をさらに良好にして放熱効率を高めると共に、軸芯2を軽量化して非水電解質二次電池の重量が増加するのを抑制することができる。
【0020】
さらに、上記構成の非水電解質二次電池を電気自動車等に用いた場合には、繰り返し振動や衝撃等を受けることが多くなるが、軸芯2が電池容器10の容器本体10aと容器蓋10bとの間に挟持されるので、電池内部を移動したり飛び跳ねてセパレータ5等を破損するようなおそれもなくなる。しかも、本実施形態では、軸芯2をばね9の付勢によって挟持するので、振動等を受けた場合にも、この振動等を吸収することができ、軸芯2を安定して確実に保持させることができる。
【0021】
図3〜図4は本発明の第2実施形態を示すものであって、図3は非水電解質二次電池の構造を示す縦断面図、図4は発電素子の構成を示す斜視図である。なお、図1〜図2に示した第1実施形態と同様の機能を有する構成部材には同じ番号を付記して説明を省略する。本実施形態の非水電解質二次電池は、図4に示すように、発電素子1を長円状に巻回した場合について説明する。この発電素子1は、横断面が長円状の板状の軸芯2を中心にして帯状の正極3と負極4(図4ではセパレータ5の陰になる)を帯状のセパレータ5を介して長円状に巻回することにより構成される。なお、この軸芯2も、発電素子1の巻回後に挿入することができる。この軸芯2の上端面の両端部には、それぞれ円筒形の突部2aが設けられている。この軸芯2の材質は、第1実施形態と同様である。また、正極3と負極4とセパレータ5も、第1実施形態と同様のものであり、同様に上下にずらして巻回される。
【0022】
上記発電素子1の上下の端面には、集電板6,7が配置されて、第1実施形態と同様にそれぞれ正極3と負極4に接続される。また、この発電素子1の中心部に配置された軸芯2の上端面の2箇所の突部2aには、それぞれ絶縁性のキャップ8を介してばね9が嵌め込まれる。これらのキャップ8とばね9は、第1実施形態のものと同じでよい。
【0023】
本実施形態の非水電解質二次電池は、図3に示すように、上記発電素子1を電池容器10内に収納する。電池容器10は、横断面が長円形であることを除けば第1実施形態と同様の構成であり、容器本体10aと容器蓋10bとからなる。そして、発電素子1の上端側の集電板6が容器蓋10bの裏面に接続され、下端側の集電板7が容器本体10aの内側底面に接続されるので、容器蓋10bの突起が正極端子となり、容器本体10aの底面が負極端子となる。また、この発電素子1の上端側から突出した軸芯2は、突部2aに嵌め込まれたキャップ8とばね9を介して容器蓋10bの裏面に当接され、この発電素子1の下端側から突出した軸芯2は、圧縮されたばね9に付勢されて、下端面が容器本体10aの内側底面に直接又はリード片等を介して当接押圧される。なお、本実施形態の場合にも、キャップ8とばね9を軸芯2の下端側に配置すれば、この軸芯2を正極3に接続して、軽量で熱伝導性が極めて良好なアルミニウム等を用いるようにすることができる。
【0024】
上記構成の非水電解質二次電池は、発電素子1の中心部の熱を熱伝導性に優れた軸芯2を介して容器本体10aや容器蓋10bに伝導し速やかに外部に放熱するので、電池温度の上昇を抑制することができる。また、振動や衝撃等を受けた場合にも、軸芯2が電池容器10の容器本体10aと容器蓋10bとの間にばね9の付勢によって挟持されるので、電池内部を移動したり飛び跳ねてセパレータ5等を破損するようなおそれがなくなり、この軸芯2を確実に保持させることができる。
【0025】
図5は本発明の第3実施形態を示すものであって、非水電解質二次電池の構造を示す縦断面図である。なお、図1〜図2に示した第1実施形態と同様の機能を有する構成部材には同じ番号を付記して説明を省略する。本実施形態の非水電解質二次電池は、第1実施形態と同様に発電素子1を円筒状に巻回した場合について説明する。この非水電解質二次電池は、第1実施形態と同様の構成の発電素子1や軸芯2を用いる。ただし、図1に示すように、この発電素子1の中心部に配置された軸芯2の上端には、絶縁性のキャップ8のみが嵌め込まれる。この発電素子1は、第1実施形態と同様の構成の電池容器10内に収納され、上端側の集電板6が容器蓋10bの裏面に接続されると共に、下端側の集電板7が容器本体10aの内側底面に接続されるので、容器蓋10bの突起が正極端子となり、容器本体10aの底面が負極端子となる。ただし、この発電素子1の上端側から突出した軸芯2は、キャップ8を介して容器蓋10bの突起の裏面に当接され、この発電素子1の下端側から突出した軸芯2の下端面が容器本体10aの内側底面に当接される。この場合、キャップ8を嵌め込んだ軸芯2は、容器本体10aと容器蓋10bの間に隙間なく配置して挟持させたり、これよりも少し長くなるように形成して、容器蓋10b等の弾性によりこれらの間に挟持されるようにする。また、この軸芯2は、下端面を容器本体10aの内側底面に溶接等によって固着するようにしてもよいし、この軸芯2の上端とキャップ8を接着剤で容器蓋10bの裏面に接着するようにしてもよい。
【0026】
なお、本実施形態の場合にも、軸芯2は、負極端子となる容器本体10aの底面に当接されて上記のように負極4に接続されるが、キャップ8をこの軸芯2の下端側に配置すれば、正極3に接続することができ、この軸芯2に軽量で熱伝導性が極めて良好なアルミニウム等を用いることができる。
【0027】
上記構成の非水電解質二次電池は、発電素子1の中心部の熱を熱伝導性に優れた軸芯2を介して容器本体10aや容器蓋10bに伝導し速やかに外部に放熱するので、電池温度の上昇を抑制することができる。また、振動や衝撃等を受けた場合にも、軸芯2が電池容器10の容器本体10aと容器蓋10bとの間に挟持されるので、電池内部を移動したり飛び跳ねてセパレータ5等を破損するようなおそれがなくなる。
【0028】
なお、上記実施形態では、いずれも電池容器10が容器本体10aと容器蓋10bによって構成されるものについて説明したが、この電池容器10の構造は任意である。また、上記実施形態では、いずれも電池容器10の上面(容器蓋10b)と底面(容器本体10a)に正極端子と負極端子を設けたものについて説明したが、これらの正負極端子を共に電池容器10の上面等に併設した非水電解質二次電池にも同様に本発明を実施することができる。そして、この場合には、キャップ8のような絶縁性の取付部材を介することなく、軸芯2を直接電池容器10内部の上面と底面との間に挟持させ、又は、これらのいずれかに当接させるようにすることもできる。しかも、この場合には、軸芯2の両端面をそれぞれ電池容器10内部の上面と底面に溶接等により固着することができる。
【0029】
さらに、上記実施形態では、いずれも軸芯2を挟持する場合について説明したが、この軸芯2の上下端面のいずれかのみを電池容器10内部の上面又は底面に固着し、他端はフリーな状態にしておくこともできる。
【0030】
さらに、上記実施形態では、いずれも発電素子1の上下の端面に集電板6,7を溶接することにより集電を行う場合について説明したが、本発明の非水電解質二次電池の集電手段はこれに限定されない。
【0031】
さらに、上記第1実施形態と第2実施形態で示したばね9に代えて、絶縁体からなる弾性体であるゴム等を用いた場合には、キャップ8は不要となる。また、第3実施形態では、軸芯2の上端面をキャップ8を介して容器蓋10bの裏面に当接させたが、接着等により固着することもできる。
【0032】
【発明の効果】
以上の説明から明らかなように、請求項1と請求項2に記載の発明によれば、発電素子で発生した熱が熱伝導性の高い軸芯等を介して効率良く電池容器に伝わり放熱されるので、大電流放電時等に大量の熱が発生しても電池温度が異常に上昇するようなことがなくなる。また、電池が衝撃や振動等を受けた場合にも、この金属製の軸芯が電池内部を移動したり飛び跳ねてセパレータ等を破損するようなおそれがなくなり、これによる短絡の発生等も確実に防止することができる。
【0033】
【0034】
なお、アルミニウム等の熱伝導性が極めて高く軽量な軸芯や電池容器を用いることにより、放熱効率をさらに高め、衝撃や振動等の影響を受け難くすることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態を示すものであって、非水電解質二次電池の構造を示す縦断面図である。
【図2】 本発明の第1実施形態を示すものであって、発電素子の構成を示す斜視図である。
【図3】 本発明の第2実施形態を示すものであって、非水電解質二次電池の構造を示す縦断面図である。
【図4】 本発明の第2実施形態を示すものであって、発電素子の構成を示す斜視図である。
【図5】 本発明の第3実施形態を示すものであって、非水電解質二次電池の構造を示す縦断面図である。
【図6】 非水電解質二次電池の発電素子の製造過程を示す斜視図である。
【図7】 従来例を示すものであって、非水電解質二次電池の構造を示す縦断面図である。
【符号の説明】
1 発電素子
2 軸芯
3 正極
4 負極
5 セパレータ
8 キャップ
9 ばね
10 電池容器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery including a wound power generation element in which a positive electrode and a negative electrode are wound with a separator interposed therebetween.
[0002]
[Prior art]
Secondary devices using non-aqueous electrolytes (organic electrolytes) with high energy density and long charge / discharge cycle life are required for drive devices such as electric vehicles and portable electronic devices such as mobile phones because high rate discharge performance is required. Batteries are widely used. A nonaqueous electrolyte secondary battery is generally configured as a lithium secondary battery using a lithium-based active material for a positive electrode and a negative electrode. In this non-aqueous electrolyte secondary battery, since the electrical resistance of the non-aqueous electrolyte is significantly higher than that of the aqueous electrolyte, it is necessary to increase the area of the positive electrode and the negative electrode to increase the opposing area of the electrodes. Therefore, in general, as shown in FIG. 6, the non-aqueous electrolyte secondary battery is a strip-shaped insulator including a strip-shaped positive electrode 3 and a negative electrode 4 in which a positive electrode active material and a negative electrode active material are supported on a sheet-shaped core material. There are many winding type elements that constitute the power generating element 1 by winding through the separator 5. FIG. 6 shows the case where the power generating element 1 is formed in a cylindrical shape, but it may be formed in an oval shape.
[0003]
As shown in FIG. 7, the wound power generation element 1 has current collector plates 6 and 7 welded to upper and lower end faces, and a positive electrode 3 and a negative electrode 4 are connected to the current collector plates 6 and 7, respectively. Collect current. The power generating element 1 is housed in the battery container 10, and the current collector plates 6, 7 are connected to the container lid 10 b and the container body 10 a that are the positive and negative terminals of the battery container 10, respectively. Use batteries. Here, in the conventional nonaqueous electrolyte secondary battery, there is a case where the central portion of the winding of the power generating element 1 is left hollow, and as shown in FIG. 7, a metal shaft core used as a winding shaft. 2 may be left as it is, or a metal shaft 2 prepared separately after winding may be inserted. Further, when the shaft core 2 is placed at the center of winding of the power generating element 1, the shaft core 2 is not fixed to the battery container 10.
[0004]
[Problems to be solved by the invention]
However, a large capacity non-aqueous electrolyte secondary battery of 100 to 400 Wh class used for an electric vehicle or the like generates a large amount of heat when discharging a large current. In addition, particularly in the central portion of the power generation element 1, since the periphery is surrounded by the positive and negative electrodes 3 and 4 and the separator 5, the heat generated here is hardly released to the outside through the battery container 10. In addition, when there is a metal shaft core 2 at the center of the power generating element 1, the heat generated here is transferred to the shaft core 2 with good thermal conductivity, but this shaft core 2 is fixed. Therefore, heat could not be sufficiently transmitted to the battery container 10 and improvement of the heat dissipation effect could not be expected. For this reason, in the conventional nonaqueous electrolyte secondary battery, since the heat dissipation efficiency of the center part of the power generation element 1 is poor, there is a problem that the battery temperature may rise abnormally.
[0005]
Further, when the non-aqueous electrolyte secondary battery is used for an electric vehicle or the like, it is often subjected to repeated vibrations, impacts, and the like. However, when the metal shaft core 2 is placed at the center of the power generating element 1, the shaft core 2 may move or jump in the battery container 10 due to vibration or impact. For this reason, in the conventional nonaqueous electrolyte secondary battery, when the metal shaft core 2 is placed, the shaft core 2 is subjected to vibration or the like and damages the separator 5 or the like. In the worst case, a short circuit accident occurs. There was also a problem of generating
[0006]
The present invention has been made in view of such circumstances, and by disposing a metal shaft core at the center of the power generation element and fixing or sandwiching the shaft core to the battery container, the center of the power generation element is provided. An object of the present invention is to provide a non-aqueous electrolyte secondary battery that efficiently dissipates the heat generated in step 1 and that is not damaged even when subjected to vibration or the like.
[0007]
[Means for Solving the Problems]
That is, in order to solve the above-mentioned problem, the invention according to claim 1 is a non-aqueous electrolyte secondary battery in which a power generation element in which a belt-like positive electrode and a negative electrode are wound via a belt-like separator is housed in a battery container. In addition, a metal shaft core is disposed in the central portion of the winding of the power generating element, and at least one of the upper and lower ends of the metal shaft core is directly or via an attachment member, A current collector plate is disposed on the upper and lower end surfaces of the power generation element, and is fixed to the bottom surface.
[0008]
According to the first aspect of the present invention, since the metal shaft core is disposed at the central portion of the winding of the power generation element and is fixed to the battery container, the heat generated by the power generation element is excellent in thermal conductivity. The heat is efficiently transmitted to the battery case through the shaft core (in some cases through the attachment member). In addition, since the metal shaft core is fixed to the battery container, there is no possibility that the separator or the like may be damaged by moving or jumping inside the battery even when the battery is subjected to vibration or impact.
[0009]
According to a second aspect of the present invention, there is provided a nonaqueous electrolyte secondary battery in which a power generating element in which a belt-like positive electrode and a negative electrode are wound via a belt-like separator is housed in a battery container. A metal shaft core is disposed at the center, and upper and lower ends of the metal shaft core are abutted and sandwiched between the inner upper surface and the bottom surface of the battery container directly or via an attachment member , Current collectors are arranged on the upper and lower end faces .
[0010]
According to the second aspect of the present invention, since the metal shaft core is disposed at the center of the winding of the power generation element and the upper and lower ends are brought into contact with the battery container, the heat generated by the power generation element is thermally conducted. It is efficiently transmitted to the battery case through the shaft core excellent in performance (in some cases also through an attachment member) and is radiated. In addition, since the upper and lower ends of the metal shaft core are sandwiched between the battery containers, even if the battery is subjected to vibration or impact, the separator may be damaged due to movement or jumping inside the battery. Disappears.
[0011]
[0012]
Furthermore, the invention described in claim 3 is a non-aqueous electrolyte secondary battery in which a power generation element in which a strip-like positive electrode and a negative electrode are wound in an oval shape through a strip-like separator is housed in a battery container. A metal shaft core having an oval cross section is disposed at the center of the winding of the winding, and protrusions are provided at both ends of the upper end surface of the metal shaft core, and these protrusions are It is brought into contact with the inner upper surface of the battery case via the mounting member, the lower end surface of the shaft core is pressed against the inner bottom surface of the battery case directly or via the lead piece, and the upper and lower end surfaces of the power generation element are connected to the current collector. A board is arranged .
[0013]
According to the third aspect of the present invention, since the metal shaft core having an elliptical cross section is arranged at the center of the winding of the power generating element and is fixed to the battery container, the heat generated in the power generating element Is efficiently transmitted to the battery case through the shaft core having excellent thermal conductivity (and, in some cases, via an attachment member) to be radiated. In addition, since the metal shaft core is fixed to the battery container, there is no possibility that the separator or the like may be damaged by moving or jumping inside the battery even when the battery is subjected to vibration or impact.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. 1 to 2 show a first embodiment of the present invention. FIG. 1 is a longitudinal sectional view showing a structure of a nonaqueous electrolyte secondary battery, and FIG. 2 is a perspective view showing a configuration of a power generating element. . In addition, the same number is attached | subjected to the structural member which has the same function as the prior art example shown in FIGS.
[0015]
As shown in FIG. 2, the nonaqueous electrolyte secondary battery of the present embodiment will be described in the case where the power generating element 1 is wound in a cylindrical shape. The power generating element 1 is configured by winding a strip-like positive electrode 3 and a negative electrode 4 (in the shade of the separator 5 in FIG. 2) around the strip-like separator 5 around an elongated cylindrical shaft core 2. The The shaft core 2 may be inserted after the power generating element 1 is wound. Further, the shape of the shaft core 2 is not necessarily limited to a cylindrical shape, and may be an arbitrary rod shape such as a prismatic shape. In this embodiment, since the shaft core 2 is connected to the negative electrode 4 as will be described later, in consideration of corrosion resistance, a metal made of copper or nickel having excellent thermal conductivity or an alloy mainly composed of these. Is used. However, when the shaft core 2 is connected to the positive electrode 3, the metal core made of aluminum or an alloy mainly composed of aluminum is used, and the specific gravity is made smaller than that of copper or the like to further improve the thermal conductivity. Can be a thing. However, the shaft core 2 only needs to be excellent in thermal conductivity, so that other metal materials can be used. Depending on the type of the nonaqueous electrolyte, any of the positive and negative electrodes 3 and 4 can be used. In the case of being connected to each other, it can be appropriately selected according to the polarity. The positive electrode 3 and the negative electrode 4 are each formed by supporting a positive electrode active material and a negative electrode active material on a band-shaped core material, and the separator 5 is made of a similar band-shaped insulator. The positive electrode 3, the separator 5, and the negative electrode 4 are wound slightly shifted up and down so that only the upper side of the belt 3 of the positive electrode 3 protrudes from the upper end side of the power generation element 1, and the negative electrode 4 is protruded from the lower end side. Only the lower side of the belt is projected.
[0016]
Current collector plates 6 and 7 are disposed on the upper and lower end faces of the power generation element 1 and are connected to the upper side of the positive electrode 3 protruding to the upper end side and the lower side of the negative electrode 4 protruding to the lower end side by laser welding. Accordingly, the wound belt-like positive electrode 3 is collected by the current collector plate 6 on the upper end side, and the negative electrode 4 is collected by the current collector plate 7 on the lower end side. A spring 9 is fitted into the upper end of the shaft core 2 disposed at the center of the power generating element 1 through an insulating cap 8. Since the spring 9 uses a metal compression coil spring which is a conductor, an insulating cap 8 is required for insulation from the shaft core 2. The cap 8 can also be disposed on the upper side of the spring 9.
[0017]
As shown in FIG. 1, the nonaqueous electrolyte secondary battery of the present embodiment houses the power generating element 1 in a battery container 10. The battery container 10 includes a container body 10a made of a cylindrical conductor whose upper surface is opened, and a container lid 10b made of a disk-shaped conductor attached to the upper surface of the container body 10a via an insulator. Is done. The current collector plate 6 on the upper end side of the power generation element 1 housed in the battery container 10 is connected to the back surface of the container lid 10b via a lead piece or the like. Therefore, the protrusion protruding from the center of the container lid 10b becomes the positive electrode terminal of the nonaqueous electrolyte secondary battery. Further, the shaft core 2 protruding from the upper end side of the power generating element 1 is brought into contact with the back surface of the protrusion of the container lid 10 b via the cap 8 and the spring 9. The current collector plate 7 on the lower end side of the power generating element 1 is connected to the inner bottom surface of the container body 10a through a lead piece or the like. Accordingly, the bottom surface of the container main body 10a serves as the negative electrode terminal of the nonaqueous electrolyte secondary battery. Further, the shaft core 2 protruding from the lower end side of the power generating element 1 is urged by the compressed spring 9, and the lower end surface is pressed against the inner bottom surface of the container body 10a. In this case, however, the lower end surface of the shaft core 2 may come into contact with the inner bottom surface of the container body 10a via a lead piece or the like connecting the current collector plate 7 on the lower end side, as shown in FIG.
[0018]
In the case of the present embodiment, the shaft core 2 is in contact with the bottom surface of the container body 10a serving as the negative electrode terminal and connected to the negative electrode 4 as described above, but the cap 8 and the spring 9 are connected to the shaft core 2. If it arrange | positions at a lower end side, it can contact | abut to the back surface of the protrusion of the container lid | cover 10b used as a positive electrode terminal, and can be connected to the positive electrode 3. FIG. In this case, aluminum or the like can be used as the shaft core 2 as described above.
[0019]
In the non-aqueous electrolyte secondary battery having the above-described configuration, even when a large amount of heat is generated during discharge of a large current, the heat at the center of the power generating element 1 is transmitted through the shaft core 2 having excellent thermal conductivity. Since it is conducted to 10a and quickly radiated to the outside, an increase in battery temperature can be suppressed. For example, when compared with a conventional non-aqueous electrolyte secondary battery having the same capacity as that of the present embodiment, the battery temperature could be reduced by about 20%. Even when the cap 8 and the spring 9 are arranged on the lower end side of the shaft core 2, the heat is conducted to the container lid 10b with which the upper end surface of the shaft core 2 abuts and this heat is quickly radiated to the outside. When aluminum or the like is used for the shaft core 2 in this way, the thermal conductivity is further improved and the heat dissipation efficiency is improved, and the weight of the nonaqueous electrolyte secondary battery is suppressed by reducing the weight of the shaft core 2. can do.
[0020]
Further, when the non-aqueous electrolyte secondary battery having the above-described configuration is used in an electric vehicle or the like, it is often subjected to repeated vibrations, impacts, and the like. Therefore, there is no risk of damaging the separator 5 or the like by moving or jumping inside the battery. In addition, in the present embodiment, the shaft core 2 is clamped by the bias of the spring 9, so even when it receives vibrations, the vibrations can be absorbed and the shaft core 2 can be held stably and securely. Can be made.
[0021]
3 to 4 show a second embodiment of the present invention, FIG. 3 is a longitudinal sectional view showing the structure of a nonaqueous electrolyte secondary battery, and FIG. 4 is a perspective view showing the configuration of a power generating element. . In addition, the same number is attached | subjected to the structural member which has the same function as 1st Embodiment shown in FIGS. 1-2, and description is abbreviate | omitted. As shown in FIG. 4, the nonaqueous electrolyte secondary battery of the present embodiment will be described when the power generating element 1 is wound in an oval shape. This power generating element 1 has a strip-like positive electrode 3 and a negative electrode 4 (in the shade of the separator 5 in FIG. 4) with a strip-like separator 5 extending around a plate-like shaft core 2 having an elliptical cross section. It is configured by winding in a circle. The shaft core 2 can also be inserted after the power generating element 1 is wound. Cylindrical protrusions 2 a are provided at both ends of the upper end surface of the shaft core 2. The material of the shaft core 2 is the same as that of the first embodiment. Also, the positive electrode 3, the negative electrode 4, and the separator 5 are the same as those in the first embodiment, and are similarly wound up and down.
[0022]
Current collector plates 6 and 7 are disposed on the upper and lower end faces of the power generating element 1 and are connected to the positive electrode 3 and the negative electrode 4, respectively, as in the first embodiment. In addition, springs 9 are fitted into two protrusions 2 a on the upper end surface of the shaft core 2 disposed at the center of the power generating element 1 via insulating caps 8. These cap 8 and spring 9 may be the same as those in the first embodiment.
[0023]
As shown in FIG. 3, the nonaqueous electrolyte secondary battery of the present embodiment houses the power generating element 1 in a battery container 10. The battery container 10 has the same configuration as that of the first embodiment except that the cross section is oval, and includes a container body 10a and a container lid 10b. Then, the current collector plate 6 on the upper end side of the power generating element 1 is connected to the back surface of the container lid 10b, and the current collector plate 7 on the lower end side is connected to the inner bottom surface of the container body 10a. It becomes a terminal, and the bottom face of the container body 10a becomes a negative electrode terminal. Further, the shaft core 2 protruding from the upper end side of the power generation element 1 is brought into contact with the back surface of the container lid 10b via a cap 8 and a spring 9 fitted in the protrusion 2a, and from the lower end side of the power generation element 1. The protruding shaft core 2 is urged by the compressed spring 9, and the lower end surface is pressed against the inner bottom surface of the container body 10a directly or via a lead piece or the like. Also in the case of the present embodiment, if the cap 8 and the spring 9 are arranged on the lower end side of the shaft core 2, the shaft core 2 is connected to the positive electrode 3, and the light weight and the heat conductivity are extremely good. Can be used.
[0024]
The non-aqueous electrolyte secondary battery having the above configuration conducts heat at the center of the power generation element 1 to the container body 10a and the container lid 10b through the shaft core 2 having excellent thermal conductivity, and quickly radiates heat to the outside. An increase in battery temperature can be suppressed. Even when subjected to vibration or impact, the shaft core 2 is sandwiched between the container body 10a and the container lid 10b of the battery container 10 by the bias of the spring 9, so that it moves or jumps inside the battery. Thus, there is no possibility of damaging the separator 5 and the like, and the shaft core 2 can be securely held.
[0025]
FIG. 5 shows a third embodiment of the present invention, and is a longitudinal sectional view showing the structure of a nonaqueous electrolyte secondary battery. In addition, the same number is attached | subjected to the structural member which has the same function as 1st Embodiment shown in FIGS. 1-2, and description is abbreviate | omitted. The nonaqueous electrolyte secondary battery of the present embodiment will be described in the case where the power generating element 1 is wound in a cylindrical shape as in the first embodiment. This nonaqueous electrolyte secondary battery uses the power generating element 1 and the shaft core 2 having the same configuration as that of the first embodiment. However, as shown in FIG. 1, only the insulating cap 8 is fitted into the upper end of the shaft core 2 disposed at the center of the power generating element 1. The power generating element 1 is housed in a battery container 10 having the same configuration as that of the first embodiment, and a current collector plate 6 on the upper end side is connected to the back surface of the container lid 10b, and a current collector plate 7 on the lower end side is provided. Since it is connected to the inner bottom surface of the container body 10a, the protrusion of the container lid 10b serves as a positive electrode terminal, and the bottom surface of the container body 10a serves as a negative electrode terminal. However, the shaft core 2 protruding from the upper end side of the power generating element 1 is brought into contact with the back surface of the protrusion of the container lid 10b via the cap 8, and the lower end surface of the shaft core 2 protruding from the lower end side of the power generating element 1 is used. Is brought into contact with the inner bottom surface of the container body 10a. In this case, the shaft core 2 into which the cap 8 is fitted is arranged with no gap between the container body 10a and the container lid 10b, or is formed so as to be slightly longer than this. It is sandwiched between them by elasticity. Further, the shaft core 2 may have its lower end surface fixed to the inner bottom surface of the container body 10a by welding or the like, and the upper end of the shaft core 2 and the cap 8 are bonded to the back surface of the container lid 10b with an adhesive. You may make it do.
[0026]
Also in the present embodiment, the shaft core 2 is in contact with the bottom surface of the container body 10a serving as the negative electrode terminal and connected to the negative electrode 4 as described above, but the cap 8 is connected to the lower end of the shaft core 2. If it is arranged on the side, it can be connected to the positive electrode 3, and aluminum or the like that is lightweight and has extremely good thermal conductivity can be used for the shaft core 2.
[0027]
The non-aqueous electrolyte secondary battery having the above configuration conducts heat at the center of the power generation element 1 to the container body 10a and the container lid 10b through the shaft core 2 having excellent thermal conductivity, and quickly radiates heat to the outside. An increase in battery temperature can be suppressed. Even when subjected to vibration or impact, the shaft core 2 is sandwiched between the container body 10a and the container lid 10b of the battery container 10, so that the separator 5 or the like is damaged by moving or jumping inside the battery. The risk of doing so is eliminated.
[0028]
In the above-described embodiment, the battery container 10 is described as having the container body 10a and the container lid 10b. However, the structure of the battery container 10 is arbitrary. In the above embodiment, the battery container 10 has been described with the positive electrode terminal and the negative electrode terminal provided on the upper surface (container lid 10b) and the bottom surface (container body 10a). The present invention can be similarly applied to a non-aqueous electrolyte secondary battery provided on the upper surface of 10. In this case, the shaft core 2 is directly sandwiched between the upper surface and the bottom surface inside the battery container 10 without using an insulating mounting member such as the cap 8, or any one of them is applied. It can also be made to contact. In addition, in this case, both end surfaces of the shaft core 2 can be fixed to the top and bottom surfaces of the battery container 10 by welding or the like.
[0029]
Furthermore, in each of the above embodiments, the case where the shaft core 2 is sandwiched has been described. However, only one of the upper and lower end surfaces of the shaft core 2 is fixed to the upper surface or the bottom surface inside the battery container 10, and the other end is free. It can also be in a state.
[0030]
Furthermore, in the above embodiment, the case where current collection is performed by welding current collector plates 6 and 7 to the upper and lower end faces of the power generation element 1 has been described. However, the current collection of the nonaqueous electrolyte secondary battery of the present invention is described. The means is not limited to this.
[0031]
Furthermore, when the rubber | gum etc. which are the elastic bodies which consist of an insulator are used instead of the spring 9 shown in the said 1st Embodiment and 2nd Embodiment, the cap 8 becomes unnecessary. Further, in the third embodiment, the upper end surface of the shaft core 2 is brought into contact with the back surface of the container lid 10b via the cap 8, but can also be fixed by adhesion or the like.
[0032]
【The invention's effect】
As is clear from the above description, according to the inventions according to claim 1 and claim 2, the heat generated in the power generation element is efficiently transmitted to the battery case through the shaft core having high thermal conductivity and is dissipated. Therefore, the battery temperature does not rise abnormally even if a large amount of heat is generated during a large current discharge. In addition, even when the battery is subjected to shock or vibration, there is no risk of the metal shaft core moving or jumping inside the battery and damaging the separator etc. Can be prevented.
[0033]
[0034]
It should be noted that by using a lightweight shaft core or battery container with extremely high thermal conductivity such as aluminum, the heat dissipation efficiency can be further increased and it can be made less susceptible to impacts and vibrations.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a structure of a non-aqueous electrolyte secondary battery according to a first embodiment of the present invention.
FIG. 2, showing a first embodiment of the present invention, is a perspective view showing a configuration of a power generation element.
FIG. 3 is a longitudinal sectional view showing a structure of a nonaqueous electrolyte secondary battery according to a second embodiment of the present invention.
FIG. 4 is a perspective view showing a configuration of a power generating element according to a second embodiment of the present invention.
FIG. 5, showing a third embodiment of the present invention, is a longitudinal sectional view showing the structure of a non-aqueous electrolyte secondary battery.
FIG. 6 is a perspective view showing a manufacturing process of a power generating element of a nonaqueous electrolyte secondary battery.
FIG. 7 shows a conventional example and is a longitudinal sectional view showing a structure of a nonaqueous electrolyte secondary battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power generation element 2 Axle core 3 Positive electrode 4 Negative electrode 5 Separator 8 Cap 9 Spring 10 Battery container

Claims (3)

帯状の正極と負極が帯状のセパレータを介して巻回された発電素子を電池容器内に収納した非水電解質二次電池において、発電素子の巻回の中心部に金属製の軸芯が配置されると共に、この金属製の軸芯における上下端の少なくともいずれか一方が直接又は取付部材を介して電池容器の内部上面又は底面に固着され、発電要素の上下の端面には集電板が配置されたことを特徴とする非水電解質二次電池。In a non-aqueous electrolyte secondary battery in which a power generating element in which a strip-like positive electrode and a negative electrode are wound through a strip-shaped separator is housed in a battery container, a metal shaft core is arranged at the center of the winding of the power generating element. In addition, at least one of the upper and lower ends of the metal shaft core is fixed to the inner upper surface or the bottom surface of the battery container directly or via an attachment member, and current collecting plates are disposed on the upper and lower end surfaces of the power generation element. A non-aqueous electrolyte secondary battery characterized by the above. 帯状の正極と負極が帯状のセパレータを介して巻回された発電素子を電池容器内に収納した非水電解質二次電池において、発電素子の巻回の中心部に金属製の軸芯が配置されると共に、この金属製の軸芯の上下端が直接又は取付部材を介して電池容器の内部上面と底面との間に当接挟持され、発電要素の上下の端面には集電板が配置されたことを特徴とする非水電解質二次電池。In a non-aqueous electrolyte secondary battery in which a power generating element in which a strip-like positive electrode and a negative electrode are wound through a strip-shaped separator is housed in a battery container, a metal shaft core is arranged at the center of the winding of the power generating element. At the same time, the upper and lower ends of the metal shaft core are abutted and sandwiched directly or via the mounting member between the inner upper surface and the bottom surface of the battery container, and current collecting plates are disposed on the upper and lower end surfaces of the power generation element. A non-aqueous electrolyte secondary battery characterized by the above. 帯状の正極と負極が帯状のセパレータを介して長円状に巻回された発電素子を電池容器内に収納した非水電解質二次電池において、発電素子の巻回の中心部に横断面長円状の金属製の軸芯が配置されると共に、この金属製の軸芯の上端面の両端部にはそれぞれ突部が設けられ、これらの突部は取付部材を介して電池容器の内部上面に当接され、前記軸芯の下端面が電池容器の内側底面に直接またはリード片を介して当接押圧され、発電要素の上下の端面には集電板が配置されたことを特徴とする非水電解質二次電池。In a non-aqueous electrolyte secondary battery in which a power generating element in which a strip-like positive electrode and a negative electrode are wound in an oval shape through a strip-shaped separator is housed in a battery container, The metal shaft core is disposed, and protrusions are provided at both ends of the upper end surface of the metal shaft core, and these protrusions are formed on the inner upper surface of the battery container via the mounting member. The lower end surface of the shaft core is brought into contact with and pressed against the inner bottom surface of the battery container directly or via a lead piece, and current collecting plates are arranged on the upper and lower end surfaces of the power generation element. Water electrolyte secondary battery.
JP24466896A 1996-09-17 1996-09-17 Nonaqueous electrolyte secondary battery Expired - Fee Related JP3876934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24466896A JP3876934B2 (en) 1996-09-17 1996-09-17 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24466896A JP3876934B2 (en) 1996-09-17 1996-09-17 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH1092469A JPH1092469A (en) 1998-04-10
JP3876934B2 true JP3876934B2 (en) 2007-02-07

Family

ID=17122180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24466896A Expired - Fee Related JP3876934B2 (en) 1996-09-17 1996-09-17 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3876934B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826686B2 (en) * 2001-01-29 2011-11-30 株式会社Gsユアサ Assembled battery
KR100599793B1 (en) 2004-05-19 2006-07-13 삼성에스디아이 주식회사 Secondary battery and electrodes assembly using the same
KR100614372B1 (en) * 2004-06-25 2006-08-21 삼성에스디아이 주식회사 Cylindrical Li Secondary Battery and Method of fabricating the same
KR100696784B1 (en) * 2005-04-25 2007-03-19 삼성에스디아이 주식회사 Cylindrical Li Secondary Battery and Method of fabricating the same
JP5017385B2 (en) * 2010-01-28 2012-09-05 日立ビークルエナジー株式会社 Sealed battery
JP5728590B2 (en) * 2011-10-28 2015-06-03 日立オートモティブシステムズ株式会社 Square battery
JP5621751B2 (en) * 2011-11-07 2014-11-12 株式会社豊田自動織機 Secondary battery, secondary battery temperature control structure, and vehicle equipped with secondary battery
EP4213296A1 (en) * 2021-02-19 2023-07-19 LG Energy Solution, Ltd. Battery, and battery pack and vehicle comprising same

Also Published As

Publication number Publication date
JPH1092469A (en) 1998-04-10

Similar Documents

Publication Publication Date Title
CN107851759B (en) Battery module, battery pack including the same, and vehicle
JP5211022B2 (en) Lithium ion secondary battery
KR100726065B1 (en) High power lithium unit cell and high power lithium battery pack having the same
JP4878791B2 (en) Secondary battery
JP3787873B2 (en) battery
JP3799463B2 (en) Battery module
US20100266894A1 (en) Rechargeable battery having a current collecting plate
JP4532448B2 (en) Rectangular battery electrode unit, rectangular battery, and method of manufacturing rectangular battery electrode unit
JP4485443B2 (en) Secondary battery
US9680138B2 (en) Battery pack
JP2004111300A (en) Non-aqueous electrolyte secondary battery
KR20090126096A (en) Battery pack
JP3972804B2 (en) Alkaline storage battery and manufacturing method thereof
JP2012123983A (en) Secondary battery expansion restricting structure and secondary battery provided with the same
JP3876934B2 (en) Nonaqueous electrolyte secondary battery
JP4221531B2 (en) battery
JP3283805B2 (en) Lithium secondary battery
JP2000106167A (en) Battery
JP4434418B2 (en) Square battery
WO2011033727A1 (en) Assembled battery, assembled battery aggregate, and battery module
KR101446161B1 (en) Cap assembly and secondary battery using the same
KR101381680B1 (en) Battery Pack Comprising Charging Coil
KR101669123B1 (en) Pouch type secondary battery and battery module including the same
KR101546661B1 (en) Prismatic Shape Battery having Pouch-type Battery Cell
US20220407190A1 (en) Battery, device, and method and apparatus for manufacturing battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees