JP4221531B2 - battery - Google Patents

battery Download PDF

Info

Publication number
JP4221531B2
JP4221531B2 JP07765898A JP7765898A JP4221531B2 JP 4221531 B2 JP4221531 B2 JP 4221531B2 JP 07765898 A JP07765898 A JP 07765898A JP 7765898 A JP7765898 A JP 7765898A JP 4221531 B2 JP4221531 B2 JP 4221531B2
Authority
JP
Japan
Prior art keywords
battery
power generation
generation element
current collector
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07765898A
Other languages
Japanese (ja)
Other versions
JPH11339757A (en
Inventor
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP07765898A priority Critical patent/JP4221531B2/en
Publication of JPH11339757A publication Critical patent/JPH11339757A/en
Application granted granted Critical
Publication of JP4221531B2 publication Critical patent/JP4221531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、帯状の正負極電極を帯状のセパレータを介して巻回した巻回形の発電要素を備えた電池に関する。
【0002】
【従来の技術】
電気自動車等に用いられる長円筒形の非水電解質二次電池は、図5に示すように、帯状の負極2と正極4を帯状のセパレータ3を介して長円筒形に巻回した発電要素1を備えている。この発電要素1は、負極2とセパレータ3と正極4をそれぞれ上下に少しずつずらして巻回することにより、発電要素1の上端側には例えば帯状の負極2の上端辺のみを突出させ、下端側には帯状の正極4の下端辺のみを突出させる。すると、図6に示すように、発電要素1の上端部に上部集電体5を配置して、この上部集電体5に負極2の上端辺を多数箇所で接続固定すると共に、発電要素1の下端部に下部集電体6を配置して、この下部集電体6に正極4の下端辺を多数箇所で接続固定することができるので、負極2や正極4から大電流を取り出すことができるようになり、高効率の放電が可能となる。
【0003】
上記非水電解質二次電池は、複数個を並べて配線して使用することが多いので、接続作業等を容易にするために、正負極の端子8,11(ただし、正極端子11は図6では手前側となるため図示していない)を電池の上端部に並べて配置している。この際、発電要素1の上端部の上部集電体5は、リード金具7を介して直ちに負極端子8に接続することができる。しかし、発電要素1の下端部の下部集電体6は、電池上部の蓋14に配置した正極端子11に接続するために、リード材によって上方に引き出す必要がある。
【0004】
そこで、従来の非水電解質二次電池は、発電要素1の中央の巻軸部にリード芯金13を配置しておき、下部集電体6をこのリード芯金13とリード金具10とを介して正極端子11に接続していた。発電要素1の巻軸部であれば、電池スペースに大きな無駄を生じさせることなくリード芯金13を配置することができる。
【0005】
【発明が解決しようとする課題】
ところが、上記非水電解質二次電池は、高出力の放電を行うと、リード芯金13に大きな電流が流れるので、発熱量も非常に大きくなる。しかも、外部短絡時には、さらに大きな電流が流れるので、この発熱量も極めて大きくなる。しかし、従来の非水電解質二次電池は、リード芯金13が放熱効率の悪い発電要素1の巻軸部に配置されていたため、電池内部の温度が上昇し易くなり、電池が不安定になるという問題があった。また、特に外部短絡時には中心部が極めて高温になるので、セパレータ3が溶融して内部短絡に至り、電池が破壊されるおそれも生じる。
【0006】
本発明は、かかる事情に鑑みてなされたものであり、下部集電体を上方に引き出すリード材を発電要素の外周側面に沿って配置することにより、このリード材での発熱を効率良く放熱することができる電池を提供することを目的としている。
【0007】
【課題を解決するための手段】
【0008】
【0009】
請求項の発明は、帯状の正負極電極を帯状のセパレータを介して巻回した巻回形の発電要素を巻回軸が電池の上下方向となるように配置して電池ケース内に収納すると共に、この電池の上端部に正負極の端子を配置した電池において、発電要素の上端部で正負いずれか一方の電極を上部集電体に接続し、この上部集電体を直接又はリード材を介して一方の端子に接続すると共に、発電要素の下端部で他方の電極を下部集電体に接続し、この下部集電体を発電要素の外周側面と電池ケース内面との間に沿って配置したリード板を介して上方に引き出し、直接又は他のリード材を介して他方の端子に接続したことを特徴とする。
【0010】
請求項の発明によれば、下部集電体を上方に引き出すリード板が発電要素の外周側面と電池ケース内面との間に沿って配置されるので、このリード板での発熱を効率良く電池ケースの外部に放熱することができるようになる。
【0011】
なお、前記発電要素が、正負極電極をセパレータを介して長円筒形に巻回したものであり、前記リード板が、発電要素の長円形の直線部における外周側面に沿って配置されていることが好ましい
【0012】
このようにすれば、リード板が発電要素の長円形の直線部(長円形における両側の半円部の間の部分)の外周側面に沿って配置されるので、長円筒形や長四角型の電池ケースにおける強度の弱い平面状の側面を補強することができる。
【0013】
また、このリード板が発電要素の長円形の直線部における両側の外周側面に沿ってそれぞれ配置されていることが好ましい
【0014】
このようにすれば、リード板が両側の外周側面に配置されるので、長円筒形や長四角型の電池ケースにおける強度の弱いこれら平面状の両側面を確実に補強することができる。
【0015】
また、前記電池が非水電解質二次電池であることが好ましい
【0016】
このようにすれば、高出力で発熱し易い非水電解質二次電池を安全に使用することができるようになる。また、この非水電解質二次電池は、正負極が充電時に膨張するので、発電要素が長円筒形や長四角型の電池ケースの平面状の側面を押広げるのを防止することができるようになる。
【0017】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0018】
図1〜図3は本発明の一実施形態を示すものであって、図1は長円筒形の非水電解質二次電池の発電要素に接続固定する集電体とリード材の構成を示す斜視図、図2は長円筒形の非水電解質二次電池の発電要素に接続固定する上部集電体とリード材の構成を示す斜視図、図3は図1におけるリード材の他の構成例を示す斜視図である。なお、図5〜図6に示した従来例と同様の機能を有する構成部材には同じ番号を付記する。
【0019】
本実施形態は、従来例と同様に電気自動車等に用いられる長円筒形の非水電解質二次電池について説明する。この非水電解質二次電池の発電要素1は、図5に示したように、負極2とセパレータ3と正極4をそれぞれ上下に少しずつずらして巻回することにより、上端側には負極2の上端辺のみを突出させ、下端側には正極4の下端辺のみを突出させたものである。負極2は、帯状の銅箔の表面にグラファイト等の負極活物質を塗布したものであり、正極4は、帯状のアルミニウム箔の表面にリチウムコバルト複合酸化物等の正極活物質を塗布したものである。また、セパレータ3は、帯状の微多孔性樹脂フィルムを用いる。
【0020】
上記発電要素1の上端部には、図2に示すように、発電要素1の長円形の直線部に沿った片側に上部集電体5が配置されている。この上部集電体5は、図6に示した集電体5,6と同様の構造であり、銅板を蛇腹状に繰り返し屈曲させたものである。そして、上部集電体5の上端側に突出した負極2の上端部を複数枚ずつ、この上部集電体5の下方を向く凹部に挿入し両側からカシメて圧着することにより接続固定する。また、この凹部の上端部に横長の窓を開口しておき、ここからレーザ光を照射することによりレーザ溶接によって負極2の上端部を接続固定することもできる。なお、この負極2の上端部は、上部集電体5との接続のために、予め活物質が塗布されないようにするか、又は、塗布後に活物質を除去して銅箔の金属地を露出させている。
【0021】
上部集電体5は、発電要素1の長円形の中央部側が一体的に銅板からなるリード金具7となって水平に引き出されている。このリード金具7は、上部集電体5から引き出され、発電要素1の長円形の直線部の残りの片側からさらに長円形の一方の半円部の上方を覆うような形状に形成されている。また、このリード金具7には、発電要素1の長円形の半円部の上方を覆う部分の中央に、上方に突出する円筒状の負極端子8がカシメ等により接続固定されている。
【0022】
上記発電要素1の下端部には、図1に示すように、発電要素1の長円形の直線部の片側に下部集電体6が配置されている。この下部集電体6も、上記上部集電体5と同様の構造であり、アルミニウム板を蛇腹状に繰り返し屈曲させたものである。そして、下部集電体6の下端側に突出した正極4の下端部を複数枚ずつ、この下部集電体6の上方を向く凹部に挿入し両側からカシメて圧着することにより接続固定する。また、上部集電体5の場合と同様に、この凹部の下端部に横長の窓を開口しておきレーザ溶接によって接続固定することもできる。なお、この正極4の下端部も、下部集電体6との接続のために、予め活物質が塗布されないようにするか、又は、塗布後に活物質を除去してアルミニウム箔の金属地を露出させている。
【0023】
下部集電体6は、発電要素1の長円形の外周側が一体的にアルミニウム板からなるリード板9となって引き出されている。このリード板9は、下部集電体6から引き出されて上向きに屈曲され、発電要素1の外周側面におけるこの長円形の直線部に沿って上端部まで至る。また、このリード板9も、上端部が一体的にアルミニウム板からなるリード金具10となって水平に屈曲して引き出されている。このリード金具10は、発電要素1の長円形の直線部で、上記上部集電体5やリード金具7の上方を隙間を開けて覆うと共に、この発電要素1の長円形の他方の半円部の上方も隙間を開けて覆うような形状に形成されている。さらに、このリード金具10には、長円形の半円部の上方を覆う部分の中央に、上方に突出する円筒状の正極端子11がカシメ等により接続固定されている。
【0024】
上記集電体5,6等を接続固定した発電要素1は、図6に示したものと同様の長円筒形の電池ケース12に収納されて非水電解液を注入され密閉されることにより非水電解質二次電池を構成する。この際、正負極の端子8,11は、それぞれ絶縁密閉されて電池上部の蓋14から突設される。また、集電体5,6やリード板9、リード金具7,10及び電池ケース12の間は、必要に応じて図示しない絶縁シート等を介在させて絶縁する。
【0025】
上記構成の非水電解質二次電池によれば、正極4からの電流が下部集電体6を介してリード板9を通り発電要素1の外周側面と電池ケース12との間を流れるので、このリード板9での発熱を効率良く外部に放熱することができるようになる。しかも、リード板9は、板状であるため、巻軸部にリード芯金13を配置する場合に比べても、電池内のスペース効率はほとんど低下しない。
【0026】
また、非水電解質二次電池は、充電時に負極2と正極4の活物質が共に膨張する。しかし、電池ケース12は、軽量化のためにできるだけ薄い金属板を用いるので、長円筒形の場合には、直線部の外周側面が平面状となって強度が弱くなる。従って、この長円筒形の電池ケース12は、直線部の外周側面が充電時に発電要素1に押されて外側に膨らむという問題があった。ところが、本実施形態のように、この発電要素1の直線部の外周側面にリード板9を配置すれば、電池ケース12を補強することができ、充電時の膨らみを緩和することができるようになる。
【0027】
なお、上記実施形態では、下部集電体6を発電要素1の長円形の直線部の片側にのみ配置したが、図3に示すように、この長円形の直線部の両側に配置することも可能である。この場合、リード板9は、発電要素1の長円形の直線部における両側の外周側面に配置される。従って、リード板9の電流容量が大きくなって発熱自体を低下させると共に、電池ケース12を両側で補強することができるので、充電時の膨らみを確実に抑制することができるようになる。
【0028】
表1〜表3に、図6に示した従来の巻軸部にリード芯金13を配置した非水電解質二次電池と、図1及び図3に示した本実施形態の非水電解質二次電池との比較結果を示す。
【0029】
表1は、幅91mm、厚さ34mm、高さ150mmの長円筒形電池(容量36Ah)を3.0C放電したときの電池の内外温度を測定したものである。
【表1】

Figure 0004221531
【0030】
従来の電池では、電池中心温度の上昇が大きく、電池表面温度との内外温度差が32°Cに達する。これに対して、本実施形態の電池では、リード板9を片側と両側のいずれに配置したものも電池中心温度の上昇が比較的少なく内外温度差も21〜22°Cに抑制された。
【0031】
表2は、表1と同じ電池を100%充電状態で外部短絡させたときの電池の表面温度を測定したものである。
【表2】
Figure 0004221531
従来の電池では、電池の表面温度が最高で410°Cに達し発煙が観測された。即ち、この電池では、外部短絡の短絡電流による中心温度の上昇が極めて大きいために、セパレータ3が溶融し内部短絡を起こしてさらに温度が上昇したためである。これに対して、本実施形態の電池では、電池の表面温度の最高が120°Cに抑制され、発煙は生じなかった。即ち、この電池では、外部短絡の短絡電流による発熱が速やかに外部に放熱されるので、電池内部の温度上昇が比較的少なく、また、この温度上昇によりセパレータ3が熱閉塞(シャットダウン)を起こして短絡電流を抑制することにより安全性が確保された。セパレータ3は、120°C程度以上の温度で熱閉塞を起こして電流を遮断するが、従来例のように高温になると溶融して電流を遮断する機能も果たせなくなる。
【0032】
表3は、表1と同じ電池の放電時と充電時の電池ケース12の厚さを測定したものである。
【表3】
Figure 0004221531
従来の電池では、充電時に厚さが2.0mm増加するのに対して、本実施形態の電池では、充電時の厚さの増加が1.0〜0.8mmに抑制された。従って、長円筒形の非水電解質二次電池を複数個並べてモジュール電池を構成する場合、充電時の膨張を考慮して設ける隙間を狭くすることができるので、このモジュール電池の容積効率を高めることができる。
【0033】
なお、上記実施形態では、正負極の端子8,11を電池の上端部に配置する場合について説明したが、図4に示すように、例えば電池の上端部には負極端子8のみを配置して、正極端子11を電池の側面に配置してもよい。即ち、正極4を下部集電体6を介して、発電要素1の外周側面と電池ケース12との間のリード板9に引き出し、これを電池の側面の正極端子11に接続するようにしても、このリード板9での発熱が効率良く外部に放熱されるようになる。また、上記実施形態では、長円筒形の発電要素1を長円筒形の電池ケース12に収納する場合について説明したが、この長円筒形の発電要素1を図4に示すような長四角形の電池ケース12に収納することもできる。
【0034】
さらに、上記実施形態では、上部集電体5や下部集電体6を蛇腹状に繰り返し屈曲させたものとしたが、発電要素1の上端部や下端部で負極2や正極4に確実に接続固定するものであれば、必ずしもこのような構成には限定されない。
【0035】
さらに、上記実施形態では、発電要素1を長円筒形に巻回した場合について説明したが、本発明は、巻回形の発電要素一般に実施可能である。
【0036】
さらに、上記実施形態では、非水電解質二次電池について説明したが、本発明は、その他の電池一般に実施可能である。
【0037】
【発明の効果】
以上の説明から明らかなように、本発明の電池によれば、リード板が発電要素の外周側面に沿って電池ケース内面に隣接して配置されるので、このリード板での発熱を効率良く電池ケースの外部に放熱することができるようになる。このため、高出力の放電を行った場合にも、電池の温度上昇を抑制することができ、外部短絡時にも、電池内部の温度上昇による内部短絡の発生や電池の破壊を防止することができるようになる。
【0038】
また、長円筒形の発電要素の場合には、リード板を長円形の直線部に沿って配置することにより、長円筒形や長四角型の電池ケースの平面状の側面を補強することができるようになる。
【図面の簡単な説明】
【図1】 本発明の一実施形態を示すものであって、長円筒形の非水電解質二次電池の発電要素に接続固定する集電体とリード材の構成を示す斜視図である。
【図2】 本発明の一実施形態を示すものであって、長円筒形の非水電解質二次電池の発電要素に接続固定する上部集電体とリード材の構成を示す斜視図である。
【図3】 本発明の一実施形態を示すものであって、図1におけるリード材の他の構成例を示す斜視図である。
【図4】 本発明の他の実施形態を示すものであって、長円筒形の非水電解質二次電池の発電要素に接続固定する集電体とリード材の構成を示す斜視図である。
【図5】 長円筒形の非水電解質二次電池の発電要素の構成を示す斜視図である。
【図6】 従来例を示すものであって、長円筒形の非水電解質二次電池の構成を示す縦断面図である。
【符号の説明】
1 発電要素
2 正極
3 セパレータ
4 負極
5 上部集電体
6 下部集電体
7 リード金具
8 正極端子
9 リード板
10 リード金具
11 負極端子
12 電池ケース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery including a wound power generation element in which strip-shaped positive and negative electrodes are wound through a strip-shaped separator.
[0002]
[Prior art]
As shown in FIG. 5, a long cylindrical nonaqueous electrolyte secondary battery used for an electric vehicle or the like includes a strip-shaped negative electrode 2 and a positive electrode 4 wound in a long cylindrical shape via a strip-shaped separator 3. It has. In this power generation element 1, the negative electrode 2, the separator 3, and the positive electrode 4 are wound slightly shifted up and down, so that, for example, only the upper end side of the strip-shaped negative electrode 2 protrudes from the upper end side of the power generation element 1, and the lower end Only the lower end side of the belt-like positive electrode 4 is protruded on the side. Then, as shown in FIG. 6, the upper current collector 5 is arranged at the upper end portion of the power generation element 1, and the upper end side of the negative electrode 2 is connected and fixed to the upper current collector 5 at a number of locations. Since the lower current collector 6 is disposed at the lower end of the lower electrode 6 and the lower end side of the positive electrode 4 can be connected and fixed to the lower current collector 6 at a number of locations, a large current can be taken out from the negative electrode 2 and the positive electrode 4. It becomes possible to perform highly efficient discharge.
[0003]
Since the non-aqueous electrolyte secondary battery is often used by arranging a plurality of the non-aqueous electrolyte secondary batteries, positive and negative terminals 8, 11 (however, the positive terminal 11 is not shown in FIG. (Not shown because it is on the front side) is arranged side by side on the upper end of the battery. At this time, the upper current collector 5 at the upper end of the power generation element 1 can be immediately connected to the negative electrode terminal 8 via the lead fitting 7. However, the lower current collector 6 at the lower end of the power generation element 1 needs to be drawn upward by the lead material in order to connect to the positive terminal 11 disposed on the lid 14 on the upper side of the battery.
[0004]
Therefore, in the conventional non-aqueous electrolyte secondary battery, the lead cored bar 13 is arranged on the central winding shaft portion of the power generation element 1, and the lower current collector 6 is interposed between the lead cored bar 13 and the lead fitting 10. Connected to the positive terminal 11. If it is the winding-axis part of the electric power generation element 1, the lead mandrel 13 can be arrange | positioned, without producing a big waste in battery space.
[0005]
[Problems to be solved by the invention]
However, when the non-aqueous electrolyte secondary battery discharges at a high output, a large current flows through the lead mandrel 13, so that the amount of heat generation becomes very large. In addition, since a larger current flows during an external short circuit, the amount of generated heat is extremely large. However, in the conventional non-aqueous electrolyte secondary battery, since the lead core 13 is disposed on the winding shaft portion of the power generation element 1 with poor heat dissipation efficiency, the temperature inside the battery is likely to rise and the battery becomes unstable. There was a problem. In particular, since the central portion becomes extremely hot at the time of external short circuit, the separator 3 is melted to reach an internal short circuit, and the battery may be destroyed.
[0006]
This invention is made | formed in view of this situation, and arrange | positions the lead material which pulls out a lower collector upward along the outer peripheral side surface of an electric power generation element, and thereby thermally radiates the heat_generation | fever in this lead material efficiently. It aims to provide a battery that can be used.
[0007]
[Means for Solving the Problems]
[0008]
[0009]
According to the first aspect of the present invention, a wound power generation element obtained by winding a belt-like positive and negative electrode through a belt-like separator is disposed so that the winding shaft is in the vertical direction of the battery, and is housed in the battery case. In addition, in the battery in which positive and negative terminals are arranged at the upper end of the battery, either the positive or negative electrode is connected to the upper current collector at the upper end of the power generation element, and the upper current collector is directly or directly connected to the lead material. The other electrode is connected to the lower current collector at the lower end of the power generation element, and the lower current collector is disposed between the outer peripheral side surface of the power generation element and the battery case inner surface. It is characterized in that it is drawn upward through the lead plate and connected to the other terminal directly or through another lead material.
[0010]
According to the first aspect of the present invention, the lead plate that pulls the lower current collector upward is disposed between the outer peripheral side surface of the power generation element and the inner surface of the battery case. It becomes possible to dissipate heat to the outside of the case.
[0011]
The power generation element is obtained by winding positive and negative electrodes in a long cylindrical shape with a separator interposed therebetween, and the lead plate is disposed along the outer peripheral side surface of the elliptical straight portion of the power generation element . Is preferred .
[0012]
In this way , the lead plate is disposed along the outer peripheral side surface of the oval straight portion of the power generation element (the portion between the semicircular portions on both sides of the oval shape). It is possible to reinforce the planar side surface having a low strength in the battery case.
[0013]
Moreover, it is preferable that this lead board is each arrange | positioned along the outer peripheral side surface of the both sides in the elliptical linear part of an electric power generation element.
[0014]
In this way, since the lead plates are arranged on the outer peripheral side surfaces on both sides, it is possible to surely reinforce these two flat side surfaces having low strength in the long cylindrical or long rectangular battery case.
[0015]
Further, it is preferable that the battery is a nonaqueous electrolyte secondary battery.
[0016]
In this way, it is possible to safely use a non-aqueous electrolyte secondary battery that easily generates heat with high output. In addition, since the positive and negative electrodes expand during charging in this non-aqueous electrolyte secondary battery, the power generation element can be prevented from spreading the planar side surface of the long cylindrical or long rectangular battery case. Become.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
1 to 3 show an embodiment of the present invention, and FIG. 1 is a perspective view showing a configuration of a current collector and a lead member connected and fixed to a power generation element of a long cylindrical nonaqueous electrolyte secondary battery. FIG. 2, FIG. 2 is a perspective view showing a configuration of an upper current collector and a lead material that are connected and fixed to a power generation element of a long cylindrical nonaqueous electrolyte secondary battery, and FIG. 3 is another configuration example of the lead material in FIG. It is a perspective view shown. In addition, the same number is attached | subjected to the structural member which has a function similar to the prior art example shown in FIGS.
[0019]
In the present embodiment, a long cylindrical non-aqueous electrolyte secondary battery used for an electric vehicle or the like will be described as in the conventional example. As shown in FIG. 5, the power generation element 1 of this non-aqueous electrolyte secondary battery has a negative electrode 2, a separator 3, and a positive electrode 4 that are wound slightly above and below and wound on the upper end side of the negative electrode 2. Only the upper end side is protruded, and only the lower end side of the positive electrode 4 is protruded on the lower end side. The negative electrode 2 is obtained by applying a negative electrode active material such as graphite on the surface of a strip-like copper foil, and the positive electrode 4 is obtained by applying a positive electrode active material such as lithium cobalt composite oxide on the surface of a strip-like aluminum foil. is there. The separator 3 uses a band-like microporous resin film.
[0020]
As shown in FIG. 2, an upper current collector 5 is disposed on one side along the oval straight portion of the power generation element 1 at the upper end of the power generation element 1. The upper current collector 5 has a structure similar to that of the current collectors 5 and 6 shown in FIG. 6, and is obtained by repeatedly bending a copper plate in a bellows shape. A plurality of upper end portions of the negative electrode 2 protruding to the upper end side of the upper current collector 5 are inserted into a concave portion facing downward of the upper current collector 5, and are connected and fixed by caulking and crimping from both sides. Further, a horizontally long window is opened at the upper end portion of the concave portion, and the upper end portion of the negative electrode 2 can be connected and fixed by laser welding by irradiating the laser beam therefrom. The upper end of the negative electrode 2 is not preliminarily coated with an active material for connection with the upper current collector 5, or the active material is removed after coating to expose the metal ground of the copper foil. I am letting.
[0021]
The upper current collector 5 is drawn out horizontally as a lead fitting 7 made of a copper plate integrally at the center of the oval shape of the power generation element 1. The lead fitting 7 is drawn out from the upper current collector 5 and is formed in a shape that covers the upper side of one semicircular part of the elliptical shape from the remaining one side of the elliptical linear part of the power generation element 1. . In addition, a cylindrical negative electrode terminal 8 protruding upward is connected and fixed to the lead fitting 7 by caulking or the like at the center of the portion covering the upper part of the oval semicircular portion of the power generation element 1.
[0022]
As shown in FIG. 1, a lower current collector 6 is disposed on one side of the oval straight portion of the power generation element 1 at the lower end of the power generation element 1. The lower current collector 6 has a structure similar to that of the upper current collector 5 and is formed by repeatedly bending an aluminum plate in a bellows shape. Then, a plurality of lower end portions of the positive electrode 4 projecting to the lower end side of the lower current collector 6 are inserted into a concave portion facing upward of the lower current collector 6 and are connected and fixed by caulking and crimping from both sides. Further, as in the case of the upper current collector 5, a horizontally long window can be opened at the lower end of the recess, and the connection can be fixed by laser welding. In addition, the lower end portion of the positive electrode 4 is also connected to the lower current collector 6 so that the active material is not applied in advance or the active material is removed after the application to expose the metal ground of the aluminum foil. I am letting.
[0023]
The lower current collector 6 is drawn out as a lead plate 9 integrally formed of an aluminum plate on the outer periphery of the oval shape of the power generation element 1. The lead plate 9 is drawn from the lower current collector 6 and bent upward, and reaches the upper end along the oval straight line portion on the outer peripheral side surface of the power generation element 1. Further, the lead plate 9 is also drawn out with its upper end bent horizontally as a lead fitting 10 made of an aluminum plate. The lead fitting 10 is an oval straight portion of the power generation element 1 and covers the upper current collector 5 and the lead fitting 7 with a gap therebetween, and the other semicircular portion of the oval shape of the power generation element 1. The upper part is also formed in a shape that covers a gap. Further, a cylindrical positive electrode terminal 11 protruding upward is connected and fixed to the lead fitting 10 by caulking or the like at the center of the portion covering the upper part of the oval semicircular portion.
[0024]
The power generation element 1 to which the current collectors 5, 6 and the like are connected and fixed is housed in a long cylindrical battery case 12 similar to that shown in FIG. A water electrolyte secondary battery is constructed. At this time, the positive and negative terminals 8 and 11 are respectively insulated and sealed and protruded from the lid 14 at the top of the battery. Further, the current collectors 5 and 6, the lead plate 9, the lead fittings 7 and 10, and the battery case 12 are insulated by interposing an insulating sheet (not shown) as necessary.
[0025]
According to the non-aqueous electrolyte secondary battery having the above-described configuration, the current from the positive electrode 4 flows between the outer peripheral side surface of the power generation element 1 and the battery case 12 through the lead plate 9 via the lower current collector 6. Heat generated by the lead plate 9 can be efficiently radiated to the outside. In addition, since the lead plate 9 is plate-shaped, the space efficiency in the battery is hardly lowered even when the lead core 13 is disposed on the winding shaft portion.
[0026]
In the nonaqueous electrolyte secondary battery, the active materials of the negative electrode 2 and the positive electrode 4 both expand during charging. However, since the battery case 12 uses a metal plate that is as thin as possible to reduce the weight, in the case of the long cylindrical shape, the outer peripheral side surface of the straight portion becomes flat and the strength is weakened. Therefore, the long cylindrical battery case 12 has a problem that the outer peripheral side surface of the straight portion is pushed by the power generation element 1 during charging and swells outward. However, if the lead plate 9 is arranged on the outer peripheral side surface of the linear portion of the power generating element 1 as in this embodiment, the battery case 12 can be reinforced and the swelling during charging can be reduced. Become.
[0027]
In the above embodiment, the lower current collector 6 is disposed only on one side of the oval straight line portion of the power generation element 1, but may be disposed on both sides of this oval straight line portion as shown in FIG. Is possible. In this case, the lead plates 9 are disposed on the outer peripheral side surfaces on both sides of the oval straight portion of the power generation element 1. Accordingly, the current capacity of the lead plate 9 is increased to reduce the heat generation itself, and the battery case 12 can be reinforced on both sides, so that swelling during charging can be reliably suppressed.
[0028]
Tables 1 to 3 show the nonaqueous electrolyte secondary battery in which the lead core 13 is arranged on the conventional winding shaft shown in FIG. 6 and the nonaqueous electrolyte secondary of the present embodiment shown in FIGS. 1 and 3. The comparison result with a battery is shown.
[0029]
Table 1 shows the measured internal and external temperatures of a long cylindrical battery (capacity 36 Ah) having a width of 91 mm, a thickness of 34 mm, and a height of 150 mm when discharged at 3.0 C.
[Table 1]
Figure 0004221531
[0030]
In the conventional battery, the battery center temperature rises greatly, and the temperature difference between the inside and outside of the battery surface temperature reaches 32 ° C. On the other hand, in the battery of this embodiment, the lead plate 9 arranged on either one side or both sides has a relatively small increase in the battery center temperature, and the internal / external temperature difference is suppressed to 21 to 22 ° C.
[0031]
Table 2 shows the measurement of the surface temperature of the battery when the same battery as in Table 1 is externally short-circuited in a 100% charged state.
[Table 2]
Figure 0004221531
In the conventional battery, the maximum surface temperature of the battery reached 410 ° C. and smoke was observed. That is, in this battery, since the rise in the center temperature due to the short-circuit current of the external short circuit is extremely large, the separator 3 is melted to cause an internal short circuit and the temperature is further increased. On the other hand, in the battery of the present embodiment, the maximum surface temperature of the battery was suppressed to 120 ° C., and no smoke was generated. That is, in this battery, the heat generated by the short-circuit current of the external short circuit is quickly radiated to the outside, so that the temperature rise inside the battery is relatively small, and this temperature rise causes the separator 3 to be thermally blocked (shut down). Safety was ensured by suppressing the short-circuit current. The separator 3 blocks the current by causing a thermal blockage at a temperature of about 120 ° C. or higher. However, the separator 3 cannot function to melt and block the current when the temperature becomes high as in the conventional example.
[0032]
Table 3 shows the measurement of the thickness of the battery case 12 during discharging and charging of the same battery as in Table 1.
[Table 3]
Figure 0004221531
In the conventional battery, the thickness increased by 2.0 mm during charging, whereas in the battery of this embodiment, the increase in thickness during charging was suppressed to 1.0 to 0.8 mm. Accordingly, when a module battery is configured by arranging a plurality of non-aqueous electrolyte secondary batteries having a long cylindrical shape, a gap provided in consideration of expansion during charging can be narrowed, so that the volume efficiency of the module battery is increased. Can do.
[0033]
In the above embodiment, the case where the positive and negative terminals 8 and 11 are arranged at the upper end of the battery has been described. However, as shown in FIG. 4, for example, only the negative electrode terminal 8 is arranged at the upper end of the battery. The positive electrode terminal 11 may be disposed on the side surface of the battery. That is, the positive electrode 4 is drawn out to the lead plate 9 between the outer peripheral side surface of the power generation element 1 and the battery case 12 via the lower current collector 6 and connected to the positive electrode terminal 11 on the side surface of the battery. The heat generated by the lead plate 9 is efficiently radiated to the outside. In the above embodiment, the case where the long cylindrical power generation element 1 is accommodated in the long cylindrical battery case 12 has been described, but the long cylindrical power generation element 1 is a long rectangular battery as shown in FIG. It can also be stored in the case 12.
[0034]
Furthermore, in the above embodiment, the upper current collector 5 and the lower current collector 6 are repeatedly bent in a bellows shape, but are reliably connected to the negative electrode 2 and the positive electrode 4 at the upper end portion and the lower end portion of the power generation element 1. If fixed, it is not necessarily limited to such a configuration.
[0035]
Furthermore, although the said embodiment demonstrated the case where the electric power generation element 1 was wound by the long cylindrical shape, this invention can be implemented in general in the winding type electric power generation element.
[0036]
Furthermore, although the non-aqueous electrolyte secondary battery has been described in the above embodiment, the present invention can be implemented in general for other batteries.
[0037]
【The invention's effect】
As is apparent from the above description, according to the battery of the present invention, the lead plate is disposed adjacent to the inner surface of the battery case along the outer peripheral side surface of the power generation element. It becomes possible to dissipate heat to the outside of the case. For this reason, even when high-output discharge is performed, the temperature rise of the battery can be suppressed, and the occurrence of an internal short circuit and the destruction of the battery due to the temperature rise inside the battery can be prevented even during an external short circuit. It becomes like this.
[0038]
Further, in the case of a long cylindrical power generation element, the planar side surface of the long cylindrical or long rectangular battery case can be reinforced by arranging the lead plate along the oval straight portion. It becomes like this.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating a configuration of a current collector and a lead member that are connected and fixed to a power generation element of a long cylindrical nonaqueous electrolyte secondary battery according to an embodiment of the present invention.
FIG. 2, showing an embodiment of the present invention, is a perspective view showing a configuration of an upper current collector and a lead member that are connected and fixed to a power generation element of a long cylindrical non-aqueous electrolyte secondary battery.
FIG. 3 is a perspective view showing another embodiment of the present invention and showing another configuration example of the lead material in FIG. 1;
FIG. 4 shows another embodiment of the present invention, and is a perspective view showing a configuration of a current collector and a lead member that are connected and fixed to a power generation element of a long cylindrical non-aqueous electrolyte secondary battery.
FIG. 5 is a perspective view showing a configuration of a power generation element of a long cylindrical nonaqueous electrolyte secondary battery.
FIG. 6 is a longitudinal sectional view showing a conventional example and showing the configuration of a long cylindrical non-aqueous electrolyte secondary battery.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power generation element 2 Positive electrode 3 Separator 4 Negative electrode 5 Upper current collector 6 Lower current collector 7 Lead metal fitting 8 Positive electrode terminal 9 Lead plate 10 Lead metal fitting 11 Negative electrode terminal 12 Battery case

Claims (1)

帯状の正負極電極を帯状のセパレータを介して巻回した巻回形の発電要素を巻回軸が電池の上下方向となるように配置して電池ケース内に収納すると共に、この電池の上端部に正負極の端子を配置した電池において、
発電要素の上端部で正負いずれか一方の電極を上部集電体に接続し、この上部集電体を直接又はリード材を介して一方の端子に接続すると共に、発電要素の下端部で他方の電極を下部集電体に接続し、この下部集電体を発電要素の外周側面と電池ケース内面との間に沿って配置したリード板を介して上方に引き出し、直接又は他のリード材を介して他方の端子に接続したことを特徴とする電池。
A winding-type power generating element obtained by winding a belt-like positive and negative electrode through a belt-like separator is disposed so that the winding shaft is in the vertical direction of the battery and is housed in the battery case, and the upper end of the battery In the battery with positive and negative terminals arranged in
Either the positive or negative electrode is connected to the upper current collector at the upper end of the power generation element, and this upper current collector is connected to one terminal directly or via a lead material, and the other electrode is connected to the other end at the lower end of the power generation element. The electrode is connected to the lower current collector, and the lower current collector is drawn upward via a lead plate arranged between the outer peripheral side surface of the power generation element and the inner surface of the battery case, directly or via other lead material And a battery connected to the other terminal.
JP07765898A 1998-03-25 1998-03-25 battery Expired - Fee Related JP4221531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07765898A JP4221531B2 (en) 1998-03-25 1998-03-25 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07765898A JP4221531B2 (en) 1998-03-25 1998-03-25 battery

Publications (2)

Publication Number Publication Date
JPH11339757A JPH11339757A (en) 1999-12-10
JP4221531B2 true JP4221531B2 (en) 2009-02-12

Family

ID=13639989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07765898A Expired - Fee Related JP4221531B2 (en) 1998-03-25 1998-03-25 battery

Country Status (1)

Country Link
JP (1) JP4221531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051953B2 (en) 2019-08-16 2022-04-11 ジーイー・プレシジョン・ヘルスケア・エルエルシー Methods and systems for adjusting X-ray tubes

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034135B2 (en) * 2000-09-22 2012-09-26 株式会社デンソー Battery and manufacturing method thereof
JP5237389B2 (en) * 2007-12-25 2013-07-17 ビーワイディー カンパニー リミテッド Electrochemical storage battery with spout vent
US8404379B2 (en) 2007-12-25 2013-03-26 Byd Co., Ltd. Vehicle with a battery system
KR101075333B1 (en) 2009-08-25 2011-10-19 삼성에스디아이 주식회사 Secondary Battery
US8722237B2 (en) 2011-03-29 2014-05-13 Samsung Sdi Co., Ltd. Secondary battery
JP5720610B2 (en) * 2012-03-22 2015-05-20 株式会社豊田自動織機 Power storage device and secondary battery
JP6055983B2 (en) * 2012-06-25 2017-01-11 エリーパワー株式会社 Battery current collector and lithium ion battery
CN105576179A (en) * 2014-10-11 2016-05-11 宁德时代新能源科技股份有限公司 Rechargeable battery
JP6459505B2 (en) * 2014-12-25 2019-01-30 株式会社Gsユアサ Electricity storage element
DE102015201662A1 (en) * 2015-01-30 2016-08-04 Robert Bosch Gmbh Galvanic cell with flat arrester arrangement
JP6225928B2 (en) * 2015-02-09 2017-11-08 トヨタ自動車株式会社 Secondary battery
CN106207269B (en) * 2016-08-29 2019-06-07 宁德时代新能源科技股份有限公司 Battery with a battery cell
JP7067463B2 (en) * 2018-12-26 2022-05-16 トヨタ自動車株式会社 Rechargeable battery cooling structure
CN112635924B (en) * 2021-01-12 2023-06-30 星恒电源(滁州)有限公司 Electrode connection method and electrode connection sheet of lithium ion power battery cell
CN116848719A (en) * 2021-11-26 2023-10-03 宁德时代新能源科技股份有限公司 Battery monomer, battery, electric equipment and preparation method and equipment of battery monomer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7051953B2 (en) 2019-08-16 2022-04-11 ジーイー・プレシジョン・ヘルスケア・エルエルシー Methods and systems for adjusting X-ray tubes

Also Published As

Publication number Publication date
JPH11339757A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
JP4221531B2 (en) battery
JP5211022B2 (en) Lithium ion secondary battery
JP4878800B2 (en) Lithium secondary battery
EP2293367B1 (en) Rechargeable secondary battery having improved safety against puncture and collapse
JP4485217B2 (en) Jerry roll type battery unit, winding method and lithium secondary battery including the same
JP4496582B2 (en) Lithium secondary battery
JP2005302719A (en) Electrode assembly and secondary battery having the same
JP2004111300A (en) Non-aqueous electrolyte secondary battery
JP2004362956A (en) Secondary battery
JP4538694B2 (en) Electrode wound type battery
JP5614574B2 (en) Secondary battery
JP7163317B2 (en) Secondary battery having a hollow filled with thermally conductive resin
JP2000106167A (en) Battery
JP2002313309A (en) Electrochemical device and its manufacturing method
JP3768026B2 (en) Non-aqueous electrolyte secondary battery
KR100911004B1 (en) Battery unit and the lithium secondary battery applying the same
JP2009181899A (en) Laminated battery
JP2011060556A (en) Battery pack
JPH11144771A (en) Heat radiator of battery
JPH11233149A (en) Nonaqueous electrolyte battery
JP4169470B2 (en) Sealed battery
CN216488409U (en) Secondary cell is with preventing short circuit utmost point ear, electrode sheet and secondary cell
JP2003077449A (en) Secondary battery
JP3605668B2 (en) Non-aqueous electrolyte secondary battery
JP4797238B2 (en) battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees