JP2004111300A - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004111300A
JP2004111300A JP2002274502A JP2002274502A JP2004111300A JP 2004111300 A JP2004111300 A JP 2004111300A JP 2002274502 A JP2002274502 A JP 2002274502A JP 2002274502 A JP2002274502 A JP 2002274502A JP 2004111300 A JP2004111300 A JP 2004111300A
Authority
JP
Japan
Prior art keywords
positive electrode
battery case
battery
electrolyte secondary
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002274502A
Other languages
Japanese (ja)
Inventor
Jo Sasaki
佐々木 丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002274502A priority Critical patent/JP2004111300A/en
Publication of JP2004111300A publication Critical patent/JP2004111300A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery that can radiate to the outside, heat generated in the positive electrode 1a of a generating element 1 by efficiently conducting it to the lid plate of aluminum alloy and the battery container 9. <P>SOLUTION: This is a non-aqueous electrolyte secondary battery in which the generating element 1 in which a positive electrode 1a and a negative electrode 1b are wound via a separator 1c is housed in a battery container 9 made of aluminum alloy, and the upper end opening part of this battery container 9 is covered by a lid plate 4. The positive electrode 1a wound by the generating element 1 is connected and fixed to a connecting plate part 2b of a current collector connecting plate 2 at plural parts on the inner and outer circumference of winding of the positive electrode 1a, and the main body 2c of this current collector connecting plate 2 is adhered to the inner face of the lid plate 4 and connected and fixed to the lid plate 4 by caulking of the terminal 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、正極と負極がセパレータを介して巻回された発電要素を金属製の電池ケースに収納した非水電解質二次電池に関する。
【0002】
【従来の技術】
非水電解質二次電池は、これまで一般には正極活物質のリチウム含有複合酸化物としてリチウム・コバルト系複合酸化物やリチウム・マンガン系複合酸化物を用いることが多かった。しかしながら、最近では、さらなる高エネルギー密度化を図るために、リチウム・ニッケル・コバルト系複合酸化物の利用が検討されている。これらのリチウム含有複合酸化物の単位重量当たりのエネルギー(エネルギー密度)を比較すると、リチウム・マンガン系複合酸化物のエネルギー密度が最も小さく、次にリチウム・コバルト系複合酸化物のエネルギー密度がこれよりも少し大きくなり、リチウム・ニッケル・コバルト系複合酸化物のエネルギー密度はこれらよりも十分に大きなものとなる。
【0003】
【発明が解決しようとする課題】
ところが、このリチウム・ニッケル・コバルト系複合酸化物は、リチウム・コバルト系複合酸化物やリチウム・マンガン系複合酸化物に比べ、熱安定性に劣るという欠点があった。即ち、リチウム・ニッケル・コバルト系複合酸化物は、これらのリチウム含有複合酸化物の中で発熱開始温度が最も低く発熱量も最も大きくなるので、正極活物質として用いた場合に、非水電解質二次電池の短絡時や過充電時等に熱逸走を起こし易くなる。このため、リチウム・ニッケル・コバルト系複合酸化物の材料自体の熱安定性を向上させるような改良を加える他に、発電要素内の正極での発熱を電池外部に効率良く放出する構造を用いることにより、熱逸走の発生を防止する必要があるという問題があった。
【0004】
また、この放熱を効率よく行いたいという要請は、高エネルギー密度化のために正極活物質にリチウム・ニッケル・コバルト系複合酸化物を用いた場合に限らず、他の非水電解質二次電池にも共通するものであり、放熱が必要なのは正極に限らない。
【0005】
本発明は、かかる事情に対処するためになされたものであり、発電要素の電極で発生した熱を効率良く金属製の電池ケースに伝えて外部に放出することができる非水電解質二次電池を提供することを目的としている。
【0006】
【課題を解決するための手段】
請求項1の発明は、正極と負極がセパレータを介して巻回された発電要素を金属製の電池ケースに収納した非水電解質二次電池において、発電要素の最外周に巻回された正負いずれかの電極が電池ケースの内面に直接接触すると共に、この接触部の一部又は全部が電池ケースの内面に溶接により接続固定されたことを特徴とする。
【0007】
請求項1の発明によれば、発電要素の最外周の電極が電池ケースに接触し、かつ、接続固定されているので、この電極で発生した熱が直接金属製の電池ケースに伝わり広い面積から外部に効率よく放出されるようになる。従って、電池ケースが積極的にヒートシンクとしての役割を果たし、電極の発熱により電池が異常な高温になるのを防止することができるようになる。また、電池の使用に伴う内圧の上昇により電池ケースが膨れたような場合に、発電要素の最外周の電極が単に電池ケースの内面に接触していただけでは、この電極が電池ケースの内面から離れるおそれがある。しかしながら、請求項1の発明によれば、発電要素の最外周の電極が電池ケースの内面に接触するだけでなく溶接により確実に接続固定されているので、この電池ケースが膨れた場合にも電極が離れるようなことがなくなり、この電極で発生した熱を電池ケースから確実に放熱することができるようになる。
【0008】
なお、金属製の電池ケースは、内面に接続固定される電極の極性の端子として機能するため、この電極と端子との間を接続する集電接続体は必ずしも使用する必要はない。しかしながら、大型の非水電解質二次電池の場合には、電極の最外周からだけの集電では内部抵抗が大きくなりすぎるので、集電接続体を使用して電極の巻回の内周側からも集電を行うようにすることが好ましい。
【0009】
請求項2の発明は、正極と負極がセパレータを介して巻回された発電要素を金属製の電池ケースに収納した非水電解質二次電池において、発電要素に巻回された正負いずれかの電極がこの電極の巻回の内外周における複数箇所で集電接続体に接続固定されると共に、この集電接続体が電池ケースの内面に接続固定され、又は、この電池ケースに接続固定された端子に接続固定されたことを特徴とする。
【0010】
請求項2の発明によれば、発電要素の電極の内外周の複数箇所が集電接続体や端子を介して電池ケースに接続固定されているので、この電極で発生した熱が効率よく金属製の電池ケースに伝わり広い面積から外部に放出されるようになる。従って、電池ケースが積極的にヒートシンクとしての役割を果たし、電極の発熱により電池が異常な高温になるのを防止することができるようになる。
【0011】
この請求項2の発明では、巻回の内外周の複数箇所で集電接続体に接続固定された電極を発電要素の最外周に巻回すると共に、この最外周の電極を電池ケースの内面に直接接触するように収納することもできる。このようにすれば、発電要素の電極が集電接続体や端子を介して電池ケースに接続固定されるだけでなく、最外周に巻回された電極が電池ケースに直接接触するので、この電極で発生した熱が直接金属製の電池ケースに伝わるようになり、放熱効率をさらに高めることができるようになる。しかも、この最外周の電極は、少なくとも一部が電池ケースの内面に溶接により接続固定することが好ましい。このようにすれば、発電要素の最外周に巻回された電極が電池ケースに接触するだけでなく、この電池ケースに接続固定されるので、放熱効率をより一層高めることができるようになる。また、電池の使用に伴う内圧の上昇により電池ケースが膨れたような場合に、発電要素の最外周の電極が単に電池ケースの内面に接触していただけでは、この電極が電池ケースの内面から離れるおそれがある。しかしながら、発電要素の最外周の電極が電池ケースの内面に接続固定されていれば、この電池ケースが膨れたような場合にも、電極が離れるようなことがなくなり、この電極で発生した熱を電池ケースから確実に放熱することができるようになる。
【0012】
上記請求項1又は2では、従来技術で示したように、特に熱安定性が劣るリチウム・ニッケル・コバルト系複合酸化物を正極活物質として用いた正極を電池ケースに直接接続固定したり、集電接続体や端子を介して電池ケースに接続固定することが好ましい。また、このような正極活物質を用いる場合には、負極の負極活物質には炭素材料を用いるのが好ましい。
【0013】
なお、上記請求項1又は2において、電極が金属箔等の集電基材の表面に活物質を担持させたものである場合には、熱伝導性をより向上させるために、この活物質が担持されていない集電基材の表面部分を電池ケースの内面に接触させると共に接続固定するのが好ましく、また、このような集電基材が露出した部分を集電接続体に接続固定することが好ましい。
【0014】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0015】
図1〜図2は本発明の一実施形態を示すものであって、図1は非水電解質二次電池の構造を示す組み立て斜視図、図2は非水電解質二次電池の発電要素の電極と集電接続板と端子との接続構造を示す組み立て斜視図である。
【0016】
本実施形態は、EV(電気自動車)等に用いられる大型の非水電解質二次電池について説明する。この非水電解質二次電池は、図2に示すように、2個の長円筒形巻回型の発電要素1,1を並べ並列接続したものである。各発電要素1は、正極1aと負極1bをセパレータ1cを介して長円筒形に巻回したものであり、正極1aは帯状のアルミニウム箔の表面に正極活物質を担持させ、負極1bは帯状の銅箔の表面に負極活物質を担持させたものである。
【0017】
上記正極1aの正極活物質には、高エネルギー密度化を図るために、リチウム・ニッケル・コバルト系複合酸化物が用いられている。ただし、このリチウム・ニッケル・コバルト系複合酸化物を用いた正極活物質は、一般にリチウム・コバルト系複合酸化物等を用いたものに比べ熱安定性が劣るため、マグネシウム(Mg)、アルミニウム(Al)、マンガン(Mn)、チタン(Ti)、タングステン(W)、ホウ素(Mo)又はニオブ(Nb)の元素を添加することにより、この熱安定性の向上を図るようにしている。実際に、これらの元素を添加したリチウム・ニッケル・コバルト系複合酸化物を走査型示差熱分析(DSC)で検査すると、発熱開始時期を高温側に推移させると共に発熱量を抑制できることが確認できる。しかも、添加する元素の量が多いほど、この熱安定性は向上するが、逆に本来の目的であるエネルギー密度は低下するので、これらを比較考量の上で、所定の範囲内の添加量に定める必要がある。即ち、本実施形態では、リチウム(Li)・ニッケル(Ni)・コバルト(Co)系複合酸化物の一般式を
LiNiCo
とした場合に、元素MをMg、Al、Mn、Ti、W、Mo、B、Nbから選ばれる少なくとも1種の元素とし、これらの組成を、
0≦a≦1.1
O.7≦b≦0.9
0.1≦c≦0.3
0.03≦d≦0.1(元素Mの添加量)
(ただし、b+c+d=1)
の範囲内とした。
【0018】
上記負極1bの負極活物質には、炭素材料が用いられる。これらの正極1aと負極1bは、それぞれ帯状の側端部に活物質を塗布しない未塗工部を設けておき、この未塗工部でアルミニウム箔や銅箔が露出するようにする。そして、これらの正極1aと負極1bを巻回する際に、活物質の未塗工部が巻回軸方向の互いに反対方向になるようにすると共に、これら両側端部の活物質の未塗工部がより外側に配置されるようにずらして巻回することにより、長円筒形の一方(図示右下)の端面には正極1aの側端部のアルミニウム箔のみがはみ出し、他方(図示左上)の端面には負極1bの側端部の銅箔のみがはみ出すようにしている。また、本実施形態では、発電要素1の最外周にセパレータ1cを巻回しているので、これらのアルミニウム箔や銅箔は、このセパレータ1cの両側端部からはみ出すことになる。
【0019】
上記2個の発電要素1,1は、長円筒形の平坦な側面同士が直立して重なり合うように横置きに並べられる。そして、これら2個の発電要素1,1の両端部にそれぞれ集電接続板2,2が配置されている。集電接続板2,2は、発電要素1の一方の端部に配置する正極側のものはアルミニウム合金板からなり、他方の端部に配置する負極側のものは銅合金板からなる。各集電接続板2は、ほぼ台形状の水平に配置された本体2aと、この本体2aの台形状の底辺部から下方に向けて櫛歯状に突設された4本の細長い接続板部2bとからなる。そして、各発電要素1は、一方の端面から長円筒形にはみ出す正極1aのアルミニウム箔の直線部を巻回軸を中心にして左右に二等分すると共に、これら分割されたアルミニウム箔の重なり合ったものをそれぞれ接続板部2bに沿わせて両側を挟持板3で挟み、この挟持板3の両側から超音波溶接を行うことにより、これら正極1aのアルミニウム箔を接続板部2bに接続固定する。従って、各発電要素1に巻回された正極1aは、一方の端面からはみ出したアルミニウム箔が長円筒形の双方の直線部で半周ごとに集電接続板2の接続板部2bに接続固定されることになる。また、各発電要素1の他方の端面から長円筒形にはみ出す負極1bの銅箔も、同様にして挟持板3に挟持されて接続板部2bに超音波溶接により接続固定される。従って、各発電要素1に巻回された負極1bも、他方の端面からはみ出した銅箔が長円筒形の双方の直線部で半周ごとに集電接続板2の接続板部2bに接続固定されることになる。
【0020】
上記2個の発電要素1,1の両端部に配置された集電接続板2,2は、図1に示すように、本体2a,2aに蓋板4を介して正極端子5と負極端子6が接続固定されている。蓋板4は、矩形のアルミニウム合金板であり、一方の端部の下面に正極側の集電接続板2の本体2aが密着した状態で、正極端子5の下端部がこれら蓋板4と本体2aを上方より貫通し下方からかしめられることにより接続固定される。従って、発電要素1,1の正極1a,1aは、一方の集電接続板2を介して正極端子5に接続固定されると共に、蓋板4にも接続固定されることになる。また、この蓋板4の他方の端部には、負極端子6がセラミックリング7を介して封止貫通して絶縁固定されると共に、下面に絶縁板8を介して集電接続板2の本体2aが配置される。そして、この蓋板4の下方に突出する負極端子6の下端部が、これら絶縁板8と本体2aを貫通して下方からかしめられることにより接続固定される。従って、発電要素1,1の負極1b,1bは、他方の集電接続板2を介して負極端子6に接続固定されるが、蓋板4との間はセラミックリング7と絶縁板8とによって絶縁されることになる。なお、これら正負極の端子5,6の下端部を蓋板4を介して集電接続板2,2の本体2a,2aにかしめる作業は、これらの集電接続板2,2の接続板部2bに発電要素1,1の正極1aと負極1bの金属箔を接続固定する工程の前に行われる。
【0021】
上記のようにして集電接続板2,2や端子5,6により蓋板4の下方に取り付けられた発電要素1,1は、アルミニウム合金材からなる筐体状の電池容器9に収納される。また、この電池容器9の上端開口部に蓋板4を嵌め込んで周囲を溶接により封着することにより、発電要素1,1を収納する電池ケースが構成される。そして、この電池ケース内に電解液が充填されて図示しない注液口が封口されることにより非水電解質二次電池となる。この際、電池ケースを構成するアルミニウム合金製の電池容器9と蓋板4は、正極端子5と同電位となる。
【0022】
上記構成によれば、2個の発電要素1,1の正極1a,1aが巻回の半周ごとに一方の端面側にはみ出したアルミニウム箔によって集電接続板2の接続板部2bに接続固定されるので、これらの正極1a,1aで発生した熱を巻回の内外周から効率よくアルミニウム合金板からなる集電接続板2に伝えることができるようになる。しかも、この正極側の集電接続板2は、本体2aがアルミニウム合金製の蓋板4の下面に密着すると共に、正極端子5にかしめられて接続固定されるので、正極1aの熱がこの集電接続板2を介して効率よく蓋板4から電池容器9に伝わり、これら電池ケースを構成する蓋板4と電池容器9を通じて外部に放熱させることができるようになる。従って、正極1aの正極活物質に熱安定性の劣るリチウム・ニッケル・コバルト系複合酸化物を用いた本実施形態の非水電解質二次電池の場合にも、この正極1aで発生した熱を効率よく電池ケースに伝え外部に放熱することができるので、この電池ケースをヒートシンクとして有効に利用することにより、短絡時や過充電時に熱逸走を起こすのを抑制して電池の異常な温度上昇を防止することができるようになる。
【0023】
従来の大型の非水電解質二次電池でも、発電要素1の正極1aの内外周に集電接続板2を接続固定して集電を行うものはあった。しかしながら、このような大型電池は、電池ケースが端子電位を持つと、蓄積エネルギーが大きいために取り扱いに注意が必要となるので、本実施形態の負極側の場合と同様に、正極側の集電接続板2や正極端子5を蓋板4とは絶縁して、この電池ケースが端子電位を持つことがないようにしていた。従って、従来の大型の非水電解質二次電池は、正極1aで発生した熱が集電接続板2を介して正極端子5にしか効率よく伝導せず、表面積の大きい電池ケースをヒートシンクとして利用することができなかった。また、従来の小型の非水電解質二次電池には、発電要素1の正極1aのアルミニウム箔を電池ケースの内面に接触させたり、このアルミニウム箔を接続固定した集電接続板2を電池ケースの内面に接続固定したものはあった。しかしながら、このような小型電池は、正極1aの巻回の最外周の部分だけが電池ケースの内面に接触したり集電接続板2を介して接続固定されるので、正極1aの巻回の内周部分で発生した熱を効率よく電池ケースに伝えることはできなかった。これに対して、本実施形態の非水電解質二次電池は、発電要素1の正極1aの内外周から集電接続板2や正極端子5を介して電池ケースに熱を効率よく伝えることができるので、この電池ケースをヒートシンクとして有効に活用することができるようになる。従って、正極1aの内周部分で発生した熱を効率よく放熱させる必要のある大型電池の場合に特に有効なものとなる。また、このような大型電池の場合には、蓄積エネルギーが大きくなるので、電池ケースが正極1aの電位を持つと取り扱いに注意が必要となるが、熱を十分に通す絶縁性の樹脂シートでこの電池ケースを覆ったり、組電池にして周囲を樹脂製の枠体で囲むようにすることにより、この取り扱い上の不便を容易に解消することができる。
【0024】
なお、上記実施形態では、各発電要素1の最外周にはセパレータ1cが巻回されている場合を示したが、この最外周に正極1aを巻回しておき、これらの発電要素1を絶縁材を介することなく直接電池容器9に収納することもできる。この場合、正極1aの最外周面がアルミニウム合金製の電池容器9の内面に直接接触するので、この正極1aで発生した熱を、側端部に接続固定された集電接続板2を介することなく、直接電池ケースに効率よく伝えることができるようになる。この際、正極1aは、最外周面にアルミニウム箔が露出するようにして巻回することにより、正極活物質を介することなく、熱をさらに効率よく電池容器9に伝えるようにすることが好ましい。しかも、非水電解質二次電池の正極1aの正極活物質は、負極1bの負極活物質と対向していないと、充放電の繰り返しにより電析が発生するおそれがあるので、そのためにも正極1aの最外周面には正極活物質を塗布しないことが好ましい。また、このように発電要素1の最外周に正極1aを巻回した場合、この正極1aの外周端部を電池容器9の内面に溶接によって接続固定するようにしてもよい。非水電解質二次電池は、使用に伴ってガスの発生等により内圧が高まって電池容器9が膨らむことがあるので、最外周の正極1aが電池容器9の内面に接触しているだけの場合には、この接触が離れて熱をほとんど伝えることができないようになるおそれがあるが、このように電池容器9の内面に溶接によって接続固定されていれば、確実に正極1aの熱を伝えることができるようになる。
【0025】
また、上記実施形態では、集電接続板2の本体2aが正極端子5と蓋板4にかしめによって接続固定される場合を示したが、溶接等の他の方法によって接続固定することもできる。さらに、正極端子5と蓋板4は、同時に集電接続板2に接続固定される必要はなく、集電接続板2を接続固定した正極端子5が他の部位で蓋板4に接続固定されるようになっていてもよい。さらに、蓋板4や電池容器9は、そのまま正極の端子となり得るので、正極端子5を省いて、集電接続板2を直接蓋板4や電池容器9に接続固定することもできる。この場合、蓋板4の上面に、内部には貫通しない正極端子5を接続固定するようにしてもよい。さらに、電池ケースの構成は任意であり、電池容器9の上端開口部を蓋板4で塞いだ構成には限定されない。また、上記実施形態では、ヒートシンクとして用いる電池ケースの熱伝導性を高めるために、蓋板4と電池容器9とをアルミニウム合金製としたが、ステンレス鋼等の他の金属製の電池ケースを用いることもできる。さらに、上記実施形態では、本体2aの端部から4本の接続板部2bを櫛歯状に突設した集電接続板2を示したが、必ずしも板状である必要はなく、発電要素1の正極1aや負極1bと端子5,6との間を接続するものであれば、どのような構成の集電接続体を用いてもよい。
【0026】
また、上記実施形態では、発電要素1の正極1aに集電接続体を介して電池ケースや正極端子5が接続固定される場合を示したが、このような集電接続体を用いる代わりに、発電要素1の最外周に巻回された正極1aを電池ケースの内面に直接接触させると共に、この接触部の一部又は全部を電池ケースの内面に溶接により接続固定するようにしてもよい(請求項1)。この場合、発電要素1の内周部分で発生した熱を効率よく放出することにはならないが、上記のように、発電要素1の最外周から効率よく放熱すると共に、従来の小型の非水電解質二次電池とは異なり、電池の使用に伴って電池ケースが膨らんだ場合にも、この正極1aと電池ケースの接続は維持されるので、放熱を確実に行うことができるようになる。
【0027】
また、上記実施形態では、リチウム・ニッケル・コバルト系複合酸化物を正極1aの正極活物質として用いた非水電解質二次電池について示したが、他の正極活物質を用いた非水電解質二次電池にも同様に実施可能である。高エネルギー密度化を図るために熱安定性に劣るリチウム・ニッケル・コバルト系複合酸化物を用いた場合、正極1aの熱逸走を確実に防止する必要があるが、これよりも熱安定性の高いリチウム・コバルト系複合酸化物等を用いた場合にも、放熱効率が悪ければ正極1aが熱逸走を起こすおそれはあるので、本発明により電池ケースをヒートシンクとして有効に利用することができる。さらに、負極1bにおいても発熱は生じ得るので、上記正極1aを負極1bに代えた構成とすることもできる。
【0028】
また、上記実施形態では、長円筒形に巻回された発電要素1を用いる場合を示したが、巻回の形状は任意であり、円筒形等であってもよい。さらに、2個の発電要素1,1を並列接続した非水電解質二次電池を示したが、この発電要素1の個数も任意である。さらに、上記実施形態では、大型の非水電解質二次電池について示したが、本発明は必ずしも大型の電池に限らず、電池の種類も非水電解質二次電池に限らない。即ち、本発明は、巻回型の発電要素1の電極からの放熱が必要となる全ての電池に実施可能である。
【0029】
【発明の効果】
以上の説明から明らかなように、本発明の非水電解質二次電池によれば、発電要素の最外周に巻回された電極から電池ケースに熱が直接伝わるので、この電極から電池ケース外部への放熱効率を向上させて、この電池の異常な温度上昇を防止することができるようになる。また、本発明の非水電解質二次電池によれば、発電要素の内外周の複数箇所から集電接続体や端子を介して電池ケースに熱が効率よく伝わるので、この電極から電池ケース外部への放熱効率を向上させて、この電池の異常な温度上昇を防止することができるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すものであって、非水電解質二次電池の構造を示す組み立て斜視図である。
【図2】本発明の一実施形態を示すものであって、非水電解質二次電池の発電要素の電極と集電接続板と端子との接続構造を示す組み立て斜視図である。
【符号の説明】
1  発電要素
1a 正極
1b 負極
1c セパレータ
2  集電接続板
4  蓋板
5  正極端子
6  負極端子
9  電池容器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonaqueous electrolyte secondary battery in which a power generation element in which a positive electrode and a negative electrode are wound via a separator is housed in a metal battery case.
[0002]
[Prior art]
Until now, non-aqueous electrolyte secondary batteries generally used a lithium-cobalt-based composite oxide or a lithium-manganese-based composite oxide as a lithium-containing composite oxide as a positive electrode active material. However, recently, in order to further increase the energy density, use of a lithium-nickel-cobalt-based composite oxide has been studied. Comparing the energy per unit weight (energy density) of these lithium-containing composite oxides, the energy density of the lithium-manganese composite oxide is the smallest, and then the energy density of the lithium-cobalt composite oxide is Is slightly larger, and the energy density of the lithium-nickel-cobalt-based composite oxide is sufficiently higher than these.
[0003]
[Problems to be solved by the invention]
However, this lithium-nickel-cobalt-based composite oxide has a disadvantage that it is inferior in thermal stability to lithium-cobalt-based composite oxide and lithium-manganese-based composite oxide. That is, since the lithium-nickel-cobalt-based composite oxide has the lowest exothermic onset temperature and the largest calorific value among these lithium-containing composite oxides, when used as a positive electrode active material, the nonaqueous electrolyte When the secondary battery is short-circuited or overcharged, thermal runaway easily occurs. For this reason, in addition to making improvements to improve the thermal stability of the lithium-nickel-cobalt-based composite oxide material itself, use a structure that efficiently discharges heat from the positive electrode in the power generation element to the outside of the battery. Therefore, there is a problem that it is necessary to prevent the occurrence of thermal runaway.
[0004]
The demand for efficient heat dissipation is not limited to the case where a lithium-nickel-cobalt-based composite oxide is used as the positive electrode active material to increase the energy density, but also to other nonaqueous electrolyte secondary batteries. Is also common, and heat dissipation is not limited to the positive electrode.
[0005]
The present invention has been made in order to cope with such circumstances, and a non-aqueous electrolyte secondary battery capable of efficiently transmitting heat generated at an electrode of a power generating element to a metal battery case and releasing the heat to the outside. It is intended to provide.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 is a non-aqueous electrolyte secondary battery in which a power generating element in which a positive electrode and a negative electrode are wound via a separator is housed in a metal battery case. The electrode directly contacts the inner surface of the battery case, and a part or all of the contact portion is connected and fixed to the inner surface of the battery case by welding.
[0007]
According to the first aspect of the present invention, since the outermost electrode of the power generating element is in contact with the battery case and is fixedly connected thereto, the heat generated at this electrode is directly transmitted to the metal battery case, and a large area is generated. It is efficiently released to the outside. Therefore, the battery case actively serves as a heat sink, and it is possible to prevent the battery from becoming abnormally high temperature due to the heat generated by the electrodes. In addition, when the battery case swells due to an increase in internal pressure due to the use of the battery, if the outermost electrode of the power generating element simply contacts the inner surface of the battery case, the electrode is separated from the inner surface of the battery case. There is a risk. However, according to the first aspect of the present invention, the outermost electrode of the power generation element not only comes into contact with the inner surface of the battery case but also is securely connected and fixed by welding. Are not separated, and the heat generated by the electrodes can be reliably radiated from the battery case.
[0008]
Since the metal battery case functions as a terminal having the polarity of an electrode connected and fixed to the inner surface, it is not always necessary to use a current collector connected between the electrode and the terminal. However, in the case of a large non-aqueous electrolyte secondary battery, current collection only from the outermost periphery of the electrode causes the internal resistance to be too large. It is also preferable to collect current.
[0009]
In a non-aqueous electrolyte secondary battery in which a power generation element in which a positive electrode and a negative electrode are wound via a separator is housed in a metal battery case, any one of positive and negative electrodes wound around the power generation element is provided. Are connected and fixed to the current collecting connector at a plurality of locations on the inner and outer circumferences of the winding of the electrode, and the current collecting connector is connected and fixed to the inner surface of the battery case, or a terminal connected and fixed to the battery case. Is fixedly connected.
[0010]
According to the second aspect of the present invention, since a plurality of locations on the inner and outer peripheries of the electrodes of the power generating element are connected and fixed to the battery case via the current collectors and the terminals, the heat generated at the electrodes is efficiently made of metal. The battery case is transmitted to the outside from a large area. Therefore, the battery case actively serves as a heat sink, and it is possible to prevent the battery from becoming abnormally high temperature due to the heat generated by the electrodes.
[0011]
According to the second aspect of the present invention, the electrodes connected and fixed to the current collector at a plurality of locations on the inner and outer circumferences of the winding are wound around the outermost circumference of the power generating element, and the outermost electrodes are mounted on the inner surface of the battery case. It can also be stored so as to make direct contact. In this case, not only are the electrodes of the power generating element connected and fixed to the battery case via the current collectors and terminals, but also the electrode wound on the outermost periphery comes into direct contact with the battery case. The heat generated in the above is directly transmitted to the metal battery case, so that the heat radiation efficiency can be further improved. Moreover, it is preferable that at least a part of the outermost electrode is connected and fixed to the inner surface of the battery case by welding. With this configuration, the electrode wound around the outermost periphery of the power generating element not only comes into contact with the battery case but also is fixedly connected to the battery case, so that the heat radiation efficiency can be further improved. In addition, when the battery case swells due to an increase in internal pressure due to the use of the battery, if the outermost electrode of the power generating element simply contacts the inner surface of the battery case, the electrode is separated from the inner surface of the battery case. There is a risk. However, if the outermost electrode of the power generation element is connected and fixed to the inner surface of the battery case, even if the battery case swells, the electrodes will not separate, and the heat generated by this electrode will be lost. Heat can be reliably dissipated from the battery case.
[0012]
In the first or second aspect, as shown in the prior art, a positive electrode using a lithium-nickel-cobalt-based composite oxide having particularly low thermal stability as a positive electrode active material is directly connected and fixed to a battery case. It is preferable to connect and fix the battery case to the battery case via an electrical connector or a terminal. When such a positive electrode active material is used, it is preferable to use a carbon material as the negative electrode active material of the negative electrode.
[0013]
In the above claim 1 or 2, when the electrode is one in which an active material is carried on the surface of a current collecting base material such as a metal foil, the active material is used in order to further improve the thermal conductivity. It is preferable that the surface portion of the current collecting base material that is not carried is brought into contact with the inner surface of the battery case and fixedly connected thereto, and that the exposed portion of the current collecting base material is fixedly connected to the current collecting connector. Is preferred.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
1 and 2 show an embodiment of the present invention. FIG. 1 is an assembled perspective view showing a structure of a non-aqueous electrolyte secondary battery. FIG. 2 is an electrode of a power generating element of the non-aqueous electrolyte secondary battery. FIG. 3 is an assembled perspective view showing a connection structure between a power supply connection plate and a terminal.
[0016]
In this embodiment, a large non-aqueous electrolyte secondary battery used for an EV (electric vehicle) or the like will be described. As shown in FIG. 2, the nonaqueous electrolyte secondary battery is configured by arranging two long cylindrical wound-type power generating elements 1 and 1 in parallel. Each power generating element 1 is obtained by winding a positive electrode 1a and a negative electrode 1b in a long cylindrical shape via a separator 1c. The positive electrode 1a has a positive electrode active material carried on the surface of a belt-like aluminum foil, and the negative electrode 1b has a belt-like shape. The negative electrode active material is supported on the surface of a copper foil.
[0017]
As the positive electrode active material of the positive electrode 1a, a lithium-nickel-cobalt-based composite oxide is used in order to increase the energy density. However, since the positive electrode active material using the lithium-nickel-cobalt-based composite oxide generally has lower thermal stability than that using the lithium-cobalt-based composite oxide or the like, magnesium (Mg), aluminum (Al) ), Manganese (Mn), titanium (Ti), tungsten (W), boron (Mo) or niobium (Nb) to improve the thermal stability. Actually, when the lithium-nickel-cobalt-based composite oxide to which these elements are added is inspected by scanning differential thermal analysis (DSC), it can be confirmed that the heat generation start time is shifted to a high temperature side and the heat generation can be suppressed. In addition, the greater the amount of the element to be added, the more the thermal stability is improved, but on the contrary, the energy density, which is the original purpose, is reduced. Must be determined. That is, in the present embodiment, the general formula of the lithium (Li) / nickel (Ni) / cobalt (Co) -based composite oxide is Li a Ni b Co c M d O 2.
In this case, the element M is at least one element selected from Mg, Al, Mn, Ti, W, Mo, B, and Nb.
0 ≦ a ≦ 1.1
O. 7 ≦ b ≦ 0.9
0.1 ≦ c ≦ 0.3
0.03 ≦ d ≦ 0.1 (addition amount of element M)
(However, b + c + d = 1)
Within the range.
[0018]
As the negative electrode active material of the negative electrode 1b, a carbon material is used. Each of the positive electrode 1a and the negative electrode 1b is provided with an uncoated portion to which the active material is not applied at a band-shaped side end, and an aluminum foil or a copper foil is exposed at the uncoated portion. When the positive electrode 1a and the negative electrode 1b are wound, the uncoated portions of the active material are arranged in opposite directions in the winding axis direction. The aluminum foil at the side end of the positive electrode 1a protrudes from the end face of one of the long cylindrical shapes (lower right in the figure) and the other (upper left in the figure) Only the copper foil on the side end of the negative electrode 1b protrudes from the end surface of the negative electrode 1b. In the present embodiment, since the separator 1c is wound around the outermost periphery of the power generation element 1, these aluminum foils and copper foils protrude from both side ends of the separator 1c.
[0019]
The two power generating elements 1 and 1 are arranged side by side so that the long side surfaces of the long cylindrical shape are upright and overlap each other. Then, current collecting connection plates 2 and 2 are arranged at both ends of these two power generating elements 1 and 1, respectively. The collector connection plates 2 and 2 are arranged at one end of the power generating element 1 on the positive electrode side of an aluminum alloy plate, and arranged on the other end of the power generation element 1 on a negative electrode side of a copper alloy plate. Each of the current collecting connecting plates 2 has a substantially trapezoidal horizontally arranged main body 2a and four elongated connecting plate portions projecting downward from the bottom of the trapezoidal shape of the main body 2a in a comb shape. 2b. Each of the power generating elements 1 divides a straight portion of the aluminum foil of the positive electrode 1a protruding from one end face into a long cylindrical shape into two right and left parts around the winding axis and overlaps the divided aluminum foils. The aluminum foil of the positive electrode 1a is connected and fixed to the connection plate portion 2b by sandwiching the both sides with the holding plate 3 along the connecting plate portion 2b and performing ultrasonic welding from both sides of the holding plate 3. Therefore, the positive electrode 1a wound around each power generating element 1 is connected and fixed to the connecting plate portion 2b of the current collecting connecting plate 2 for each half circumference of the aluminum foil protruding from one end face at both straight portions of the long cylindrical shape. Will be. Similarly, the copper foil of the negative electrode 1b protruding from the other end face of each power generating element 1 into a long cylindrical shape is similarly sandwiched by the sandwiching plate 3 and connected and fixed to the connection plate portion 2b by ultrasonic welding. Therefore, the negative electrode 1b wound around each power generating element 1 is also connected and fixed to the connecting plate portion 2b of the current collecting connecting plate 2 for each half circumference of the copper foil protruding from the other end face at both straight portions of the long cylindrical shape. Will be.
[0020]
As shown in FIG. 1, the current collecting connecting plates 2 and 2 disposed at both ends of the two power generating elements 1 and 1 are connected to the main bodies 2a and 2a via the lid plate 4 with the positive terminal 5 and the negative terminal 6 respectively. Is fixedly connected. The lid plate 4 is a rectangular aluminum alloy plate, and the lower end of the positive electrode terminal 5 is in contact with the lid plate 4 and the main body 2a in a state where the main body 2a of the current collector connection plate 2 on the positive electrode side is in close contact with the lower surface of one end. Connection is fixed by penetrating from above from 2a and caulking from below. Therefore, the positive electrodes 1a, 1a of the power generation elements 1, 1 are connected and fixed to the positive electrode terminal 5 via one current collector connection plate 2, and are also connected and fixed to the cover plate 4. At the other end of the cover plate 4, a negative electrode terminal 6 is sealed and penetrated through a ceramic ring 7 to be insulated and fixed, and on the lower surface of the current collector connection plate 2 via an insulating plate 8. 2a is arranged. The lower end of the negative electrode terminal 6 projecting below the cover plate 4 penetrates the insulating plate 8 and the main body 2a and is caulked from below to be connected and fixed. Therefore, the negative electrodes 1 b and 1 b of the power generating elements 1 and 1 are connected and fixed to the negative electrode terminal 6 via the other current collecting connection plate 2, but the space between the negative electrode 1 b and the cover plate 4 is formed by the ceramic ring 7 and the insulating plate 8. It will be insulated. The work of caulking the lower ends of the positive and negative terminals 5 and 6 to the main bodies 2a and 2a of the current collecting connection plates 2 and 2 via the cover plate 4 is performed by connecting the current collecting connection plates 2 and 2 to each other. This is performed before the step of connecting and fixing the positive electrode 1a and the metal foil of the negative electrode 1b of the power generating elements 1 and 1 to the portion 2b.
[0021]
The power generating elements 1, 1 attached below the cover plate 4 by the current collecting connection plates 2, 2 and the terminals 5, 6 as described above are housed in a housing-shaped battery container 9 made of an aluminum alloy material. . Further, a battery case for housing the power generation elements 1 and 1 is formed by fitting the lid plate 4 into the upper end opening of the battery container 9 and sealing the periphery by welding. Then, the battery case is filled with an electrolytic solution, and a liquid inlet (not shown) is sealed to form a non-aqueous electrolyte secondary battery. At this time, the battery case 9 made of an aluminum alloy and the cover plate 4 constituting the battery case have the same potential as the positive electrode terminal 5.
[0022]
According to the above configuration, the positive electrodes 1a, 1a of the two power generating elements 1, 1 are connected and fixed to the connecting plate portion 2b of the current collecting connecting plate 2 by the aluminum foil protruding to one end surface every half turn of the winding. Therefore, the heat generated in these positive electrodes 1a, 1a can be efficiently transmitted from the inner and outer peripheries of the winding to the current collecting and connecting plate 2 made of an aluminum alloy plate. In addition, since the main body 2a is tightly attached to the lower surface of the lid plate 4 made of an aluminum alloy, the current collecting connecting plate 2 on the positive electrode side is caulked to the positive electrode terminal 5 and fixedly connected. The power is efficiently transmitted from the cover plate 4 to the battery case 9 via the power connection plate 2, and the heat can be radiated to the outside through the cover plate 4 and the battery case 9 constituting these battery cases. Therefore, even in the case of the nonaqueous electrolyte secondary battery of the present embodiment in which the lithium-nickel-cobalt-based composite oxide having poor thermal stability is used as the positive electrode active material of the positive electrode 1a, the heat generated in the positive electrode 1a is efficiently used. The battery case can be transmitted to the outside and heat can be radiated to the outside, so by effectively using this battery case as a heat sink, it is possible to prevent thermal runaway during a short circuit or overcharge and prevent abnormal temperature rise of the battery. Will be able to
[0023]
In some conventional large non-aqueous electrolyte secondary batteries, a current collector connecting plate 2 is connected and fixed to the inner and outer peripheries of the positive electrode 1a of the power generating element 1 to collect power. However, if such a large battery has a terminal potential in the battery case, it needs to be handled with care because the stored energy is large. Therefore, similarly to the case of the negative electrode of this embodiment, the current collection of the positive electrode is performed. The connection plate 2 and the positive electrode terminal 5 were insulated from the cover plate 4 so that this battery case did not have a terminal potential. Therefore, in the conventional large non-aqueous electrolyte secondary battery, heat generated in the positive electrode 1a is efficiently conducted only to the positive electrode terminal 5 via the current collecting connection plate 2, and a battery case having a large surface area is used as a heat sink. I couldn't do that. Further, in the conventional small non-aqueous electrolyte secondary battery, an aluminum foil of the positive electrode 1a of the power generating element 1 is brought into contact with the inner surface of the battery case, or a current collecting connection plate 2 to which the aluminum foil is connected and fixed is attached to the battery case. Some were fixedly connected to the inner surface. However, in such a small battery, only the outermost portion of the winding of the positive electrode 1a contacts the inner surface of the battery case or is connected and fixed via the current collecting connection plate 2, so that the The heat generated in the periphery could not be efficiently transmitted to the battery case. On the other hand, in the nonaqueous electrolyte secondary battery of the present embodiment, heat can be efficiently transmitted from the inner and outer peripheries of the positive electrode 1a of the power generating element 1 to the battery case via the current collecting connection plate 2 and the positive electrode terminal 5. Therefore, the battery case can be effectively used as a heat sink. Therefore, this is particularly effective in the case of a large battery that needs to efficiently radiate the heat generated in the inner peripheral portion of the positive electrode 1a. In addition, in the case of such a large battery, since the stored energy becomes large, care must be taken when the battery case has the potential of the positive electrode 1a. This inconvenience in handling can be easily eliminated by covering the battery case or forming a battery pack to surround the periphery with a resin frame.
[0024]
In the above embodiment, the case where the separator 1c is wound around the outermost periphery of each power generating element 1 is shown. However, the positive electrode 1a is wound around the outermost periphery, and these power generating elements 1 are made of an insulating material. It can also be stored directly in the battery container 9 without going through. In this case, since the outermost peripheral surface of the positive electrode 1a is in direct contact with the inner surface of the battery container 9 made of an aluminum alloy, the heat generated in the positive electrode 1a is transmitted through the current collecting connecting plate 2 connected and fixed to the side end. Instead, it can be efficiently transmitted directly to the battery case. At this time, it is preferable that the positive electrode 1a is wound so that the aluminum foil is exposed on the outermost peripheral surface, so that heat is more efficiently transmitted to the battery case 9 without the intervention of the positive electrode active material. Moreover, if the positive electrode active material of the positive electrode 1a of the nonaqueous electrolyte secondary battery does not face the negative electrode active material of the negative electrode 1b, electrodeposition may occur due to repetition of charge and discharge. It is preferable not to apply the positive electrode active material to the outermost peripheral surface of the above. When the positive electrode 1a is wound around the outermost periphery of the power generating element 1, the outer peripheral end of the positive electrode 1a may be connected and fixed to the inner surface of the battery container 9 by welding. Since the internal pressure of the nonaqueous electrolyte secondary battery increases due to the generation of gas or the like during use, the battery container 9 may swell. Therefore, the case where only the outermost positive electrode 1a is in contact with the inner surface of the battery container 9 In this case, there is a possibility that this contact is separated and heat can hardly be transmitted. However, if the battery is connected and fixed to the inner surface of the battery container 9 by welding, the heat of the positive electrode 1a can be reliably transmitted. Will be able to
[0025]
Further, in the above-described embodiment, the case where the main body 2a of the current collecting connection plate 2 is connected and fixed to the positive electrode terminal 5 and the cover plate 4 by caulking is shown, but the connection and fixing may be performed by another method such as welding. Further, the positive electrode terminal 5 and the cover plate 4 do not need to be connected and fixed to the current collecting and connecting plate 2 at the same time, and the positive terminal 5 to which the current collecting and connecting plate 2 is connected and fixed is connected and fixed to the cover plate 4 at another portion. It may be so. Further, since the cover plate 4 and the battery container 9 can be used as the positive electrode terminals as they are, the current collector connection plate 2 can be directly connected and fixed to the cover plate 4 or the battery container 9 without the positive electrode terminal 5. In this case, the positive electrode terminal 5 that does not penetrate inside may be connected and fixed to the upper surface of the lid plate 4. Further, the configuration of the battery case is arbitrary, and is not limited to the configuration in which the upper end opening of the battery container 9 is closed by the cover plate 4. In the above embodiment, the lid plate 4 and the battery case 9 are made of an aluminum alloy in order to increase the thermal conductivity of the battery case used as a heat sink. However, a battery case made of another metal such as stainless steel is used. You can also. Further, in the above-described embodiment, the current collector connecting plate 2 in which four connecting plate portions 2b are protruded in a comb-like shape from the end of the main body 2a is shown. Any structure may be used as long as it connects between the positive electrode 1a or the negative electrode 1b and the terminals 5 and 6.
[0026]
Further, in the above-described embodiment, the case where the battery case and the positive electrode terminal 5 are connected and fixed to the positive electrode 1a of the power generating element 1 via the current collecting connector is shown, but instead of using such a current collecting connector, The positive electrode 1a wound around the outermost periphery of the power generating element 1 may be brought into direct contact with the inner surface of the battery case, and a part or all of the contact portion may be connected and fixed to the inner surface of the battery case by welding. Item 1). In this case, the heat generated in the inner peripheral portion of the power generating element 1 is not efficiently released, but as described above, the heat is efficiently radiated from the outermost periphery of the power generating element 1 and the conventional small non-aqueous electrolyte is used. Unlike the secondary battery, even when the battery case swells with the use of the battery, the connection between the positive electrode 1a and the battery case is maintained, so that the heat can be reliably dissipated.
[0027]
Further, in the above embodiment, the non-aqueous electrolyte secondary battery using the lithium-nickel-cobalt-based composite oxide as the positive electrode active material of the positive electrode 1a was described, but the non-aqueous electrolyte secondary battery using another positive electrode active material was used. The present invention can be similarly applied to a battery. When a lithium-nickel-cobalt-based composite oxide having poor thermal stability is used in order to increase the energy density, it is necessary to surely prevent the thermal escape of the positive electrode 1a, but the thermal stability is higher than this. Even when a lithium-cobalt-based composite oxide or the like is used, if the heat radiation efficiency is poor, the positive electrode 1a may cause thermal runaway. Therefore, according to the present invention, the battery case can be effectively used as a heat sink. Further, since heat can also be generated in the negative electrode 1b, the negative electrode 1b can be replaced with the positive electrode 1a.
[0028]
Further, in the above embodiment, the case where the power generating element 1 wound in a long cylindrical shape is used, but the shape of the winding is arbitrary, and may be a cylindrical shape or the like. Furthermore, although the non-aqueous electrolyte secondary battery in which the two power generation elements 1 and 1 are connected in parallel is shown, the number of the power generation elements 1 is also arbitrary. Further, in the above embodiment, a large non-aqueous electrolyte secondary battery was described, but the present invention is not necessarily limited to a large battery, and the type of battery is not limited to a non-aqueous electrolyte secondary battery. That is, the present invention can be applied to all batteries that require heat radiation from the electrodes of the wound power generating element 1.
[0029]
【The invention's effect】
As is apparent from the above description, according to the nonaqueous electrolyte secondary battery of the present invention, heat is directly transmitted to the battery case from the electrode wound around the outermost periphery of the power generation element, and thus, from this electrode to the outside of the battery case. The heat dissipation efficiency of the battery can be improved, and the abnormal temperature rise of the battery can be prevented. Further, according to the non-aqueous electrolyte secondary battery of the present invention, heat is efficiently transmitted to the battery case from a plurality of locations on the inner and outer peripheries of the power generation element through the current collectors and terminals, so that the electrodes can be transferred to the outside of the battery case The heat dissipation efficiency of the battery can be improved, and the abnormal temperature rise of the battery can be prevented.
[Brief description of the drawings]
FIG. 1, showing one embodiment of the present invention, is an assembled perspective view showing a structure of a nonaqueous electrolyte secondary battery.
FIG. 2, showing an embodiment of the present invention, is an assembled perspective view showing a connection structure between an electrode of a power generation element of a non-aqueous electrolyte secondary battery, a current collecting connection plate, and a terminal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power generation element 1a Positive electrode 1b Negative electrode 1c Separator 2 Current collector connection plate 4 Cover plate 5 Positive terminal 6 Negative terminal 9 Battery container

Claims (2)

正極と負極がセパレータを介して巻回された発電要素を金属製の電池ケースに収納した非水電解質二次電池において、
発電要素の最外周に巻回された正負いずれかの電極が電池ケースの内面に直接接触すると共に、この接触部の一部又は全部が電池ケースの内面に溶接により接続固定されたことを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery containing a power generation element in which a positive electrode and a negative electrode are wound via a separator in a metal battery case,
Either the positive or negative electrode wound around the outermost periphery of the power generating element directly contacts the inner surface of the battery case, and a part or all of the contact portion is connected and fixed to the inner surface of the battery case by welding. Non-aqueous electrolyte secondary battery.
正極と負極がセパレータを介して巻回された発電要素を金属製の電池ケースに収納した非水電解質二次電池において、
発電要素に巻回された正負いずれかの電極がこの電極の巻回の内外周における複数箇所で集電接続体に接続固定されると共に、この集電接続体が電池ケースの内面に接続固定され、又は、この電池ケースに接続固定された端子に接続固定されたことを特徴とする非水電解質二次電池。
In a non-aqueous electrolyte secondary battery containing a power generation element in which a positive electrode and a negative electrode are wound via a separator in a metal battery case,
Either the positive or negative electrode wound on the power generating element is connected and fixed to the current collecting connector at a plurality of locations on the inner and outer circumferences of the winding of the electrode, and the current collecting connector is connected and fixed to the inner surface of the battery case. Or a non-aqueous electrolyte secondary battery fixedly connected to a terminal fixed to the battery case.
JP2002274502A 2002-09-20 2002-09-20 Non-aqueous electrolyte secondary battery Pending JP2004111300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274502A JP2004111300A (en) 2002-09-20 2002-09-20 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274502A JP2004111300A (en) 2002-09-20 2002-09-20 Non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2004111300A true JP2004111300A (en) 2004-04-08

Family

ID=32270953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274502A Pending JP2004111300A (en) 2002-09-20 2002-09-20 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2004111300A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100612364B1 (en) 2004-10-28 2006-08-16 삼성에스디아이 주식회사 Secondary battery
KR100612390B1 (en) * 2004-07-30 2006-08-16 삼성에스디아이 주식회사 Cap assembly, secondary battery and module thereof
JP2006228551A (en) * 2005-02-17 2006-08-31 Toyota Motor Corp Current collector terminal, and power storage device provided with the same
KR100627360B1 (en) 2004-09-24 2006-09-21 삼성에스디아이 주식회사 Plate used to collect current, secondary battery and module thereof
KR100637443B1 (en) 2005-07-05 2006-10-20 삼성에스디아이 주식회사 Secondary battery and terminal assembly using the same
KR100754919B1 (en) 2006-04-20 2007-09-03 현대에너셀 주식회사 Coupling formation of electrode plate assembly for battery
CN100365860C (en) * 2004-06-23 2008-01-30 三星Sdi株式会社 Rechargeable battery
US7745046B2 (en) 2004-06-29 2010-06-29 Samsung Sdi Co., Ltd. Secondary battery
CN101807711A (en) * 2010-05-20 2010-08-18 天津市捷威动力工业有限公司 Wrapping type power cell and manufacturing process thereof
JP2010205728A (en) * 2009-03-04 2010-09-16 Sb Limotive Co Ltd Secondary battery, and secondary battery module
JP2010212111A (en) * 2009-03-11 2010-09-24 Toyota Motor Corp Terminal structure of sealed battery
WO2010147136A1 (en) * 2009-06-17 2010-12-23 株式会社Gsユアサ Battery and method for producing battery
JP2011040391A (en) * 2009-08-14 2011-02-24 Sb Limotive Co Ltd Rechargeable battery
JP2011119265A (en) * 2009-12-07 2011-06-16 Sb Limotive Co Ltd Secondary battery
KR101116533B1 (en) 2010-01-27 2012-02-24 에스비리모티브 주식회사 Secondary battery and method of manufacturing the same
EP2458659A1 (en) * 2010-11-25 2012-05-30 SB LiMotive Co., Ltd. Rechargeable battery
WO2012105490A1 (en) * 2011-01-31 2012-08-09 株式会社Gsユアサ Electrical storage element
KR101233470B1 (en) 2011-01-25 2013-02-15 로베르트 보쉬 게엠베하 Rechargeable battery
CN103314470A (en) * 2011-01-31 2013-09-18 株式会社杰士汤浅国际 Electric storage element and method for manufacturing same
DE102013214755A1 (en) 2012-07-30 2014-02-13 Gs Yuasa International Ltd. Electric storage element and method for its production
US8753766B2 (en) 2011-02-03 2014-06-17 Gs Yuasa International Ltd. Electric storage device
US8920967B2 (en) 2011-06-17 2014-12-30 Gs Yuasa International Ltd. Electric storage element and production method thereof
US9023497B2 (en) 2011-02-18 2015-05-05 Samsung Sdi Co., Ltd. Secondary battery
WO2015159433A1 (en) * 2014-04-18 2015-10-22 日立オートモティブシステムズ株式会社 Rectangular secondary battery
US9178204B2 (en) 2009-12-07 2015-11-03 Samsung Sdi Co., Ltd. Rechargeable battery
KR20150144599A (en) * 2014-06-17 2015-12-28 삼성에스디아이 주식회사 Secondary battery
JP2016519392A (en) * 2013-03-18 2016-06-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Battery cell for battery and battery cell manufacturing method

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790311B2 (en) 2004-06-23 2010-09-07 Samsung Sdi Co., Ltd. Rechargeable battery having lead terminal extending along at least half of a circumference of an electrode assembly
CN100365860C (en) * 2004-06-23 2008-01-30 三星Sdi株式会社 Rechargeable battery
US7745046B2 (en) 2004-06-29 2010-06-29 Samsung Sdi Co., Ltd. Secondary battery
KR100612390B1 (en) * 2004-07-30 2006-08-16 삼성에스디아이 주식회사 Cap assembly, secondary battery and module thereof
KR100627360B1 (en) 2004-09-24 2006-09-21 삼성에스디아이 주식회사 Plate used to collect current, secondary battery and module thereof
US7883795B2 (en) 2004-09-24 2011-02-08 Samsung Sdi Co., Ltd. Secondary battery
KR100612364B1 (en) 2004-10-28 2006-08-16 삼성에스디아이 주식회사 Secondary battery
JP2006228551A (en) * 2005-02-17 2006-08-31 Toyota Motor Corp Current collector terminal, and power storage device provided with the same
JP4661257B2 (en) * 2005-02-17 2011-03-30 トヨタ自動車株式会社 Current collecting terminal and power storage device including the terminal
US7736797B2 (en) 2005-07-05 2010-06-15 Samsung Sdi Co., Ltd. Rechargeable battery and method of manufacturing the same
KR100637443B1 (en) 2005-07-05 2006-10-20 삼성에스디아이 주식회사 Secondary battery and terminal assembly using the same
KR100754919B1 (en) 2006-04-20 2007-09-03 현대에너셀 주식회사 Coupling formation of electrode plate assembly for battery
JP2010205728A (en) * 2009-03-04 2010-09-16 Sb Limotive Co Ltd Secondary battery, and secondary battery module
US8557418B2 (en) 2009-03-04 2013-10-15 Samsung Sdi Co., Ltd. Rechargeable battery comprising short circuit unit responsive to pressure and module thereof
JP2010212111A (en) * 2009-03-11 2010-09-24 Toyota Motor Corp Terminal structure of sealed battery
JP5500463B2 (en) * 2009-06-17 2014-05-21 株式会社Gsユアサ Battery and battery manufacturing method
WO2010147136A1 (en) * 2009-06-17 2010-12-23 株式会社Gsユアサ Battery and method for producing battery
US8932740B2 (en) 2009-06-17 2015-01-13 Gs Yuasa International Ltd. Battery cell and method of manufacturing the same
JPWO2010147136A1 (en) * 2009-06-17 2012-12-06 株式会社Gsユアサ Battery and battery manufacturing method
JP2011040391A (en) * 2009-08-14 2011-02-24 Sb Limotive Co Ltd Rechargeable battery
JP2011119265A (en) * 2009-12-07 2011-06-16 Sb Limotive Co Ltd Secondary battery
US9178204B2 (en) 2009-12-07 2015-11-03 Samsung Sdi Co., Ltd. Rechargeable battery
US8614015B2 (en) 2010-01-27 2013-12-24 Samsung Sdi Co., Ltd. Secondary battery and method of manufacturing secondary battery
KR101116533B1 (en) 2010-01-27 2012-02-24 에스비리모티브 주식회사 Secondary battery and method of manufacturing the same
CN101807711A (en) * 2010-05-20 2010-08-18 天津市捷威动力工业有限公司 Wrapping type power cell and manufacturing process thereof
EP2458659A1 (en) * 2010-11-25 2012-05-30 SB LiMotive Co., Ltd. Rechargeable battery
US8734974B2 (en) 2010-11-25 2014-05-27 Samsung Sdi Co., Ltd. Rechargeable battery
US8728644B2 (en) 2011-01-25 2014-05-20 Samsung Sdi Co., Ltd. Rechargeable battery
KR101233470B1 (en) 2011-01-25 2013-02-15 로베르트 보쉬 게엠베하 Rechargeable battery
CN103314470A (en) * 2011-01-31 2013-09-18 株式会社杰士汤浅国际 Electric storage element and method for manufacturing same
WO2012105490A1 (en) * 2011-01-31 2012-08-09 株式会社Gsユアサ Electrical storage element
KR20140004672A (en) 2011-01-31 2014-01-13 가부시키가이샤 지에스 유아사 Electric storage element and method for manufacturing same
US20130316225A1 (en) * 2011-01-31 2013-11-28 Gs Yuasa International, Ltd. Electric storage element and method for manufacturing the same
DE112012000620T5 (en) 2011-01-31 2013-11-07 Gs Yuasa International Ltd. Electric storage element and method for its production
EP2672551A4 (en) * 2011-01-31 2016-11-02 Gs Yuasa Int Ltd Electrical storage element
CN103329312A (en) * 2011-01-31 2013-09-25 株式会社杰士汤浅国际 Electrical storage element
US9166219B2 (en) 2011-01-31 2015-10-20 Gs Yuasa International Ltd. Electric storage device
US9379370B2 (en) 2011-01-31 2016-06-28 Gs Yuasa International Ltd. Electric storage element and method for manufacturing the same
US8753766B2 (en) 2011-02-03 2014-06-17 Gs Yuasa International Ltd. Electric storage device
US9023497B2 (en) 2011-02-18 2015-05-05 Samsung Sdi Co., Ltd. Secondary battery
US8920967B2 (en) 2011-06-17 2014-12-30 Gs Yuasa International Ltd. Electric storage element and production method thereof
DE102013214755A1 (en) 2012-07-30 2014-02-13 Gs Yuasa International Ltd. Electric storage element and method for its production
JP2016519392A (en) * 2013-03-18 2016-06-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Battery cell for battery and battery cell manufacturing method
WO2015159433A1 (en) * 2014-04-18 2015-10-22 日立オートモティブシステムズ株式会社 Rectangular secondary battery
JPWO2015159433A1 (en) * 2014-04-18 2017-04-13 日立オートモティブシステムズ株式会社 Prismatic secondary battery
KR20150144599A (en) * 2014-06-17 2015-12-28 삼성에스디아이 주식회사 Secondary battery
JP2016004776A (en) * 2014-06-17 2016-01-12 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Secondary battery
CN105322125A (en) * 2014-06-17 2016-02-10 三星Sdi株式会社 Secondary battery
CN105322125B (en) * 2014-06-17 2020-01-14 三星Sdi株式会社 Secondary battery
KR102226514B1 (en) * 2014-06-17 2021-03-11 삼성에스디아이 주식회사 Secondary battery

Similar Documents

Publication Publication Date Title
JP2004111300A (en) Non-aqueous electrolyte secondary battery
JP5211022B2 (en) Lithium ion secondary battery
JP4204237B2 (en) Lithium secondary cell and connection structure of lithium secondary cell
JP4672678B2 (en) Battery module
JP5055090B2 (en) Battery module
US8546005B2 (en) Cap assembly and secondary battery having the same
CN210805919U (en) Secondary battery, electrode member for secondary battery, battery module, and device using secondary battery
JP2005332820A (en) Secondary battery with electrode assembly
KR20110040931A (en) Battery and battery pack
JPH11162437A (en) Cap assembly of battery
JP5614574B2 (en) Secondary battery
KR101473391B1 (en) Electrode assembly and secondary battery using the same
JP2008243526A (en) Battery module
JP4496582B2 (en) Lithium secondary battery
JP2004047262A (en) Thin battery and battery pack
KR100601547B1 (en) Pouch type secondary battery
JP4221531B2 (en) battery
JP3283805B2 (en) Lithium secondary battery
JP2020523753A (en) Secondary battery having a hollow filled with a heat conductive resin
JP2005166664A (en) Secondary battery
KR101821488B1 (en) Battery
JP4169470B2 (en) Sealed battery
KR101453783B1 (en) Cap assembly and secondary battery using the same
KR101121205B1 (en) Secondary battery
JP7505641B2 (en) Secondary battery