JP3876516B2 - Calibration device for optical extensometer - Google Patents

Calibration device for optical extensometer Download PDF

Info

Publication number
JP3876516B2
JP3876516B2 JP04754498A JP4754498A JP3876516B2 JP 3876516 B2 JP3876516 B2 JP 3876516B2 JP 04754498 A JP04754498 A JP 04754498A JP 4754498 A JP4754498 A JP 4754498A JP 3876516 B2 JP3876516 B2 JP 3876516B2
Authority
JP
Japan
Prior art keywords
test piece
calibrator
camera
distance
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04754498A
Other languages
Japanese (ja)
Other versions
JPH11248428A (en
Inventor
正之 亀川
俊幸 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP04754498A priority Critical patent/JP3876516B2/en
Publication of JPH11248428A publication Critical patent/JPH11248428A/en
Application granted granted Critical
Publication of JP3876516B2 publication Critical patent/JP3876516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カメラにより試験片を撮影することによって得られる画像データを用いて、試験片の標線間の伸びないしは歪みを非接触のもとに計測する伸び計に用いられる校正装置に関する。
【0002】
【従来の技術】
例えば材料試験機により試験片の伸びや歪みを計測する際、その試験片の厚みが薄い場合、従来の接触式の伸び計では、試験片への影響が大きく、使用できない場合がある。このような試料の計測においては、非接触で計測する方法が要求される。
【0003】
非接触方式の伸び計としては、現時点においてビデオカメラを用いた、いわゆる光学式伸び計が簡便で精度も高いとされている。光学式伸び計では、図7に示すように、試験片Wの表面に2つの標線マークM1,M2 を付しておき、これらの標線マークM1,M2 を試験中においてビデオカメラVで撮影して得られる撮影信号から各標線マークM1,M2 を認識して、各標線マーク間の経時的変化から試験片Wの伸びを計測する。
【0004】
この種の光学式伸び計においてはビデオカメラの撮影倍率の校正を行う必要がある。その校正は、図8(A)に示すように、適当な厚みの校正器(キャリブレーションバー)CB を材料試験機等の掴み具11,12に取り付け、その面上の基準長さをビデオカメラVで撮影し、その撮影された画像データ上での長さ単位(画素)との関係をもとに、これを基準として実際の計算値(標線マークの移動量)を求める、という方法で行われている。
【0005】
【発明が解決しようとする課題】
ところで、光学式伸び計においてカメラの撮影倍率の校正は、従来、キャリブレーションバーを材料試験機等に取り付けて校正を行った後、そのキャリブレーションバーを取り外し、次いで試験片を取り付けるという手順で行われており、その校正時において、キャリブレーションバーの厚みと試験片の厚みが異なっている場合、図8(B)に示すように、キャリブレーションバーCB の基準面とビデオカメラVとの距離が、実際の試験片Wの標線マークを含む面とビデオカメラVとの距離と等しくならない(L≠L′)。ここで、ビデオカメラの撮影倍率は、撮影対象とカメラとの距離が変化すると変化することから、キャリブレーションバーの厚みと試験片の厚みが異なっていると、その厚みの差が誤差を生む原因となる。
【0006】
これを解消する方法として、焦点距離の長いレンズを用いて、撮影対象とビデオカメラとの距離の変化に対する撮影倍率の変化の割合の程度を小さくするという方法が考えられる。
【0007】
しかし、材料の伸び範囲は、大きいものでは1000%以上のものもあり、このような材料に対しては計測視野を大きくする必要がある。これを焦点距離の長いレンズで満足するには、撮影距離を伸ばさないといけないが、その距離を確保するには装置の設置面積上の制約から限界があり、従って撮影対象とカメラとの距離の変化に対する撮影倍率の変化を完全に0にすることはできない。
【0008】
なお、撮影対象とカメラとの距離の変化による影響を0にする方法として、テレセントリックレンズと呼ばれているレンズを撮影光学系に配置するという方法も考えられるが、そのテレセントリックレンズは一般に非常に高価である。
【0009】
本発明はそのような実情に鑑みてなされたもので、誤差のない正確な校正を安価のもとに行うことができる光学式伸び計用校正装置の提供を目的とする。
【0011】
【課題を解決するための手段】
本発明は、試験片の表面に付された2つのマークをカメラで撮影し、その2つのマークの画像の移動から、試験片の伸びを非接触で計測する伸び計に用いられる校正装置であって、図1,図2に例示するように、長さの基準を提供する基準面1aを有し、当該校正装置を試験機の掴み具11,12に試験片W(または試験片Wと同じ厚みの板)と共に挟んで取り付けた状態で、その基準面1aとカメラとの距離Lが、実際の計測時における試験片Wのマークを含む面とカメラとの距離Lと等しくなるように構成されていることを特徴としている。
【0012】
また、本発明は、試験片の表面に付された2つのマークをカメラで撮影し、その2つのマークの画像の移動から、試験片の伸びを非接触で計測する伸び計に用いられる校正装置であって、図4〜図6に例示するように、長さの基準を提供する基準面を有する校正器2と、この校正器2の試験機への取付位置を規定する規定手段(取付板3)を備え、その規定手段が、校正器2の取付位置を、試験片Wの厚みdに応じて、試験片Wの厚みが0であるときの位置に対して、試験片Wの厚みdの1/2の距離だけ移動するように構成されており、校正を行うときに、校正器の基準面とカメラとの距離が、実際の計測時における試験片のマークを含む面とカメラとの距離に等しくなる位置に、上記基準面が配置されるように構成されていることを特徴としている。
【0013】
【発明の実施の形態】
本発明の実施の形態を、以下、図面に基づいて説明する。
【0014】
図1は本発明の実施の形態の正面図(A)及び側面図(B)である。
図1に示す実施の形態は、例えばアルミニウム製の校正器(キャリブレーションバー)1であって、正面側が段付き形状に加工されており、その1段下がった面が、長さの基準を提供する基準面1aとなっている。この基準面1aには上下2本の基準マークm1,m2 が付されている。
【0015】
また、基準面1aが設けられた段付き部1bの厚みは、材料試験機等の掴み具11,12(図2参照)によって挟み込まれる掴み部1c,1dの厚みに対して1/2の寸法に加工されている。
【0016】
次に、本実施の形態の作用を図2を参照して述べる。
まず、この例では、試験機の掴み具11,12として、互いに対向する歯11aと11b、12aと12bが、それぞれ中心に向かって互いに同じ量だけ移動する方式の定位置掴み具を使用するものとする。
【0017】
校正時には、図2(A)に示すように、掴み具11,12に校正器1を、その掴み部1c,1dの背面側に、実際の計測を行う試験片Wを挟み込んだ状態で取り付け、この状態で、校正器1の基準面1aの基準マークm1,m2 をビデオカメラ(図示せず)で撮影し、その撮影画像からカメラ画面上における基準マークm1 とm2 との間隔を計測し、この計測値と、校正器1の基準面1a上でのマーク間隔とからカメラの撮影倍率を求めておく。
【0018】
次に、校正器1を試験機の掴み具11,12から取り外した後、図2(B)に示すように、実際の計測を行う試験片Wを掴み具11,12に取り付ける。この状態で、試験片Wの2つの標線マーク(図7参照)をビデオカメラで撮影して計測を開始し、刻々と得られる2つの標線マークの移動量を、先に求めたカメラの撮像倍率を用いて校正して伸びの計測データを得る。
【0019】
ここで、先に取り付けた校正器1の掴み部1c,1dの厚みを2t、段付き部1bの厚みをt、試験片Wの厚みをdとすると、図2(A)に示す状態つまり掴み具11,12に、校正器1の掴み部1c,1dと試験片Wを挟み込んだ状態における、掴み具11,12の歯11aと11b,12aと12bの中心位置(把持中心)CL は、背面側の歯11b,12bから(2t+d)/2=t+d/2の位置となり、また、校正器1の基準面1aの背面側の歯11b,12bに対する位置はt+dの位置となる。従って、その基準面1aの把持中心CL に対する位置は(t+d)−(t+d/2)=d/2となる。
【0020】
一方、掴み具11,12に試験片Wのみを挟み込んだ状態のときには、試験片Wの表面の把持中心CL に対する位置は、当然のことながら試験片Wの厚みの1/2つまりd/2であり、従って校正時における校正器1の基準面1aとビデオカメラとの距離Lは、実際の計測時における試験片Wの表面とビデオカメラとの距離Lと等しくなる。その結果、誤差のない正確な校正を行うことができる。
【0021】
ここで、以上の実施の形態において、試験片Wの厚みの関係上、校正器1の厚みが薄くする必要があり、校正器に図1に示したような段付き部を加工すると、校正器自体の強度が低下するおそれがある場合、図3に示すように校正器1′の背面側に外方に凸の段付き部1eを設けて、全体の剛性を高めるというような構造を採用すればよい。
【0022】
なお、図3に示すような校正器1′を用いる場合、段付き部1eが邪魔となって、この校正器1′と試験片Wを一緒に掴み具11,12に挟み込むことができないので、このような校正器1′を用いる場合には、試験片Wと同じ厚みの板Pを校正時に掴み具11,12に挟み込むようにする。また、先の図1に示した形状の校正器1においても、試験片Wの表面が校正器1に接触することを避けたい場合にも、同様に試験片Wと同じ厚みの板Pを挟み込むようにすればよい。
【0023】
本発明の他の実施の形態を図4〜図6を参照しつつ説明する。
この実施の形態の校正装置は、校正器2とその取付板3によって構成されている。
【0024】
校正器2は、ストレーンゲージ式伸び計などの校正に用いられる校正器で、図4に示すように、固定バー2aと、これに対向して配置された移動バー2b、及び移動バー2bに上下方向への変位を与えるマイクロメータ2cを主体として構成されている。
【0025】
取付板3は、図5の平面図及び図6の断面図に示すように、図4に示した校正器2のベース板2dを載せるベース台3aと、このベース台3aの所定位置に固定されたピン3bに回動自在に取り付けられた回転ストッパ3cと、回転ストッパ3cの一端部と対向する位置に配置され、ベース台3aに置かれた校正器2のベース板2dの一方向(カメラの撮影方向と直交する方向)における位置を規制するための固定ストッパ3dを備えている。
【0026】
回転ストッパ3cの両端部は、それぞれ半径rの円弧状に加工されており、一端側の円弧部分(固定ストッパ3dと対向する部分)の中心n1 とピン3bの中心との距離2Sが、他端側の円弧部分(校正器のベース板2d側)の中心n2 とピン3bの中心との距離Sの2倍となるように構成されている。従って、回転ストッパ3cの一端側の円弧部分と固定ストッパ3dとの間に厚みdのものを挟み込むと、回転ストッパ3cが回転し、その他端側の円弧部分が、反対側にd/2の距離だけ移動する。
【0027】
次に、本実施の形態の作用を使用方法とともに述べる。
まず、図4に示すような校正器2は、材料試験機等の掴み具及びフランジ等を取り外した状態で、その掴み具の把持中心に合わせてセットされる。この例では、校正器2のベース板2dの下に取付板3を置いて試験機にセットする。
【0028】
その要領は、まず取付板3を試験機に対して位置決めし、その取付板3のベース台3a上に校正器2を置く。このとき、取付板3の回転ストッパ3cと固定ストッパ3dとの間には何も挟まない状態つまり回転ストッパ3cの一端側の円弧部分を固定ストッパ3dに当てた状態で、校正器2のベース板2dの側面21dを回転ストッパ3cの他端側の円弧部分に当て、かつ、ベース板2dの側面22dを固定ストッパ3dに当てて、校正器2の全体を取付板3に対して位置決めする。なお、このようなセッティングおいて、取付板3を試験機に対する位置は、この取付板3に対して位置決めした校正器2の移動バー2bの基準マークmを付した面が、試験機の掴み具の把持中心に一致するような位置とする。
【0029】
次に、取付板3の回転ストッパ3cの一端側の円弧部分と固定ストッパ3dとの間に、計測を行う試験片Wを挟み込む。この操作により校正器2がビデオカメラ側に試験片Wの厚みdの1/2の距離だけ平行移動する。これにより、図5に示すように、校正器2の移動バー2bの基準マークmを付した面が、試験機の把持中心CL に対してd/2の位置に配置され、その基準マークmを付した面とビデオカメラとの距離が、実際の計測時における試験片Wとビデオカメラとの距離と等しくなり、校正時における誤差がなくなる。
【0030】
そして、校正器2の移動バー2bに付した基準マークmをビデオカメラVで撮影し、その基準マークmの位置を、校正器2のマイクロメータ2cの操作によって移動させ、マイクロメータ2cで与えたマークmの移動量とビデオカメラVで得られたマークmの計測位置の移動量との関係からカメラの撮影倍率を求める。この後、試験機の掴み具を組み立て、試験片Wを取り付けて実際の伸びの計測を行う。
【0031】
【発明の効果】
以上説明したように、本発明の校正装置を用いれば、校正時におけるカメラと撮影対象との距離と、実際の計測時におけるカメラと撮影対象との距離とを常に等しくすることができ、試験片の厚み起因する誤差が含まれない。従って、正確な校正を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の説明図
【図2】本発明の実施の形態の作用説明図
【図3】図1に示す実施の形態の変形例を示す図
【図4】本発明の他の実施の形態に用いる校正器2の構造を示す斜視図
【図5】本発明の他の実施の形態に用いる取付板3の要部構造を示す平面図
【図6】図5のX−X断面図
【図7】光学式伸び計の構成例を示す斜視図
【図8】光学式伸び計の校正を行う際に生じる問題点の説明図
【符号の説明】
1 校正器(キャリブレーションバー)
1a 基準面
1b 段付き部
1c,1d 掴み部
m1,m2 基準マーク
2 校正器
2a 固定バー
2b 移動バー
2c マイクロメータ
2d ベース板
3 取付板
3a ベース台
3b ピン
3c 回転ストッパ
3d 固定ストッパ
m 基準マーク
11,12 掴み具
V ビデオカメラ
W 試験片
M1,M2 標線マーク
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a calibration device used in an extensometer that measures the elongation or distortion between the marked lines of a test piece in a non-contact manner using image data obtained by photographing the test piece with a camera.
[0002]
[Prior art]
For example, when measuring the elongation and strain of a test piece with a material testing machine, if the thickness of the test piece is thin, the conventional contact-type extensometer has a large influence on the test piece and may not be used. In such a sample measurement, a non-contact measurement method is required.
[0003]
As a non-contact type extensometer, a so-called optical extensometer using a video camera at present is considered to be simple and highly accurate. In the optical extensometer, as shown in FIG. 7, two marked marks M1, M2 are attached to the surface of the test piece W, and these marked marks M1, M2 are photographed by the video camera V during the test. Then, each marked mark M1, M2 is recognized from the obtained photographing signal, and the elongation of the test piece W is measured from the change over time between the marked marks.
[0004]
In this type of optical extensometer, it is necessary to calibrate the photographing magnification of the video camera. As shown in FIG. 8A, the calibration is performed by attaching a calibrator (calibration bar) CB having an appropriate thickness to grips 11 and 12 such as a material testing machine, and setting the reference length on the surface to a video camera. By taking a picture with V, and based on the relationship with the length unit (pixel) on the taken image data, an actual calculation value (movement amount of the marked mark) is obtained based on this. Has been done.
[0005]
[Problems to be solved by the invention]
By the way, in the conventional optical extensometer, the calibration of the photographing magnification of the camera is conventionally performed by attaching the calibration bar to a material testing machine or the like, removing the calibration bar, and then attaching the test piece. If the thickness of the calibration bar and the thickness of the test piece are different at the time of calibration, the distance between the reference plane of the calibration bar CB and the video camera V is as shown in FIG. The distance between the surface of the actual test piece W including the marked mark and the video camera V is not equal (L ≠ L ′). Here, the shooting magnification of the video camera changes as the distance between the shooting target and the camera changes, so if the calibration bar thickness and test piece thickness are different, the difference in thickness causes an error. It becomes.
[0006]
As a method for solving this problem, a method of using a lens having a long focal length to reduce the ratio of the change in the shooting magnification with respect to the change in the distance between the shooting target and the video camera is considered.
[0007]
However, the elongation range of the material is 1000% or more if it is large, and it is necessary to enlarge the measurement field of view for such a material. In order to satisfy this with a lens with a long focal length, the shooting distance must be increased. However, there is a limit due to restrictions on the installation area of the device in order to secure this distance, and therefore the distance between the shooting target and the camera is limited. The change in the photographing magnification with respect to the change cannot be completely reduced to zero.
[0008]
As a method for reducing the influence of the change in the distance between the object to be photographed and the camera to 0, a method called a telecentric lens may be arranged in the photographing optical system, but the telecentric lens is generally very expensive. It is.
[0009]
The present invention has been made in view of such a situation, and an object thereof is to provide an optical extensometer calibration apparatus capable of performing accurate calibration without error at low cost.
[0011]
[Means for Solving the Problems]
The present invention is a calibration device used in an extensometer that takes two marks attached to the surface of a test piece with a camera and measures the elongation of the test piece in a non-contact manner by moving the images of the two marks. As shown in FIGS. 1 and 2, it has a reference surface 1a that provides a reference for the length, and the calibration device is connected to the grips 11 and 12 of the tester with the test piece W (or the same as the test piece W). The distance L between the reference surface 1a and the camera is equal to the distance L between the surface including the mark of the test piece W and the camera at the time of actual measurement. It is characterized by having.
[0012]
In addition, the present invention is a calibration apparatus used in an extensometer that takes two marks attached to the surface of a test piece with a camera and measures the elongation of the test piece in a non-contact manner by moving the images of the two marks. As shown in FIGS. 4 to 6, the calibrator 2 having a reference surface for providing a reference for the length, and a defining means (mounting plate) for defining the mounting position of the calibrator 2 on the test machine. 3), and the defining means sets the mounting position of the calibrator 2 in accordance with the thickness d of the test piece W with respect to the position when the thickness of the test piece W is 0, the thickness d of the test piece W. The distance between the reference plane of the calibrator and the camera is the distance between the surface including the mark of the test piece and the camera at the time of actual measurement. The reference plane is arranged at a position equal to the distance. It is.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 is a front view (A) and a side view (B) of an embodiment of the present invention.
The embodiment shown in FIG. 1 is, for example, an aluminum calibrator (calibration bar) 1 whose front side is processed into a stepped shape, and the surface that is lowered by one step provides a reference for the length. The reference plane 1a is set. The reference surface 1a is provided with two upper and lower reference marks m1 and m2.
[0015]
Further, the thickness of the stepped portion 1b provided with the reference surface 1a is ½ of the thickness of the gripping portions 1c and 1d sandwiched by the gripping tools 11 and 12 (see FIG. 2) such as a material testing machine. Has been processed.
[0016]
Next, the operation of the present embodiment will be described with reference to FIG.
First, in this example, as the grips 11 and 12 of the testing machine, fixed position grips of a type in which the teeth 11a and 11b and 12a and 12b facing each other move by the same amount toward the center are used. And
[0017]
At the time of calibration, as shown in FIG. 2 (A), the calibrator 1 is attached to the gripping tools 11 and 12, and the test piece W for actual measurement is sandwiched between the gripping portions 1c and 1d, In this state, the reference marks m1 and m2 on the reference surface 1a of the calibrator 1 are photographed with a video camera (not shown), and the interval between the reference marks m1 and m2 on the camera screen is measured from the photographed image. The photographing magnification of the camera is obtained from the measured value and the mark interval on the reference surface 1a of the calibrator 1.
[0018]
Next, after removing the calibrator 1 from the grips 11 and 12 of the tester, a test piece W for actual measurement is attached to the grips 11 and 12 as shown in FIG. In this state, the two marked marks (see FIG. 7) of the test piece W are photographed with a video camera to start measurement, and the movement amount of the two marked marks obtained every moment is determined by the camera previously obtained. Calibration is performed using the imaging magnification to obtain elongation measurement data.
[0019]
Here, assuming that the thickness of the grip portions 1c and 1d of the calibrator 1 attached earlier is 2t, the thickness of the stepped portion 1b is t, and the thickness of the test piece W is d, the state shown in FIG. The center positions (gripping centers) CL of the teeth 11a and 11b, 12a and 12b of the gripping tools 11 and 12 when the gripping portions 1c and 1d of the calibrator 1 and the test piece W are sandwiched between the tools 11 and 12 are The positions of the side teeth 11b and 12b are (2t + d) / 2 = t + d / 2, and the position of the reference surface 1a of the calibrator 1 with respect to the teeth 11b and 12b on the back side is the position of t + d. Accordingly, the position of the reference surface 1a with respect to the grip center CL is (t + d)-(t + d / 2) = d / 2.
[0020]
On the other hand, when only the test piece W is sandwiched between the gripping tools 11 and 12, the position of the surface of the test piece W with respect to the gripping center CL is naturally ½ of the thickness of the test piece W, that is, d / 2. Therefore, the distance L between the reference surface 1a of the calibrator 1 and the video camera at the time of calibration is equal to the distance L between the surface of the test piece W and the video camera at the time of actual measurement. As a result, accurate calibration without error can be performed.
[0021]
Here, in the above embodiment, it is necessary to reduce the thickness of the calibrator 1 because of the thickness of the test piece W. When the stepped portion as shown in FIG. If there is a possibility that the strength of the calibrator itself may be lowered, as shown in FIG. 3, a structure in which an outwardly protruding stepped portion 1e is provided on the back side of the calibrator 1 'to increase the overall rigidity is adopted. That's fine.
[0022]
In the case of using a calibrator 1 'as shown in FIG. 3, the stepped portion 1e becomes an obstacle, and the calibrator 1' and the test piece W cannot be sandwiched between the gripping tools 11 and 12 together. When such a calibrator 1 ′ is used, a plate P having the same thickness as the test piece W is sandwiched between the grippers 11 and 12 during calibration. Further, in the calibrator 1 having the shape shown in FIG. 1, the plate P having the same thickness as that of the test piece W is similarly sandwiched when it is desired to avoid the surface of the test piece W from contacting the calibrator 1. What should I do?
[0023]
Another embodiment of the present invention will be described with reference to FIGS.
The calibration device of this embodiment is constituted by a calibrator 2 and its mounting plate 3.
[0024]
The calibrator 2 is a calibrator used for calibration such as a strain gauge extensometer. As shown in FIG. 4, the calibrator 2 moves up and down the fixed bar 2a, the movable bar 2b disposed opposite to the fixed bar 2a, and the movable bar 2b. It is mainly composed of a micrometer 2c that gives a displacement in the direction.
[0025]
As shown in the plan view of FIG. 5 and the cross-sectional view of FIG. 6, the mounting plate 3 is fixed to a base base 3a on which the base plate 2d of the calibrator 2 shown in FIG. 4 is placed, and a predetermined position of the base base 3a. A rotation stopper 3c rotatably attached to the pin 3b, and one direction of the base plate 2d of the calibrator 2 placed on the base table 3a (position of the rotation stopper 3c). A fixed stopper 3d is provided for restricting the position in the direction orthogonal to the photographing direction.
[0026]
Both end portions of the rotation stopper 3c are each processed into an arc shape having a radius r, and the distance 2S between the center n1 of the arc portion on one end side (the portion facing the fixed stopper 3d) and the center of the pin 3b is the other end. It is configured to be twice the distance S between the center n2 of the side arc portion (the calibrator base plate 2d side) and the center of the pin 3b. Accordingly, when a thickness d is sandwiched between the arc portion on one end side of the rotation stopper 3c and the fixed stopper 3d, the rotation stopper 3c rotates and the arc portion on the other end side is a distance of d / 2 on the opposite side. Just move.
[0027]
Next, the operation of this embodiment will be described together with the usage method.
First, the calibrator 2 as shown in FIG. 4 is set in accordance with the gripping center of the gripping tool with the gripping tool such as the material testing machine and the flange removed. In this example, the mounting plate 3 is placed under the base plate 2d of the calibrator 2 and set in the testing machine.
[0028]
The procedure is as follows. First, the mounting plate 3 is positioned with respect to the testing machine, and the calibrator 2 is placed on the base 3 a of the mounting plate 3. At this time, the base plate of the calibrator 2 is in a state where nothing is sandwiched between the rotation stopper 3c and the fixed stopper 3d of the mounting plate 3, that is, the arc portion on one end side of the rotation stopper 3c is applied to the fixed stopper 3d. The entire calibrator 2 is positioned with respect to the mounting plate 3 by placing the side surface 21d of 2d against the arc portion on the other end of the rotation stopper 3c and the side surface 22d of the base plate 2d against the fixed stopper 3d. In this setting, the position of the mounting plate 3 with respect to the testing machine is such that the surface with the reference mark m of the moving bar 2b of the calibrator 2 positioned with respect to the mounting board 3 is the gripping tool of the testing machine. The position is set so as to coincide with the gripping center.
[0029]
Next, the test piece W to be measured is sandwiched between the arc portion on one end side of the rotation stopper 3c of the mounting plate 3 and the fixed stopper 3d. By this operation, the calibrator 2 translates to the video camera side by a distance that is ½ of the thickness d of the test piece W. As a result, as shown in FIG. 5, the surface with the reference mark m of the moving bar 2b of the calibrator 2 is arranged at a position of d / 2 with respect to the grip center CL of the tester. The distance between the attached surface and the video camera becomes equal to the distance between the test piece W and the video camera at the time of actual measurement, and the error at the time of calibration is eliminated.
[0030]
Then, the reference mark m attached to the moving bar 2b of the calibrator 2 is photographed by the video camera V, and the position of the reference mark m is moved by the operation of the micrometer 2c of the calibrator 2 and given by the micrometer 2c. From the relationship between the movement amount of the mark m and the movement amount of the measurement position of the mark m obtained by the video camera V, the photographing magnification of the camera is obtained. Thereafter, the gripping tool of the testing machine is assembled, the test piece W is attached, and the actual elongation is measured.
[0031]
【The invention's effect】
As described above, by using the calibration apparatus of the present invention, the distance between the camera and the object to be imaged at the time of calibration and the distance between the camera and the object to be imaged at the time of actual measurement can always be made equal. Does not include errors due to the thickness. Therefore, accurate calibration can be performed.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of the present invention. FIG. 2 is an operation explanatory diagram of an embodiment of the present invention. FIG. 3 is a diagram showing a modification of the embodiment shown in FIG. FIG. 5 is a perspective view showing a structure of a calibrator 2 used in another embodiment. FIG. 5 is a plan view showing a main part structure of a mounting plate 3 used in another embodiment of the invention. -X cross-sectional view [FIG. 7] A perspective view showing a configuration example of an optical extensometer. [FIG. 8] An explanatory diagram of problems that occur when the optical extensometer is calibrated.
1 Calibrator (calibration bar)
1a Reference surface 1b Stepped portion 1c, 1d Grip portion m1, m2 Reference mark 2 Calibrator 2a Fixed bar 2b Moving bar 2c Micrometer 2d Base plate 3 Mounting plate 3a Base base 3b Pin 3c Rotating stopper 3d Fixed stopper m Reference mark 11 , 12 Grasp V Video camera W Test piece M1, M2 Mark mark

Claims (2)

試験片の表面に付された2つのマークをカメラで撮影し、その2つのマークの画像の移動から、試験片の伸びを非接触で計測する伸び計に用いられる校正装置であって、
長さの基準を提供する基準面を有し、当該校正装置を試験機の掴み具に、試験片または試験片と同じ厚みの板と共に挟んで取り付けた状態で、その基準面とカメラとの距離が、実際の計測時における試験片のマークを含む面とカメラとの距離と等しくなるように構成されていることを特徴とする光学式伸び計用校正装置。
A calibration device used for an extensometer that measures the elongation of a test piece in a non-contact manner by photographing two marks attached to the surface of the test piece with a camera and moving the images of the two marks.
The distance between the reference plane and the camera with a reference plane that provides a reference for the length, with the calibration device attached to the grip of the tester with a test piece or a plate of the same thickness as the test piece. Is configured to be equal to the distance between the surface including the mark of the test piece and the camera at the time of actual measurement.
試験片の表面に付された2つのマークをカメラで撮影し、その2つのマークの画像の移動から、試験片の伸びを非接触で計測する伸び計に用いられる校正装置であって、
長さの基準を提供する基準面を有する校正器と、この校正器の試験機への取付位置を規定する規定手段を備え、その規定手段は、校正器の取付位置を、試験片の厚みに応じて、試験片の厚みが0であるときの位置に対して、試験片の厚みの1/2の距離だけ移動するように構成されており、校正を行うときに、校正器の基準面とカメラとの距離が、実際の計測時における試験片のマークを含む面とカメラとの距離に等しくなる位置に、上記基準面が配置されるように構成されていることを特徴とする光学式伸び計用校正装置。
A calibration device used for an extensometer that measures the elongation of a test piece in a non-contact manner by photographing two marks attached to the surface of the test piece with a camera and moving the images of the two marks.
A calibrator having a reference surface for providing a length reference and a defining means for defining the mounting position of the calibrator on the test machine, the defining means changing the mounting position of the calibrator to the thickness of the test piece. Accordingly, it is configured to move by a distance that is ½ of the thickness of the test piece with respect to the position when the thickness of the test piece is 0. An optical extension characterized in that the reference plane is arranged at a position where the distance from the camera is equal to the distance between the plane including the mark of the test piece and the camera during actual measurement. Meter calibration equipment.
JP04754498A 1998-02-27 1998-02-27 Calibration device for optical extensometer Expired - Fee Related JP3876516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04754498A JP3876516B2 (en) 1998-02-27 1998-02-27 Calibration device for optical extensometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04754498A JP3876516B2 (en) 1998-02-27 1998-02-27 Calibration device for optical extensometer

Publications (2)

Publication Number Publication Date
JPH11248428A JPH11248428A (en) 1999-09-17
JP3876516B2 true JP3876516B2 (en) 2007-01-31

Family

ID=12778101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04754498A Expired - Fee Related JP3876516B2 (en) 1998-02-27 1998-02-27 Calibration device for optical extensometer

Country Status (1)

Country Link
JP (1) JP3876516B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104792297A (en) * 2015-04-20 2015-07-22 上海市计量测试技术研究院 Calibration device for extensometer
EP3465083B1 (en) * 2016-05-24 2021-07-07 Illinois Tool Works, Inc. Three-dimensional calibration device and method
CN108827813A (en) * 2018-06-28 2018-11-16 湖北省计量测试技术研究院 A kind of multi-functional extensometer marking apparatus
CN112789494A (en) * 2018-09-27 2021-05-11 株式会社岛津制作所 Material testing machine

Also Published As

Publication number Publication date
JPH11248428A (en) 1999-09-17

Similar Documents

Publication Publication Date Title
US8497901B2 (en) Method and device for exact measurement of objects
US6750899B1 (en) Solder paste inspection system
EP1236972A3 (en) Method and apparatus for calibrating measuring machines
JP5047188B2 (en) TCP handling apparatus and connection terminal positioning method in the apparatus
TW538231B (en) Image processing method and device, and wire-bonding device
KR20010040998A (en) Automatic inspection system with stereovision
JP3876516B2 (en) Calibration device for optical extensometer
JP6822354B2 (en) Material testing machine
KR101582809B1 (en) An apparatus and method of using an imaging device for adjustment of at least one handling device for handling semiconductor components
JP5787258B2 (en) Method and apparatus for measuring the position of a contact element of an electronic component
JP4061519B2 (en) Calibration method for image processing apparatus
JP3614529B2 (en) Calculation parameter measuring method of measuring apparatus and measuring apparatus
JP3947889B2 (en) Video extensometer
JPH11241982A (en) Reference line mark body for optical extensiometer
JP3780694B2 (en) Video non-contact elongation / width meter
JPH07229736A (en) Device for calibrating three-dimensional measuring instrument
JP2526142B2 (en) Measuring device for groove angle and shaft angle of golf club
JP2517277Y2 (en) Printed circuit board inspection equipment
JP6891070B2 (en) Processing equipment, substrate inspection equipment, processing method and substrate inspection method
JPH11295042A (en) Video type noncontact extensometer
CN116879320A (en) Circuit board measuring device and carrier module rotation coordinate calibration method thereof
KR101772771B1 (en) Gap measuring method by using line scan and area scan
JP3226712B2 (en) Semiconductor pellet height measuring device and its measuring method
JP2502528Y2 (en) Angle measuring device
JPH04370705A (en) Device for correcting resolution in image processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees