JP3875651B2 - Magnetic levitation railway ground fault location method and apparatus - Google Patents

Magnetic levitation railway ground fault location method and apparatus Download PDF

Info

Publication number
JP3875651B2
JP3875651B2 JP2003137067A JP2003137067A JP3875651B2 JP 3875651 B2 JP3875651 B2 JP 3875651B2 JP 2003137067 A JP2003137067 A JP 2003137067A JP 2003137067 A JP2003137067 A JP 2003137067A JP 3875651 B2 JP3875651 B2 JP 3875651B2
Authority
JP
Japan
Prior art keywords
phase
feeder
ground fault
section
cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003137067A
Other languages
Japanese (ja)
Other versions
JP2004343883A (en
Inventor
明伸 奥井
秀紀 重枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Central Japan Railway Co
Original Assignee
Railway Technical Research Institute
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Central Japan Railway Co filed Critical Railway Technical Research Institute
Priority to JP2003137067A priority Critical patent/JP3875651B2/en
Publication of JP2004343883A publication Critical patent/JP2004343883A/en
Application granted granted Critical
Publication of JP3875651B2 publication Critical patent/JP3875651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車上に界磁装置を備え且つ地上のガイドウエイに三相推進コイルを配置した地上一次リニアシンクロナスモータ(以下LSMと呼ぶ)方式を採用した磁気浮上式鉄道において、前記三相推進コイル及び三相き電ケーブルが地絡した際の地絡点標定を行う磁気浮上式鉄道用地絡点標定装置に関する。前記三相き電ケーブルは前記三相推進コイルに電力を送電するための電力ケーブルである。
【0002】
【従来の技術】
LSM方式を採用した磁気浮上式鉄道の三相推進コイルは、列車運行区間の端から端まで構築されているコンクリートのガイドウエイの側壁に配置されている。三相推進コイルは、き電セクション毎に配置されている。き電セクションは列車運行区間の距離を分割したものである。き電セクション長は列車長よりも長いものが一般的で、例えば500mである。各き電セクション三相推進コイルは、夫々のき電区分開閉器を介して、三相き電ケーブルに接続されている。三相き電ケーブルの一端は変電所のインバータの出力端子に接続されている。変電所の制御装置は、プログラムに従って、き電区分開閉器の開閉を制御する。き電区分開閉器をオンにされたき電セクションの三相推進コイルは、三相き電ケーブルを介してインバータから電力が供給され、通電状態となる。この通電状態のき電セクションの三相推進コイルに地絡事故が発生すると、三相き電ケーブルを流れる電流が異常な変化を示す。この異常な電流変化は変電所の電流検出器で検出される。すると、前記き電区分開閉器の開閉を制御する制御装置は、どのき電セクションに地絡事故が発生したかを特定し、表示装置にその旨を表示させる。このように、LSM方式を採用した磁気浮上式鉄道においては、地絡事故がどのき電セクションで発生したかは直ちに把握できる。ところが、例えば500mもの長さのどの位置で地絡事故が発生したかは、これまでの制御装置では判定できない。
【0003】
鉄道等における配電線において地絡事故を起こした場合に、送電側から地絡点までの距離を標定する地絡点標定装置としては、配電線によっていわゆるマレーループを形成し、このマレーループを形成した配電線と大地との間に標定用電圧を印加したときに各線に流れる電流の大きさを測定し、その大きさから地絡点を標定するものがある。
【0004】
特開2001−16762号公報(特許文献1)には、中間タップを接地する送電線側変圧器と、各配電線の送電端における対地間電圧、接地点から中間点に流入する故障電流、及び各配電線の受電端における対地間電圧のそれぞれを測定する測定部と、地絡事故発生時に故障電流が流れることによって生じた各配電線の送電端における対地間電圧の差、受電端における対地間電圧の差、及び故障電流の測定値を用いて送電線が持つインピーダンスの大きさを求め、このインピーダンスの大きさによって送電端から地絡点までの距離を算出する演算部とを有して構成されたものである。
【0005】
ところで、LSM方式を採用した磁気浮上式鉄道において、各き電セクションの三相推進コイルは500mもの長さのき電セクション長にわたって所定間隔で配置された数100個もの個別の三相推進コイルで構成されている。個別の三相推進コイルは直径1m程度で、車両の編成両数や必要加速度等に基づいて決められているが数ターンから10ターンの巻回数である。このような構成の三相推進コイルであるため、通常の鉄道における直線的に配線された配電線回路に比べて、桁違いに大きなインダクタンスを有する。この桁違いに大きなインダクタンスを有するために、上述のマレーループを形成する地絡点標定装置も、特許文献1に開示された信号高圧配電線の地絡点標定装置も、LSM方式を採用した磁気浮上式鉄道の三相推進コイル及びき電線の地絡点の標定には全く利用できない。このため、これまでは地絡事故が特定されたき電セクションの三相推進コイルを作業員が目視でチェックし、地絡点を標定する以外に方法がなかった。
【0006】
【特許文献1】
特開2001−16762号公報
【0007】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、LSMき電回路に利用できる磁気浮上式鉄道用地絡点標定装置を提供することである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、地絡事故の発生によって形成された閉回路、即ち、三相交流電力を出力するインバータの出力端子に接続された出力フィルタ、三相き電ケーブル、地絡事故が発生したき電セクション三相推進コイル、及びアースとで形成された閉回路の健全相又は非健全相の共振周波数を利用して地絡点を標定するようにした。
【0009】
即ち、上記課題を解決する磁気浮上式鉄道用地絡点標定方法は、三相交流電力を出力するインバータ、三相き電ケーブル、き電区分開閉器を介して前記三相き電ケーブルに接続された複数のき電セクション三相推進コイル、一端が前記インバータの出力端子に接続され他端がアースされた出力フィルタ、及び前記き電区分開閉器の開閉を制御する制御装置とから構成されたLSMき電回路の地絡点を標定するものであって、地絡事故が発生し前記インバータがゲートブロックした時に、前記出力フィルタ、前記三相き電ケーブル、地絡事故が発生したき電セクション三相推進コイル及びアースとで形成される閉回路の健全相の共振周波数fn又は非健全相の共振周波数ffにづいて下式の演算を行って前記き電セクション三相推進コイルの一端から地絡点までの距離xcを標定するものである。

Figure 0003875651
又は
Figure 0003875651
但し、Lは出力フィルタのインダクタンス、Cは出力フィルタのキャパシタンス、 Lcは三相推進コイルの相毎の全インダクタンス、Lf は三相き電ケーブルの単位距離当りの単位インダクタンス、df は地絡事故が発生したき電セクションまでの三相き電ケーブルの距離、dc はき電セクション三相推進コイルの距離である。
【0010】
地絡事故が発生し前記インバータがゲートブロックした時に、前記出力フィルタ、前記三相き電ケーブル、地絡事故が発生したき電セクション三相推進コイル及びアースとで形成される閉回路の健全相の共振周波数fn又は非健全相の共振周波数ffは、周波数検出器により検出される。また、上記した演算式の演算は、前記周波数検出器と前記制御装置から入力された信号に基づいて、演算器が演算する。前記周波数検出器は、三相き電ケーブルの電流を検出する電流検出器に接続されている。
【0011】
【発明の実施の形態】
LSMき電回路は、本発明の一実施形態のブロック回路図である図1に示す如く、三相交流電力を出力するインバータ1、三相き電ケーブル2U 、2V 、2W、一端がインバータ1の出力端子に接続され且つ他端がアースされた出力フィルタ4、三相推進コイル5、き電区分開閉器6、プログラムに従ってインバータ1とき電区分開閉器6とを制御する制御装置7とから構成されている。三相推進コイル5とき電区分開閉器6はき電セクション毎に配置されている。
【0012】
き電セクションは、列車運行区間の距離をき電セクション長によって分割したものである。き電セクション長は列車長よりも長いものが一般的で、例えば500mである。図1には、第1き電セクション、第2き電セクション、及び第3き電セクションのみが示されている。第1き電セクションの三相推進コイル51U、51V、1Wの一端は、き電区分開閉器61U、61V、1Wを介して三相き電ケーブル2U 、2V 、2Wに夫々接続されており、且つ、他端は相互に接続されている。また、第2き電セクションの三相推進コイル52U、52V、2Wの一端は、き電区分開閉器62U、62V、2Wを介して三相き電ケーブル2U 、2V 、2Wに夫々接続されており、且つ、他端は相互に接続されている。更に、第3き電セクションの三相推進コイル53U、53V、3Wの一端は、き電区分開閉器63U、63V、3Wを介して三相き電ケーブル2U 、2V 、2Wに夫々接続されており、且つ、他端は相互に接続されている。
【0013】
磁気浮上式鉄道用地絡点標定装置は、電流検出器8、周波数検出器9、及び演算装置10とから構成されている。電流検出器8は三相き電ケーブル2U 、2V 、2Wの各相の電流を検出するものである。
【0014】
本発明に係る地絡点の標定は、次の如くである。地絡事故が発生すると、インバータ1がゲートブロックして、三相き電ケーブル2U 、2V 、2Wはインバータ1の出力端子から瞬時に切り離される。すると、図2に示す如き閉回路、即ち、出力フィルタ、三相き電ケーブル、地絡事故が発生したき電セクション三相推進コイル、及びアースとで閉回路が形成される。
【0015】
図2において、地絡は、三相き電ケーブルの距離dfのき電セクションの三相推進コイルに発生し、地絡点Pは前記き電セクションのW相の推進コイルに存在している。そして、地絡点Pまでの距離はxcである。即ち、地絡事故が発生した三相推進コイルにおいて、U相は非健全相で、V相とW相は健全相である。
【0016】
地絡点Pが発生したことにより、3つの閉回路が形成される。第1の閉回路は、V相の出力フィルタ、V相のき電ケーブル、V相の推進コイル、共通接続点Zから地絡点PまでのU相の推進コイル、及びアースとで形成されたものである。また、第2の閉回路は、W相の出力フィルタ、W相のき電ケーブル、W相の推進コイル、共通接続点Zから地絡点PまでのU相の推進コイル、及びアースとで形成されたものである。更に、第3の閉回路は、U相の出力フィルタ、U相のき電ケーブル、き電ケーブル側との接続点U2から地絡点PまでのU相の推進コイル、及びアースとで形成されたものである。ここで、第1の閉回路と第2の閉回路は健全相の閉回路と呼び、第3の閉回路は非健全相の閉回路と呼ぶことにする。
【0017】
健全相の閉回路の総インダクタンスは、出力フィルタのインダクタンスL、地絡事故が発生したき電セクションまでのき電ケーブルのインダクタンスdf Lf 、三相推進コイルの相毎の全インダクタンスL、及び共通接続点Zから地絡点PまでのU相の推進コイルのインダクタンス(dc−xc)Lc/dcの合計である。また、健全相の閉回路の総キャパシタンスは、出力フィルタのキャパシタンスCである。但し、Lf はき電線の単位距離当りの単位インダクタンス、df は地絡事故が発生したき電セクションまでの三相き電ケーブルの距離、dc は三相推進コイルの距離である。
【0018】
従って、健全相の閉回路を流れる電流の共振周波数fnは、数式1で表される。
【数1】
Figure 0003875651
【0019】
数式1から、距離xは数式2で与えられる。
【数2】
Figure 0003875651
【0020】
上述の通り、出力フィルタのインダクタンスL並びにキャパシタンスC、地絡事故が発生したき電セクションまでの三相き電ケーブル距離df 、き電セクション三相推進コイルの相毎の全インダクタンスLc、き電線の単位距離当りの単位インダクタンスLf 、地絡事故が発生したき電セクションまでの三相き電ケーブル距離df 、推進コイルの距離dc は既知である。従って、健全相の閉回路を流れる電流の共振周波数fnを測定すれば、数式2から地絡点までの距離xcが求められる。
【0021】
地絡事故が発生したき電セクションまでの三相き電ケーブル距離df は、地絡事故が発生したき電セクションが変電所の制御装置7によって自動的に特定されて、算出されるものである。また、健全相の共振周波数fnは、図1に示す如く、三相き電ケーブル2の各相の電流を検出している電流検出器8に接続された周波数検出器9によって、自動的に測定される。そして、演算装置10は、制御装置7から入力された三相き電ケーブル距離df と、周波数検出器9から入力された健全相の閉回路の共振周波数fnを数式2に代入し、地絡点までの距離xcを自動的に算出する。
【0022】
以上、地絡事故が発生しインバータ1がゲートブロックした時に、出力フィルタ4、三相き電ケーブル2、地絡事故が発生したき電セクション三相推進コイル5、及びアースとで形成された閉回路の健全相の共振周波数fnに基づいて、前記き電セクション三相推進コイル5の一端から地絡点までの距離xcを標定する方法と装置を説明した。次に、前記閉回路の非健全相の共振周波数ffに基づいて、前記き電セクション三相推進コイル5の一端から地絡点までの距離xcを標定する方法を説明する。
【0023】
非健全相の閉回路の総インダクタンスは、出力フィルタのインダクタンスL、地絡事故が発生したき電セクションまでの三相き電ケーブルのインダクタンスdf Lf 、及び三相き電ケーブルとの接続点U2から地絡点PまでのU相の推進コイルのインダクタンスxcLc/dcの合計である。また、非健全相の閉回路の総キャパシタンスは、出力フィルタのキャパシタンスCである。但し、Lf は三相き電線の単位距離当りの単位インダクタンス、Lは三相推進コイルの相毎の全インダクタンス、df は地絡事故が発生したき電セクションまでの三相き電ケーブル距離、dc は三相推進コイルの距離である。従って、非健全相の閉回路の共振周波数ffは、数式3で与えられる。
【数3】
Figure 0003875651
【0024】
数式3から、距離xは数式4で与えられる。
【数4】
Figure 0003875651
【0025】
なお、健全相の閉回路の共振周波数の最小値fminは、数式5で与えられる。これは、地絡点Pが共通接続点Zに発生した時の共振周波数である。
【数5】
Figure 0003875651
【0026】
以上詳細に説明した通り、本発明はインバータ1の出力部に設けられている高調波低減用の出力フィルタ4のインダクタンス並びにキャパシタンスと地絡回路のインダクタンスとで形成された共振回路の共振を利用して、地絡点を標定するものである。ここに、前記地絡回路は、地絡事故が発生したき電セクションの三相推進コイルと当該き電セクションまでの三相き電ケーブル2を含む回路である。
【0027】
なお、き電セクションの三相推進コイル5に地絡事故が発生した場合について詳細に説明したが、三相き電ケーブル2に地絡事故が発生した場合にも同様に共振周波数を検出することによって地絡点を標定することができる。また、三相き電ケーブル2にはインダクタンスだけでなく浮遊容量が存在するが、説明を複雑にしないために浮遊容量は無視した。しかしながら、実際のLSMき電回路の地絡点を標定する場合には、三相き電ケーブル2の浮遊容量を考慮したものとなる。
【0028】
【発明の効果】
本発明により、LSM方式を採用した磁気浮上式鉄道において、前記三相推進コイル及び三相き電ケーブルが地絡した際の地絡点標定を行う磁気浮上式鉄道用地絡点標定装置が提供された。
【0029】
本発明はインバータ1の出力部に設けられている高調波低減用の出力フィルタ4のインダクタンス並びにキャパシタンスと地絡回路のインダクタンスとで形成された共振回路の共振を利用して地絡点を標定するものであるから、低価格の地絡点標定装置を構成することができる。また、地絡事故時の過渡現象そのものを利用するものであるから、通常の鉄道における直線的に配線された配電線回路に適用されている地絡点標定方法に比較しても、地絡点の標定に要する時間を大幅に短縮できるようになった。
【図面の簡単な説明】
【図1】本発明の一実施形態の磁気浮上式鉄道用地絡点標定装置のブロック回路図である。
【図2】本発明の磁気浮上式鉄道用地絡点標定の方法を説明するための回路図である。
【図3】本発明における地絡電流の周波数分析結果の一例を示したグラフで、縦軸は振幅値、横軸は周波数である。
【符号の説明】
1 インバータ
2 三相き電ケーブル
4 出力フィルタ
5 三相推進コイル
6 き電区分開閉器
7 制御装置
8 電流検出器
9 周波数検出器
10 演算装置
P 地絡点
Z 共通接続点[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-phase propulsion system in a magnetic levitation railway that employs a ground primary linear synchronous motor (hereinafter referred to as LSM) system in which a field device is provided on a vehicle and a three-phase propulsion coil is disposed on a guideway on the ground. The present invention relates to a magnetic levitation railway ground fault location device that performs ground fault location when a coil and a three-phase power cable are grounded. The three-phase feeder cable is a power cable for transmitting power to the three-phase propulsion coil.
[0002]
[Prior art]
A three-phase propulsion coil of a magnetic levitation railway that employs the LSM system is disposed on the side wall of a concrete guideway constructed from end to end of a train operation section. A three-phase propulsion coil is arranged for each feeding section. The feeder section divides the distance of the train operation section. The feeder section length is generally longer than the train length, for example 500 m. Each feeder section three-phase propulsion coil is connected to a three-phase feeder cable via a respective feeder section switch. One end of the three-phase feeder cable is connected to the output terminal of the inverter at the substation. The control device of the substation controls the opening and closing of the feeding section switch according to the program. The three-phase propulsion coil of the feeder section in which the feeder section switch is turned on is supplied with power from the inverter via the three-phase feeder cable, and becomes energized. When a ground fault occurs in the three-phase propulsion coil of this energized feeding section, the current flowing through the three-phase feeding cable shows an abnormal change. This abnormal current change is detected by a substation current detector. Then, the control device that controls the opening and closing of the feeding section switch specifies which feeding section has a ground fault and displays the fact on the display device. In this way, in a magnetic levitation railway that employs the LSM system, it is possible to immediately grasp in which power section the ground fault occurred. However, it is impossible to determine at which position of the length of, for example, 500 m, the ground fault has occurred by the conventional control devices.
[0003]
When a ground fault occurs on a distribution line in a railway, etc., a ground fault point locating device that determines the distance from the power transmission side to the ground fault point forms a so-called Murray loop with the distribution line. Some of them measure the magnitude of the current that flows in each line when a voltage for orientation is applied between the distribution line and the ground, and determine the ground fault point from that magnitude.
[0004]
Japanese Patent Laid-Open No. 2001-16762 (Patent Document 1) discloses a transmission line side transformer for grounding an intermediate tap, a voltage to ground at a power transmission end of each distribution line, a fault current flowing from the ground point to the intermediate point, and A measurement unit that measures each of the ground-to-ground voltage at the receiving end of each distribution line, and the difference in ground-to-ground voltage at the transmitting end of each distribution line caused by the flow of a fault current when a ground fault occurs, between the ground at the receiving end It has a calculation unit that calculates the distance from the power transmission end to the ground fault point by calculating the magnitude of the impedance of the transmission line using the voltage difference and the measured value of the fault current. It has been done.
[0005]
By the way, in the magnetic levitation railway using the LSM system, the three-phase propulsion coils of each feeding section are several hundred individual three-phase propulsion coils arranged at predetermined intervals over the feeding section length of 500 m. It is configured. The individual three-phase propulsion coil has a diameter of about 1 m, and is determined based on the number of knitting vehicles, required acceleration, etc., but the number of turns is from several turns to 10 turns. Since it is a three-phase propulsion coil having such a configuration, it has an inductance that is orders of magnitude greater than a distribution circuit that is linearly wired in a normal railway. In order to have this extremely large inductance, both the ground fault location device that forms the above-mentioned Murray loop and the ground fault location device of the signal high voltage distribution line disclosed in Patent Document 1 are magnetic fields that employ the LSM method. It cannot be used at all for locating the ground fault point of the three-phase propulsion coil and feeder of a floating railway. For this reason, until now, there was no method other than to visually check the three-phase propulsion coil of the feeder section where the ground fault was identified and to determine the ground fault point.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-16762
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a magnetic levitation railway ground fault locator that can be used in an LSM feeder circuit.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, a closed circuit formed by the occurrence of a ground fault, that is, an output filter connected to an output terminal of an inverter that outputs three-phase AC power, a three-phase feeder cable, a ground fault The ground fault point is determined using the resonance frequency of the sound phase or the unhealthy phase of the closed circuit formed by the generated feeding section three-phase propulsion coil and the ground.
[0009]
That is, the magnetic levitation railway ground fault location method that solves the above problems is connected to the three-phase feeder cable via an inverter that outputs three-phase AC power, a three-phase feeder cable, and a feeder section switch. A plurality of feeding section three-phase propulsion coils, an output filter having one end connected to the output terminal of the inverter and the other end grounded, and a control device for controlling the opening and closing of the feeding section switch The ground fault point of the feeder circuit is determined. When a ground fault occurs and the inverter is gate-blocked, the output filter, the three-phase feeder cable, and the feeder section where the ground fault has occurred or one end of the phase the propulsion coil and ground and the resonance frequency of the closed circuit of healthy phases formed at f n or unhealthy phase the feeding circuit section three-phase propulsion coils by performing the calculation of the equation below Zui the resonance frequency f f of It is intended to locating the distance x c to the ground絡点.
Figure 0003875651
Or
Figure 0003875651
Where L is the inductance of the output filter, C is the capacitance of the output filter, L c is the total inductance per phase of the three-phase propulsion coil, L f Is the unit inductance per unit distance of the three-phase feeder cable, d f Is a three-phase feeding circuit cable distance, the distance d c wear conductive section three-phase propulsion coils up feeding circuit section ground fault occurs.
[0010]
When a ground fault occurs and the inverter is gate-blocked, the closed-circuit sound phase formed by the output filter, the three-phase feeder cable, the feeder section three-phase propulsion coil and the ground where the ground fault occurs The resonance frequency f n of the non-healthy phase or the resonance frequency f f of the unhealthy phase is detected by a frequency detector. The calculation of the above calculation formula is calculated by the calculator based on the signals input from the frequency detector and the control device. The frequency detector is connected to a current detector that detects a current of a three-phase feeding cable.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1 which is a block circuit diagram of an embodiment of the present invention, an LSM feeder circuit has an inverter 1 that outputs three-phase AC power, a three-phase feeder cable 2 U , 2 V , 2 W , and one end An output filter 4 connected to the output terminal of the inverter 1 and grounded at the other end, a three-phase propulsion coil 5, a feeding section switch 6, and a control device 7 for controlling the inverter section 1 and the section switch 6 according to the program; It is composed of The three-phase propulsion coil 5 and the electric section switch 6 are arranged for each feeding section.
[0012]
The feeder section is obtained by dividing the distance of the train operation section by the feeder section length. The feeder section length is generally longer than the train length, for example 500 m. In FIG. 1, only the first feeder section, the second feeder section, and the third feeder section are shown. One end of the three-phase propulsion coils 5 1U , 5 1V, 5 1W of the first feeder section is connected to the three-phase feeder cables 2 U , 2 V , 2, via feeder section switches 6 1U , 61 V, 61 W Each is connected to W , and the other ends are connected to each other. Further, the three-phase propulsion coils 5 2U, 5 2V, 5 2W end of the second feeding circuit section feeding circuit section switch 6 2U, 6 2V, 6 via the 2W three phase feeding circuit cable 2 U, 2 V 2 W are connected to each other, and the other ends are connected to each other. Furthermore, one end of the three-phase propulsion coils 5 3U , 5 3V, 5 3W of the third feeder section is connected to the three-phase feeder cables 2 U , 2 V via the feeder section switches 6 3U , 6 3V, 6 3W 2 W are connected to each other, and the other ends are connected to each other.
[0013]
The magnetic levitation railway ground fault location device includes a current detector 8, a frequency detector 9, and an arithmetic device 10. The current detector 8 detects a current of each phase of the three-phase feeding cable 2 U , 2 V , 2 W.
[0014]
The orientation of the ground fault point according to the present invention is as follows. When a ground fault occurs, the inverter 1 is gate-blocked, and the three-phase feeder cables 2 U , 2 V , and 2 W are instantaneously disconnected from the output terminal of the inverter 1. Then, a closed circuit is formed by the closed circuit as shown in FIG. 2, that is, the output filter, the three-phase feeder cable, the feeder section three-phase propulsion coil in which the ground fault has occurred, and the ground.
[0015]
2, ground fault is generated in the three-phase propulsion coil distance d f eaves conductive sections of the three-phase feeding circuit cable, earth絡点P is present in the propulsion coil of the W phase of the feeding circuit section . Then, the distance to the ground絡点P is x c. That is, in the three-phase propulsion coil in which the ground fault has occurred, the U phase is an unhealthy phase, and the V phase and the W phase are healthy phases.
[0016]
Since the ground fault point P is generated, three closed circuits are formed. The first closed circuit was formed by a V-phase output filter, a V-phase feeding cable, a V-phase propulsion coil, a U-phase propulsion coil from the common connection point Z to the ground fault point P, and ground. Is. The second closed circuit is formed by a W-phase output filter, a W-phase feeding cable, a W-phase propulsion coil, a U-phase propulsion coil from the common connection point Z to the ground fault point P, and ground. It has been done. Further, the third closed circuit is formed by a U-phase output filter, a U-phase feeding cable, a U-phase propulsion coil from the connection point U2 to the grounding cable side to the ground fault point P, and ground. It is a thing. Here, the first closed circuit and the second closed circuit are referred to as a healthy phase closed circuit, and the third closed circuit is referred to as an unhealthy phase closed circuit.
[0017]
The total closed circuit inductance of the sound phase is the inductance L of the output filter, the inductance d f L f of the feeder cable up to the feeder section where the ground fault occurred Is the sum of the total inductance L c, and from the common connection point Z of the propulsion coil of the U phase to earth絡点P inductances (d c -x c) L c / d c of each phase of the three-phase propulsion coils. The total capacitance of the closed circuit of the healthy phase is the capacitance C of the output filter. Where L f Unit inductance per unit distance of feeder wire, d f Is the distance of the three-phase feeder cable to the feeder section where the ground fault occurred, and d c is the distance of the three-phase propulsion coil.
[0018]
Therefore, the resonance frequency f n of the current flowing through the closed circuit of the healthy phase is expressed by Equation 1.
[Expression 1]
Figure 0003875651
[0019]
From Equation 1, the distance x c is given by Equation 2.
[Expression 2]
Figure 0003875651
[0020]
As described above, the inductance L and capacitance C of the output filter, the three-phase feeder cable distance d f to the feeder section where the ground fault occurred, the total inductance L c for each phase of the feeder section three-phase propulsion coil, Unit inductance L f per unit distance of wire The three-phase feeder cable distance d f to the feeder section where the ground fault occurred The distance d c of the propulsion coil is known. Therefore, if the resonance frequency f n of the current flowing through the closed circuit of the healthy phase is measured, the distance x c from the formula 2 to the ground fault point can be obtained.
[0021]
Three-phase feeder cable distance to the feeder section where the ground fault occurred d f Is calculated by automatically identifying the feeder section where the ground fault has occurred by the control device 7 of the substation. Further, the resonance frequency f n of the healthy phase is automatically determined by the frequency detector 9 connected to the current detector 8 that detects the current of each phase of the three-phase feeder cable 2 as shown in FIG. Measured. Then, the arithmetic unit 10 receives the three-phase feeding cable distance d f input from the control unit 7. Then, the resonance frequency f n of the closed circuit of the healthy phase input from the frequency detector 9 is substituted into Equation 2, and the distance x c to the ground fault point is automatically calculated.
[0022]
As described above, when the ground fault occurs and the inverter 1 is gate-blocked, the output filter 4, the three-phase feeder cable 2, the feeder section three-phase propulsion coil 5 in which the ground fault has occurred, and the closed circuit are formed. The method and apparatus for locating the distance x c from one end of the feeding section three-phase propulsion coil 5 to the ground fault point based on the resonance frequency f n of the healthy phase of the circuit has been described. Next, a method for locating the distance x c from one end of the feeding section three-phase propulsion coil 5 to the ground fault point based on the resonance frequency f f of the unhealthy phase of the closed circuit will be described.
[0023]
The total inductance of the closed circuit of the unhealthy phase is the inductance L of the output filter, the inductance d f L f of the three-phase feeder cable up to the feeder section where the ground fault occurred , And the sum of the inductance x c L c / d c the propulsion coils of the U phase to earth絡点P from the connection point U2 of the three phase feeding circuit cable. The total capacitance of the closed circuit of the unhealthy phase is the output filter capacitance C. Where L f Is the unit inductance per unit distance of the three-phase wire, L c is the total inductance per phase of the three-phase propulsion coil, d f Is the three-phase feeder cable distance to the feeder section where the ground fault occurred, and d c is the three-phase propulsion coil distance. Therefore, the resonance frequency f f of the closed circuit of the unhealthy phase is given by Equation 3.
[Equation 3]
Figure 0003875651
[0024]
From Equation 3, the distance x c is given by Equation 4.
[Expression 4]
Figure 0003875651
[0025]
The minimum value f min of the resonance frequency of the closed circuit of the healthy phase is given by Equation 5. This is the resonance frequency when the ground fault point P occurs at the common connection point Z.
[Equation 5]
Figure 0003875651
[0026]
As described above in detail, the present invention utilizes the resonance of the resonance circuit formed by the inductance of the output filter 4 for reducing harmonics provided at the output portion of the inverter 1 and the capacitance and the inductance of the ground fault circuit. In this way, the ground fault point is determined. Here, the ground fault circuit is a circuit including the three-phase propulsion coil of the feeder section where the ground fault occurs and the three-phase feeder cable 2 to the feeder section.
[0027]
In addition, although the case where the ground fault occurred in the three-phase propulsion coil 5 of the feeder section was described in detail, the resonance frequency is similarly detected when the ground fault occurs in the three-phase feeder cable 2. Can be used to determine the ground fault point. The three-phase power cable 2 has not only inductance but stray capacitance, but the stray capacitance is ignored in order not to complicate the explanation. However, when the ground fault point of the actual LSM feeder circuit is located, the stray capacitance of the three-phase feeder cable 2 is taken into consideration.
[0028]
【The invention's effect】
According to the present invention, there is provided a magnetic levitation railway ground fault locating device that performs ground fault locating when the three-phase propulsion coil and the three-phase feeder cable are grounded in a magnetic levitation railway employing the LSM system. It was.
[0029]
In the present invention, the ground fault point is determined by using the resonance of the resonance circuit formed by the inductance of the output filter 4 for reducing harmonics provided at the output section of the inverter 1 and the capacitance and the inductance of the ground fault circuit. Therefore, a low-cost ground fault location device can be configured. In addition, since the transient phenomenon itself at the time of the ground fault accident is used, the ground fault point is also compared with the ground fault location method applied to the distribution wiring circuit wired in a normal railway. It has become possible to greatly reduce the time required for locating.
[Brief description of the drawings]
FIG. 1 is a block circuit diagram of a magnetic levitation railway ground fault location apparatus according to an embodiment of the present invention.
FIG. 2 is a circuit diagram for explaining a magnetic levitation railway ground fault location method according to the present invention.
FIG. 3 is a graph showing an example of a frequency analysis result of ground fault current according to the present invention, where the vertical axis represents the amplitude value and the horizontal axis represents the frequency.
[Explanation of symbols]
1 Inverter 2 Three-phase feeding cable 4 Output filter 5 Three-phase propulsion coil 6 Feeding section switch 7 Controller 8 Current detector 9 Frequency detector 10 Arithmetic device P Ground fault point Z Common connection point

Claims (3)

三相交流電力を出力するインバータ、三相き電ケーブル、き電区分開閉器を介して前記三相き電ケーブルに接続された複数のき電セクション三相推進コイル、一端が前記インバータの出力端子に接続され他端がアースされた出力フィルタ、及び前記き電区分開閉器の開閉を制御する制御装置とから構成されたLSMき電回路の地絡点を標定する磁気浮上式鉄道用地絡点標定方法であって、地絡事故が発生し前記インバータがゲートブロックした時に、前記出力フィルタ、前記三相き電ケーブル、地絡事故が発生したき電セクション三相推進コイル、及びアースとで形成された閉回路の健全相の共振周波数fn又は非健全相の共振周波数ffに基づいて前記き電セクション三相推進コイルの一端から地絡点までの距離xcを標定することを特徴とする磁気浮上式鉄道用地絡点標定方法。An inverter that outputs three-phase AC power, a three-phase feeder cable, a plurality of feeder section three-phase propulsion coils connected to the three-phase feeder cable via a feeder section switch, one end of which is the output terminal of the inverter A grounding point for a magnetically levitated railway for locating a ground fault point of an LSM feeder circuit comprising an output filter connected to the other end and grounded at the other end and a control device for controlling the switching of the feeder section switch. When a ground fault occurs and the inverter is gate-blocked, the output filter, the three-phase power cable, the power section three-phase propulsion coil where the ground fault occurs, and the ground are formed. characterized by locating the distance x c to ground絡点from one end of the feeding circuit section three-phase propulsion coils on the basis of the resonant frequency of the closed circuit of healthy phases f n or unhealthy phase resonance frequency f f Levitation railway land 絡点 orientation method. 三相交流電力を出力するインバータ、三相き電ケーブル、き電区分開閉器を介して前記三相き電ケーブルに接続された複数のき電セクション三相推進コイル、一端が前記インバータの出力端子に接続され他端がアースされた出力フィルタ、及び前記き電区分開閉器の開閉を制御する制御装置とから構成されたLSMき電回路の地絡点を標定する磁気浮上式鉄道用地絡点標定方法であって、地絡事故が発生し前記インバータがゲートブロックした時に、前記出力フィルタ、前記三相き電ケーブル、地絡事故が発生したき電セクション三相推進コイル、及びアースとで形成された閉回路の健全相の共振周波数fn又は非健全相の共振周波数ffに基づいて下式の演算を行って前記き電セクション三相推進コイルの一端から地絡点までの距離xcを標定する磁気浮上式鉄道用地絡点標定方法。
Figure 0003875651
又は
Figure 0003875651
但し、Lは出力フィルタのインダクタンス、Cは出力フィルタのキャパシタンス、Lcは三相推進コイルの相毎の全インダクタンス、Lf は三相き電ケーブルの単位距離当りの単位インダクタンス、df は地絡事故が発生したき電セクションまでの三相き電ケーブルの距離、dc はき電セクション三相推進コイの距離である。
An inverter that outputs three-phase AC power, a three-phase feeder cable, a plurality of feeder section three-phase propulsion coils connected to the three-phase feeder cable via a feeder section switch, one end of which is the output terminal of the inverter A grounding point for a magnetically levitated railway for locating a ground fault point of an LSM feeder circuit comprising an output filter connected to the other end and grounded at the other end and a control device for controlling the switching of the feeder section switch. When a ground fault occurs and the inverter is gate-blocked, the output filter, the three-phase power cable, the power section three-phase propulsion coil where the ground fault occurs, and the ground are formed. Based on the resonant frequency f n of the healthy phase of the closed circuit or the resonant frequency f f of the unhealthy phase, the following formula is calculated to determine the distance x c from one end of the feeding section three-phase propulsion coil to the ground fault point: Standardize Maglev land 絡点 orientation method.
Figure 0003875651
Or
Figure 0003875651
Where L is the inductance of the output filter, C is the capacitance of the output filter, L c is the total inductance for each phase of the three-phase propulsion coil, L f Is the unit inductance per unit distance of the three-phase feeder cable, d f Is a three-phase feeding circuit cable distance, the distance d c wear conductive section three-phase propulsion carp up feeding circuit section ground fault occurs.
三相交流電力を出力するインバータ、三相き電ケーブル、き電区分開閉器を介して前記三相き電ケーブルに接続された複数のき電セクション三相推進コイル、一端が前記インバータの出力端子に接続され他端がアースされた出力フィルタ、及び前記き電区分開閉器の開閉を制御する制御装置とから構成されたLSMき電回路の地絡点を標定する磁気浮上式鉄道用地絡点標定装置であって、地絡事故が発生し前記インバータがゲートブロックした時に、前記出力フィルタ、前記三相き電ケーブル、地絡事故が発生したき電セクション三相推進コイル、及びアースとで形成された閉回路の健全相の共振周波数fn又は非健全相の共振周波数ffを検出する周波数検出器と、前記共振周波数fn又はffに基づいて下式の演算を行って前記き電セクション三相推進コイルの一端から地絡点までの距離xcを標定する演算器とから構成された磁気浮上式鉄道用地絡点標定装置。
Figure 0003875651
又は
Figure 0003875651
但し、Lは出力フィルタのインダクタンス、Cは出力フィルタのキャパシタンス、Lcは三相推進コイルの相毎の全インダクタンス、Lf は三相き電ケーブルの単位距離当りの単位インダクタンス、df は地絡事故が発生したき電セクションまでの三相き電ケーブルの距離、dc はき電セクション三相推進コイル距離である。
An inverter that outputs three-phase AC power, a three-phase feeder cable, a plurality of feeder section three-phase propulsion coils connected to the three-phase feeder cable via a feeder section switch, one end of which is the output terminal of the inverter A grounding point for a magnetically levitated railway for locating a ground fault point of an LSM feeder circuit comprising an output filter connected to the other end and grounded at the other end and a control device for controlling the switching of the feeder section switch. When a ground fault occurs and the inverter is gate-blocked, the output filter, the three-phase power cable, the power section three-phase propulsion coil where the ground fault occurs, and the ground are formed. A frequency detector for detecting the resonant frequency f n of the healthy phase of the closed circuit or the resonant frequency f f of the non-healthy phase, and calculating the following formula based on the resonant frequency f n or f f to perform the feeding section three Maglev land絡点locating device composed of one end of the propulsion coil and calculator for locating the distance x c to the earth絡点.
Figure 0003875651
Or
Figure 0003875651
Where L is the inductance of the output filter, C is the capacitance of the output filter, L c is the total inductance for each phase of the three-phase propulsion coil, L f Is the unit inductance per unit distance of the three-phase feeder cable, d f The three phase feeding circuit distance cable to feeding circuit section ground fault occurs, a d c wear conductive section three-phase propulsion coil distance.
JP2003137067A 2003-05-15 2003-05-15 Magnetic levitation railway ground fault location method and apparatus Expired - Fee Related JP3875651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137067A JP3875651B2 (en) 2003-05-15 2003-05-15 Magnetic levitation railway ground fault location method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137067A JP3875651B2 (en) 2003-05-15 2003-05-15 Magnetic levitation railway ground fault location method and apparatus

Publications (2)

Publication Number Publication Date
JP2004343883A JP2004343883A (en) 2004-12-02
JP3875651B2 true JP3875651B2 (en) 2007-01-31

Family

ID=33526821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137067A Expired - Fee Related JP3875651B2 (en) 2003-05-15 2003-05-15 Magnetic levitation railway ground fault location method and apparatus

Country Status (1)

Country Link
JP (1) JP3875651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104076240B (en) * 2014-07-15 2016-08-24 国家电网公司 Ultrahigh voltage alternating current transmission lines three phase short circuit fault recognition methods

Also Published As

Publication number Publication date
JP2004343883A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
US7898778B2 (en) Superconducting coil quench detection method and device, and superconducting power storage unit
EP2752674B1 (en) A detection method of a ground fault in an electric power distribution network
US7683558B2 (en) Electric car control apparatus
KR101844468B1 (en) Apparatus and method for high speed fault distinction and fault location estimation using the database based on inductive analysis in high speed ac railway feeding system
CN102933975A (en) Method and apparatus for monitoring the insulation resistance in an unearthed electrical network
JP4745000B2 (en) Fault detection device for fault location device for AC AT feeder circuit
CN104969466B (en) Filter and motor car drive control apparatus
CN104969433B (en) Power conversion device and method for power conversion
JP2011111137A (en) Apparatus and method of protecting feeding current of ac-at feeding circuit
Wolbank et al. Inverter statistics for online detection of stator asymmetries in inverter-fed induction motors
JP3875651B2 (en) Magnetic levitation railway ground fault location method and apparatus
JP2020025388A (en) Ground-fault position locating method and ground-fault position locating system
JP2007076607A (en) Failure point sample quantity measuring device for alternating current feeding circuit
JP6943756B2 (en) Ground fault position positioning method and ground fault position positioning system
CN103608885B (en) Transformer inrush current suppression apparatus
JP5416910B2 (en) Method and apparatus for calculating current passing through parallel connection point of different power sources
JP2005119519A (en) Position/current detecting device of electric vehicle
JP2004074924A (en) Protective device of feeding circuit
US11919550B2 (en) Rail breakage detection device and rail breakage result management system
CN102253309A (en) Method for determining multipoint earth faults of long stator according to line voltage
Kletsel’ et al. Specific features of the development of differential-phase transformer protection systems on the basis of magnetic reed switches
JP3335787B2 (en) Induction current collector for magnetic levitation train
KR102468562B1 (en) Device for diagnosing the condition of main transformer for rail vehicles
JP2577825B2 (en) Non-power failure insulation diagnostic device
Biliuk et al. P. Mikhalichenko

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees