JP3875135B2 - Aluminum alloy composite for brazing - Google Patents

Aluminum alloy composite for brazing Download PDF

Info

Publication number
JP3875135B2
JP3875135B2 JP2002097961A JP2002097961A JP3875135B2 JP 3875135 B2 JP3875135 B2 JP 3875135B2 JP 2002097961 A JP2002097961 A JP 2002097961A JP 2002097961 A JP2002097961 A JP 2002097961A JP 3875135 B2 JP3875135 B2 JP 3875135B2
Authority
JP
Japan
Prior art keywords
mass
brazing
skin material
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002097961A
Other languages
Japanese (ja)
Other versions
JP2003293064A (en
Inventor
利樹 植田
史浩 腰越
文博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002097961A priority Critical patent/JP3875135B2/en
Publication of JP2003293064A publication Critical patent/JP2003293064A/en
Application granted granted Critical
Publication of JP3875135B2 publication Critical patent/JP3875135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のラジエータのチューブ及びヘッダプレートやヒータコア等に使用されるブレージングシートとして好適のアルミニウム合金複合材及び熱交換器に関し、特に、高強度であると共に、ラジエータ及びヒータコアとして使用された場合の内面側(クーラント側)の耐食性が優れており、薄肉化が可能なろう付用アルミニウム合金複合材及びそれを使用した熱交換器に関する。
【0002】
【従来の技術】
従来、心材の片面にろう材をクラッドし、心材の他面に皮材をクラッドしたろう付け用アルミニウム合金複合材において、皮材にMn及びSiを添加することにより、高強度化を図っている。(特開平11−61306号公報)。
【0003】
【発明が解決しようとする課題】
しかしながら、皮材にSiを添加した場合、ろう付け時にAl−Mn−Si系析出物が粒界に析出するため、皮材自体の耐食性が劣化し、皮材が犠牲陽極層として作用する期間が短くなり、その結果、クラッド材の内面側(クーラント側)の耐食性が劣化するという問題点がある。また、心材には通常Cuが含有されており、このCuがろう付け時に皮材に拡散するため、Al−Cu−Si系析出物又はAl−Mn−Cu−Si系析出物が皮材の粒界に析出し、皮材自体の耐食性を劣化させる。これによっても、クラッド材の内面耐食性が劣化する。
【0004】
本発明はかかる問題点に鑑みてなされたものであって、高強度であると共に、ラジエータのチューブ、ヘッダプレート及びコータコアとして使用された場合の内面側(クーラント側)の耐食性が優れており、薄肉化が可能なろう付用アルミニウム合金複合材を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明に係るろう付け用アルミニウム合金複合材は、心材の片面にAl−Si系のアルミニウム合金からなるろう材が形成され、前記心材の他面に皮材が全板厚の6乃至30%のクラッド率で形成されたアルミニウム合金複合材において、前記心材は、Mg:0.2質量%以下、Cr:0.3質量%以下、Fe:0.2質量%以下、Cu:0.2乃至1.0質量%、Si:0.05乃至1.3質量%、Mn:0.3乃至1.8質量%、Ti:0.02乃至0.3質量%を含有し、Cu+Siが2.0質量%以下であり、残部がAl及び不可避不純物からなる組成を有し、前記皮材は、Zn:2乃至9質量%、Mn:0.3乃至1.8質量%、Si:0.5乃至1.2質量%、Fe:0.02乃至0.25質量%Cr:0.01乃至0.30質量%、Mg:0.01乃至0.10質量%、及びCu:0.001乃至0.15質量%を含有し、残部がAl及び不可避不純物からなる組成を有し、皮材中の平均Si組成がSi含有量の0.5倍以下であることを特徴とする。
【0006】
このろう付け用アルミニウム合金複合材において、前記皮材は、Zn含有量が3質量%以上で、Zn/Si比が4以上であることが好ましい。
【0007】
また、本発明に係る熱交換器は、前記ろう付け用アルミニウム合金複合材をブレージングシートとして使用してろう付けすることにより組み立てられ、100℃/分以上の冷却速度でろう付けされたものであることを特徴とする。
【0008】
【発明の実施の形態】
本発明者等が前記課題を解決すべく種々実験研究した結果、皮材にMn及びSiを所定の範囲で含有させ、更に皮材の厚さを所定の割合にし、更に、皮材に、Fe、Cr、Mg、Cuの少なくとも1種を含有させることにより、ろう付性、耐食性及び強度を維持したまま、アルミニウム合金複合材の大幅な薄肉化を図ることができることを見いだした。
【0009】
また、「皮材の平均Si組成」を「Si含有量」×0.5以下とすることにより、耐食性を向上できる。更に、ろう付け時の冷却速度を100℃/分以下とすることにより、内面側(クーラント側)の耐食性を向上させることができる。
【0010】
以下、本発明のろう付用アルミニウム合金複合材の心材、皮材及びろう材における成分添加理由及び組成限定理由について説明する。先ず、心材の組成について説明する。
【0011】
Mg(マグネシウム):0.2質量%以下
Mgは心材の強度を向上させる元素であるが、0.2質量%を超えて添加されると、ろう付性を低下させてしまう。特に、ノコロック法によるろう付けではその低下が極めて大きい。従って、Mgの含有量は0.2質量%以下に制限する。なお、より一層ろう付性の低下を抑制するためには、Mgの含有量を0.1質量%以下とすることが好ましい。
【0012】
Cu(銅):0.2乃至1.0質量%
Cuは心材の強度を向上させる元素であり、また、ろう材側の耐食性も向上させる。しかし、心材にCuを添加すると、粒界腐食感受性を増大させるため、皮材面側の耐食性を低下させてしまう。そこで、皮材にZnを2質量%以上添加することにより、皮材の電位を粒界に対して卑に設定することができると共に、粒界腐食を防止することができる。つまり、皮材におけるZnの添加量を多くすることにより、心材に対する皮材の電位を心材のマトリックスのみならず、粒界に対しても低く設定することができるため、粒界腐食を防止することができる。Cuの添加量が0.2質量%未満では心材の強度を向上させるには不十分である。一方、Cuが1.0質量%を超えて添加されると、心材の融点を低下させるため、ろう付時に心材の溶融が生じてしまう。従って、Cuの含有量は0.2乃至1.0質量%とする。
【0013】
Si(シリコン):0.05乃至1.3質量%
Siは心材の強度を向上させる元素であり、特にMn−Si系析出物により心材の強度が向上する。しかし、Siの添加量が0.05質量%未満では、心材の強度を向上させるには不十分である。一方、Siが1.3質量%を超えて添加されると、心材の融点を低下させると共に、低融点相の増加に起因してろう付け時に心材の溶融が生じてしまう。従って、Siの含有量は0.05乃至1.3質量%とする。
【0014】
Cu及びSiの総量:2.0質量%以下
上述のように、Cu及びSiはいずれも所定量を超えて添加されると、心材の融点を低下させ、ろう付時に心材が溶融してしまう。これを防止するため、Si及びCuの添加量の総計を2.0質量%以下に制限する必要がある。従って、Si及びCuの総量を2.0質量%以下とする。
【0015】
Mn(マンガン):0.3乃至1.8質量%
Mnは心材の耐食性、ろう付性及び強度を向上させる元素である。Mnの添加量が0.3質量%未満の場合は、強度を向上させることができない。しかし、Mnの添加量が1.8質量%を超えると、結晶粒が粗大化した化合物を生成するため、加工性が低下してしまう。従って、Mnの含有量は0.3乃至1.8質量%とする。
【0016】
Ti(チタン):0.02乃至0.3質量%
Tiは心材の耐食性をより一層向上させる元素である。Tiの添加量が0.02質量%未満であると、心材の耐食性を十分に向上させることができない。一方、Tiが0.3質量%を超えて添加されても、それ以上は心材の耐食性を向上させることができず、却って結晶粒が粗大化した化合物を生成するため、加工性が低下してしまう。従って、Tiの含有量は0.02乃至0.3質量%とする。このように、Tiは心材の耐食性を向上させるためには不可欠の元素であり、Tiを添加すると、心材において層状に析出して、孔食が深さ方向へ進行することを抑制すると共に、Tiの添加により心材電位を貴に移行させることができる。また、Tiはアルミニウム合金において拡散速度が小さく、ろう付時の移動も少ないため、Tiを添加することは、心材とろう材、又は心材と皮材の電位差を維持して、電気化学的に心材を防食することに有効である。
【0017】
Cr(クロム):0.3質量%以下
Crは心材の耐食性、強度及びろう付性を向上させる元素である。Crが0.3質量%を超えて添加されても、それ以上は心材の耐食性、強度及びろう付性を向上させることができず、却って化合物の結晶の粗大化により加工性を低下させてしまう。従って、Crの含有量は0.3質量%以下とする。なお、より好ましいCrの添加量は0.02乃至0.3質量%である。
【0018】
Fe(鉄):0.2質量%以下
Feは心材における結晶粒を微細化させると共に、心材の強度及び溶接性を向上させる元素である。Feの添加量が0.2質量%を超えると、心材の耐食性が低下してしまう。従って、Feの含有量は0.2質量%以下とする。なお、より好ましいFeの添加量は、0.02乃至0.2質量%である。
【0019】
次に、皮材の組成について説明する。
【0020】
Mn(マンガン):0.3乃至1.8質量%
Mnは皮材の強度を向上させる元素である。即ち、Mnが皮材中に固溶することにより材料強度が向上する。Mnの添加量が0.3質量%よりも少ないと十分なMn固溶量が得られず、強度が確保されない。一方、Mnの添加量が1.8質量%よりも多いと化合物が増加することにより、皮材の加工性を低下させ、クラックの起点となるため、クラッド材全体の加工性を低下させる。従って、皮材にMnを添加する場合は、皮材のMn量は0.3乃至1.8質量%とする。
【0021】
Si(シリコン):0.5乃至1.2質量%
Siは、Mnと同様に皮材に添加することにより強度が向上する。また、Mn及びSiを共添加(双方を添加)することにより、強度の向上効果がより大きくなる。Siの添加量が0.5質量%より少ないと、強度の向上効果が十分でない。Siの添加量が1.2質量%より多いと、粒界腐食感受性が高まり、耐食性が低下する。従って、皮材にSiを添加する場合は、Si含有量の範囲は0.5乃至1.2質量%とする。なお、Mn及びSiは同様の効果を有し、少なくともいずれか1方を添加すればよい。
【0022】
Zn(亜鉛):2乃至9質量%
皮材の電位を卑とするために、皮材にZnを添加する。この場合、心材におけるCuの添加量が0.2質量%以下であると、皮材におけるZnの添加量が2質量%未満で十分な犠牲陽極効果を得ることができると共に、耐食性を維持することができる。しかし、上述したように、心材におけるCuの添加量が0.2質量%を超えて、1.0質量%以下である場合には、皮材におけるZnの添加量を2乃至9質量%とすることが必要である。これは、皮材におけるZnの添加量が2質量%未満であると、皮材の電位は粒界に対して十分な電位差をとることができず、粒界腐食が発生して、皮材側の耐食性が低下してしまうからであり、一方、Znを皮材に9質量%を超えて添加すると、皮材自身の自己腐食速度が上昇するため、皮材が早期に消耗し、犠牲陽極効果を示す期間が短くなり、耐食性が劣化する。なお、Si量を上げた状態で強度及び耐食性のバランスを得るために、Zn量は3質量%以上とするのが好ましい。
【0023】
上記Mn及びSiを共添加することと合わせて、Fe,Cr,Mg及びCuからなる群から選択された少なくとも1種を合わせて添加することにより、皮材の強度を更に一層向上させることができ、板厚全体の強度向上に有効である。
【0024】
Fe:0.02〜0.25質量%
Feは皮材の結晶粒を微細化させるため、及び、Feが固溶することにより、皮材の強度を向上させる元素である。Feの含有量が0.02質量%未満であると、結晶粒微細化及び強度向上の効果が不十分である。Feの添加量が0.25質量%を超えると、皮材中のFeを含有する金属間化合物及び晶出物の量が増大するため、カソードサイトが増大する。このため、皮材自体の腐食速度が増大し、耐食性が低下する。従って、Feを添加する場合は、Feの含有量は0.25質量%以下とする。なお、より好ましいFeの添加量は、0.02乃至0.2質量%である。
【0025】
Cr:0.01〜0.30質量%
Crは皮材中で耐食性及び強度を向上させる元素である。Crが0.3質量%を超えて添加されても、それ以上は皮材の耐食性及び強度を向上させることができず、また、Crを含有する晶出物量が増大することによりカソードサイトが増大するため、皮材自体の腐食速度が増大し、耐食性が低下する。従って、Crの含有量は0.3質量%以下とする。一方、Crが0.01以下の場合、強度及び耐食性の向上効果が得られない。このため、Crを添加する場合は、そのCrの含有量は0.01乃至0.30質量%とする。
【0026】
Mg:0.005〜0.15質量%
Mgは皮材中に固溶することにより、皮材の強度を向上させる。更に、Siが共存する場合には、MgSiの析出物が分散することによる効果により、更に一層強度を向上させることができる。Mgが0.15質量%を超える場合は、皮材側が接合される部位でのろう付性を劣化させるため、Mgの含有量は0.15%以下とする。また、Mg含有量が0.005%未満では強度向上の効果が小さい。よって、Mgを添加する場合は、その添加量は、0.005乃至0.15質量%とする。
【0027】
Cu:0.001〜0.15質量%
Cuは皮材中に固溶することにより、皮材の強度を向上させる。皮材中のCuが0.15質量%を超える場合は、皮材の電位が貴となるため、心材のCuが0.2〜1質量%で皮材のZnを2〜7%に制御した場合でも、心材に対する犠牲陽極効果が低下するため、皮材側の耐食性が劣化する。また、Cu量が0.001質量%未満の場合は、強度の上昇効果が小さく、皮材側の十分な強度増大効果が得られない。
【0028】
皮材中の「平均Si組成」が(Si含有量)×1/2以下
アルミニウム合金中にSiが存在する場合、Siの存在形態は大きく3種類に分けられる。▲1▼先ず、Siのみで存在する。Si含有量が1質量%以下の程度では、通常、固溶しており、又は1μm以下の単体Si析出物として存在する。▲2▼約1質量%のSiと、約1質量%のMnとが共存するとき、鋳造時に、Al−Mn−Si系の晶出物(粒径:数μm〜数10μm)が晶出する。▲3▼約1質量%のSiと、約1質量%のMnが共存する場合、上記鋳造時の晶出物とは別に、熱処理(均熱)条件及び冷却条件により、粒径が数μm以下のAl−Mn−Si系析出物が析出する。「平均Si組成」とは、▲2▼の粒径の晶出物のうち、10μm以上の粗大晶出物を除いた晶出物、及び▲1▼と▲3▼に含まれるSiの総含有量をいう。この「平均Si組成」は、市販のEPMA(Electron Probe Micro-analyzer)分析装置を使用して、Si及びMnのライン分析を実施した場合に、MnとSiとが10μm以上の範囲で同時に強度を示すピーク(粒径が10μm以上の粗大な晶出物からのピークと考えられる)を除いたSi濃度を「平均Si組成」として測定することができる。
【0029】
素材のSi固溶量が大きい場合、ろう付けの冷却時にAl−Mn−Si系、Al−Mn−Si−Cu系、Al−Si−Cu系析出物の粒界への析出を促進する効果が大きい。これは粒内固溶Siが拡散しやすいためである。また上記▲1▼▲2▼▲3▼のうち微小な析出物については、ろう付け加熱時に再固溶しやすいため、固溶Siと同様にふるまい、冷却時にAl−Mn−Si系、Al−Mn−Si−Cu系、Al−Si−Cu系析出物となって粒界へ析出促進する効果がある。そこで、本発明においては、Si固溶量及び微小な析出物の比率を低下させること、即ち平均Si組成をSi含有量×0.5以下にすることにより、ろう付けの冷却時に粒界に到達するSi量を抑制し、粒界析出物が生じにくくなる効果を生じさせる。平均Si組成がSi含有量×0.5を超えると、粒界析出物が増大し、皮材の自己耐食性が低下し、その結果、ブレージングシートの皮材側の耐食性が劣化してしまう。
【0030】
なお、平均Si組成を制御するためには、Siを予めAl−Mn−Si系晶出物として安定化させておくことができる。具体的な手段としては、皮材の鋳塊の均熱温度を520乃至630℃の温度とすることにより、平均Si組成を(Si含有量)×0.5以下とすることができる。また、均熱温度を400乃至520℃とした場合でも、鋳造時の冷却を0.1乃至5℃/時とすることにより、同様の効果を得ることができる。
【0031】
ろう付け時の冷却速度:100℃/分以上
上述の如くしてSi固溶量を制御した上で、更に、冷却速度を100℃/分以上とすることにより、Al−Mn−Si系、Al−Mn−Si−Cu系、Al−Si−Cu系析出物の粒界への析出を抑制することができる。ろう付け時の冷却速度を100℃/分以上とすることにより、Si及びCu等の拡散に要する時間が短縮されるため、粒界析出物を減少させることができ、Si固溶量の抑制と合わせてろう付け時の冷却速度を規定することにより、耐食性が向上する。
【0032】
皮材のクラッド率:アルミニウム合金複合材の全板厚の6乃至30%
本発明の組成からなる皮材のクラッド率を6%以上とすることにより、大幅な薄肉化を行なっても、耐食性を維持したままで十分な強度が得られる。クラッド率が6%より小さいと、皮材の犠牲陽極効果が不十分となるため、耐食性が低下する。従って、本発明の組成を有する皮材のクラッド率は全板厚の6%以上とする。
【0033】
また、皮材をクラッド率30%以上に厚くした場合、相対的に心材の厚さが減少し、外面側の耐食性が劣化するため、クラッド率の上限は30%とする。よって、皮材のクラッド率は6乃至30%とする。
【0034】
好ましくは、Znが3質量%以上、Zn/Si比が4以上
皮材にSiを添加することにより強度は向上するが、耐食性(粒界腐食性)が低下する。Zn/Si比を4以上にすれば、大幅に薄肉化を行なっても、耐食性と強度を好ましい範囲で両立させることができる。従って、Znは3質量%以上、Zn/Si比は4以上であることが好ましい。
【0035】
次に、ろう材について説明する。ろう材には、従来使用されているろう材と同様のAl−Si系合金、例えばA4045合金等を使用することができる。また、ろう材にZnを添加することにより、ろう材を積極的に犠牲陽極として作用させることもできる。この場合には、Znの添加量を皮材におけるZnの添加量と同量、即ち2乃至5質量%とすることが好ましい。また、ろう材面の耐食性を確保するために、フィン材と外面との電位差を確保することも必要であるため、ろう材にCu等の電位を上昇させる金属元素を微量添加しても良い。
【0036】
【実施例】
以下、本発明の実施例の効果について、本発明の範囲から外れる比較例と比較して具体的に説明する。
【0037】
下記表1は心材の組成、表2は皮材の組成を示す。表1に示す心材No.1乃至5は本発明の実施例、心材No.6乃至18は本発明の比較例である。また、表2に示す皮材No.1乃至4及び皮材No.11乃至13は本発明の実施例であり、皮材No.5乃至10は本発明の特許請求の範囲から外れる比較例である。
【0038】
【表1】

Figure 0003875135
【0039】
【表2】
Figure 0003875135
【0040】
上記表1及び2に示す各心材及び皮材と、ろう材(JIS4045合金;Si:10.5質量%、Fe:0.05質量%、Cu:0.05質量%、Ti:0.02質量%を含有し、残部がAl及び不可避的不純物)とを使用して、図1に示すようなろう付用アルミニウム合金複合材を製造した。図1は本発明の実施例に係るろう付用アルミニウム合金複合材を示す断面図である。図1に示すように、このアルミニウム合金複合材4は心材1の両面に夫々皮材2及びろう材3を積層することにより構成されている。また、下記表3はこの複合材における心材と皮材との組み合わせ並びにそれらの厚さ、ろう材の厚さ及び複合材の厚さを示す。
【0041】
【表3】
Figure 0003875135
【0042】
この表3において、実施例1乃至10及び41と比較例11乃至40及び42は、ろう付け時の冷却速度が30乃至70℃/分であった。また、実施例43はろう付け時の冷却速度が120℃/分であった。
【0043】
この表3の各複合材について、ろう付け性試験、引張り強度測定及び耐食性試験を行った。試験方法は以下のとおりである。即ち、ろう付性試験においては、ろう付用アルミニウム合金複合材のろう材側の面において、ノコロック用フラックスを5g/m塗布し、乾燥させた後、露点が−40℃の温度である窒素雰囲気中において、到達温度600℃、600℃での保持時間2分の条件にて加熱した。
【0044】
図2はラジエータのチューブの一部を示す断面図である。この図2に示すように、実際のラジエータの製造においては、心材31、皮材32及びろう材33からなるチューブ34と、熱を放出するためのフィン35と、チューブ34を連結するヘッダ36とを組み合わせた状態においてろう付けを行うが、ろう付け評価の簡易化及び定量化を考慮して、ドロップ試験による流動係数(アルミニウムブレージングハンドブック (平成4年1月発行)、軽金属構造溶接協会 P126記載の「ドロップ型流動性試験」の方法)によりろう付性を評価した。
【0045】
このろう付け性の評価結果を下記表4に示す。表4において、流動性が65%以上の場合が○、65%未満の場合が×である。
【0046】
【表4】
Figure 0003875135
【0047】
ろう付後強度を求めるために、上述のろう付性試験と同様に、ろう付け加熱した後のアルミニウム合金複合材について引張試験(JIS○○○)を行った。その結果を上記表4に併せて示す。このろう付け後強度は、引張強さが158MPaを超えるものが○、引張強さが158MPa以下のものが×である。
【0048】
ろう材側腐食試験は、ろう付性試験と同様に、加熱したろう付用アルミニウム合金複合材について、CASS試験(JIS○○○)を連続250時間試験した。その結果を上記表4に示す。表4のろう材側腐食深さ欄において、ろう材側侵食深さが70μm以下の場合が○、ろう材側侵食深さが70μmを超えるものが×である。
【0049】
皮材側耐食性を求めるために、皮材側腐食試験を行った。この皮材側腐食試験は、ろう付性試験と同様に、加熱したろう付用アルミニウム合金複合材にういて、人工水(Cl:300質量ppm、SO:100質量ppm及びCu:5質量ppm)を使用して腐食試験を行った。人工水にアルミニウム合金複合材を浸漬し、88℃で8時間(室温から88℃への加熱時間を含む)、室温保持16時間(88℃から室温への冷却時間を含む)のサイクル試験30日実施した。このような手順で30日間及び50日間の腐食試験を行った。その結果を上記表4に示す。表4の皮材腐食深さ欄において、30日後に、皮材腐食深さが30μm以下の場合が○、皮材腐食深さが30μmを超える場合が×であり、50日後においても、皮材腐食深さが30μm以下の場合が◎である。なお、30日後に皮材腐食深さが30μm以下であったが、50日後に30μm以上になった場合は○である。
【0050】
この表4に示すように、本発明の実施例1乃至10は、ろう付け性、引張り強さ、ろう材側腐食深さ及び皮材側腐食深さの全てにおいて優れたものであった。これに対し、比較例11は心材のSi量が下限値未満であるので、ろう付け後の強度が不十分であった。比較例12は心材のCu量が下限値未満であるので、ろう付け後の強度が不十分であった。比較例13は心材のMn量が下限値未満であるので、ろう付け後の強度が不十分であった。比較例14は心材のMg量が上限値を超えるので、ろう付け性が劣るものであった。比較例15は心材のCr量が下限値未満であるので、強度が若干劣るものであった。比較例16は心材のTi量が下限値未満であるので、心材の耐食性が劣化した。比較例17は心材のSi量が上限値を超えるものであるので、心材の溶融が生じた。比較例18は心材のFe量が上限値を超えるので、心材の耐食性が劣化した。比較例19は心材のCu量が上限値を超えるので、心材の溶融が生じた。比較例20は心材のMnが上限値を超えるので、加工性が劣化した。比較例21は心材のTi量が上限値を超えるので、加工性が劣化した。比較例22は心材のCr量が上限値を超えるので、加工性が低下した。比較例23は心材のCu+Siが上限値を超えるので、心材の溶融が生じた。
【0051】
また、比較例24は皮材のSiが下限値未満であるので、ろう付け後強度が不十分であった。比較例25は皮材のSiが上限値を超えるので、皮材側の耐食性が劣化した。比較例26は皮材のMnが下限値未満であるので、ろう付け後強度が不十分であった。比較例27は皮材のMnが上限値を超えるので、加工性が低下した。比較例28は皮材のZn/Siが下限値未満であるので、皮材側の耐食性が劣化した。比較例29は皮材のZnが下限値未満であるので、皮材側の耐食性が劣化した。比較例30は皮材のZnが上限値を超えるので、皮材側の耐食性が劣化した。比較例31は皮材のFeが上限値を超えるので、皮材側の耐食性が劣化した。比較例32は皮材のFeが下限値未満であるので、ろう付け後の強度が不足した。比較例33は皮材のCr量が上限値を超えるので、皮材側の耐食性が劣化した。比較例34は皮材のCr量が下限値未満であるので、ろう付け後の強度が不十分であると共に、皮材側の耐食性が劣化した。比較例35は皮材のMg量が上限値を超えるから、皮材側のろう付け部位のろう付け性が劣化した。比較例36は皮材のMg量が下限値未満であるので、ろう付け後の強度が不十分であった。比較例37は皮材のCu量が上限値を超えるので、皮材側の耐食性が劣化した。比較例38は皮材のCuが下限値未満であるので、ろう付け後の強度が劣化した。比較例39は皮材のクラッド率が下限値未満であるので、皮材側の耐食性が劣化した。比較例40は皮材のクラッド率が上限値を超えるので、ろう材側の耐食性が劣化した。
【0052】
更に、実施例41及び43は皮材がNo.22のものであり、平均Si組成が(Si含有量)×0.5以下のものである。これに対し、比較例42は皮材がNo.23のものであり、平均Si組成が(Si含有量)×0.5を超えるものである。このため、実施例41及び43はろう付け性、引張り強さ、ろう材側腐食深さ及び皮材側腐食深さが優れており、特に、皮材側腐食深さが極めて良好であった。
【0053】
【発明の効果】
以上説明したように、本発明によれば、高強度及び高耐食性を有し、薄肉化が可能なろう付け用アルミニウム合金複合材を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施例に係るろう付け用アルミニウム合金複合材を示す断面図である。
【図2】ラジエータのチューブの一部を示す斜視図である。
【図3】チューブを構成するアルミニウム合金複合材の積層構造を示す断面図である。
【符号の説明】
1、31:心材
2、32:皮材
3、33:ろう材
4:アルミニウム合金複合材
34:チューブ
35:フィン
36:ヘッダ[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to an aluminum alloy composite material and a heat exchanger suitable as a brazing sheet for use in an automobile radiator tube, header plate, heater core, and the like, and particularly when it is used as a radiator and heater core with high strength. TECHNICAL FIELD The present invention relates to an aluminum alloy composite material for brazing which has excellent corrosion resistance on the inner surface side (coolant side) and can be thinned, and a heat exchanger using the same.
[0002]
[Prior art]
Conventionally, in an aluminum alloy composite material for brazing in which a brazing material is clad on one side of a core material and a skin material is clad on the other side of the core material, the strength is increased by adding Mn and Si to the skin material. . (JP-A-11-61306).
[0003]
[Problems to be solved by the invention]
However, when Si is added to the skin material, Al—Mn—Si based precipitates precipitate at the grain boundaries during brazing, so that the corrosion resistance of the skin material itself deteriorates, and there is a period during which the skin material acts as a sacrificial anode layer. As a result, the corrosion resistance on the inner surface side (coolant side) of the clad material is deteriorated. Further, since the core material usually contains Cu, and this Cu diffuses into the skin material during brazing, the Al—Cu—Si based precipitate or the Al—Mn—Cu—Si based precipitate becomes the grain of the skin material. It precipitates at the boundary and degrades the corrosion resistance of the skin material itself. This also deteriorates the inner surface corrosion resistance of the clad material.
[0004]
The present invention has been made in view of such problems, and has high strength and excellent corrosion resistance on the inner surface side (coolant side) when used as a tube, header plate, and coater core of a radiator. An object of the present invention is to provide an aluminum alloy composite material for brazing that can be made into a brazing material.
[0005]
[Means for Solving the Problems]
  In the brazing aluminum alloy composite material according to the present invention, a brazing material made of an Al—Si based aluminum alloy is formed on one side of the core material, and the skin material is 6 to 30% of the total plate thickness on the other surface of the core material. In the aluminum alloy composite material formed with a cladding ratio, the core material is Mg: 0.2 mass% or less, Cr: 0.3 mass% or less, Fe: 0.2 mass% or less, Cu: 0.2 to 1 0.0 mass%, Si: 0.05 to 1.3 mass%, Mn: 0.3 to 1.8 mass%, Ti: 0.02 to 0.3 mass%, Cu + Si is 2.0 mass %, And the balance is composed of Al and inevitable impurities. The skin material is made of Zn: 2 to 9% by mass, Mn: 0.3 to 1.8% by mass, Si: 0.5 to 1 .2% by mass, Fe: 0.02Thru0.25% by mass,Cr: 0.01Thru0.30% by mass, Mg:0.01 to 0.10% By mass and Cu: 0.001ThruContains 0.15% by massAnd the balance consists of Al and inevitable impuritiesIt has a composition, and the average Si composition in the skin material is 0.5 times or less of the Si content.
[0006]
In this brazing aluminum alloy composite material, the skin material preferably has a Zn content of 3% by mass or more and a Zn / Si ratio of 4 or more.
[0007]
The heat exchanger according to the present invention is assembled by brazing using the brazing aluminum alloy composite as a brazing sheet, and brazed at a cooling rate of 100 ° C./min or more. It is characterized by that.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a result of various experimental studies by the present inventors to solve the above-mentioned problems, the skin material contains Mn and Si in a predetermined range, the thickness of the skin material is set to a predetermined ratio, and further, the skin material contains Fe. It has been found that by containing at least one of Cr, Mg, and Cu, the aluminum alloy composite material can be significantly reduced in thickness while maintaining brazing, corrosion resistance, and strength.
[0009]
Further, the corrosion resistance can be improved by setting the “average Si composition of the skin material” to “Si content” × 0.5 or less. Furthermore, by setting the cooling rate during brazing to 100 ° C./min or less, the corrosion resistance on the inner surface side (coolant side) can be improved.
[0010]
Hereinafter, the reason for component addition and composition limitation in the core material, skin material, and brazing material of the aluminum alloy composite material for brazing of the present invention will be described. First, the composition of the core material will be described.
[0011]
Mg (magnesium): 0.2 mass% or less
Mg is an element that improves the strength of the core material, but if it is added in an amount exceeding 0.2% by mass, the brazing property is lowered. In particular, the decrease is extremely great in brazing by the Nocolok method. Therefore, the Mg content is limited to 0.2% by mass or less. In addition, in order to further suppress the decrease in brazability, the Mg content is preferably 0.1% by mass or less.
[0012]
Cu (copper): 0.2 to 1.0 mass%
Cu is an element that improves the strength of the core material, and also improves the corrosion resistance on the brazing material side. However, when Cu is added to the core material, the intergranular corrosion sensitivity is increased, so that the corrosion resistance on the skin surface side is lowered. Therefore, by adding 2% by mass or more of Zn to the skin material, the potential of the skin material can be set to the base with respect to the grain boundary, and intergranular corrosion can be prevented. In other words, by increasing the amount of Zn added to the skin material, the potential of the skin material relative to the core material can be set low not only for the matrix of the core material but also for the grain boundary, thus preventing intergranular corrosion. Can do. If the addition amount of Cu is less than 0.2% by mass, it is insufficient to improve the strength of the core material. On the other hand, if Cu is added in an amount exceeding 1.0 mass%, the melting point of the core material is lowered, so that the core material melts during brazing. Therefore, the Cu content is 0.2 to 1.0 mass%.
[0013]
Si (silicon): 0.05 to 1.3% by mass
Si is an element that improves the strength of the core material. In particular, the strength of the core material is improved by the Mn-Si-based precipitates. However, if the addition amount of Si is less than 0.05% by mass, it is insufficient for improving the strength of the core material. On the other hand, when Si is added in excess of 1.3% by mass, the melting point of the core material is lowered and the core material is melted during brazing due to an increase in the low melting point phase. Therefore, the Si content is set to 0.05 to 1.3% by mass.
[0014]
Total amount of Cu and Si: 2.0% by mass or less
As described above, when Cu and Si are added in excess of a predetermined amount, the melting point of the core material is lowered, and the core material melts during brazing. In order to prevent this, it is necessary to limit the total amount of Si and Cu added to 2.0 mass% or less. Therefore, the total amount of Si and Cu is set to 2.0 mass% or less.
[0015]
Mn (manganese): 0.3 to 1.8% by mass
Mn is an element that improves the corrosion resistance, brazing property and strength of the core material. If the amount of Mn added is less than 0.3% by mass, the strength cannot be improved. However, if the amount of Mn added exceeds 1.8% by mass, a compound with coarse crystal grains is generated, so that workability is degraded. Therefore, the Mn content is set to 0.3 to 1.8% by mass.
[0016]
Ti (titanium): 0.02 to 0.3% by mass
Ti is an element that further improves the corrosion resistance of the core material. When the addition amount of Ti is less than 0.02% by mass, the corrosion resistance of the core material cannot be sufficiently improved. On the other hand, even if Ti is added in an amount exceeding 0.3% by mass, the corrosion resistance of the core material cannot be improved further, and on the contrary, a compound with coarse crystal grains is generated, so that workability is reduced. End up. Therefore, the Ti content is set to 0.02 to 0.3% by mass. Thus, Ti is an indispensable element for improving the corrosion resistance of the core material. When Ti is added, it is precipitated in a layered manner in the core material and prevents the pitting corrosion from proceeding in the depth direction. The core material potential can be transferred preciously by the addition of. In addition, since Ti has a low diffusion rate in an aluminum alloy and moves little during brazing, the addition of Ti maintains the potential difference between the core material and the brazing material, or the core material and the skin material, and electrochemically forms the core material. It is effective to prevent corrosion.
[0017]
Cr (chromium): 0.3 mass% or less
Cr is an element that improves the corrosion resistance, strength and brazing properties of the core material. Even if Cr is added in an amount exceeding 0.3% by mass, the corrosion resistance, strength and brazing properties of the core material cannot be improved any more, and the workability is reduced due to the coarsening of the compound crystals. . Therefore, the Cr content is set to 0.3% by mass or less. A more preferable addition amount of Cr is 0.02 to 0.3% by mass.
[0018]
Fe (iron): 0.2 mass% or less
Fe is an element that refines the crystal grains in the core material and improves the strength and weldability of the core material. When the added amount of Fe exceeds 0.2% by mass, the corrosion resistance of the core material is lowered. Therefore, the Fe content is set to 0.2% by mass or less. A more preferable addition amount of Fe is 0.02 to 0.2% by mass.
[0019]
Next, the composition of the skin material will be described.
[0020]
Mn (manganese): 0.3 to 1.8% by mass
Mn is an element that improves the strength of the skin material. That is, the material strength is improved by the solid solution of Mn in the skin material. If the amount of Mn added is less than 0.3% by mass, a sufficient Mn solid solution amount cannot be obtained, and the strength cannot be ensured. On the other hand, if the amount of Mn added is more than 1.8% by mass, the amount of the compound increases, thereby lowering the workability of the skin material and becoming the starting point of the crack, thereby reducing the workability of the entire clad material. Therefore, when Mn is added to the skin material, the Mn content of the skin material is set to 0.3 to 1.8% by mass.
[0021]
Si (silicon): 0.5 to 1.2% by mass
Similar to Mn, Si improves strength by adding it to the skin material. Further, the co-addition of Mn and Si (addition of both) increases the strength improvement effect. When the addition amount of Si is less than 0.5% by mass, the effect of improving the strength is not sufficient. When there is more addition amount of Si than 1.2 mass%, intergranular corrosion sensitivity will increase and corrosion resistance will fall. Therefore, when Si is added to the skin material, the Si content range is 0.5 to 1.2% by mass. Note that Mn and Si have the same effect, and at least one of them may be added.
[0022]
Zn (zinc): 2 to 9% by mass
In order to make the potential of the skin material base, Zn is added to the skin material. In this case, when the addition amount of Cu in the core material is 0.2% by mass or less, sufficient sacrificial anode effect can be obtained and the corrosion resistance is maintained when the addition amount of Zn in the skin material is less than 2% by mass. Can do. However, as described above, when the addition amount of Cu in the core material exceeds 0.2 mass% and is 1.0 mass% or less, the addition amount of Zn in the skin material is 2 to 9 mass%. It is necessary. This is because if the amount of Zn added to the skin material is less than 2% by mass, the potential of the skin material cannot take a sufficient potential difference with respect to the grain boundary, causing intergranular corrosion, On the other hand, if Zn is added to the skin material in an amount exceeding 9 mass%, the self-corrosion rate of the skin material itself increases, so that the skin material is consumed quickly, and the sacrificial anode effect The period of showing is shortened and the corrosion resistance is deteriorated. In order to obtain a balance between strength and corrosion resistance with the Si content increased, the Zn content is preferably 3% by mass or more.
[0023]
In addition to the co-addition of Mn and Si, by adding at least one selected from the group consisting of Fe, Cr, Mg and Cu, the strength of the skin material can be further improved. This is effective in improving the overall strength of the plate thickness.
[0024]
Fe: 0.02-0.25 mass%
Fe is an element that improves the strength of the skin material by making the crystal grains of the skin material fine and by dissolving Fe. If the Fe content is less than 0.02% by mass, the effects of crystal grain refinement and strength improvement are insufficient. When the added amount of Fe exceeds 0.25% by mass, the amount of intermetallic compounds and crystallized substances containing Fe in the skin material increases, and the cathode sites increase. For this reason, the corrosion rate of the skin material itself increases and the corrosion resistance decreases. Therefore, when Fe is added, the Fe content is 0.25% by mass or less. A more preferable addition amount of Fe is 0.02 to 0.2% by mass.
[0025]
Cr: 0.01-0.30 mass%
Cr is an element that improves corrosion resistance and strength in the skin material. Even if Cr is added in an amount exceeding 0.3% by mass, the corrosion resistance and strength of the skin material cannot be further improved, and the amount of crystallized substances containing Cr increases, resulting in an increase in cathode sites. Therefore, the corrosion rate of the skin material itself increases, and the corrosion resistance decreases. Therefore, the Cr content is set to 0.3% by mass or less. On the other hand, when Cr is 0.01 or less, the effect of improving strength and corrosion resistance cannot be obtained. For this reason, when adding Cr, the content of Cr is set to 0.01 to 0.30 mass%.
[0026]
Mg: 0.005-0.15 mass%
Mg improves the strength of the skin material by dissolving in the skin material. Furthermore, when Si coexists, Mg2The strength can be further improved by the effect of the Si precipitates being dispersed. When Mg exceeds 0.15 mass%, the brazing property at the site where the skin material side is joined is deteriorated, so the Mg content is 0.15% or less. Further, when the Mg content is less than 0.005%, the effect of improving the strength is small. Therefore, when adding Mg, the addition amount shall be 0.005 to 0.15 mass%.
[0027]
Cu: 0.001-0.15 mass%
Cu improves the strength of the skin material by dissolving in the skin material. When the Cu in the skin material exceeds 0.15% by mass, the potential of the skin material becomes noble. Therefore, the Cu of the core material is controlled to 0.2 to 1% by mass and the Zn of the skin material is controlled to 2 to 7%. Even in this case, the sacrificial anode effect on the core material is lowered, so that the corrosion resistance on the skin material side is deteriorated. Further, when the amount of Cu is less than 0.001% by mass, the effect of increasing the strength is small, and a sufficient strength increasing effect on the skin material side cannot be obtained.
[0028]
"Average Si composition" in the skin material (Si content) x 1/2 or less
When Si is present in the aluminum alloy, the existence form of Si is roughly divided into three types. (1) First, it exists only with Si. When the Si content is about 1% by mass or less, it is usually dissolved or exists as a single Si precipitate of 1 μm or less. (2) When about 1% by mass of Si and about 1% by mass of Mn coexist, an Al-Mn-Si-based crystallized product (particle size: several μm to several tens of μm) crystallizes during casting. . (3) When about 1% by mass of Si and about 1% by mass of Mn coexist, the grain size is several μm or less depending on the heat treatment (soaking) conditions and cooling conditions, in addition to the crystallized product at the time of casting. Al—Mn—Si based precipitates are deposited. “Average Si composition” means the crystallized product excluding the coarse crystallized product of 10 μm or more among the crystallized product with the particle size of (2), and the total content of Si contained in (1) and (3) Say quantity. This “average Si composition” indicates that when a line analysis of Si and Mn is performed using a commercially available EPMA (Electron Probe Micro-analyzer) analyzer, the strength is simultaneously increased within a range of 10 μm or more of Mn and Si. The Si concentration excluding the peak shown (considered as a peak from a coarse crystallized product having a particle size of 10 μm or more) can be measured as an “average Si composition”.
[0029]
When the material has a large amount of Si solid solution, it has the effect of promoting precipitation of Al—Mn—Si, Al—Mn—Si—Cu, and Al—Si—Cu based precipitates at the grain boundary during brazing cooling. large. This is because intragranular solid solution Si is likely to diffuse. Of the above (1), (2), and (3), fine precipitates easily re-dissolve during brazing heating, and thus behave in the same way as solute Si, and when cooled, are Al-Mn-Si-based, Al- It has the effect of promoting precipitation to the grain boundary as a Mn-Si-Cu-based or Al-Si-Cu-based precipitate. Therefore, in the present invention, the grain boundary is reached during brazing cooling by reducing the Si solid solution amount and the ratio of fine precipitates, that is, by making the average Si composition less than or equal to 0.5 Si content. The amount of Si to be suppressed is suppressed, and the effect of making it difficult for grain boundary precipitates to occur. When the average Si composition exceeds the Si content × 0.5, the grain boundary precipitates increase, the self-corrosion resistance of the skin material decreases, and as a result, the corrosion resistance on the skin material side of the brazing sheet deteriorates.
[0030]
In order to control the average Si composition, Si can be previously stabilized as an Al—Mn—Si based crystallized product. As a specific means, by setting the soaking temperature of the ingot of the skin material to a temperature of 520 to 630 ° C., the average Si composition can be (Si content) × 0.5 or less. Even when the soaking temperature is 400 to 520 ° C., the same effect can be obtained by setting the cooling during casting to 0.1 to 5 ° C./hour.
[0031]
Cooling rate during brazing: 100 ° C / min or more
After controlling the amount of Si solid solution as described above, the cooling rate is further set to 100 ° C./min or more, so that Al—Mn—Si, Al—Mn—Si—Cu, Al—Si— Precipitation of Cu-based precipitates at grain boundaries can be suppressed. By setting the cooling rate during brazing to 100 ° C./min or more, the time required for diffusion of Si, Cu and the like is shortened, so that grain boundary precipitates can be reduced, and the amount of Si solid solution can be suppressed. In addition, by specifying the cooling rate during brazing, the corrosion resistance is improved.
[0032]
Clad rate of skin material: 6 to 30% of the total thickness of aluminum alloy composite material
By setting the cladding rate of the skin material made of the composition of the present invention to 6% or more, sufficient strength can be obtained while maintaining corrosion resistance even if the thickness is significantly reduced. If the clad rate is less than 6%, the sacrificial anode effect of the skin material becomes insufficient, so that the corrosion resistance decreases. Therefore, the cladding rate of the skin material having the composition of the present invention is set to 6% or more of the total thickness.
[0033]
In addition, when the cladding material is thickened to 30% or more, the thickness of the core material is relatively reduced, and the corrosion resistance on the outer surface side is deteriorated. Therefore, the upper limit of the cladding rate is 30%. Therefore, the cladding rate of the skin material is 6 to 30%.
[0034]
Preferably, Zn is 3% by mass or more, and the Zn / Si ratio is 4 or more.
By adding Si to the skin material, the strength is improved, but the corrosion resistance (intergranular corrosion resistance) is lowered. If the Zn / Si ratio is 4 or more, even if the thickness is significantly reduced, the corrosion resistance and the strength can be achieved in a preferable range. Accordingly, Zn is preferably 3% by mass or more, and the Zn / Si ratio is preferably 4 or more.
[0035]
Next, the brazing material will be described. As the brazing material, the same Al—Si based alloy as conventionally used brazing materials, for example, A4045 alloy can be used. Further, by adding Zn to the brazing material, the brazing material can be made to act positively as a sacrificial anode. In this case, the addition amount of Zn is preferably the same as the addition amount of Zn in the skin material, that is, 2 to 5% by mass. Further, in order to ensure the corrosion resistance of the brazing material surface, it is also necessary to secure a potential difference between the fin material and the outer surface, and therefore a trace amount of a metal element such as Cu that increases the potential may be added to the brazing material.
[0036]
【Example】
Hereinafter, the effect of the Example of this invention is demonstrated concretely compared with the comparative example which remove | deviates from the scope of the present invention.
[0037]
Table 1 below shows the composition of the core material, and Table 2 shows the composition of the skin material. Core No. shown in Table 1 1 to 5 are examples of the present invention, core No. Reference numerals 6 to 18 are comparative examples of the present invention. Further, the skin material No. 1 shown in Table 2 was used. 1 to 4 and skin material no. 11 to 13 are examples of the present invention. Reference numerals 5 to 10 are comparative examples outside the scope of the claims of the present invention.
[0038]
[Table 1]
Figure 0003875135
[0039]
[Table 2]
Figure 0003875135
[0040]
Each core material and skin material shown in Tables 1 and 2 above, brazing material (JIS 4045 alloy; Si: 10.5 mass%, Fe: 0.05 mass%, Cu: 0.05 mass%, Ti: 0.02 mass) 1 and a balance of Al and unavoidable impurities) were used to produce an aluminum alloy composite for brazing as shown in FIG. FIG. 1 is a sectional view showing an aluminum alloy composite material for brazing according to an embodiment of the present invention. As shown in FIG. 1, the aluminum alloy composite material 4 is configured by laminating a skin material 2 and a brazing material 3 on both surfaces of a core material 1, respectively. Table 3 below shows a combination of the core material and the skin material in the composite material, and their thickness, the thickness of the brazing material, and the thickness of the composite material.
[0041]
[Table 3]
Figure 0003875135
[0042]
  In Table 3, in Examples 1 to 10 and 41 and Comparative Examples 11 to 40 and 42, the cooling rate during brazing was 30 to 70 ° C./min. Also,Example 43The cooling rate during brazing was 120 ° C./min.
[0043]
About each composite material of this Table 3, the brazing test, the tensile strength measurement, and the corrosion resistance test were done. The test method is as follows. That is, in the brazing test, the noclock flux is 5 g / m on the brazing material side surface of the brazing aluminum alloy composite material.2After applying and drying, heating was performed in a nitrogen atmosphere having a dew point of −40 ° C. under the conditions of an ultimate temperature of 600 ° C. and a holding time of 2 minutes at 600 ° C.
[0044]
FIG. 2 is a cross-sectional view showing a part of the tube of the radiator. As shown in FIG. 2, in the actual manufacture of the radiator, the tube 34 composed of the core material 31, the skin material 32 and the brazing material 33, the fin 35 for releasing heat, and the header 36 connecting the tube 34, However, considering the simplification and quantification of brazing evaluation, the flow coefficient by drop test (Aluminum Brazing Handbook (published in January 1992), Light Metal Structural Welding Association P126 Brazing properties were evaluated by the method of “Drop-type fluidity test”.
[0045]
The evaluation results of this brazing property are shown in Table 4 below. In Table 4, the case where the fluidity is 65% or more is ◯, and the case where the fluidity is less than 65% is x.
[0046]
[Table 4]
Figure 0003875135
[0047]
In order to determine the strength after brazing, the aluminum alloy composite material after brazing and heating was subjected to a tensile test (JIS OO) in the same manner as the above-described brazing property test. The results are also shown in Table 4 above. As for the strength after brazing, the case where the tensile strength exceeds 158 MPa is O, and the case where the tensile strength is 158 MPa or less is X.
[0048]
In the brazing filler metal side corrosion test, a CASS test (JIS ○○○) was continuously tested for 250 hours on the heated aluminum alloy composite for brazing, as in the brazing property test. The results are shown in Table 4 above. In the brazing filler metal side corrosion depth column of Table 4, the case where the brazing filler metal side erosion depth is 70 μm or less is ◯, and the case where the brazing filler metal side erosion depth exceeds 70 μm is x.
[0049]
In order to obtain the skin material side corrosion resistance, a skin material side corrosion test was conducted. This skin-side corrosion test was conducted on artificial aluminum (Cl: 300 mass ppm, SO4: 100 mass ppm and Cu: 5 mass ppm). Cycle test for 30 days with aluminum alloy composite immersed in artificial water at 88 ° C. for 8 hours (including heating time from room temperature to 88 ° C.) and holding at room temperature for 16 hours (including cooling time from 88 ° C. to room temperature) Carried out. Corrosion tests for 30 days and 50 days were performed according to such a procedure. The results are shown in Table 4 above. In the skin corrosion depth column of Table 4, the case where the skin corrosion depth is 30 μm or less after 30 days is ○, the case where the skin corrosion depth exceeds 30 μm is ×, and even after 50 days, the skin material is The case where the corrosion depth is 30 μm or less is ◎. In addition, although the corrosion depth of the skin material was 30 μm or less after 30 days, it is ◯ when it becomes 30 μm or more after 50 days.
[0050]
As shown in Table 4, Examples 1 to 10 of the present invention were excellent in all of brazability, tensile strength, brazing material side corrosion depth and skin material side corrosion depth. On the other hand, since the Si amount of the core material was less than the lower limit value in Comparative Example 11, the strength after brazing was insufficient. In Comparative Example 12, since the amount of Cu in the core material was less than the lower limit, the strength after brazing was insufficient. In Comparative Example 13, the amount of Mn in the core material was less than the lower limit value, so the strength after brazing was insufficient. In Comparative Example 14, the amount of Mg in the core material exceeded the upper limit value, so that the brazing property was inferior. In Comparative Example 15, the strength of the core material was slightly inferior because the amount of Cr in the core was less than the lower limit. In Comparative Example 16, since the Ti amount of the core material was less than the lower limit value, the corrosion resistance of the core material was deteriorated. In Comparative Example 17, since the Si amount of the core material exceeded the upper limit value, the core material melted. In Comparative Example 18, the corrosion resistance of the core material deteriorated because the Fe content of the core material exceeded the upper limit. In Comparative Example 19, since the amount of Cu in the core material exceeded the upper limit value, the core material melted. In Comparative Example 20, the Mn of the core material exceeded the upper limit value, so the workability deteriorated. In Comparative Example 21, the Ti content of the core material exceeded the upper limit value, so the workability deteriorated. In Comparative Example 22, the amount of Cr in the core material exceeded the upper limit value, so the workability decreased. In Comparative Example 23, the core material was melted because Cu + Si of the core material exceeded the upper limit.
[0051]
In Comparative Example 24, since the Si of the skin material was less than the lower limit, the strength after brazing was insufficient. In Comparative Example 25, since the Si of the skin material exceeded the upper limit value, the corrosion resistance on the skin material side was deteriorated. In Comparative Example 26, the Mn of the skin material was less than the lower limit, so the strength after brazing was insufficient. In Comparative Example 27, the Mn of the skin material exceeded the upper limit value, so the workability decreased. In Comparative Example 28, the corrosion resistance on the skin material side deteriorated because Zn / Si of the skin material was less than the lower limit. In Comparative Example 29, the corrosion resistance on the skin material side deteriorated because Zn of the skin material was less than the lower limit. In Comparative Example 30, the corrosion resistance on the skin material side was deteriorated because Zn of the skin material exceeded the upper limit. In Comparative Example 31, since the Fe of the skin material exceeded the upper limit value, the corrosion resistance on the skin material side was deteriorated. In Comparative Example 32, since the Fe of the skin material was less than the lower limit, the strength after brazing was insufficient. In Comparative Example 33, the amount of Cr in the skin material exceeded the upper limit value, so the corrosion resistance on the skin material side was deteriorated. In Comparative Example 34, the Cr amount of the skin material was less than the lower limit value, so that the strength after brazing was insufficient and the corrosion resistance on the skin material side was deteriorated. In Comparative Example 35, the amount of Mg in the skin material exceeded the upper limit value, so that the brazing property of the brazing site on the skin material side was deteriorated. In Comparative Example 36, the Mg content of the skin material was less than the lower limit value, so the strength after brazing was insufficient. In Comparative Example 37, the amount of Cu in the skin material exceeded the upper limit value, so the corrosion resistance on the skin material side was deteriorated. In Comparative Example 38, since the Cu of the skin material was less than the lower limit value, the strength after brazing deteriorated. In Comparative Example 39, the clad rate of the skin material was less than the lower limit value, so the corrosion resistance on the skin material side was deteriorated. In Comparative Example 40, the clad rate of the skin material exceeded the upper limit value, so that the corrosion resistance on the brazing material side was deteriorated.
[0052]
Further, in Examples 41 and 43, the skin material was No. The average Si composition is (Si content) × 0.5 or less. In contrast, in Comparative Example 42, the skin material was No. The average Si composition exceeds (Si content) × 0.5. For this reason, Examples 41 and 43 were excellent in brazing property, tensile strength, brazing material side corrosion depth and skin material side corrosion depth, and in particular, the skin material side corrosion depth was extremely good.
[0053]
【The invention's effect】
As described above, according to the present invention, an aluminum alloy composite material for brazing having high strength and high corrosion resistance and capable of being thinned can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an aluminum alloy composite material for brazing according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a part of a tube of a radiator.
FIG. 3 is a cross-sectional view showing a laminated structure of an aluminum alloy composite material constituting a tube.
[Explanation of symbols]
1, 31: Heartwood
2, 32: Skin material
3, 33: Brazing material
4: Aluminum alloy composite
34: Tube
35: Fin
36: Header

Claims (2)

心材の片面にAl−Si系のアルミニウム合金からなるろう材が形成され、前記心材の他面に皮材が全板厚の6乃至30%のクラッド率で形成されたアルミニウム合金複合材において、前記心材は、Mg:0.2質量%以下、Cr:0.3質量%以下、Fe:0.2質量%以下、Cu:0.2乃至1.0質量%、Si:0.05乃至1.3質量%、Mn:0.3乃至1.8質量%、Ti:0.02乃至0.3質量%を含有し、Cu+Siが2.0質量%以下であり、残部がAl及び不可避不純物からなる組成を有し、前記皮材は、Zn:2乃至9質量%、Mn:0.3乃至1.8質量%、Si:0.5乃至1.2質量%、Fe:0.02乃至0.25質量%Cr:0.01乃至0.30質量%、Mg:0.01乃至0.10質量%、及びCu:0.001乃至0.15質量%を含有し、残部がAl及び不可避不純物からなる組成を有し、皮材中の平均Si組成がSi含有量の0.5倍以下であることを特徴とするろう付け用アルミニウム合金複合材。In the aluminum alloy composite material in which a brazing material made of an Al-Si based aluminum alloy is formed on one side of the core material, and the skin material is formed on the other surface of the core material at a cladding rate of 6 to 30% of the total plate thickness, The core material is Mg: 0.2 mass% or less, Cr: 0.3 mass% or less, Fe: 0.2 mass% or less, Cu: 0.2 to 1.0 mass%, Si: 0.05 to 1. 3% by mass, Mn: 0.3 to 1.8% by mass, Ti: 0.02 to 0.3% by mass, Cu + Si is 2.0% by mass or less, and the balance is made of Al and inevitable impurities. has a composition, wherein the skin material, Zn: 2 to 9 wt%, Mn: 0.3 to 1.8 wt%, Si: 0.5 to 1.2 wt%, F e: 0.02 to 0 .25 wt%, Cr: 0.01 to 0.30 wt%, Mg: 0.01 to 0.10 wt%,及Cu: containing 0.001 to 0.15 wt%, having the balance consisting of Al and unavoidable impurities, wherein the average Si composition in the cladding material is less than 0.5 times the Si content Aluminum alloy composite for brazing. 前記皮材は、Zn含有量が3質量%以上で、Zn/Si比が4以上であることを特徴とする請求項1に記載のろう付用アルミニウム合金複合材。  The brazing aluminum alloy composite according to claim 1, wherein the skin material has a Zn content of 3 mass% or more and a Zn / Si ratio of 4 or more.
JP2002097961A 2002-03-29 2002-03-29 Aluminum alloy composite for brazing Expired - Fee Related JP3875135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002097961A JP3875135B2 (en) 2002-03-29 2002-03-29 Aluminum alloy composite for brazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097961A JP3875135B2 (en) 2002-03-29 2002-03-29 Aluminum alloy composite for brazing

Publications (2)

Publication Number Publication Date
JP2003293064A JP2003293064A (en) 2003-10-15
JP3875135B2 true JP3875135B2 (en) 2007-01-31

Family

ID=29240200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097961A Expired - Fee Related JP3875135B2 (en) 2002-03-29 2002-03-29 Aluminum alloy composite for brazing

Country Status (1)

Country Link
JP (1) JP3875135B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028153A1 (en) * 2003-09-18 2005-03-31 Kobe Alcoa Transportation Products Ltd. Aluminum alloy composite for brazing and heat exchanger including the same
JP4702797B2 (en) * 2006-02-20 2011-06-15 住友軽金属工業株式会社 Manufacturing method of aluminum alloy clad material excellent in surface bondability by brazing of sacrificial anode material surface
US7749613B2 (en) * 2006-04-21 2010-07-06 Alcoa Inc. Multilayer braze-able sheet
JP4111456B1 (en) * 2006-12-27 2008-07-02 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchanger
JP5466409B2 (en) * 2009-01-22 2014-04-09 株式会社神戸製鋼所 Aluminum alloy clad material for heat exchanger
JP5650305B2 (en) * 2013-10-30 2015-01-07 株式会社神戸製鋼所 Aluminum alloy clad material for heat exchanger

Also Published As

Publication number Publication date
JP2003293064A (en) 2003-10-15

Similar Documents

Publication Publication Date Title
CN101578382B (en) Aluminum alloy brazing sheet for heat exchanger
JP4181607B2 (en) Aluminum alloy brazing sheet and method for producing the same
EP1666190A1 (en) Aluminum alloy composite for brazing and heat exchanger including the same
EP3095885B9 (en) Aluminum alloy material, method for producing same, aluminum alloy clad material, and method for producing same
CN108884522B (en) Aluminum alloy clad material and method for producing aluminum alloy clad material
JP4220410B2 (en) Aluminum alloy clad material for heat exchanger
JP2017145463A (en) Aluminum alloy brazing sheet and manufacturing method, automotive heat exchanger using the brazing sheet
JP3827601B2 (en) Aluminum alloy composite for brazing
JP4220411B2 (en) Aluminum alloy clad material for heat exchanger
JP4030006B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP2011068933A (en) Aluminum alloy clad material for heat exchanger
JP3875135B2 (en) Aluminum alloy composite for brazing
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP3753669B2 (en) Aluminum alloy composite for brazing
JP2002294377A (en) Aluminum alloy composite material for brazing
JP2001179482A (en) Member brazed by aluminum alloy composite material for brazing
JP2006176852A (en) High-strength aluminum alloy cladding material for heat exchanger having excellent erosion resistance, heat exchanger and method for producing high-strength aluminum alloy cladding material
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JPS6248743B2 (en)
JP5466080B2 (en) Aluminum alloy brazing sheet
JP4566729B2 (en) High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance
JPS6153639B2 (en)
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP5576662B2 (en) Aluminum alloy brazing sheet and method for producing aluminum alloy brazing sheet
JP6738666B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Ref document number: 3875135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees