JP3874971B2 - Manufacturing method of light emitting diode chip - Google Patents

Manufacturing method of light emitting diode chip Download PDF

Info

Publication number
JP3874971B2
JP3874971B2 JP24248299A JP24248299A JP3874971B2 JP 3874971 B2 JP3874971 B2 JP 3874971B2 JP 24248299 A JP24248299 A JP 24248299A JP 24248299 A JP24248299 A JP 24248299A JP 3874971 B2 JP3874971 B2 JP 3874971B2
Authority
JP
Japan
Prior art keywords
light emitting
light
led chip
emitting diode
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24248299A
Other languages
Japanese (ja)
Other versions
JP2001068743A (en
Inventor
康男 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP24248299A priority Critical patent/JP3874971B2/en
Publication of JP2001068743A publication Critical patent/JP2001068743A/en
Application granted granted Critical
Publication of JP3874971B2 publication Critical patent/JP3874971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、LEDチップの内部における出力光の損失を軽減しして輝度を向上させる発光ダイオードチップの製造方法に関する。
【0002】
【従来の技術】
従来、図6の縦断側面図に示されているような発光ダイオ−ド(LED)チップが知られている。図6において、LEDチップ1は断面形状が略矩形状で、内部には発光層2が形成されており、また、その表面側には表面電極3が、裏面側には裏面電極4が設けられている。
【0003】
発光層2から下方側面に向けて発射される出力光Raは、LEDチップ1の側面Xで反射して反射光Rbとして底面に向かい、底面Zで反射して反射光Rcとして上方に向かう。反射光RcはLEDチップ1の側面Yで反射し反射光RdとしてLEDチップ1の表面から発射される。10はこのような光の軌跡を示すものである。
【0004】
図7は別の従来例のLEDチップ1aを示す縦断側面図である。このLEDチップ1aは、断面形状が略台形状をしており傾斜面X、Yが形成されている。この場合も発光層2から下方側面に向けて発射される出力光Raは、一方の側面X、底面Z、他方の側面Yで順次反射されてRb、Rc、Rdとなり、反射光RdがLEDチップ1aの表面から発射される。
【0005】
図8は、図6に示した形状のLEDチップ1を多数製造する例の概略構成図である。図8において、7はステ−ジ、8は貼着用テ−プである。基材となるウエハの内部に発光層を形成し、また、表面電極3、裏面電極4をそれぞれ所定の間隔で形成する。裏面電極4の表面に貼着用テ−プ8を貼り付けてステ−ジ7の上に搬入する。
【0006】
次に、断面形状が略矩形状のストレ−トブレ−ド5を矢視A方向に移動してダイシング処理を行い斜線部9を除去し、前記基材のウエハから切り離して個別のLEDチップ1を形成する。また、図9は図7に示した形状のLEDチップ1aを多数製造する例の概略構成図であり、この場合には断面略逆台形状のテ−パブレ−ド6を矢視B方向に移動してダイシング処理を行い、基材のウエハから斜線部を除去して個別のLEDチップ1aを形成する。
【0007】
【発明が解決しようとする課題】
図6、図7に示したように、従来のLEDチップにおいては、発光層から下方側面に向けて発射される出力光は、LEDチップの一方側面、底面、他方側面と三度LEDチップの内部で反射してから外部に発射されている。このため、LEDチップの内部で出力光の損失が大きくなり、外部に発射される出力光が減少して輝度が低下するという問題があった。
【0008】
本発明はこのような問題に鑑みてなされたものであり、LEDチップの内部における出力光の損失を軽減して輝度を向上させる発光ダイオ−ドチップとその製造方法の提供を目的とする。
【0010】
【課題を解決する手段】
本発明の上記目的は、発光ダイオードチップの製造方法を、内部に発光層を形成したウエハの表面側と裏面側に、それぞれ個別の発光ダイオードチップに対応する表面電極と裏面電極を複数形成する工程と、各表面電極に貼着テープを貼り、表面電極側を下側に裏面電極側を上側にしてステージ上に搬入する工程と、赤外線光源の焦点距離を表面電極の位置に設定し表面電極からの反射光を受光する工程と、表面電極の位置を基準にして断面形状が略逆台形形状のテーパブレードの位置合わせを行う工程と、前記テーパブレードによりウエハの所定の位置でダイシング処理をして個別の発光ダイオードチップを切り離す工程と、よりなることを特徴とすることにより達成される
【0011】
本発明の上記特徴によれば、発光ダイオードチップが、表面側を長辺、裏面側を短辺として断面形状が略逆台形状に形成される。このため、発光層から下方側面に向けて発射される出力光は、LEDチップの一方側面、他方側面と二度LEDチップの内部で反射してから外部に発射され、従来の構成よりもLEDチップ内部での反射回数が少なくなり、出力光の損失が少なく、輝度を向上させた発光ダイオードチップが得られる
【0012】
この場合、長辺の長さをL,表面側から発光層が形成された位置までの深さをd、前記長辺から引かれた垂線と長辺と短辺とを結ぶ線とがなす角度をθとするとき、前記θを、(L−d・tanθ)・tan2θ≧d、に選定すると、LEDチップの一方の端面から微小距離離れた発光層の位置Tから発光した出力光を、他方の側面上端よりも内側に到達させることができ、LEDチップの表面から発射される出力光の割合が増大して、発光効率向上させることができる
【0013】
また、本発明においては、光源として赤外線を使用しているので、出力光はウエハ内に部入射して表面電極の位置で反射し、反射光はウエハ内を進行して外部に発射される。このため、ダイシング処理を行う際のテーパブレードの位置合せが正確となる
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について図を参照して説明する。図3は、LEDチップ1xを示す縦断側面図、図4はLEDチップ1xを多数製造する例の概略構成図である。従来例と同じ部分または対応する部分については同一の符号を付しており、詳細な説明は省略する。
【0015】
図3において、LEDチップ1xは、表面側が長辺、裏面側が短辺で、裏面から表面に向けて仰角で傾斜する傾斜面を有しており、断面形状が略逆台形状をしている。発光層2から下方側面に向けて発射される出力光Rpは、一方の側面Xで法線14aに対して入射角と対称の反射角で反射して反射光Rqとなる。
【0016】
前記の反射光Rqは、LEDチップ1xの他方の側面Yで法線14bに対して入射角と対称の反射角で反射して反射光Rsとなり、LEDチップ1xの表面から外部に発射される。
【0017】
このように、図3の構成においては、発光層から下方側面に向けて発射される出力光は、LEDチップの一方側面、他方側面と二度LEDチップの内部で反射してから外部に発射されている。このため、底面で反射する反射光がなく、従来の構成よりもLEDチップ内部での反射回数が少なくなるので出力光の損失が減少し、輝度を向上させることができる。
【0018】
図4において、基材となるウエハは、裏面電極4を上側に、表面電極3を下側にして、表面電極3に貼着用テ−プ8を貼り付けてステ−ジ7の上に搬入する。次に、断面形状が逆台形状のテ−パブレ−ド6を矢視B方向に移動してダイシング処理を行い斜線部9を切除し、個別のLEDチップ1yを形成する。貼着用テ−プ8を除去して、前記個別のLEDチップ1yを反転させることにより、図3の構成のLEDチップ1xが得られる。
【0019】
ところで、基材となるウエハをダイシング処理して個別のLEDチップを形成する際には、可視光線を照射してその反射光により表面電極の位置を認識して、表面電極の位置を基準としてブレ−ドの位置合わせをしている。しかしながら、図4に示すように表面電極を下側にしてダイシング処理を行なう場合には、従来のような可視光線の照射による反射光を用いて表面電極の位置を認識することはできない。
【0020】
図5は、本発明において表面電極の位置を認識する構成を説明する概略の構成図である。図5において、11は光源で赤外線を発光するLEDを使用する。光源11の焦点距離は、表面電極3の位置に合わせる。12は赤外線カメラであり、表面電極3からの反射光Rxが入射されることにより表面電極3の位置を認識する。
【0021】
このように、図5の構成では光源として赤外線を使用しているので、出力光はウエハ内に入射して表面電極3の位置で反射し、反射光Rxはウエハ内を進行して外部に発射される。このため、ダイシング処理を行なう際のテーパブレ−ドの位置合わせが正確になされる。
【0022】
図1は、ダイシング処理の際のLEDチップ1xに対する切削角度θ、すなわち、長辺から引かれた垂線と長辺と短辺とを結ぶ線とがなす角度をθとするときに、θを選定する一例を示す説明図であり、図2は図1のB部を拡大して示す説明図である。図1に示すように、LEDチップ1xの長辺の長さ(一方の側面Xの上端から他方側面Yの上端までの長さ)をL、表面側から発光層2が形成された位置までの深さ(ジャンクション深さ)をdとする。
【0023】
LEDチップ1xの一方の端面Xから微小距離ΔL離れた発光層2の位置Tから発光した出力光が、他方の側面Yの上端Aよりも内側に到達するようにLEDチップ1xに対する切削角度θを選定すれば、側面から漏洩する出力光が減少し、LEDチップ1xの表面から発射される出力光の割合が増大して、LEDチップ1xの発光効率が向上する。
【0024】
図2において、発光層の前記Tの位置から発射される出力光の一方側面Xに対する入射光をP、当該入射光Pが法線14aに対して入射角と等しい反射角で反射した反射光をQとする。このときの前記入射角と反射角はいずれも前記切削角度θと等しいものとする。
【0025】
ここで、E=d・tanθであるから、La=L−E=L−d・tanθとなる。また、tan2θ=(d/La)から、La・tan2θ=dが得られ、前記切削角度θは、(L−d・tanθ)・tan2θ≧d、の条件を満足するように選定される。
【0026】
例えば、L=270μm、d=20μmとしたときには、θは約4.23度となる。したがって、切削角度θをこれよりも大きな角度に選定することにより、LEDチップ1xの発光効率を向上させることができる。
【0027】
【発明の効果】
本発明の上記特徴によれば、光源として赤外線を使用しているので、出力光はウエハ内に部入射して表面電極の位置で反射し、反射光はウエハ内を進行して外部に発射される。このため、ダイシング処理を行う際のテーパブレードの位置合せが正確となり、出力光の損失が少なく、輝度を向上させた発光ダイオードチップが得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るLEDチップに対するダイシング処理の際の切削角度θを選定する一例を示す説明図である。
【図2】図1のB部を拡大した説明図である。
【図3】本発明の実施の形態に係るLEDチップを示す縦断側面図である。
【図4】LEDチップを多数製造する例の概略構成図である。
【図5】本発明の実施の形態において、表面電極の位置を認識する構成を説明する概略の構成図である。
【図6】従来例のLEDチップを示す縦断側面図である。
【図7】従来例のLEDチップを示す縦断側面図である。
【図8】図6のLEDチップを多数製造する例の概略構成図である。
【図9】図7のLEDチップを多数製造する例の概略構成図である。
【符号の説明】
1x LEDチップ
2 発光層
3 表面電極
4 裏面電極
6 テ−パブレ−ド
7 ステ−ジ
8 貼着用テ−プ
11 赤外線光源
12 赤外線受光カメラ
[0001]
BACKGROUND OF THE INVENTION
The present invention is to reduce the loss of the output light inside the LED chips for the production method of the light-emitting diodes chips Ru improve brightness.
[0002]
[Prior art]
Conventionally, a light emitting diode (LED) chip as shown in a vertical side view of FIG. 6 is known. In FIG. 6, the LED chip 1 has a substantially rectangular cross-sectional shape, in which a light emitting layer 2 is formed, a front surface electrode 3 is provided on the front surface side, and a back surface electrode 4 is provided on the back surface side. ing.
[0003]
The output light Ra emitted from the light emitting layer 2 toward the lower side surface is reflected by the side surface X of the LED chip 1 and travels toward the bottom surface as reflected light Rb, and reflects from the bottom surface Z and travels upward as reflected light Rc. The reflected light Rc is reflected from the side surface Y of the LED chip 1 and emitted from the surface of the LED chip 1 as reflected light Rd. Reference numeral 10 denotes such a locus of light.
[0004]
FIG. 7 is a longitudinal sectional side view showing another conventional LED chip 1a. The LED chip 1a has a substantially trapezoidal cross-sectional shape and is formed with inclined surfaces X and Y. Also in this case, the output light Ra emitted from the light emitting layer 2 toward the lower side surface is sequentially reflected on one side surface X, the bottom surface Z, and the other side surface Y to become Rb, Rc, Rd, and the reflected light Rd is converted into the LED chip. Fired from the surface of la.
[0005]
FIG. 8 is a schematic configuration diagram of an example in which a large number of LED chips 1 having the shape shown in FIG. 6 are manufactured. In FIG. 8, 7 is a stage and 8 is a sticking tape. A light emitting layer is formed inside the wafer as a base material, and the front surface electrode 3 and the back surface electrode 4 are formed at predetermined intervals. An affixing tape 8 is affixed to the surface of the back electrode 4 and carried onto the stage 7.
[0006]
Next, the straight blade 5 having a substantially rectangular cross-section is moved in the direction of arrow A to perform dicing, and the hatched portion 9 is removed, and the individual LED chips 1 are separated from the substrate wafer. Form. FIG. 9 is a schematic configuration diagram of an example in which a large number of LED chips 1a having the shape shown in FIG. 7 are manufactured. In this case, the tape blade 6 having a substantially inverted trapezoidal cross section is moved in the direction of arrow B. Then, a dicing process is performed, and the hatched portion is removed from the base wafer to form individual LED chips 1a.
[0007]
[Problems to be solved by the invention]
As shown in FIG. 6 and FIG. 7, in the conventional LED chip, the output light emitted from the light emitting layer toward the lower side surface is one side, the bottom, the other side of the LED chip and the inside of the LED chip three times. It is fired outside after being reflected by. For this reason, there is a problem that the loss of output light increases inside the LED chip, the output light emitted to the outside decreases, and the luminance decreases.
[0008]
The present invention has been made in view of such problems, and an object of the present invention is to provide a light emitting diode chip capable of reducing the loss of output light inside the LED chip and improving the luminance, and a method for manufacturing the same.
[0010]
[Means for solving the problems]
The above object of the present invention is to provide a method of manufacturing a light emitting diode chip by forming a plurality of front and back electrodes respectively corresponding to individual light emitting diode chips on the front side and the back side of a wafer having a light emitting layer formed therein. And a step of applying an adhesive tape to each surface electrode, carrying the surface electrode side down and the back electrode side upward, and setting the focal length of the infrared light source at the position of the surface electrode. Receiving the reflected light from the surface, aligning the tapered blade having a substantially inverted trapezoidal cross section with respect to the position of the surface electrode, and dicing the wafer at a predetermined position by the tapered blade. This is achieved by separating the individual light-emitting diode chips.
[0011]
According to the above feature of the present invention , the light-emitting diode chip is formed in a substantially inverted trapezoidal shape with the front side being the long side and the back side being the short side. Therefore, the output light emitted toward the lower side surface of the light emitting layer, one side surface of the LED chip, emitted from the reflected inside of the other side and twice LED chip to the outside, than construction of traditional number of reflections LED chip inside is reduced, less loss of output light, the light emitting diode chip can be obtained with improved Brightness.
[0012]
In this case, the length of the long side is L, the depth from the surface side to the position where the light emitting layer is formed is d, and the angle formed by the perpendicular drawn from the long side and the line connecting the long side and the short side When θ is selected as (L−d · tan θ) · tan 2θ ≧ d, the output light emitted from the position T of the light emitting layer at a minute distance from one end face of the LED chip is of the side surface upper end can reach the inside, the ratio of the output light emitted from the surface of the LED chip is increased, thereby improving the luminous efficiency.
[0013]
In the present invention, since infrared rays are used as the light source, the output light is partially incident on the wafer and reflected at the position of the surface electrode, and the reflected light travels inside the wafer and is emitted to the outside. Therefore, the accurate alignment of the tapered blade during dicing process.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a vertical side view showing the LED chip 1x, and FIG. 4 is a schematic configuration diagram of an example of manufacturing a large number of LED chips 1x. Parts that are the same as or correspond to those in the conventional example are given the same reference numerals, and detailed descriptions thereof are omitted.
[0015]
In FIG. 3, the LED chip 1 x has a long side on the front side, a short side on the back side, an inclined surface that is inclined at an elevation angle from the back side to the front side, and has a substantially inverted trapezoidal cross-sectional shape. The output light Rp emitted from the light emitting layer 2 toward the lower side surface is reflected at one side surface X at a reflection angle symmetric to the incident angle with respect to the normal line 14a to become reflected light Rq.
[0016]
The reflected light Rq is reflected from the other side surface Y of the LED chip 1x at a reflection angle symmetric to the incident angle with respect to the normal line 14b to be reflected light Rs, and is emitted to the outside from the surface of the LED chip 1x.
[0017]
Thus, in the configuration of FIG. 3, the output light emitted from the light emitting layer toward the lower side surface is reflected inside the LED chip twice on the one side surface and the other side surface of the LED chip and then emitted to the outside. ing. For this reason, there is no reflected light reflected from the bottom surface, and the number of times of reflection inside the LED chip is smaller than in the conventional configuration, so that the loss of output light is reduced and the luminance can be improved.
[0018]
In FIG. 4, a wafer serving as a base material is carried onto a stage 7 with a tape 8 attached to the surface electrode 3 with the back electrode 4 on the top and the surface electrode 3 on the bottom. . Next, the taper blade 6 having an inverted trapezoidal cross section is moved in the direction of arrow B to perform dicing, and the hatched portion 9 is excised to form individual LED chips 1y. By removing the sticking tape 8 and inverting the individual LED chips 1y, the LED chip 1x having the configuration shown in FIG. 3 is obtained.
[0019]
By the way, when forming individual LED chips by dicing the wafer serving as the base material, the position of the surface electrode is recognized by irradiating visible light and reflected light, and the position of the surface electrode is used as a reference. -Position alignment. However, when the dicing process is performed with the surface electrode on the lower side as shown in FIG. 4, the position of the surface electrode cannot be recognized using the reflected light by irradiation with visible light as in the prior art.
[0020]
FIG. 5 is a schematic configuration diagram illustrating a configuration for recognizing the position of the surface electrode in the present invention. In FIG. 5, reference numeral 11 denotes an LED that emits infrared rays as a light source. The focal length of the light source 11 is adjusted to the position of the surface electrode 3. An infrared camera 12 recognizes the position of the surface electrode 3 when the reflected light Rx from the surface electrode 3 is incident.
[0021]
As described above, since the infrared ray is used as the light source in the configuration of FIG. 5, the output light enters the wafer and is reflected at the position of the surface electrode 3, and the reflected light Rx travels through the wafer and is emitted to the outside. Is done. For this reason, the taper blade is accurately aligned when the dicing process is performed.
[0022]
FIG. 1 shows that θ is selected when the cutting angle θ with respect to the LED chip 1x during the dicing process, that is, the angle formed by the perpendicular drawn from the long side and the line connecting the long side and the short side is θ. FIG. 2 is an explanatory diagram showing an enlarged view of part B in FIG. 1. As shown in FIG. 1, the length of the long side of the LED chip 1x (the length from the upper end of one side surface X to the upper end of the other side surface Y) is L, and from the surface side to the position where the light emitting layer 2 is formed. Depth (junction depth) is d.
[0023]
The cutting angle θ with respect to the LED chip 1x is set so that the output light emitted from the position T of the light emitting layer 2 that is a minute distance ΔL away from the one end face X of the LED chip 1x reaches the inner side of the upper end A of the other side face Y. If selected, the output light leaking from the side surface decreases, the ratio of the output light emitted from the surface of the LED chip 1x increases, and the light emission efficiency of the LED chip 1x improves.
[0024]
In FIG. 2, the incident light with respect to the one side surface X of the output light emitted from the position T of the light emitting layer is P, and the reflected light reflected by the incident light P at the reflection angle equal to the incident angle with respect to the normal line 14a. Q. At this time, the incident angle and the reflection angle are both equal to the cutting angle θ.
[0025]
Here, since E = d · tan θ, La = LE−L−d · tan θ. Also, from tan2θ = (d / La), La · tan2θ = d is obtained, and the cutting angle θ is selected so as to satisfy the condition of (Ld · tanθ) · tan2θ ≧ d.
[0026]
For example, when L = 270 μm and d = 20 μm, θ is about 4.23 degrees. Therefore, the luminous efficiency of the LED chip 1x can be improved by selecting a cutting angle θ larger than this.
[0027]
【The invention's effect】
According to the above feature of the present invention, since infrared rays are used as the light source, the output light is incident on the wafer and reflected at the position of the surface electrode, and the reflected light travels inside the wafer and is emitted to the outside. The For this reason, the alignment of the taper blade in performing the dicing process becomes accurate, and a light emitting diode chip with improved output brightness with little loss of output light can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of selecting a cutting angle θ in a dicing process for an LED chip according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram enlarging a portion B in FIG. 1;
FIG. 3 is a longitudinal side view showing an LED chip according to an embodiment of the present invention.
FIG. 4 is a schematic configuration diagram of an example of manufacturing a large number of LED chips.
FIG. 5 is a schematic configuration diagram illustrating a configuration for recognizing the position of a surface electrode in the embodiment of the present invention.
FIG. 6 is a vertical sectional side view showing a conventional LED chip.
FIG. 7 is a vertical side view showing a conventional LED chip.
8 is a schematic configuration diagram of an example in which a large number of LED chips of FIG. 6 are manufactured.
9 is a schematic configuration diagram of an example in which a large number of LED chips of FIG. 7 are manufactured.
[Explanation of symbols]
1x LED chip 2 Light emitting layer 3 Front electrode 4 Back electrode 6 Tape blade 7 Stage 8 Adhesive tape 11 Infrared light source 12 Infrared light receiving camera

Claims (1)

内部に発光層を形成したウエハの表面側と裏面側に、それぞれ個別の発光ダイオードチップに対応する表面電極と裏面電極を複数形成する工程と、各表面電極に貼着テープを貼り、表面電極側を下側に裏面電極側を上側にしてステージ上に搬入する工程と、赤外線光源の焦点距離を表面電極の位置に設定し表面電極からの反射光を受光する工程と、表面電極の位置を基準にして断面形状が略逆台形形状のテーパブレードの位置合わせを行う工程と、前記テーパブレードによりウエハの所定の位置でダイシング処理をして個別の発光ダイオードチップを切り離す工程と、よりなることを特徴とする発光ダイオードチップの製造方法。A process of forming a plurality of front and back electrodes corresponding to individual light-emitting diode chips on the front side and the back side of the wafer on which the light emitting layer is formed, and a sticking tape on each front electrode, On the back with the back electrode side facing up, the step of setting the focal length of the infrared light source to the position of the surface electrode and receiving the reflected light from the surface electrode, and the position of the surface electrode as a reference And a step of aligning a tapered blade having a substantially inverted trapezoidal cross-sectional shape, and a step of dicing the wafer at a predetermined position of the wafer by the tapered blade to separate individual light emitting diode chips. A method for manufacturing a light emitting diode chip.
JP24248299A 1999-08-30 1999-08-30 Manufacturing method of light emitting diode chip Expired - Fee Related JP3874971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24248299A JP3874971B2 (en) 1999-08-30 1999-08-30 Manufacturing method of light emitting diode chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24248299A JP3874971B2 (en) 1999-08-30 1999-08-30 Manufacturing method of light emitting diode chip

Publications (2)

Publication Number Publication Date
JP2001068743A JP2001068743A (en) 2001-03-16
JP3874971B2 true JP3874971B2 (en) 2007-01-31

Family

ID=17089754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24248299A Expired - Fee Related JP3874971B2 (en) 1999-08-30 1999-08-30 Manufacturing method of light emitting diode chip

Country Status (1)

Country Link
JP (1) JP3874971B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3988429B2 (en) * 2001-10-10 2007-10-10 ソニー株式会社 Semiconductor light emitting element, image display device, lighting device and method for manufacturing the same
JP3715627B2 (en) 2002-01-29 2005-11-09 株式会社東芝 Semiconductor light emitting device and manufacturing method thereof
CN1317774C (en) * 2003-02-12 2007-05-23 财团法人工业技术研究院 Light-emitting diode assembly and method for making same
JP3813599B2 (en) * 2003-06-13 2006-08-23 ローム株式会社 Method for manufacturing white light emitting diode element
CN102130253B (en) * 2011-01-27 2012-12-26 广东银雨芯片半导体有限公司 LED crystal plate with high light-emitting efficiency and manufacturing method thereof
CN110491897B (en) * 2015-04-22 2021-04-13 新世纪光电股份有限公司 Light emitting element and method for manufacturing the same
JP2021019015A (en) * 2019-07-17 2021-02-15 シャープ福山セミコンダクター株式会社 Micro light emitting element and image display element

Also Published As

Publication number Publication date
JP2001068743A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
US8367433B2 (en) Fabrication method of semiconductor device
JP5526232B2 (en) Light emitting diode with molded reflective sidewall coating
US20220029052A1 (en) Light-emitting diode chip and method for manufacturing the same
US20110002127A1 (en) Optical element and manufacturing method therefor
CN104885235B (en) For the LED of the growth substrates with forming of side transmitting
US11005008B2 (en) Method for manufacturing light emitting device
JP6729537B2 (en) Light emitting device and manufacturing method thereof
US11056669B2 (en) Flip-chip light emitting diode and manufacturing method thereof
JP2006505118A (en) Method for manufacturing a light emitting diode light source with a luminescence conversion layer
JP3874971B2 (en) Manufacturing method of light emitting diode chip
JP2004289047A (en) Semiconductor light emitting element and its manufacturing method
JP4734770B2 (en) Manufacturing method of resin forming element, manufacturing method of image display device, and manufacturing method of lighting device
JP2015165532A (en) optical device
CN106025028A (en) Flip light emitting diode chip and manufacturing method thereof
JP2002324917A (en) Surface mount light emitting diode and method of manufacturing the same
KR101461154B1 (en) Method of manufacutruing semiconductor device structure
WO2015077612A1 (en) Method of stress induced cleaving of semiconductor devices
CN112951970B (en) Manufacturing method of light-emitting device and light-emitting device
KR101450216B1 (en) Method of manufacutruing semiconductor device structure
CN108368992A (en) Optical fiber source with compound outer covering layer structure
KR20210005175A (en) LED surface modification using ultraviolet laser
TWI659550B (en) Chip-scale packaging led with electrode polarity recognition mark and method of manufacturing the same
US20210323094A1 (en) Wavelength conversion member manufacturing method and method for manufacturing light-emitting device
US20240036303A1 (en) Wavelength conversion device and manufacturing method thereof
JPH11289106A (en) Led array, manufacture thereof, and led printer head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees