JP3874060B2 - Seat hole processing apparatus and processing method thereof - Google Patents

Seat hole processing apparatus and processing method thereof Download PDF

Info

Publication number
JP3874060B2
JP3874060B2 JP2000185950A JP2000185950A JP3874060B2 JP 3874060 B2 JP3874060 B2 JP 3874060B2 JP 2000185950 A JP2000185950 A JP 2000185950A JP 2000185950 A JP2000185950 A JP 2000185950A JP 3874060 B2 JP3874060 B2 JP 3874060B2
Authority
JP
Japan
Prior art keywords
cutting
radius
tip
hole
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000185950A
Other languages
Japanese (ja)
Other versions
JP2002001605A (en
Inventor
博芳 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2000185950A priority Critical patent/JP3874060B2/en
Publication of JP2002001605A publication Critical patent/JP2002001605A/en
Application granted granted Critical
Publication of JP3874060B2 publication Critical patent/JP3874060B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drilling And Boring (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、機械構造物の半円弧端等における半円弧外面側に、ボルト頭やナット受座等の座穴を、この半円弧外面側からでも効率よく加工できる座穴加工装置とその方法に関するものである。
【0002】
【従来の技術】
従来から、例えば、タービンケーシング等の2個の半円筒物を、その半円弧端の平面部を接合面としてボルト・ナットにより締結して円筒物とするような機械構造物がある。このような構造物の場合、半円弧端の半円弧外面側に存するボルト頭あるいはナットを受けるための座穴を半円弧外面側に加工する必要があり、この座穴を加工する方法として、裏座ぐり法と表座ぐり法がある。
【0003】
図8は裏座ぐり法を示す図面であり、(a) は穴加工を示す断面図、(b) は座穴加工を示す断面図である。この裏座ぐり法は、被加工物51の一部が加工機械や加工工具等に干渉して座面側(半円弧外面側)から座の加工ができない場合や、被加工物51の一部が加工機械に干渉することを避けるために加工工具が長くなって、工具の剛性が不足して切削加工ができなくなる場合などに採用される。
【0004】
この裏座ぐり法の場合、まず半円弧端の接合面側からドリル52等による穴あけ工具を用いて締結ボルトを通すボルト穴53を明ける(a) 。次に、このボルト穴53に座ぐりアーバ54の振れ防止のための中空ブッシュ55を挿入した後、接合面側から座ぐりアーバ54を先端の座ぐりバイト56を取り外した状態でこの中空ブッシュ55に通す。この後、座ぐり工具先端に座ぐりバイト56を取り付け、座ぐりアーバ54を接合面方向に引きながら半円筒の外側円弧部に座穴57を加工する(b) 。
【0005】
図9は表座ぐり法を示す図面であり、(a) は穴加工を示す断面図、(b) は座穴加工を示す断面図、(c) は仕上げ加工を行う工具側面図である。この表座ぐり法は、被加工物61の加工機械に対する干渉が少なく、切削加工に耐えうる剛性を有する加工工具を使用することができる場合などに採用される。
【0006】
この表座ぐり法の場合、まず半円弧端の接合面側からドリル62等による穴あけ工具を用いて締結ボルトを通すボルト穴63を明ける(a) 。次に、被加工物61を反転し、半円弧外面側から穴あけカッター64を用いて座穴66を加工する(b) 。次に、穴あけカッター64を座面カッター65に取り替え(c) 、先端を締結ボルトが通るボルト穴63をガイドにして座穴66を加工する。
【0007】
なお、この種の加工を行う従来技術として、特公昭60−161号公報記載の発明があるが、この発明はスラストが小さくなるようにしたスローアウエイ工具に関するものであり、本願発明のように、半円弧外側からでも適切な径の座穴を効率良く加工できるものではない。
【0008】
【発明が解決しようとする課題】
しかしながら、前記裏座ぐり法の場合、各穴毎に、振れ防止のための中空ブッシュ55の挿入、座ぐりアーバ54の挿入、座ぐりバイト56の取り付け等を作業者が行わなければならず、また座ぐり穴径にあわせて座ぐりバイト56の寸法調整が必要であり、作業が非常に煩雑となる。その上、座ぐりバイト56を座面全面に当接させて切削するため、切削速度や送り等の諸元を上げることができず、加工能率が非常に悪く、生産性が低くなる。
【0009】
一方、前記表座ぐり法の場合、裏側からボルト穴を加工した後で表側から座穴を加工するため、被加工物の反転等の作業が煩雑であるとともに、座穴下面を別工具で仕上げるための切削工具交換作業が繁雑であり、作業効率を悪化させてしまう。しかも、この表座ぐり法では、座ぐり穴径が異なる毎に寸法の異なる穴あけカッター64および座面カッター65が必要であるため、多くの切削工具類を用意する費用が多大となる。
【0010】
また、この表座ぐり法の場合、座穴加工を円弧状外面側から直接行うことも考えられるが、この場合でも、先端全面にスローアウエイチップを設けた工具によって加工した後、座穴下面を仕上げるための工具に取替えて加工しなければならないため、煩雑な工具交換作業が必要となる。仮に、仕上げもできるような1枚物のスローアウエイチップを設けようとしても、大きな穴径の場合には1枚物のスローアウエイチップで構成できないため、複数の工具を用意しなければならなくなる。
【0011】
さらに、これらの加工方向では、異なる径の座穴 を加工するには加工穴径に応じた径の工具を要するため、異なる径の座穴を加工する場合にはその径に応じた工具を用意して交換しなければならず、径の異なる座穴を効率良く加工することができない。
【0012】
【課題を解決するための手段】
そこで、前記課題を解決するために、本願発明の座穴加工装置は、切削工具を工具回転中心軸上で自転させながら、加工対象座穴中心軸を中心に所定の公転半径で公転させてボルト穴の座穴を加工するための座穴加工装置であって、前記切削工具を工具回転中心軸上で回転させる工具自転手段と、該切削工具を加工対象座穴中心軸を中心に所定の公転半径で公転させる工具公転手段とを設け、前記切削工具の先端面の最外周部に、切削半径が座穴半径の半分以上で該座穴半径にボルト穴半径を加えた合計の半分以下であり前記座穴の外径側とその底面を切削する外側チップを設けるとともに、該切削工具の先端面の、前工具回転中心からほぼ前記公転半径分ずらした位置の加工対象座穴中心軸を含む半径方向位置に、前記外側チップで削り残す中間部を切削する内側チップを設け、該切削工具の公転半径を前記座穴半径から外側チップの切削半径を除いた寸法として外側チップで座面の全面を切削し内側チップで外側チップの削り残し部を切削するようにしている。このように、自転する切削工具を加工対象座穴中心軸を中心に公転させ、この公転半径で回転する切削工具最外周径の座穴を加工するようにしたので、外側チップと内側チップのみでも円弧状外面側から座穴を効率良く加工することができる。
【0013】
前記内側チップの切削工具先端側からの突出量を、外側チップの切削工具先端側からの突出量よりも小さくすれば、内側チップによって切削されて座穴の中心部に残る部分を突出部とすることができる。
【0014】
また、工具自転手段で切削工具を自転させながら、切削工具の公転半径を変更する制御手段を設ければ、同一工具で異なる径の座穴を加工することができるとともに、座穴加工中に座穴径を変更することができる。
【0015】
さらに、切削工具の先端面に、内側チップの切削部を含む外周側を切削する追加チップを設ければ、公転半径を広範囲で変更して径の異なる座穴を同一工具で加工できるようにできる。
【0016】
その上、内側チップを、外側チップの切削半径のほぼ20%の半径位置より切削工具外周側で、外側チップの切削内径よりも切削工具内周側の半径位置に配置するようにすれば、一般的なボルト径に対する座穴径の比率に応じた座穴を加工し、中央部のボルト穴として切削する部分以外を平滑に仕上げることができる切削工具を容易に構成することができる。
【0017】
一方、本願発明の座穴加工方法は、切削工具を工具回転中心軸上で自転させながら、加工対象座穴中心軸を中心に所定の公転半径で公転させてボルト穴の座穴を加工するための座穴加工方法であって、前記切削工具の切削半径が座穴半径の半分以上で該座穴半径にボルト穴半径を加えた合計の半分以下であり前記座穴の外径側と底面を切削するように切削工具先端面の最外周部に設けた外側チップで座穴の外径側とその底面を切削するとともに、該切削工具の工具回転中心からほぼ前記公転半径分ずらした位置の加工対象座穴中心軸を含む前記座穴の外側チップ削り残し部を切削するように切削工具の先端面に設けた内側チップで加工対象座穴中心軸を含む前記外側チップ削り残す中間部を切削して公転する切削工具最外周径の座穴を前記外側チップと内側チップとを設けた切削工具の軸方向送り動作で加工するようにしている。このような方法によれば、自転する切削工具を加工対象座穴中心軸を中心に公転させて切削工具最外周径の座穴を加工することができるので、小さなチップでも円弧状外面側から座穴を効率良く加工することができる。
【0018】
また、座穴下端部で公転半径を縮小させながら切削して座穴下端部の角部に縮径処理を施すようにすれば、一連の座穴加工で座穴下端の角部に円弧やテーパ等の縮径処理を施すことが容易にできる。
【0019】
【発明の実施の形態】
以下、本願発明の一実施形態を図面に基づいて説明する。図1は本願発明の一実施形態を示す座穴加工装置の側面図であり、図2は同座穴加工装置による加工面の平面図、図3は同座穴加工装置の工具先端を示す側面図、図4は同座穴加工装置で加工する座穴を示す断面図である。図5は図4に示す座穴の加工軌跡を示す平面図である。この例では、被加工物Wの円弧状外面側から座穴Hを加工する例を示している。
【0020】
図1に示すように、円弧状外面を上側に向けて固定した被加工物Wの加工対象座穴中心軸f上に加工装置Mの回転中心となる公転中心を位置させ、この公転中心から所定の公転半径eで、切削工具Sの回転中心となる切削工具回転中心軸gが位置するように設けられている。
【0021】
前記切削工具回転中心軸gは、切削工具Sの回転中心であり、図示しない工具自転手段たる駆動モータによって、この軸gを中心に切削工具Sが回転(以下「自転」という。)させられる。前記加工対象座穴中心軸fは、図示しない工具公転手段たる駆動モータによって、自転する切削工具Sを加工対象座穴Hの中心である加工対象座穴中心軸fを中心とする公転円Eで回転(以下「公転」という。)させられる。この加工対象座穴中心軸fが切削工具Sを軸方向vに送る軸でもある。これらの駆動モータは、NC加工機等によって駆動制御されている。
【0022】
従って、切削工具回転中心軸g上で切削工具Sを自転させながら、加工対象座穴中心軸f上で切削工具Sを公転させて軸方向v(座穴深さ方向)に切り込むことにより、自転する切削工具Sで被加工物Wを切削しながら、公転によって切削工具径よりも大きな穴径の座穴Hを被加工物Wの円弧状外面側Waに設けることができる。Jはボルト穴である。
【0023】
この座穴Hの深さ方向に切り込む方法としては、ある定めた公転円周位置で所定の切り込み量を与えた後、公転を行うステップ切り込み法と、1公転当たりの切り込み量を全ての公転位置で常に一定の微少切り込み量として連続的に与えるスパイラル切り込み法とがあるが、被加工物等に応じて適宜採用される。
【0024】
このボルト穴Jと座穴Hとの間には、ボルト穴半径R0 に対して座穴半径R1 の座穴Hを設ける場合、加工対象座穴中心軸fから公転半径eの位置に、外側チップ切削半径r1 の切削工具Sの切削工具回転中心軸gが設けられ、この切削工具Sの内側チップ切削半径r2 で加工対象座穴中心軸fを含んで切削できるように構成されている。
【0025】
図2,3に示すように、前記切削工具Sの先端に設けられた先端側が広がる台形状の工具本体Saにはスローアウエイチップ方式のチップ(以下「チップ」という。)が設けられており、工具本体Saの先端面(図の下端面)の最外周部に、工具外周側と先端側を切削する外側チップ1が設けられ、切削工具Sの先端面の加工対象座穴中心軸f上に、この中心軸fを含むように半径方向の工具先端側を切削する内側チップ2が設けられている。
【0026】
前記外側チップ1は、切削工具Sの軸方向最先端で、かつ半径方向最外周に設けられており、切削工具外周側が外周切刃1a、切削工具軸方向先端側が被加工物Wの深さ方向に座穴H(図1)を切削する底切刃1bの切削機能を有している。前記内側チップ2は、外側チップ1と同様に切削工具Sの軸方向最先端で、かつ加工対象座穴中心軸fを含む半径方向に設けられており、切削工具軸方向先端側が被加工物Wの深さ方向に座穴H(図1)を切削する底切刃2aの切削機能を有している。
【0027】
このように配設された外側チップ1と内側チップ2とによれば、図5に示すように、自転しながら公転するので、外側チップ1で座穴Hの外径側と底面が切削され、内側チップ2によって外側チップ1で削り残す中間部が切削される。なお、図5に示す加工軌跡は模式的に記載しているが、公転は各チップ1,2,で平坦面に切削できる程度の速度で行われるため、更に細かい軌跡となる。さらに、この実施形態では2個のチップを設けた例を示しているが、これら外側チップ1と内側チップ2との間に追加チップ3を設けてもよく、チップの数はこの実施形態に限定されるものではない。
【0028】
また、図2に示すように、この底切刃をなす辺が切削工具Sの回転軸中心に対して、同一半径側に配置されている。すなわち、チップ1,2は、切削工具回転中心軸gを跨いで両半径側には設けられていない。これにより、自転する切削工具Sの同一半径方向で切削作用を発揮するようにしている。
【0029】
これらのチップ1,2を設ける位置関係の詳細は、図3に示すように、外側チップ1が、その外端が切削工具回転中心軸gから半径r1 となる位置に設けられ、内側チップ2が、その中心が切削工具回転中心軸gから半径r2 となる位置に設けられている。そして、この内側チップ2の半径方向中間部が、加工対象座穴中心軸fである公転中心に位置するように設けられており、この加工対象座穴中心軸fを含む、外側半径r2o と、内側半径r2i との間を切削できるように設けられている。この切削半径r2 は、公転半径eと同じである。しかも、外側チップ1の工具本体Saからの突出量tよりも、内側チップ2の突出量uが小さくなるように設けられており、これらチップ1,2には突出量差pが設けられている。
【0030】
以下、上述した構成の、加工対象座穴径に対する、切削工具の切削径および公転半径の間の条件等を説明する。この例では、図4に示すように、ボルト穴の加工が未だなされていない状態において、半円弧外面側から座穴加工を行う場合の切削工具の動きおよび加工原理を説明する。なお、チップの数は2個とし、最外周部に設けられた外側チップ1と、加工対象座穴中心軸f上に位置するように設けられた内側チップ2とで構成した例を示す。
【0031】
図1に示すように、外側チップ1によって座穴Hの座面Haを仕上げるためには、ボルト穴半径R0 、座穴半径R1 、外側チップ1の切削半径r1 との間には、
(2*r1 −R1 )≦R0 −−−(1)
の関係が必要である。この関係がないと座面Ha全面を外側チップ1のみで加工することができない。
また、公転運動をする切削工具Sにより座穴加工作業の送り動作を与えることから、
1 ≦2*r1 −−−(2)
の関係が必要である。
以上から、外側チップ1の切削半径r1 は、
1 /2≦r1 ≦(R0 +R1 )/2 −−−(3)
でなければならない。
【0032】
一方、公転半径eは座穴半径R1 、外側チップ1の切削半径r1 とから、
e=R1 −r1 −−−(4)
として設定される。
【0033】
しかし、この外側チップ1だけにて穴加工を行った場合、上述したように、加工対象座穴中心部に半径(2*r1 −R1 )の円柱状の削り残し部が生じ、切り込みが進むに従い、この削り残し部が工具本体Saの底に当たって、座穴加工ができなくなる。
【0034】
そこで、この外側チップ1による加工対象座穴中心部の削り残し部を切削除去するために内側チップ2を設ける。この内側チップ2は、外側チップ1と同様に切削工具Sの先端面から突出するように設けられている。この内側チップ2の底切刃2aをなす辺も、切削工具回転軸gに対して、同一半径上に設けられている(図2)。
【0035】
ところで、この内側チップ2で外側チップ1による加工対象座穴中心部に残った半径(2*r1 −R1 )の円柱状の削り残し部を切削除去するためには、内側チップ2の切削工具半径方向外側の頂点の切削半径r2 を、
2 =e −−−(5)
とすればよい。
しかし、内側チップ2を丁度、r2 =eとなるように切削工具Sに取り付けることは難しい。そこで、図3に示すように、内側チップ2の略半径方向中心部を加工対象座穴中心軸f(公転軸)の位置とした切削半径r2 となるように配置することにより、切削工具外周側の頂点の切削半径r2o 、切削工具内周側の頂点の切削半径r2i 、および公転半径eとの間を、
2i <e<r2o −−−(6)
の関係として、内側チップ2の底切刃2aにて加工対象座穴中心軸f(座穴中心)を切削除去できるようにしている。
【0036】
しかも、内側チップ2が外側チップ1で加工した座面aを削り込むことがないように、内側チップ2の工具先端側からの突出量uを、外側チップ1の工具先端側からの突出量tよりも小さくなるようにしている。つまり、切削工具Sの本体から突出するように設けられている内側チップ2の最先端位置を、外側チップ1の最先端位置より突出量差p分、工具本体Sa側(根元側)に位置させている。
【0037】
図5に示すように、このように形成された座穴加工装置Mによって加工された座穴Hの加工軌跡は、座穴Hの外周部に、自転する外側チップ1を公転させて切削することによって仕上げられた綾目状の切削模様1dを有する平坦面aが形成される。また、座穴Hの内周部には、自転する内側チップ2を公転させて切削することによって仕上げられた綾目状の切削模様2bを有する平坦面bが形成される。
【0038】
また、図4に示すように、平坦面bは、前記内側チップ2と外側チップ1との突出量差pの分だけ外側チップ1により形成された平坦面aから突出している。この平坦面bと周囲の平坦面aとの間には、外側チップ1の底切刃1bの傾斜形状によって傾斜部dが形成され、また、この内側部に形成された平坦面bの中心部には、内側チップ2の底切刃2aの傾斜形状による円錐形状の突起部cが形成されている。
【0039】
このように座穴Hを加工した後、ドリル等の穴あけ工具を使用してボルト穴の穴あけ加工が行われる。このボルト穴Jの加工によって、前記平坦部bと突起部cが切削され、平坦面aからなる座面Haのみが残ることとなる。この実施形態の場合、先にボルト穴Jを加工した場合に切削無駄となる座穴部分のボルト穴加工分がなくなるので、加工時間の短縮や工具寿命の延長等を図ることが可能となる。この穴あけ加工としては、座穴Hの加工と同様に半円弧外側から行っても、あるいは被加工物Wを反転して接合面側から行ってもよい。この穴あけ加工は、加工手順や加工機械に応じて決定すればよい。
【0040】
次に、ボルト穴径に対する座穴径と、外側チップ1と内側チップ2の半径方向位置関係について説明する。
座穴半径R1 をボルト穴半径R0 に対する比率kとの関係にて示すと、
1 =k*R0 −−−(7)
となる。そのため、
式(7)と式(3)から、外側チップ1の切削半径r1 は、
k*R0 /2≦r1 ≦(k+1)*R0 /2 −−−(8)
である必要がある。
次に、式(4)、(7)、(8)の関係から、公転半径eと切削半径r1 との関係は以下の通りとなる。
(r1 +e)/2≦r1 ≦(k+1)*(r1 +e)/2 −−−(9)
すなわち、公転半径eは、
{(k−1)/(k+1)}*r1 ≦e≦r1 −−−(10)
となる。
このことから式(5)の関係で、内側チップ2の切削半径r2 は、
{(k−1)/(k+1)}*r1 ≦r2 ≦r1 −−−(11)
となり、
(k−1)/(k+1)≦r2 /r1 ≦1 −−−(12)
でなければならない。
【0041】
この式(11)の関係から、k値が小さいほど、内側チップ2の切削半径r2 を小さくしなければならない。すなわち、内側チップ2を切削工具回転軸の近くに配置しなければならない。
また、式(12)の範囲のある位置に一個のチップのみ、すなわち内側チップ2を切削半径r2 に配置した場合、式(4)、(5)、(7)より、加工されるべきボルト穴半径R0 は、
0 =(r1 +r2 )/k −−−(13)
として、一義的に決まる。
そこで、複数個のチップ、すなわち内側チップ2以外に追加チップを、式(11)の範囲の全域に配置した場合、加工されるべきボルト穴半径R0 は、
2*r1 /(k−1)≦R0 ≦2*r1 /k −−−(14)
と広がり、工具の汎用性を増すことができる。
【0042】
ところで、式(7)におけるボルト穴半径と座穴半径との比率であるkの値は、ボルトサイズに関わりなく、ほぼ一定の値がとられている。
すなわち、
k=1.5 −−−(15)
が一般的であることから、
内側チップ2以降の追加チップの切削半径rn は、式(12)から、
0.2≦rn /r1 ≦1 −−−(16)
の範囲に配置すればよいこととなる。
【0043】
このことは、内側チップ2を、外側チップ1の切削半径の20%の半径位置より工具外周側の切削半径r2 位置に配置することにより、外側チップ1によって座穴Hの座面Haとなる部分が切削され、内側チップ2ではボルト穴Jとして切削する径よりも小径の部分が切削されることとなる。従って、内側チップ2を外側チップ1の切削半径のほぼ20%の半径位置に設ければ、一般的なボルト穴と座穴Hとの関係を有する加工に対応でき、ボルト穴Jの加工後に残る平滑な座面Haを安定して切削することができる。
【0044】
その上、前記したように、この内側チップ2よりも切削工具外周側で、外側チップ1の切削内径よりも切削工具内周側の半径位置に追加チップ3(図2)を設ければ、公転半径eを変更することによって、同一の切削工具Sによって広範囲の座穴径を加工することができるように構成することが可能となる。この場合、連続して異なる径の座穴Hを効率良く切削できるので、大幅な効率向上を図ることができる。
【0045】
しかも、内側チップ2が1個であっても、この内側チップ2が加工対象座穴中心軸fを含んで切削できる範囲内で公転半径eを変更すれば、同一の切削工具Sを用いて異なる径の座穴Hを連続的に加工することができるので、連続して異なる径の座穴Hを加工する必要がある場合には、作業効率を大幅に向上させることができる。
【0046】
このような座穴加工装置Mによれば、切削工具回転中心軸gを中心に切削工具Sを回転させた状態で、加工対象座穴中心軸fを中心に公転させ、これらを軸方向に送って座穴Hを深さ方向に切り込むことにより、切削工具Sの先端に設けたチップ1,2によって切削工具径よりも大きな穴径の座穴Hを被加工物Wの円弧状外面側Waに加工することができる。
【0047】
図6は本願発明の座穴加工装置による座穴下端の角部における加工例を示す図面であり、(a) は断面図、(b) はx部拡大断面図、図7は図6に示す加工時の穴径と工具径の関係を示す模式図で、(a) は側面図、(b) は公転円の変化図である。この加工例は、上述した実施形態における加工装置Mによる座穴Hの下端部Hbでの制御方法に関するものである。なお、上述した構成と同一の構成には、同一符号を付している。
【0048】
図6(a) に示すように、円弧状外面Waに座穴Hを形成する場合、その下端部Hbの座面Haの角部に円弧y(アール)を形成している。この円弧yは、図6(b) に示すように、切削工具S(図4)に設けられた外側チップ1を徐徐に縮径させることにより、この外側チップ1の角部アール1cで形成されている。
【0049】
このような座穴Hは、図7(a),(b) に示すように、切削工具Sを回転させながら公転させて座穴Hを深さ方向に切削し、座穴Hの下端部Hbで、切削工具Sの公転円E(公転半径e)を縮小しながら公転させることにより、座穴Hの底部周囲に円弧yを形成するものである。この円弧yの内径D1 と平坦部aの内径D2 との間には、
1 =2R1 −2y
2 =D1 −{D1 −(2r1 −2*1c)}*2
の関係がある。なお、この制御は、図示しない制御装置によって行われる。
【0050】
図6,7に示す例では座穴Hの底部角を円弧状に形成する例を示したが、制御装置で公転半径eの変更量と切り込み量を制御することにより、テーパ状に形成したり他の形態に形成することも容易に可能であり、公転半径eと切り込みの送りを制御することによって様々な形態が可能である。
【0051】
なお、上述した実施の形態では、内側チップ2と外側チップ1をそれぞれ1個設けた2個のチップ1,2からなる加工装置Mを例に説明したが、これらの間に追加チップ3を複数設けて2個以上としてもよく、上述した実施形態に限定されるものではない。
【0052】
また、上述した実施形態は一実施形態であり、本願発明の要旨を損なわない範囲での種々の変更は可能であり、本願発明は上述した実施形態に限定されるものではない。
【0053】
【発明の効果】
本願発明は、以上説明したような形態で実施され、以下に記載するような効果を奏する。
【0054】
自転する切削工具を加工対象座穴中心軸を中心に公転させたので、この公転半径で回転する切削工具最外周径の座穴を円弧状外面側から単一の工具で効率良く加工することが可能となる。
【図面の簡単な説明】
【図1】本願発明の一実施形態を示す座穴加工装置の側面図である。
【図2】図1に示す座穴加工装置による加工面の平面図である。
【図3】図1に示す座穴加工装置の工具先端を示す側面図である。
【図4】図1に示す座穴加工装置で加工する座穴を示す断面図である。
【図5】図4に示す座穴の加工軌跡を示す平面図である。
【図6】本願発明の座穴加工装置による座穴下端の角部における加工例を示す図面であり、(a) は断面図、(b) はx部拡大断面図である。
【図7】図6に示す加工時の穴径と工具径の関係を示す模式図であり、(a) は側面図、(b) は公転円の変化図である。
【図8】従来から実施されている裏座ぐり法を示す図面であり、(a) は穴加工を示す断面図、(b) は座穴加工を示す断面図である。
【図9】従来から実施されている表座ぐり法を示す図面であり、(a) は穴加工を示す断面図、(b) は座穴加工を示す断面図、(c) は仕上げ加工を行う工具側面図である。
【符号の説明】
1…外側チップ
2…内側チップ
3…追加チップ
W…被加工物
Wa…半円弧外面側
H…座穴
1 …座穴半径
J…ボルト穴
e…公転半径
E…公転円
f…加工対象座穴中心軸
g…切削工具回転中心軸
p…突出量差
t…突出量
u…突出量
1 …切削半径
2 …切削半径
2o …外側半径
2i …内側半径
y…円弧
S…切削工具
Sa…工具本体
M…座穴加工装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seat hole machining apparatus and method for efficiently machining a seat hole such as a bolt head or a nut seat on the semicircular arc outer surface side of a semicircular arc end or the like of a mechanical structure even from the semicircular arc outer surface side. Is.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, for example, there is a mechanical structure in which two semi-cylindrical objects such as a turbine casing are fastened with bolts and nuts using a flat portion at the end of the semi-circular arc as a joining surface to form a cylindrical object. In the case of such a structure, it is necessary to machine a seat hole for receiving the bolt head or nut existing on the semicircular arc outer surface side of the semicircular arc end on the semicircular arc outer surface side. There are spot facing and face facing methods.
[0003]
FIGS. 8A and 8B are drawings showing the back-facing method, in which FIG. 8A is a cross-sectional view showing drilling, and FIG. 8B is a cross-sectional view showing counterbore processing. This back spot facing method is used when a part of the workpiece 51 interferes with a processing machine, a processing tool, or the like and the seat cannot be processed from the seat surface side (semi-circular outer surface side), or a part of the workpiece 51 is processed. Is used when the machining tool becomes long to prevent interference with the processing machine and the cutting of the tool becomes insufficient due to insufficient rigidity of the tool.
[0004]
In the case of this counterbore method, first, a bolt hole 53 through which the fastening bolt is passed is drilled from the joint surface side of the semicircular arc end by using a drilling tool such as a drill 52 (a). Next, after inserting a hollow bush 55 for preventing the swing of the counterbore arbor 54 into the bolt hole 53, the counterbore arbor 54 is removed from the joint face side with the counterbore bit 56 at the tip removed. Pass through. Thereafter, a counterbore bit 56 is attached to the tip of the counterbore tool, and a counterbore 57 is machined in the outer circular arc portion of the semi-cylinder while pulling the counterbore arbor 54 in the joining surface direction (b).
[0005]
FIGS. 9A and 9B are drawings showing the face counterbore method, in which FIG. 9A is a cross-sectional view showing hole machining, FIG. 9B is a cross-sectional view showing counterbore machining, and FIG. 9C is a side view of a tool for finishing. This front spot facing method is employed when a work tool having a rigidity that can withstand the cutting work can be used with little interference of the work piece 61 with the work machine.
[0006]
In the case of this face counterbore method, first, a bolt hole 63 through which a fastening bolt is passed is drilled from the joint surface side of the semicircular arc end by using a drilling tool such as a drill 62 (a). Next, the workpiece 61 is reversed, and the seat hole 66 is machined from the outer surface side of the semicircular arc using the drilling cutter 64 (b). Next, the hole punching cutter 64 is replaced with a seating surface cutter 65 (c), and the seat hole 66 is processed using the bolt hole 63 through which the fastening bolt passes at the tip as a guide.
[0007]
As a conventional technique for performing this type of processing, there is an invention described in Japanese Patent Publication No. 60-161, but this invention relates to a throwaway tool in which the thrust is reduced, as in the present invention, Even from the outside of the semicircular arc, it is not possible to efficiently process a bearing hole having an appropriate diameter.
[0008]
[Problems to be solved by the invention]
However, in the case of the counterbore method, for each hole, an operator must perform insertion of the hollow bush 55 for preventing deflection, insertion of the counterbore arbor 54, attachment of the counterbore bit 56, etc. In addition, the size of the counterbore bit 56 needs to be adjusted in accordance with the counterbore hole diameter, and the work becomes very complicated. In addition, since the counterbore bit 56 is brought into contact with the entire bearing surface for cutting, it is impossible to increase specifications such as cutting speed and feed, so that the processing efficiency is very poor and the productivity is lowered.
[0009]
On the other hand, in the case of the front face counterbore method, since the countersink is processed from the front side after the bolt hole is processed from the back side, the work such as reversing the workpiece is complicated and the bottom surface of the countersink is finished with another tool. Therefore, the cutting tool replacement work is complicated and the work efficiency is deteriorated. In addition, this front counterbore method requires a hole punching cutter 64 and a seating surface cutter 65 having different dimensions each time the counterbore hole diameter is different, so that the cost for preparing many cutting tools becomes great.
[0010]
In the case of this face counterbore method, it is conceivable that the counterbore processing is performed directly from the arcuate outer surface side, but in this case as well, after processing with a tool having a throwaway tip on the entire tip, Since it must be replaced with a tool for finishing, complicated tool change work is required. Even if an attempt is made to provide a single throw-away tip that can be finished, a single throw-away tip cannot be formed in the case of a large hole diameter, so a plurality of tools must be prepared.
[0011]
Furthermore, in these machining directions, a tool with a diameter corresponding to the machining hole diameter is required to machine a bearing hole with a different diameter. Therefore, when machining a bearing hole with a different diameter, a tool corresponding to the diameter is prepared. Therefore, it is not possible to efficiently process the bearing holes having different diameters.
[0012]
[Means for Solving the Problems]
Then, in order to solve the above-mentioned subject, the seat hole processing device of this invention, While rotating the cutting tool on the tool rotation center axis, revolve around the center hole of the hole to be machined with a predetermined revolution radius. Bolt hole seat hole Add A counterbore machining apparatus for machining, a tool rotation means for rotating the cutting tool on a tool rotation center axis, and a tool for revolving the cutting tool around a machining target seathole center axis at a predetermined revolution radius Revolving means, and the cutting radius is half the bearing hole radius at the outermost peripheral portion of the tip surface of the cutting tool. Above Half of the sum of the seat hole radius plus the bolt hole radius Is Said Outer diameter of seat hole Side and Its bottom With an outer tip for cutting The Cutting tool tip Before Record At a position shifted from the center of tool rotation by the revolution radius. Including the center axis of the counterbore to be machined Middle part left to be scraped by the outer tip at a radial position Provide an inner chip to cut The revolving radius of the cutting tool is a dimension obtained by subtracting the cutting radius of the outer tip from the seat hole radius. Cutting the entire seating surface with the outer tip Shinai Side chip Outside The uncut portion of the side tip is cut. In this way, the rotating cutting tool is revolved around the center axis of the subject hole to be machined, and the bearing hole with the outermost peripheral diameter of the cutting tool rotating at this revolution radius is machined. The seat hole can be efficiently processed from the arcuate outer surface side.
[0013]
If the amount of protrusion of the inner tip from the cutting tool tip side is made smaller than the amount of protrusion of the outer tip from the cutting tool tip side, the portion that is cut by the inner tip and remains in the center of the seat hole is used as the protrusion. be able to.
[0014]
In addition, if a control means is provided for changing the revolution radius of the cutting tool while rotating the cutting tool with the tool rotation means, it is possible to machine a countersink with a different diameter with the same tool and The hole diameter can be changed.
[0015]
Furthermore, if an additional tip for cutting the outer peripheral side including the cutting portion of the inner tip is provided on the tip surface of the cutting tool, it is possible to change the revolution radius in a wide range and to process the countersunk holes having different diameters with the same tool. .
[0016]
In addition, if the inner tip is arranged on the outer peripheral side of the cutting tool from the radial position of approximately 20% of the cutting radius of the outer tip, the inner tip is arranged at a radial position on the inner peripheral side of the cutting tool from the cutting inner diameter of the outer tip. It is possible to easily form a cutting tool capable of machining a bearing hole according to a ratio of a bearing hole diameter to a typical bolt diameter and smoothly finishing a portion other than a portion to be cut as a bolt hole in a central portion.
[0017]
On the other hand, While rotating the cutting tool on the tool rotation center axis, revolve around the center hole of the hole to be machined with a predetermined revolution radius. Bolt hole seat hole Add A countersunk hole machining method for machining, the cutting tool The cutting radius is not less than half of the seat hole radius and not more than half of the sum of the seat hole radius and the bolt hole radius so that the outer diameter side and the bottom surface of the seat hole are cut. The outer tip provided on the outermost periphery of the cutting tool tip surface is used to Diameter side and bottom And cutting The position of the cutting tool is substantially shifted by the revolution radius from the tool rotation center. Including the center axis of the counterbore to be machined The tip surface of the cutting tool so as to cut the remaining uncut portion of the tip of the seat hole With the inner chip Including the center axis of the counterbore to be machined The outer tip so Uncut Middle part Cutting , The hole of the outermost diameter of the revolving cutting tool The outer tip and the inner tip are provided. Processing is performed by an axial feed operation of the cutting tool. According to such a method, since the rotating cutting tool can be revolved around the center axis of the target hole to be machined, the bearing hole having the outermost diameter of the cutting tool can be machined, so even a small tip can be seated from the arcuate outer surface side. Holes can be processed efficiently.
[0018]
In addition, if cutting is performed while reducing the revolution radius at the lower end of the countersink, and the diameter of the corner of the lower end of the countersink is reduced, an arc or taper is formed at the lower end of the countersink through a series of countersunk holes. It is possible to easily perform a diameter reduction process such as.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a side view of a counterbore processing apparatus showing an embodiment of the present invention, FIG. 2 is a plan view of a machining surface by the counterbore processing apparatus, and FIG. 3 is a side view showing a tool tip of the counterbore processing apparatus. FIG. 4 and FIG. 4 are cross-sectional views showing a seat hole machined by the same machine. FIG. 5 is a plan view showing a processing locus of the seat hole shown in FIG. In this example, an example in which the seat hole H is machined from the arcuate outer surface side of the workpiece W is shown.
[0020]
As shown in FIG. 1, a revolution center serving as a rotation center of the machining apparatus M is positioned on a machining target seat hole central axis f of a workpiece W having an arcuate outer surface fixed upward, and a predetermined center from the revolution center. Is provided such that the cutting tool rotation center axis g serving as the rotation center of the cutting tool S is located.
[0021]
The cutting tool rotation center axis g is the rotation center of the cutting tool S, and the cutting tool S is rotated (hereinafter referred to as “autorotation”) around the axis g by a drive motor which is a tool rotation means (not shown). The machining target seat hole central axis f is a revolution circle E centering on the machining target seat hole central axis f that is the center of the machining target seat hole H with respect to the cutting tool S that rotates by a drive motor that is a tool revolving means (not shown). It is rotated (hereinafter referred to as “revolution”). This center hole f to be machined is also an axis that feeds the cutting tool S in the axial direction v. These drive motors are driven and controlled by an NC processing machine or the like.
[0022]
Accordingly, while rotating the cutting tool S on the cutting tool rotation center axis g, the cutting tool S is revolved on the machining target center hole f and cut in the axial direction v (sitting hole depth direction). While the workpiece W is being cut by the cutting tool S, the seat hole H having a hole diameter larger than the cutting tool diameter can be provided on the arcuate outer surface side Wa of the workpiece W by revolution. J is a bolt hole.
[0023]
As a method of cutting in the depth direction of the seat hole H, a predetermined cutting amount is given at a predetermined revolution circumferential position and then a step cutting method in which the revolution is performed, and a cutting amount per revolution is set to all the revolution positions. However, there is a spiral cutting method which is always given continuously as a constant fine cutting amount, which is appropriately adopted depending on the workpiece or the like.
[0024]
The bolt hole radius R is between the bolt hole J and the seat hole H. 0 Countersink radius R 1 When the outer hole cutting radius r is provided at the position of the revolution radius e from the central hole f to be machined. 1 A cutting tool rotation center axis g of the cutting tool S is provided, and an inner chip cutting radius r of the cutting tool S is provided. 2 It is comprised so that it can cut including the to-be-processed seat hole central axis f.
[0025]
As shown in FIGS. 2 and 3, the trapezoidal tool body Sa provided at the tip of the cutting tool S is provided with a throwaway tip type tip (hereinafter referred to as “tip”). An outer tip 1 for cutting the tool outer peripheral side and the tip end side is provided on the outermost peripheral portion of the tip end surface (the lower end surface in the drawing) of the tool body Sa, and is on the machining target seat hole central axis f of the tip end surface of the cutting tool S. The inner tip 2 for cutting the tool tip side in the radial direction is provided so as to include the central axis f.
[0026]
The outer tip 1 is provided at the tip end in the axial direction of the cutting tool S and at the outermost periphery in the radial direction. The outer peripheral side of the cutting tool is the outer peripheral cutting edge 1a, and the front end side in the cutting tool axial direction is the depth direction of the workpiece W. Has a cutting function of the bottom cutting edge 1b for cutting the seat hole H (FIG. 1). The inner tip 2 is provided in the radial direction including the center axis f of the machining target seat hole as well as the outer tip 1 in the radial direction including the cutting tool S in the axial direction. Has a cutting function of the bottom cutting edge 2a for cutting the seat hole H (FIG. 1) in the depth direction.
[0027]
According to the outer tip 1 and the inner tip 2 arranged in this way, as shown in FIG. 5, since it revolves while rotating, the outer diameter side and bottom surface of the seat hole H are cut by the outer tip 1, The intermediate part left by the outer chip 1 is cut by the inner chip 2. Although the machining trajectory shown in FIG. 5 is schematically described, since the revolution is performed at a speed that can be cut into a flat surface by the respective chips 1, 2, the trajectory becomes a finer trajectory. Furthermore, in this embodiment, an example in which two chips are provided is shown, but an additional chip 3 may be provided between the outer chip 1 and the inner chip 2, and the number of chips is limited to this embodiment. Is not to be done.
[0028]
Further, as shown in FIG. 2, the side forming the bottom cutting edge is arranged on the same radius side with respect to the rotation axis center of the cutting tool S. That is, the tips 1 and 2 are not provided on both radial sides across the cutting tool rotation center axis g. Thereby, the cutting action is exhibited in the same radial direction of the cutting tool S that rotates.
[0029]
As shown in FIG. 3, the details of the positional relationship in which these tips 1 and 2 are provided are such that the outer tip 1 has an outer end with a radius r from the cutting tool rotation center axis g. 1 The inner tip 2 has a radius r from the center axis g of the cutting tool rotation. 2 It is provided at the position. And the radial direction intermediate part of this inner side chip | tip 2 is provided so that it may be located in the revolution center which is a process target seat hole center axis f, and the outer radius r containing this process target seat hole center axis f is included. 2 o and inner radius r 2 It is provided so that it can cut between i. This cutting radius r 2 Is the same as the revolution radius e. Moreover, the protrusion amount u of the inner tip 2 is provided to be smaller than the protrusion amount t of the outer tip 1 from the tool body Sa, and these tips 1 and 2 are provided with a protrusion amount difference p. .
[0030]
Hereinafter, conditions between the cutting diameter and the revolution radius of the cutting tool with respect to the diameter of the target hole for the machining target will be described. In this example, as shown in FIG. 4, the movement of the cutting tool and the processing principle in the case where the counterbore is processed from the outer side of the semicircular arc in a state where the bolt hole has not been processed yet will be described. In addition, the number of tips is two, and an example in which the outer tip 1 provided on the outermost peripheral portion and the inner tip 2 provided so as to be positioned on the center hole f to be processed is shown.
[0031]
As shown in FIG. 1, in order to finish the seating surface Ha of the seating hole H by the outer tip 1, the bolt hole radius R 0 , Seat hole radius R 1 , Cutting radius r of outer tip 1 1 In between
(2 * r 1 -R 1 ) ≦ R 0 --- (1)
Is necessary. Without this relationship, the entire seating surface Ha cannot be processed by the outer chip 1 alone.
In addition, since the cutting operation of the revolving motion S gives a feed operation for the countersink processing work,
R 1 ≦ 2 * r 1 --- (2)
Is necessary.
From the above, the cutting radius r of the outer tip 1 1 Is
R 1 / 2 ≦ r 1 ≤ (R 0 + R 1 ) / 2 ---- (3)
Must.
[0032]
On the other hand, the revolution radius e is the bearing radius R 1 , Cutting radius r of outer tip 1 1 And
e = R 1 -R 1 ---- (4)
Set as
[0033]
However, when drilling is performed only with the outer tip 1, as described above, the radius (2 * r 1 -R 1 ) Is formed, and as the incision progresses, the uncut portion comes into contact with the bottom of the tool body Sa, so that it is impossible to perform the counterbore processing.
[0034]
Therefore, the inner tip 2 is provided in order to cut away the uncut portion of the center portion of the target hole to be processed by the outer tip 1. The inner tip 2 is provided so as to protrude from the front end surface of the cutting tool S in the same manner as the outer tip 1. The side forming the bottom cutting edge 2a of the inner chip 2 is also provided on the same radius with respect to the cutting tool rotation axis g (FIG. 2).
[0035]
By the way, the radius (2 * r) remaining at the center of the target hole for machining by the outer tip 1 with the inner tip 2. 1 -R 1 In order to cut and remove the cylindrical uncut portion of), the cutting radius r at the apex of the inner tip 2 on the outer side in the radial direction of the cutting tool 2 The
r 2 = E --- (5)
And it is sufficient.
However, the inner tip 2 is exactly r 2 = E is difficult to attach to the cutting tool S. Therefore, as shown in FIG. 3, the cutting radius r with the substantially radial center portion of the inner chip 2 as the position of the center hole f (revolution axis) to be machined. 2 The cutting radius r at the apex on the outer peripheral side of the cutting tool 2 o, cutting radius r at the apex on the inner peripheral side of the cutting tool 2 between i and the revolution radius e
r 2 i <e <r 2 o ---- (6)
With respect to the relationship, the bottom hole 2a of the inner chip 2 can be used to cut and remove the center hole f (the center of the hole) to be processed.
[0036]
In addition, the protruding amount u from the tool tip side of the inner tip 2 is set to the protruding amount t from the tool tip side of the outer tip 1 so that the inner chip 2 does not cut the seating surface a processed by the outer chip 1. To make it smaller. That is, the most advanced position of the inner tip 2 provided so as to project from the main body of the cutting tool S is positioned on the tool main body Sa side (root side) by the protrusion amount difference p from the most advanced position of the outer tip 1. ing.
[0037]
As shown in FIG. 5, the machining locus of the bearing hole H machined by the bearing hole machining apparatus M formed in this way is cut by revolving the outer tip 1 that rotates on the outer periphery of the bearing hole H. The flat surface a having the twill-like cutting pattern 1d finished by the above is formed. Further, on the inner peripheral portion of the seat hole H, a flat surface b having a cross cut pattern 2b finished by revolving and cutting the inner tip 2 that rotates is formed.
[0038]
Further, as shown in FIG. 4, the flat surface b protrudes from the flat surface a formed by the outer chip 1 by the protrusion amount difference p between the inner chip 2 and the outer chip 1. An inclined portion d is formed between the flat surface b and the surrounding flat surface a by the inclined shape of the bottom cutting edge 1b of the outer tip 1, and the central portion of the flat surface b formed on the inner portion. A conical protrusion c is formed by the inclined shape of the bottom cutting edge 2a of the inner chip 2.
[0039]
After machining the seat hole H in this manner, a bolt hole is drilled using a drilling tool such as a drill. By the processing of the bolt hole J, the flat part b and the projection part c are cut, and only the seating surface Ha composed of the flat surface a remains. In the case of this embodiment, since the bolt hole machining portion of the seat hole portion that is wasted when the bolt hole J is first machined is eliminated, it is possible to shorten the machining time, extend the tool life, and the like. This drilling may be performed from the outside of the semicircular arc as in the case of the seat hole H, or may be performed from the joining surface side by reversing the workpiece W. This drilling process may be determined according to the processing procedure and the processing machine.
[0040]
Next, the bearing hole diameter with respect to the bolt hole diameter and the radial positional relationship between the outer chip 1 and the inner chip 2 will be described.
Seat hole radius R 1 Bolt hole radius R 0 In relation to the ratio k to,
R 1 = K * R 0 ---- (7)
It becomes. for that reason,
From equations (7) and (3), the cutting radius r of the outer tip 1 1 Is
k * R 0 / 2 ≦ r 1 ≦ (k + 1) * R 0 / 2 ---- (8)
Need to be.
Next, from the relations of equations (4), (7), and (8), the revolution radius e and the cutting radius r 1 The relationship is as follows.
(R 1 + E) / 2 ≦ r 1 ≦ (k + 1) * (r 1 + E) / 2 ---- (9)
That is, the revolution radius e is
{(K-1) / (k + 1)} * r 1 ≦ e ≦ r 1 --- (10)
It becomes.
From this, the cutting radius r of the inner tip 2 in the relationship of the formula (5) 2 Is
{(K-1) / (k + 1)} * r 1 ≦ r 2 ≦ r 1 --- (11)
And
(K−1) / (k + 1) ≦ r 2 / R 1 ≦ 1 ---- (12)
Must.
[0041]
From the relationship of this formula (11), the smaller the k value, the cutting radius r of the inner tip 2 2 Must be reduced. That is, the inner tip 2 must be disposed near the cutting tool rotation axis.
In addition, only one chip, that is, the inner chip 2 is inserted into the cutting radius r at a position within the range of the expression (12). 2 , The bolt hole radius R to be machined from the equations (4), (5), (7) 0 Is
R 0 = (R 1 + R 2 ) / K ---- (13)
As unambiguous.
Therefore, when an additional chip other than the plurality of chips, that is, the inner chip 2 is arranged in the entire range of the expression (11), the bolt hole radius R to be processed 0 Is
2 * r 1 / (K−1) ≦ R 0 ≦ 2 * r 1 / K ---- (14)
And the versatility of the tool can be increased.
[0042]
By the way, the value of k, which is the ratio of the bolt hole radius to the seat hole radius in Equation (7), is almost constant regardless of the bolt size.
That is,
k = 1.5 --- (15)
Is common,
Cutting radius r of additional insert after inner insert 2 n From equation (12)
0.2 ≦ r n / R 1 ≦ 1 --- (16)
It will suffice if it is arranged within the range.
[0043]
This means that the cutting radius r of the inner tip 2 is set on the outer peripheral side of the tool from the radial position of 20% of the cutting radius of the outer tip 1. 2 By arranging at the position, the outer tip 1 cuts the portion that becomes the seating surface Ha of the seat hole H, and the inner tip 2 cuts a portion having a smaller diameter than the diameter of the bolt hole J. Therefore, if the inner tip 2 is provided at a radial position that is approximately 20% of the cutting radius of the outer tip 1, it is possible to cope with processing having a general relationship between the bolt hole and the seat hole H, and remains after the bolt hole J is processed. The smooth seating surface Ha can be cut stably.
[0044]
In addition, as described above, if the additional tip 3 (FIG. 2) is provided at a radial position on the outer peripheral side of the cutting tool with respect to the inner tip 2 and on the inner peripheral side of the cutting tool with respect to the cutting inner diameter of the outer tip 1, By changing the radius e, it is possible to configure a wide range of hole diameters with the same cutting tool S. In this case, since it is possible to efficiently cut the bearing holes H having different diameters continuously, it is possible to greatly improve the efficiency.
[0045]
Moreover, even if there is only one inner tip 2, if the revolution radius e is changed within a range in which the inner tip 2 can be cut including the center hole f for machining, the same cutting tool S is used. Since the diameter of the hole H can be continuously processed, when it is necessary to continuously process the holes H of different diameters, the working efficiency can be greatly improved.
[0046]
According to such a counterbore processing apparatus M, in a state where the cutting tool S is rotated around the cutting tool rotation center axis g, the center hole f is revolved around the processing target center hole f, and these are sent in the axial direction. By cutting the seat hole H in the depth direction, the seat hole H having a diameter larger than the cutting tool diameter is formed on the arcuate outer surface side Wa of the workpiece W by the tips 1 and 2 provided at the tip of the cutting tool S. Can be processed.
[0047]
FIG. 6 is a drawing showing an example of machining at the corner of the lower end of the bearing hole by the bearing hole machining apparatus of the present invention, (a) is a cross-sectional view, (b) is an enlarged cross-sectional view of the x portion, and FIG. 7 is shown in FIG. FIG. 4 is a schematic diagram showing a relationship between a hole diameter and a tool diameter during machining, where (a) is a side view and (b) is a change diagram of a revolution circle. This processing example relates to a control method at the lower end portion Hb of the seat hole H by the processing device M in the above-described embodiment. In addition, the same code | symbol is attached | subjected to the structure same as the structure mentioned above.
[0048]
As shown in FIG. 6A, when the seat hole H is formed on the arc-shaped outer surface Wa, an arc y is formed at the corner of the seat surface Ha at the lower end Hb. As shown in FIG. 6 (b), the arc y is formed by the corner portion 1c of the outer tip 1 by gradually reducing the diameter of the outer tip 1 provided in the cutting tool S (FIG. 4). ing.
[0049]
As shown in FIGS. 7A and 7B, the seat hole H is rotated while the cutting tool S is rotated to cut the seat hole H in the depth direction, and the lower end portion Hb of the seat hole H is obtained. Thus, an arc y is formed around the bottom of the seat hole H by revolving while reducing the revolution circle E (revolution radius e) of the cutting tool S. Inner diameter D of this arc y 1 And inner diameter D of flat part a 2 In between
D 1 = 2R 1 -2y
D 2 = D 1 -{D 1 -(2r 1 -2 * 1c)} * 2
There is a relationship. This control is performed by a control device (not shown).
[0050]
In the example shown in FIGS. 6 and 7, an example in which the bottom corner of the seat hole H is formed in an arc shape is shown. However, the control device controls the amount of change of the revolution radius e and the amount of cut, so that it can be formed in a tapered shape. Other forms can be easily formed, and various forms are possible by controlling the revolution radius e and the feed of the notch.
[0051]
In the above-described embodiment, the processing apparatus M including two chips 1 and 2 each having one inner chip 2 and one outer chip 1 has been described as an example. Two or more may be provided, and is not limited to the above-described embodiment.
[0052]
Further, the above-described embodiment is an embodiment, and various modifications can be made without departing from the spirit of the present invention, and the present invention is not limited to the above-described embodiment.
[0053]
【The invention's effect】
The present invention is implemented in the form described above, and has the following effects.
[0054]
Since the rotating cutting tool revolved around the center axis of the target hole for machining, it is possible to efficiently machine the bearing hole of the outermost diameter of the cutting tool rotating at this revolution radius with a single tool from the arcuate outer surface side. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a side view of a counterbore machining apparatus showing an embodiment of the present invention.
FIG. 2 is a plan view of a machining surface by the counterbore machining apparatus shown in FIG.
3 is a side view showing a tool tip of the counterbore machining apparatus shown in FIG. 1. FIG.
4 is a cross-sectional view showing a seat hole to be machined by the machine for boring hole shown in FIG. 1. FIG.
5 is a plan view showing a processing locus of the seat hole shown in FIG. 4. FIG.
FIGS. 6A and 6B are diagrams showing an example of processing at a corner portion of a lower end of a seat hole by the counterbore processing apparatus of the present invention, in which FIG. 6A is a cross-sectional view, and FIG.
7 is a schematic diagram showing a relationship between a hole diameter and a tool diameter at the time of machining shown in FIG. 6, in which (a) is a side view and (b) is a change diagram of a revolution circle.
FIGS. 8A and 8B are diagrams showing a conventional counterbore method, wherein FIG. 8A is a cross-sectional view showing hole processing, and FIG. 8B is a cross-sectional view showing counterbore processing.
FIGS. 9A and 9B are diagrams showing a conventional counterbore method, wherein FIG. 9A is a cross-sectional view showing drilling, FIG. 9B is a cross-sectional view showing counterbore processing, and FIG. 9C is a finish machining. It is a tool side view to perform.
[Explanation of symbols]
1 ... Outer tip
2 ... Inner tip
3. Additional chip
W ... Workpiece
Wa ... Semi-arc outer surface side
H ... seat hole
R 1 … Sitting hole radius
J ... Bolt hole
e ... Revolution radius
E ... Revolution circle
f ... Center hole for the target hole
g ... Cutting tool rotation center axis
p ... Projection amount difference
t ... Projection amount
u ... Projection amount
r 1 ... Cutting radius
r 2 ... Cutting radius
r 2 o… outer radius
r 2 i ... Inner radius
y ... arc
S ... Cutting tool
Sa ... Tool body
M ... Corner hole processing equipment

Claims (7)

切削工具を工具回転中心軸上で自転させながら、加工対象座穴中心軸を中心に所定の公転半径で公転させてボルト穴の座穴を加工するための座穴加工装置であって、
前記切削工具を工具回転中心軸上で回転させる工具自転手段と、該切削工具を加工対象座穴中心軸を中心に所定の公転半径で公転させる工具公転手段とを設け、前記切削工具の先端面の最外周部に、切削半径が座穴半径の半分以上で該座穴半径にボルト穴半径を加えた合計の半分以下であり前記座穴の外径側とその底面を切削する外側チップを設けるとともに、該切削工具の先端面の、前工具回転中心からほぼ前記公転半径分ずらした位置の加工対象座穴中心軸を含む半径方向位置に、前記外側チップで削り残す中間部を切削する内側チップを設け、該切削工具の公転半径を前記座穴半径から外側チップの切削半径を除いた寸法として外側チップで座面の全面を切削し内側チップで外側チップの削り残し部を切削するようにした座穴加工装置。
While the cutting tool is rotating on the tool rotation center axis, a seat drilling device for a seat hole is pressurized Engineering bolt holes by revolving at a predetermined revolution radius around the processing object Zaana central axis,
A tool rotation means for rotating the cutting tool on a tool rotation center axis, and a tool revolving means for revolving the cutting tool with a predetermined revolving radius around the center axis of the subject hole to be machined, the outermost peripheral portion, the cutting radius is provided with a outer tip for cutting an outer diameter side and its bottom half or less and the seat holes of total plus bolt hole radius the seat hole radius more than half of Zaana radius together, the radial position comprising a processing object Zaana central axis of a position shifted about the revolution radius of the distal end surface of the front SL tool rotation center of the cutting tool, the inner cutting the intermediate portion to leave cut with the outer tip the chip is provided to cut the uncut portion of the outer side chip the cutting machining to the side chip entire seating surface outside the chip as the dimension, excluding the cutting radius of the outer tip from the seat hole radius revolution radius of the tool -Made countersink .
内側チップの切削工具先端側からの突出量を、外側チップの切削工具先端側からの突出量よりも小さくしたことを特徴とする請求項1記載の座穴加工装置。  2. The counterbore machining apparatus according to claim 1, wherein a protruding amount of the inner tip from the cutting tool tip side is smaller than a protruding amount of the outer tip from the cutting tool tip side. 工具自転手段で切削工具を自転させながら、切削工具の公転半径を変更する制御手段を設けたことを特徴とする請求項1又は請求項2記載の座穴加工装置。  3. A counterbore machining apparatus according to claim 1, further comprising a control means for changing a revolution radius of the cutting tool while rotating the cutting tool by the tool rotation means. 切削工具の先端面に、内側チップの切削部を含む外周側を切削する追加チップを設けたことを特徴とする請求項3記載の座穴加工装置。  4. The counterbore machining apparatus according to claim 3, wherein an additional tip for cutting an outer peripheral side including a cutting portion of the inner tip is provided on a tip surface of the cutting tool. 内側チップを、外側チップの切削半径のほぼ20%の半径位置より切削工具外周側で、外側チップの切削内径よりも切削工具内周側の半径位置に配置したことを特徴とする請求項1〜4のいずれか1項に記載の座穴加工装置。  The inner tip is arranged at a radial position on the outer peripheral side of the cutting tool from a radial position of approximately 20% of the cutting radius of the outer tip and at a radial position on the inner peripheral side of the cutting tool from the cutting inner diameter of the outer tip. 5. The counterbore processing device according to any one of 4 above. 切削工具を工具回転中心軸上で自転させながら、加工対象座穴中心軸を中心に所定の公転半径で公転させてボルト穴の座穴を加工するための座穴加工方法であって、
前記切削工具の切削半径が座穴半径の半分以上で該座穴半径にボルト穴半径を加えた合計の半分以下であり前記座穴の外径側と底面を切削するように切削工具先端面の最外周部に設けた外側チップで座穴の外径側とその底面を切削するとともに、該切削工具の工具回転中心からほぼ前記公転半径分ずらした位置の加工対象座穴中心軸を含む前記座穴の外側チップ削り残し部を切削するように切削工具の先端面に設けた内側チップで加工対象座穴中心軸を含む前記外側チップ削り残す中間部を切削して公転する切削工具最外周径の座穴を前記外側チップと内側チップとを設けた切削工具の軸方向送り動作で加工する座穴加工方法。
While the cutting tool is rotating on the tool rotation center axis, a seat hole drilling method for pressurizing Engineering seat hole of the bolt holes by revolving at a predetermined revolution radius around the processing object Zaana central axis,
The cutting radius of the cutting tool is such that the cutting radius of the cutting tool is not less than half of the bearing hole radius and not more than half of the total of the bearing hole radius and the bolt hole radius, and the outer diameter side and the bottom surface of the seat hole are cut . The seat including the machining target seat hole center axis at a position shifted from the tool rotation center of the cutting tool by approximately the revolution radius while cutting the outer diameter side and the bottom surface of the seat hole with an outer tip provided on the outermost periphery. by cutting the cutting outside the chip residue to the intermediate portion inside the chip provided with outer tip uncut portion on the distal end surface of the cutting tool to cut comprising processing object Zaana central axis of the hole, the outermost cutting tool revolve A seat hole machining method for machining a seat hole having an outer diameter by an axial feed operation of a cutting tool provided with the outer tip and the inner tip .
座穴下端部で公転半径を縮小させながら切削して座穴下端部の角部に縮径処理を施すことを特徴とする請求項6記載の座穴加工方法。  The method according to claim 6, wherein cutting is performed while reducing the revolution radius at the lower end portion of the bearing hole, and the diameter of the corner portion of the lower end portion of the bearing hole is reduced.
JP2000185950A 2000-06-21 2000-06-21 Seat hole processing apparatus and processing method thereof Expired - Fee Related JP3874060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185950A JP3874060B2 (en) 2000-06-21 2000-06-21 Seat hole processing apparatus and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185950A JP3874060B2 (en) 2000-06-21 2000-06-21 Seat hole processing apparatus and processing method thereof

Publications (2)

Publication Number Publication Date
JP2002001605A JP2002001605A (en) 2002-01-08
JP3874060B2 true JP3874060B2 (en) 2007-01-31

Family

ID=18686195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185950A Expired - Fee Related JP3874060B2 (en) 2000-06-21 2000-06-21 Seat hole processing apparatus and processing method thereof

Country Status (1)

Country Link
JP (1) JP3874060B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478380B2 (en) * 2014-09-01 2019-03-06 株式会社 上田製作所 Counterbore cutter

Also Published As

Publication number Publication date
JP2002001605A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
JP2660349B2 (en) Combined hole making and threading tools
US5094573A (en) Multidirectional cutting tool
US5429459A (en) Method of and apparatus for thread mill drilling
JP4499037B2 (en) Core cutter
WO1991015321A1 (en) Method and apparatus for a lineal machine tool
JPH11254218A (en) Composite cutter tool mainly for hole machining, and machining method
EP0307823B1 (en) A bottle boring milling tool
JP2013514902A (en) Method and apparatus for manufacturing bevel gears
JP3551796B2 (en) Rotary tool and method of machining reverse tapered hole using the rotary tool
JP3874060B2 (en) Seat hole processing apparatus and processing method thereof
JPH0852616A (en) Stepped reamer
JP4034034B2 (en) Drilling method and drilling tool
JPH064205B2 (en) Drilling method
JP2010069553A (en) Compound tool, machine tool, and machining method
JPH0592301A (en) Machine tool
JPH10128610A (en) Compound cutting edge tool mainly for drilling work, and work method
JPH08294809A (en) Square hole working tool
JP2012161904A (en) Composite tool, machining method, and machine tool
JP2006068855A (en) Angle head for machine tool
JP2000005906A (en) Multi-purpose cutter and method for using the same
JP2000033506A (en) Support for deep hole machining shaft
JP2022002866A (en) Cutting tool, cutting method
JPH08141843A (en) Thread cutter
JPH10249616A (en) Boring method
JP3226021U (en) Chamfer Cutter and Chamfering Equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050511

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees