JP3871863B2 - Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus, and process cartridge for electrophotographic apparatus - Google Patents

Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus, and process cartridge for electrophotographic apparatus Download PDF

Info

Publication number
JP3871863B2
JP3871863B2 JP2000230536A JP2000230536A JP3871863B2 JP 3871863 B2 JP3871863 B2 JP 3871863B2 JP 2000230536 A JP2000230536 A JP 2000230536A JP 2000230536 A JP2000230536 A JP 2000230536A JP 3871863 B2 JP3871863 B2 JP 3871863B2
Authority
JP
Japan
Prior art keywords
electrophotographic
layer
photosensitive member
intermediate layer
electrophotographic photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000230536A
Other languages
Japanese (ja)
Other versions
JP2002040698A (en
Inventor
鋭司 栗本
弘 生野
成人 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2000230536A priority Critical patent/JP3871863B2/en
Publication of JP2002040698A publication Critical patent/JP2002040698A/en
Application granted granted Critical
Publication of JP3871863B2 publication Critical patent/JP3871863B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、電子写真複写機、ファクシミリ、レーザープリンタ、ダイレクトデジタル製版機等の電子写真プロセスに用いられるに電子写真感光体に関するものであり、さらに詳しくは高感度、高画質で、耐久性に非常に優れた電子写真感光体、並びに該電子写真感光体を用いた電子写真方法、電子写真装置および電子写真装置用プロセスカートリッジに関するものである。
【0002】
【従来の技術】
複写機、ファクシミリ、レーザープリンタ、ダイレクトデジタル製版機等に応用されている電子写真感光体を用いた電子写真方法とは、少なくとも電子写真感光体に一次帯電、画像露光、現像の過程を経た後、画像保持体(転写紙)へのトナー画像の転写、定着及び電子写真感光体表面のクリーニングというプロセスよりなる方法である。
【0003】
電子写真感光体が、この電子写真法において要求される基本的な特性としては、
▲1▼暗所で適当な電位に帯電できること
▲2▼暗所に於いて電荷の散逸が少ないこと
▲3▼光照射によって速やかに電荷を散逸できること
等が挙げられる。
【0004】
更にこれらの特性以外に画質特性等の長期信頼性や低公害性、コストの低さ等も要求される。
【0005】
電子写真感光体は基本的には支持体と支持体上に形成された感光層とから成っている。支持体としては導電性の高い金属が多く用いられているが、中でもアルミニウムやアルミニウム合金が多く用いられている。これらの表面には、突起、異物等の構造的欠陥、防錆油等のオイルや化学的な不純物等が存在するため、そのままでは支持体上に感光層を設けると画像欠陥等を生じるためこのままでは用いることは出来ない。
【0006】
この問題を改善する技術の一つとして、導電性支持体上に中間層を設けたのち感光層を設けることが提案されている。この例として、導電性支持体上に樹脂層を設けたもの、無機顔料(酸化チタン、酸化スズ等)を樹脂中に分散させた中間層を設けたもの(特開昭61−204642他)等が知られている。
【0007】
この方法は比較的コストも低く、効果も良好なため数多くの感光体に応用されている。しかしながらこれまでの樹脂のみの中間層、または樹脂中に無機顔料を分散した中間層を有する電子写真感光体においては、静電的な繰り返し特性に問題がないとはいえず、特に繰り返し使用するに従って電子写真特性の劣化、特に帯電電位が低下したり、帯電から現像までの時間に表面電位が低下する、いわゆる暗減衰が増加するという問題があった。また静電的な電子写真特性に問題の無い場合においても、一般的なカールソンプロセスおよび類似プロセスのような電子写真プロセスを経て画像形成された場合、白ポチ、黒ポチと称される画像欠陥が生じる場合が多くみられた。
【0008】
したがって、これら従来の感光体は繰返し使用時の画像品質の安定性で未だ不十分であった。
すなわち、帯電安定性、光感度、画像品質の全てを満足し、かつこれらの特性の長期持続性を有している電子写真感光体は得られていなかった。言い換えるとこれまでの電子写真感光体は、電子写真エンジンが近年要求されている高性能、長寿命、高信頼性を高いレベルで達成するためには不十分であり改良が強く望まれていた。
【0009】
【発明が解決しようとする課題】
本発明は、この高画質、長寿命、高信頼性を高いレベルで達成する有機系電子写真感光体を提供することであり、特に画質再現性に優れ、耐久性及び光感度にも優れた電子写真感光体、ならびにそれを用いた電子写真方法、電子写真装置および電子写真装置用プロセスカートリッジを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、導電性支持体上に無機化合物および結着樹脂から成る中間層を複数設け、この複数の中間層のうち、感光層に接する層に含まれる無機化合物の平均粒径を導電性支持体に接する層に含まれる無機化合物の平均粒径より小さくし、この平均粒径がある特定の関係を満たすことにより画質の安定性に改善性がみられることを見いだした。すなわち、この複数の中間層のうち導電性支持体に接する層に含まれる無機化合物の平均粒径をD1とし、感光層に接する層に含まれる無機化合物の平均粒径をD2とした場合、D2/D1≦1/5の関係を満たす場合において非常に良好な特性が得られ、また各種電子写真方式画像形成装置を設計する上で大きなメリットが得られることも判明した。
【0011】
本発明の電子写真感光体は感光層と接する側の中間層に平均粒径の小さい無機化合物と結着樹脂の層を形成することにより、画質の欠陥のない画像が得られ、また支持体側に接する層にはこれに比して粒径の大きい無機化合物を含む層とすることで適度な抵抗を維持し、繰り返し使用時の電位安定性が非常に向上し、このような繰り返し使用にともなう削れによる感光層薄膜化に起因する高電界下においても基板からの電荷注入を効果的に阻止し、かつ繰り返し使用時においても上記の高画質な画像を安定して得ることが可能となることを見いだした。
【0012】
また前記無機化合物が、前記結着樹脂1重量部に対し3〜7重量部とすることにより繰り返し使用時の帯電安定性はさらに向上し、これらの結着樹脂としてアルキッド樹脂とメラミン樹脂を用いることにより、塗膜欠陥の無い良質な膜を得ることができ、より高画質な画像を得ることが出来る。
【0013】
加えて本発明では電荷発生層に含まれる電荷発生物質が、非対称ジスアゾ顔料、もしくはY型オキシチタニルフタロシアニンとし、前記電荷輸送層中に下記一般式で表される構造を有する電荷輸送物質、
【0014】
【化2】

Figure 0003871863
(式中、R1、R2、R3およびR4は水素元素、置換又は無置換の低級アルキル基、置換又は無置換のアリール基を表し、Ar1は置換又は無置換のアリール基を表し、Ar2は置換又は無置換のアリーレン基を表し、Ar1とR1は共同で環を形成してもよく、またnは0又は1の整数である。)を用いることにより、高感度で、静電潜像を形成する際、電荷移動時における電荷の散逸の無い極めて良好な高解像な画像を得ることが出来る。
【0015】
また電荷輸送層の膜厚を特定の値に制限し、特定膜厚の薄膜にすることにより、感光体表面に静電潜像が形成される際の電荷の拡散を抑制出来るため、非常に高密度で微細な書き込みが要求されるような場合に対しても忠実な静電潜像を形成し、高画質な画像を得ることができる。
【0016】
以下図面に沿って本発明で用いられる電子写真感光体を説明する。
図1は本発明の電子写真感光体の構成を示す断面図であり、導電性支持体31上に、導電性支持体に接する中間層32と感光層に接する中間層33からなる複数の構成の中間層36と、電荷発生層34および電荷輸送層35からなる感光層37が形成されたものである。
【0017】
まず、本発明に用いられる導電性支持体について述べる。
本発明に用いられる導電性支持体31としては、体積抵抗1010Ω以下の導電性を示すもの、例えばアルミニウム、ニッケル、クロム、ニクロム、銅、銀、金、白金、鉄などの金属、酸化スズ、酸化インジウムなどの酸化物を、蒸着またはスパッタリングによりフィルム状もしくは円筒状のプラスチック、紙等に被覆したもの、あるいはアルミニウム、アルミニウム合金、ニッケル、ステンレスなどの板およびそれらをD.I.,I.I.,押出し、引き抜きなどの工法で素管化後、切削、超仕上げ、研磨などで表面処理した管などを使用することが出来る。
【0018】
次に本発明に用いられる中間層36について述べる。本発明における中間層は複数の層32、及び33から構成される。本発明の中間層に用いられる結着樹脂は、その上に感光層を溶剤で塗布することを考えると、一般の有機溶剤に対して耐溶剤性の高い樹脂であることが望ましい。このような樹脂としては、ポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、フェノール樹脂、アルキッド樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂等が挙げられる。中でもとりわけアルキッド樹脂とメラミン樹脂を用いた場合その特性上良好な膜を得ることが出来る。また、本発明で用いられる無機化合物としては酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等の金属酸化物などがあげられ、なかでも酸化チタンを用いた場合に良好な特性が得られる。これらをボールミル等の粉砕方法を用いて微粉末にしたものが用いられる。
【0019】
本発明では導電性支持体上に中間層を複数設け、この複数の中間層がいずれも無機化合物を含有し、このうち該導電性支持体に接する層(図1中32)に含まれる無機化合物の平均粒径をD1とし、感光層に接する層(図1中33)に含まれる無機化合物の平均粒径をD2とした場合、D2/D1≦1/5の関係を満たせばよいが、好ましくは上記関係を満たす条件のうち、複数層の中間層のうち感光層に近い層に含まれる無機化合物が平均粒径0.1μm以下、導電性支持体側に近い層に含まれる無機化合物の平均粒径が1μm以下であることが好ましく、無機化合物と結着樹脂の比に関しては複数の中間層それぞれに含まれる無機化合物が結着樹脂1重量部に対し3〜7重量部が好ましい。
【0020】
本発明の中間層32、33はいずれも適当な溶媒、塗工法を用いて浸漬塗工法やスプレーコート、ブレードコート法などの湿式塗工することにより形成することが出来る。
【0021】
本発明で用いられる複数の中間層の膜厚は特に限定されないがそれぞれ0.1〜20μmが適当である。
【0022】
次に本発明における感光層36について述べる。
感光層36は一層で電荷発生と電荷輸送を担う、いわゆる単層型構造でも電荷発生と電荷輸送を異なる層で担う積層型構造でもよい。ここでは電荷発生と電荷輸送をそれぞれ異なる層で担う積層型構造について述べる。
【0023】
まずこの積層型の感光層のうち、電荷発生を担う電荷発生層34について説明する。電荷発生層34は、電荷発生物質を主成分とする層で、必要に応じて結着樹脂を用いることもある。電荷発生物質としては、公知の材料を用いることが出来る。例えば、銅フタロシアニン、鉄フタロシアニンなどの金属フタロシアニン、無金属フタロシアニンなどのフタロシアニン系顔料、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾール骨格を有するアゾ顔料、トリフェニルアミン骨格を有するアゾ顔料、ジフェニルアミン骨格を有するアゾ顔料、ジベンゾチオフェン骨格を有するアゾ顔料、フルオレノン骨格を有するアゾ顔料、オキサジアゾール骨格を有するアゾ顔料、ビススチルベン骨格を有するアゾ顔料、ジスチリルオキサジアゾール骨格を有するアゾ顔料、ジスチリルカルバゾール骨格を有するアゾ顔料、ペリレン系顔料、アントラキノン系または多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン及びトリフェニルメタン系顔料、ベンゾキノン及びナフトキノン系顔料、シアニン及びアゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾール系顔料などが挙げられる。
【0024】
中でも非対称構造を有するジスアゾ顔料、もしくはY型オキソチタニウムフタロシアニンがその特性上好ましい。これらの電荷発生物質は2種以上混合して用いることもできる。
【0025】
電荷発生層34に必要に応じて用いられる結着樹脂としては、ポリアミド、ポリウレタン、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリ‐N‐ビニルカルバゾール、ポリアクリルアミドなどが用いられる。これらの結着樹脂は、単独または2種以上の混合物として用いることが出来る。
【0026】
電荷発生層34を形成する方法には、真空薄膜作製法と溶液分散系からのキャスティング法とが大きく挙げられる。
【0027】
前者の方法には、真空蒸着法等が用いられ良好に形成できる。また、後述のキャスティング法によって電荷発生層を設けるには、上述した無機系もしくは有機系電荷発生物質を必要ならば結着樹脂と共にテトラヒドロフラン、シクロヘキサノン、ジオキサン、ジクロロエタン、ブタノン等の溶媒を用いてボールミル、アトライター、サンドミル等により分散し、分散液を適度に希釈して塗布することにより、形成できる。塗布は、浸漬塗工法やスプレーコート、ビードコート法などを用いて行なうことができる。
【0028】
以上のようにして設けられる電荷発生層の膜厚は、0.01〜5μm程度が適当であり、好ましくは0.05〜2μmである。
【0029】
次に、電荷輸送層35について説明する。
電荷輸送層35は、電荷輸送物質および結着樹脂を適当な溶剤に溶解ないし分散し、これを電荷発生層上に塗布、乾燥することにより形成できる。また、必要により可塑剤、レベリング剤、酸化防止剤等を添加することもできる。
【0030】
電荷輸送物質には、正孔輸送物質と電子輸送物質とがある。電子輸送物質としては、例えばクロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ベンゾキノン誘導体等の電子受容性物質が挙げられる。
【0031】
正孔輸送物質としては、ポリ−N−ビニルカルバゾールおよびその誘導体、ポリ−γ−カルバゾリルエチルグルタメートおよびその誘導体、ピレン−ホルムアルデヒド縮合物およびその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジェン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体等その他公知の材料が挙げられる。これらの電荷輸送物質は単独、または2種以上混合して用いられる。
【0032】
これら多くの電荷輸送物質のなかでも下記一般式で表される構造を有するものを用いた場合特に優れた特性を有する。
【0033】
【化3】
Figure 0003871863
(式中、R1、R2、R3およびR4は水素元素、置換又は無置換の低級アルキル基、置換又は無置換のアリール基を表し、Ar1は置換又は無置換のアリール基を表し、Ar2は置換又は無置換のアリーレン基を表し、Ar1とR1は共同で環を形成してもよく、またnは0又は1の整数である。)
【0034】
次に、Ar1、Ar2、R1、R2、R3およびR4で表される置換基の具体例を以下に示す。
【0035】
【表1】
Figure 0003871863
【表2】
Figure 0003871863
【表3】
Figure 0003871863
【表4】
Figure 0003871863
【表5】
Figure 0003871863
【0036】
電荷輸送層の結着樹脂としては、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性または熱硬化性樹脂が挙げられる。これらの結着樹脂は、単独または2種以上の混合物として用いることが出来る。
【0037】
電荷輸送物質の量は結着樹脂100重量部に対し、20〜300重量部、好ましくは40〜150重量部が適当である。ここで用いられる溶剤としては、テトラヒドロフラン、ジオキサン、トルエン、ジクロロメタン、モノクロロベンゼン、ジクロロエタン、シクロヘキサノン、メチルエチルケトン、アセトンなどが用いられる。
【0038】
また、本発明において電荷輸送層35中に可塑剤やレベリング剤を添加してもよい。
【0039】
可塑剤としては、ジブチルフタレート、ジオクチルフタレート等の一般樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量は、結着樹脂100重量部に対して0.1〜30重量部程度が適当である。レベリング剤としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等のシリコーンオイル類や、側鎖にパーフルオロアルキル基を有するポリマーあるいはオリゴマーが使用され、その使用量は、結着樹脂100重量部に対して0.01〜1重量部程度が適当である。また、本発明においては、耐環境性の改善のため、とりわけ、感度低下、残留電位の上昇を防止する目的で、酸化防止剤を添加することができる。酸化防止剤は、有機物を含む層ならばいずれに添加してもよいが、電荷輸送物質を含む層に添加すると良好な結果が得られる。
【0040】
本発明に用いることができる酸化防止剤として、下記のものが挙げられる。
モノフェノール系化合物
2,6−ジ−t−ブチル−p−クレゾール、ブチル化ヒドロキシアニソール、2,6−ジ−t−ブチル−4−エチルフェノール、ステアリル−β−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネートなど。
【0041】
ビスフェノール系化合物
2,2’−メチレン−ビス−(4−メチル−6−t−ブチルフェノール)、2,2’−メチレン−ビス−(4−エチル−6−t−ブチルフェノール)、4,4’−チオビス−(3−メチル−6−t−ブチルフェノール)、4,4’−ブチリデンビス−(3−メチル−6−t−ブチルフェノール)など。
【0042】
高分子フェノール系化合物
1,1,3−トリス−(2−メチル−4−ヒドロキシ−5−t−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン、テトラキス−[メチレン−3−(3’,5’−ジ−t−ブチル−4’−ヒドロキシフェニル)プロピオネート]メタン、ビス[3,3’−ビス(4’−ヒドロキシ−3’−t−ブチルフェニル)ブチリックアシッド]グリコールエステル、トコフェノール類など。
【0043】
パラフェニレンジアミン類
N−フェニル−N’−イソプロピル−p−フェニレンジアミン、N,N’−ジ−sec−ブチル−p−フェニレンジアミン、N−フェニル−N−sec−ブチル−p−フェニレンジアミン、N,N’−ジ−イソプロピル−p−フェニレンジアミン、N,N’−ジメチル−N,N’−ジ−t−ブチル−p−フェニレンジアミンなど。
【0044】
ハイドロキノン類
2,5−ジ−t−オクチルハイドロキノン、2,6−ジドデシルハイドロキノン、2−ドデシルハイドロキノン、2−ドデシル−5−クロロハイドロキノン、2−t−オクチル−5−メチルハイドロキノン、2−(2−オクタデセニル)−5−メチルハイドロキノンなど。
【0045】
有機硫黄化合物類
ジラウリル−3,3’−チオジプロピオネート、ジステアリル−3,3’−チオジプロピオネート、ジテトラデシル−3,3’−チオジプロピオネートなど。
【0046】
有機燐化合物類
トリフェニルホスフィン、トリ(ノニルフェニル)ホスフィン、トリ(ジノニルフェニル)ホスフィン、トリクレジルホスフィン、トリ(2,4−ジブチルフェノキシ)ホスフィンなど。
【0047】
これら化合物は、ゴム、プラスチック、油脂類などの酸化防止剤として知られており、市販品を容易に入手できる。
【0048】
本発明における酸化防止剤の添加量は、電荷輸送物質100重量部に対して0.1〜100重量部、好ましくは2〜30重量部である。
【0049】
次に本発明の電子写真方法ならびに電子写真装置を詳しく説明する。
図2は、本発明の電子写真プロセスおよび電子写真装置を説明するための概略図であり、下記するような変形例も本発明の範疇に属するものである。
【0050】
図2において、感光体1はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであっても良い。帯電チャージャ3、転写前チャージャ7、転写チャージャ10、分離チャージャ11、クリーニング前チャージャ13には、コロトロン、スコロトロン、固体帯電器(ソリッド・ステート・チャージャ)、帯電ローラを始めとする公知の手段が用いられる。
【0051】
転写手段には、一般に上記の帯電器が使用できるが、図に示されるように転写チャージャと分離チャージャを併用したものが効果的である。
【0052】
また、画像露光部5、除電ランプ2等の光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)などの発光物全般を用いることができる。そして、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
かかる光源等は、図2に示される工程の他に光照射を併用した転写工程、除電工程、クリーニング工程、あるいは前露光などの工程を設けることにより、感光体に光が照射される。
【0053】
さて、現像ユニット6により感光体1上に現像されたトナーは、転写紙9に転写されるが、全部が転写されるわけではなく、感光体1上に残存するトナーも生ずる。このようなトナーは、ファーブラシ14およびブレード15により、感光体より除去される。クリーニングは、クリーニングブラシだけで行なわれることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。
【0054】
電子写真感光体に正(負)帯電を施し、画像露光を行なうと、感光体表面上には正(負)の静電潜像が形成される。
これを負(正)極性のトナー(検電微粒子)で現像すれば、ポジ画像が得られるし、また正(負)極性のトナーで現像すれば、ネガ画像が得られる。
【0055】
かかる現像手段には、公知の方法が適用されるし、また、除電手段にも公知の方法が用いられる。
【0056】
以上の図示した電子写真プロセスは、本発明における実施形態を例示するものであって、もちろん他の実施形態も可能である。
【0057】
以上に示すような画像形成手段は、複写装置、ファクシミリ、プリンター内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置内に組み込まれてもよい。プロセスカートリッジとは、感光体を内蔵し、他に帯電手段、露光手段、現像手段、転写手段、クリーニング手段、除電手段を含んだ1つの装置(部品)である。プロセスカートリッジの形状等は多く挙げられるが、一般的な例として、図3に示すものが挙げられる。感光体16は、導電性支持体上に本発明の感光層を有してなるものである。
【0058】
【発明の実施の形態】
次に、実施例によって本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。尚、実施例中使用する部は、すべて重量部を表わす。
【0059】
実施例1
導電性支持体としてφ30mmのアルミニウムドラム上に、下記に示すようにして作製した中間層1(導電性支持体側)用塗工液、中間層2(感光層側)用塗工液、電荷発生層用塗工液、電荷輸送層用塗工液を順次、塗布乾燥することにより、膜厚がそれぞれ3μmの中間層1と、1μmの中間層2と、0.2μmの電荷発生層、及び18.2μmの電荷輸送層を形成して、本発明の電子写真感光体を得た。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.5μmとなるように分散条件を整え、中間層1用塗工液とした。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.06μmとなるように分散条件を整え、中間層2用塗工液とした。
〔電荷発生層用塗工液〕
下記成分を混合しボールミルで分散した。
Figure 0003871863
この分散液を電荷発生層用塗工液とした。
〔電荷輸送層用塗工液〕
下記成分を混合溶解せしめ電荷輸送層用塗工液とした。
下記構造の電荷輸送物質 7部
【0060】
【化4】
Figure 0003871863
ポリカーボネート 10部
塩化メチレン 100部
【0061】
実施例2
実施例1における中間層1(導電性支持体側)用塗工液、中間層2(感光層側)用塗工液をそれぞれ以下のように変更し、膜厚を4.5μmの中間層1と、0.8μmの中間層2とした以外は実施例1と全く同様にして実施例2の電子写真感光体を得た。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.65μmとなるように分散条件を整え、中間層1用塗工液とした。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.04μmとなるように分散条件を整え、中間層2用塗工液とした。
【0062】
実施例3
実施例1における中間層1(導電性支持体側)用塗工液、中間層2(感光層側)用塗工液をそれぞれ以下のように変更し、膜厚を4.5μmの中間層1と、0.8μmの中間層2とした以外は実施例1と全く同様にして実施例3の電子写真感光体を得た。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.65μmとなるように分散条件を整え、中間層1用塗工液とした。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.12μmとなるように分散条件を整え、中間層2用塗工液とした。
【0063】
実施例4
実施例1における電荷輸送層に用いた電荷輸送物質を下記に示す構造のものに変えた以外は実施例1と全く同様にして実施例4の電子写真感光体を作製した。
【0064】
【化5】
Figure 0003871863
実施例5
実施例4において電荷発生層用塗工液において、無金属フタロシアニン顔料〔ファストゲンブルー8120B(大日本インキ化学工業製)〕に代えてY型オキソチタニルフタロシアニン顔料を同量用いた以外は実施例4と全く同様にして実施例5の電子写真感光体を作製した。
【0065】
実施例6
実施例4において電荷発生層用塗工液を以下のように変更し、膜厚0.3μmの電荷発生層を形成した以外は実施例4と全く同様にして実施例6の電子写真感光体を得た。
〔電荷発生層用塗工液〕
下記成分を混合しボールミルで分散した。
下記構造のジスアゾ化合物 5部
【0066】
【化6】
Figure 0003871863
ポリビニルブチラール(エスレックBL−S:積水化学製) 1部
シクロヘキサノン 30部
メチルエチルケトン 30部
この分散液を電荷発生層用塗工液とした。
【0067】
実施例7
実施例4において電荷発生層用塗工液を以下のように変更し、膜厚0.3μmの電荷発生層を形成した以外は実施例4と全く同様にして実施例7の電子写真感光体を得た。
〔電荷発生層用塗工液〕
下記成分を混合しボールミルで分散した。
下記構造のトリスアゾ化合物 5部
【0068】
【化7】
Figure 0003871863
ポリビニルブチラール(エスレックBL−S:積水化学製) 1部
シクロヘキサノン 30部
メチルエチルケトン 30部
この分散液を電荷発生層用塗工液とした。
【0069】
実施例8
実施例1において、電荷発生層、電荷輸送層をそれぞれ設けるかわりに下記感光層用塗工液を用いて膜厚19.5μmの感光層を設けた以外は実施例1と全く同様にして実施例8の電子写真感光体を作製した。
〔感光層用塗工液〕
下記成分を混合しボールミルで分散した。
下記構造の電荷輸送物質 50部
【化8】
Figure 0003871863
下記構造のジスアゾ化合物 5部
【化9】
Figure 0003871863
Z型ポリカーボネート(分子量6万) 97部
テトラヒドロフラン 328部
この分散液を電荷発生層用塗工液とした。
【0070】
実施例9
実施例5において、電荷輸送層の膜厚を25μm設けた以外は実施例5と全く同様にして実施例9の電子写真感光体を作製した。
【0071】
実施例10
実施例1において、中間層2(感光層側)用塗工液のみ以下のように変更し、膜厚を4.5μmの中間層1と、0.8μmの中間層2とした以外は実施例1と全く同様にして実施例10の電子写真感光体を得た。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記アルミナ粉末の平均粒子径が0.08μmとなるように分散条件を整え、中間層2用塗工液とした。
【0072】
実施例11
実施例1における中間層1(導電性支持体側)用塗工液、中間層2(感光層側)用塗工液をそれぞれ以下のように変更し、膜厚を4.5μmの中間層1と、0.8μmの中間層2とした以外は実施例1と全く同様にして実施例11の電子写真感光体を得た。
〔中間層1用塗工液〕
酸化チタン粉末〔TA−300(富士チタン工業製)〕 45部
ポリアミド樹脂〔アミランCM−8000 (東レ社製)〕 142.5部
導電性ポリマー〔ケミスタット6120(三洋化成社製)〕 7.2部
硫酸リチウム 0.64部
メタノール 400部
イオン交換水 45.5部
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.4μmとなるように分散条件を整え、中間層1用塗工液とした。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.03μmとなるように分散条件を整え、中間層2用塗工液とした。
【0073】
実施例12
実施例1における中間層1(導電性支持体側)用塗工液、中間層2(感光層側)用塗工液をそれぞれ以下のように変更し、複数の中間層それぞれに含まれる無機化合物が結着樹脂1重量部に対し2重量部として、膜厚を4.5μmの中間層1と、0.8μmの中間層2とした以外は実施例1と全く同様にして実施例12の電子写真感光体を得た。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.5μmとなるように分散条件を整え、中間層1用塗工液とした。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.06μmとなるように分散条件を整え、中間層2用塗工液とした。
【0074】
実施例13
実施例1における中間層1(導電性支持体側)用塗工液、中間層2(感光層側)用塗工液をそれぞれ以下のように変更し、複数の中間層それぞれに含まれる無機化合物が結着樹脂1重量部に対し8重量部として、膜厚を4.5μmの中間層1と、0.8μmの中間層2とした以外は実施例1と全く同様にして実施例13の電子写真感光体を得た。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.5μmとなるように分散条件を整え、中間層1用塗工液とした。
Figure 0003871863
上記成分を混合しボ−ルミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.06μmとなるように分散条件を整え、中間層2用塗工液とした。
【0075】
比較例1
実施例1において中間層を全く設けなかった以外は実施例1と全く同様にして比較例1の電子写真感光体を作製した。
【0076】
比較例2
実施例1において中間層2用塗工液を用いず、中間層1用塗工液のみで膜厚4.5μmの一層の中間層とした以外は実施例1と全く同様にして比較例2の電子写真感光体を作製した。
【0077】
比較例3
実施例1において中間層1用塗工液を用いず、中間層2用塗工液のみで膜厚4.5μmの一層の中間層とした以外は実施例1と全く同様にして比較例3の電子写真感光体を作製した。
【0078】
比較例4
実施例1における中間層1(導電性支持体側)用塗工液、中間層2(感光層側)用塗工液をそれぞれ以下のように変更し、膜厚を4.5μmの中間層1と、0.8μmの中間層2とした以外は実施例1と全く同様にして比較例4の電子写真感光体を得た。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.6μmとなるように分散条件を整え、中間層1用塗工液とした。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.15μmとなるように分散条件を整え、中間層2用塗工液とした。
【0079】
比較例5
実施例1における中間層1(導電性支持体側)用塗工液、中間層2(感光層側)用塗工液をそれぞれ以下のように変更し、膜厚を4.5μmの中間層1と、0.8μmの中間層2とした以外は実施例1と全く同様にして比較例5の電子写真感光体を得た。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.5μmとなるように分散条件を整え、中間層1用塗工液とした。
Figure 0003871863
上記成分を混合しボールミル粉砕をおこない上記酸化チタン粉末の平均粒子径が0.25μmとなるように分散条件を整え、中間層2用塗工液とした。
【0080】
このようにして作製した実施例1〜13および比較例1〜5の電子写真感光体を電子写真複写機イマジオMF2200[(株)リコー製]改造機(書き込みレーザー光源波長655nm)により、それぞれの感光体について40000枚までの通紙試験を行った。通紙試験初期、及び通紙試験40000枚後に感光体の、電位特性、画像品質特性の評価を適時行った。
【0081】
暗部電位:一次帯電の後、現像部位置まで移動した際の感光体表面電位
明部電位:一次帯電後、画像露光(ベタ露光)を受け、現像部位置まで移動した際の感光体表面電位
画像品質:ベタ濃度、細線再現性、黒ポチなどの局所欠陥、地肌汚れ、異常画像等総合的に評価
評価結果を表−1に示す。
【0082】
【表6】
Figure 0003871863
表−1より明らかなように、本発明の特許請求の範囲を満たす実施例1〜13の電子写真感光体は、暗部電位明部電位の再現性に優れ、電気特性の劣化が少なく、高画質のハードコピーを長期間安定して得られる事がわかる。一方比較例1〜5の電子写真感光体では電気特性、画像品質の両方、もしくはいずれかが大きく劣化してしまい、本発明の感光体の優位性が明らかである。
【0083】
【発明の効果】
以上説明したように、本発明により光感度特性、耐久性、画質安定性に優れた電子写真感光体を得ることができる。
【図面の簡単な説明】
【図1】本発明の電子写真感光体の一例の構成を示す断面図である。
【図2】本発明の電子写真プロセスおよび電子写真装置の一例の概略図である。
【図3】本発明のプロセスカートリッジの一般的な例の概略図である。
【符号の説明】
31 導電性支持体
32 導電性支持体に接する中間層
33 感光層に接する中間層
34 電荷発生層
35 電荷輸送層
36 中間層
37 感光層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member for use in an electrophotographic process such as an electrophotographic copying machine, a facsimile machine, a laser printer, and a direct digital plate making machine. More specifically, the present invention relates to high sensitivity, high image quality, and extremely high durability. The present invention relates to an electrophotographic photosensitive member excellent in the above, an electrophotographic method using the electrophotographic photosensitive member, an electrophotographic apparatus, and a process cartridge for an electrophotographic apparatus.
[0002]
[Prior art]
An electrophotographic method using an electrophotographic photosensitive member applied to a copying machine, a facsimile, a laser printer, a direct digital plate making machine, etc., is at least after undergoing the processes of primary charging, image exposure, and development on the electrophotographic photosensitive member. This is a method comprising a process of transferring a toner image to an image holding member (transfer paper), fixing, and cleaning the surface of the electrophotographic photosensitive member.
[0003]
The basic characteristics required for electrophotographic photoreceptors in this electrophotographic method are:
(1) Capable of being charged to an appropriate potential in the dark
(2) Less charge dissipation in the dark
(3) The ability to quickly dissipate charges by light irradiation
Etc.
[0004]
In addition to these characteristics, long-term reliability such as image quality characteristics, low pollution, and low cost are also required.
[0005]
An electrophotographic photoreceptor basically comprises a support and a photosensitive layer formed on the support. As the support, a highly conductive metal is often used, and among these, aluminum and aluminum alloys are often used. On these surfaces, there are structural defects such as protrusions and foreign matters, oil such as rust preventive oil, chemical impurities, etc., so if a photosensitive layer is provided on the support as it is, image defects and the like will occur. Then it cannot be used.
[0006]
As one of techniques for solving this problem, it has been proposed to provide a photosensitive layer after providing an intermediate layer on a conductive support. Examples of this include a resin layer provided on a conductive support, an intermediate layer in which an inorganic pigment (titanium oxide, tin oxide, etc.) is dispersed in a resin (JP-A-61-204642, etc.), etc. It has been known.
[0007]
This method is applied to many photoconductors because of its relatively low cost and good effect. However, in an electrophotographic photosensitive member having an intermediate layer of resin only or an intermediate layer in which an inorganic pigment is dispersed in the resin, it cannot be said that there is no problem in electrostatic repetitive characteristics, and in particular, according to repeated use. There has been a problem that electrophotographic characteristics are deteriorated, in particular, the charging potential is lowered, or the surface potential is lowered in the time from charging to development, so-called dark decay is increased. Even when there is no problem in electrostatic electrophotographic characteristics, when an image is formed through an electrophotographic process such as a general Carlson process or a similar process, image defects called white spots and black spots are generated. Many cases occurred.
[0008]
Therefore, these conventional photoconductors are still insufficient in terms of image quality stability upon repeated use.
That is, an electrophotographic photosensitive member satisfying all of charging stability, photosensitivity and image quality and having long-term sustainability of these characteristics has not been obtained. In other words, the conventional electrophotographic photoreceptors are insufficient to achieve the high performance, long life, and high reliability demanded in recent years for electrophotographic engines, and improvement has been strongly desired.
[0009]
[Problems to be solved by the invention]
The present invention is to provide an organic electrophotographic photosensitive member that achieves this high image quality, long life, and high reliability at a high level, and is particularly excellent in image quality reproducibility, durability, and photosensitivity. It is an object of the present invention to provide a photographic photoreceptor, an electrophotographic method using the same, an electrophotographic apparatus, and a process cartridge for an electrophotographic apparatus.
[0010]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have provided a plurality of intermediate layers made of an inorganic compound and a binder resin on a conductive support, and among these intermediate layers, the average of the inorganic compounds contained in the layer in contact with the photosensitive layer We found that the stability of image quality can be improved by making the particle size smaller than the average particle size of the inorganic compound contained in the layer in contact with the conductive support and satisfying a certain relationship with this average particle size. . That is, the average particle diameter of the inorganic compound contained in the layer in contact with the conductive support among the plurality of intermediate layers is D 1 And the average particle size of the inorganic compound contained in the layer in contact with the photosensitive layer is D 2 D 2 / D 1 It has also been found that very good characteristics can be obtained when the relationship of ≦ 1/5 is satisfied, and that great advantages can be obtained in designing various electrophotographic image forming apparatuses.
[0011]
In the electrophotographic photoreceptor of the present invention, an image free from image quality defects can be obtained by forming a layer of an inorganic compound having a small average particle diameter and a binder resin in the intermediate layer on the side in contact with the photosensitive layer, and also on the support side. The layer in contact with the layer contains an inorganic compound with a larger particle size compared to this, maintaining appropriate resistance, greatly improving the potential stability during repeated use, and scraping due to such repeated use. It has been found that it is possible to effectively prevent the charge injection from the substrate even under a high electric field resulting from the thinning of the photosensitive layer due to the above, and to stably obtain the above-mentioned high-quality image even when repeatedly used. It was.
[0012]
In addition, when the inorganic compound is used in an amount of 3 to 7 parts by weight with respect to 1 part by weight of the binder resin, the charging stability during repeated use is further improved, and alkyd resin and melamine resin are used as these binder resins. As a result, a high-quality film having no coating film defects can be obtained, and a higher-quality image can be obtained.
[0013]
In addition, in the present invention, the charge generation material contained in the charge generation layer is an asymmetric disazo pigment or Y-type oxytitanyl phthalocyanine, and the charge transport material has a structure represented by the following general formula in the charge transport layer,
[0014]
[Chemical 2]
Figure 0003871863
(Wherein R 1 , R 2 , R Three And R Four Represents a hydrogen element, a substituted or unsubstituted lower alkyl group, a substituted or unsubstituted aryl group, Ar 1 Represents a substituted or unsubstituted aryl group, Ar 2 Represents a substituted or unsubstituted arylene group, Ar 1 And R 1 May jointly form a ring, and n is an integer of 0 or 1. ), When forming an electrostatic latent image with high sensitivity, it is possible to obtain a very good high-resolution image without charge dissipation during charge transfer.
[0015]
Also, by limiting the film thickness of the charge transport layer to a specific value and making it a thin film with a specific film thickness, it is possible to suppress the diffusion of charges when an electrostatic latent image is formed on the surface of the photoreceptor. A faithful electrostatic latent image can be formed and a high-quality image can be obtained even when fine writing with high density is required.
[0016]
The electrophotographic photoreceptor used in the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing the structure of the electrophotographic photosensitive member of the present invention. The electrophotographic photosensitive member of the present invention has a plurality of structures comprising an intermediate layer 32 in contact with the conductive support and an intermediate layer 33 in contact with the photosensitive layer on the conductive support 31. An intermediate layer 36 and a photosensitive layer 37 composed of a charge generation layer 34 and a charge transport layer 35 are formed.
[0017]
First, the conductive support used in the present invention will be described.
The conductive support 31 used in the present invention has a volume resistance of 10 Ten Conductives with a conductivity of Ω or less, for example, metals such as aluminum, nickel, chromium, nichrome, copper, silver, gold, platinum, iron, and oxides such as tin oxide and indium oxide are deposited or sputtered into a film or cylinder Plastic, paper, etc., or a plate of aluminum, aluminum alloy, nickel, stainless steel, etc. I. , I. I. , Pipes that have been surface-treated by cutting, super-finishing, polishing, etc. can be used after making the pipes by a method such as extrusion or drawing.
[0018]
Next, the intermediate layer 36 used in the present invention will be described. The intermediate layer in the present invention is composed of a plurality of layers 32 and 33. The binder resin used in the intermediate layer of the present invention is preferably a resin having a high solvent resistance with respect to a general organic solvent in consideration of applying the photosensitive layer thereon with a solvent. Examples of such resins include water-soluble resins such as polyvinyl alcohol, casein, and sodium polyacrylate, alcohol-soluble resins such as copolymer nylon and methoxymethylated nylon, polyurethane, melamine resins, phenol resins, alkyd resins, and epoxy resins. And curable resins that form a three-dimensional network structure. In particular, when an alkyd resin and a melamine resin are used, a film excellent in characteristics can be obtained. In addition, examples of inorganic compounds used in the present invention include metal oxides such as titanium oxide, silica, alumina, zirconium oxide, tin oxide, and indium oxide. Among them, good characteristics are obtained when titanium oxide is used. It is done. These are used as a fine powder using a grinding method such as a ball mill.
[0019]
In the present invention, a plurality of intermediate layers are provided on the conductive support, and each of the plurality of intermediate layers contains an inorganic compound, and among these, the inorganic compound contained in the layer in contact with the conductive support (32 in FIG. 1). The average particle size of D 1 And the average particle diameter of the inorganic compound contained in the layer in contact with the photosensitive layer (33 in FIG. 1) is D 2 D 2 / D 1 It is sufficient that the relationship of ≦ 1/5 is satisfied. Preferably, among the conditions satisfying the above relationship, the inorganic compound contained in a layer close to the photosensitive layer among the plurality of intermediate layers has an average particle size of 0.1 μm or less, and has conductivity. The average particle size of the inorganic compound contained in the layer close to the support side is preferably 1 μm or less. Regarding the ratio of the inorganic compound to the binder resin, the inorganic compound contained in each of the plurality of intermediate layers is 1 part by weight of the binder resin. The amount is preferably 3 to 7 parts by weight.
[0020]
The intermediate layers 32 and 33 of the present invention can be formed by wet coating such as dip coating, spray coating, blade coating using an appropriate solvent and coating method.
[0021]
The thickness of the plurality of intermediate layers used in the present invention is not particularly limited, but is suitably 0.1 to 20 μm.
[0022]
Next, the photosensitive layer 36 in the present invention will be described.
The photosensitive layer 36 may be a so-called single layer structure that is responsible for charge generation and charge transport in one layer, or may be a stacked structure that is responsible for charge generation and charge transport in different layers. Here, a stacked structure in which charge generation and charge transport are handled by different layers will be described.
[0023]
First, the charge generation layer 34 responsible for charge generation in the laminated photosensitive layer will be described. The charge generation layer 34 is a layer mainly composed of a charge generation material, and a binder resin may be used as necessary. A known material can be used as the charge generating substance. For example, metal phthalocyanines such as copper phthalocyanine and iron phthalocyanine, phthalocyanine pigments such as metal-free phthalocyanine, azulenium salt pigments, squaric acid methine pigments, azo pigments having a carbazole skeleton, azo pigments having a triphenylamine skeleton, and diphenylamine skeletons Azo pigments, azo pigments having a dibenzothiophene skeleton, azo pigments having a fluorenone skeleton, azo pigments having an oxadiazole skeleton, azo pigments having a bis-stilbene skeleton, azo pigments having a distyryl oxadiazole skeleton, distyrylcarbazole Azo pigments having a skeleton, perylene pigments, anthraquinone or polycyclic quinone pigments, quinoneimine pigments, diphenylmethane and triphenylmethane pigments, benzoquinone and naphthoquinone Pigments, cyanine and azomethine pigments, indigoid pigments, and bisbenzimidazole pigments.
[0024]
Of these, disazo pigments having an asymmetric structure or Y-type oxotitanium phthalocyanine is preferable in view of its characteristics. These charge generation materials can be used in combination of two or more.
[0025]
The binder resin used as necessary for the charge generation layer 34 is polyamide, polyurethane, epoxy resin, polyketone, polycarbonate, silicone resin, acrylic resin, polyvinyl butyral, polyvinyl formal, polyvinyl ketone, polystyrene, poly-N-vinyl. Carbazole, polyacrylamide and the like are used. These binder resins can be used alone or as a mixture of two or more.
[0026]
As a method for forming the charge generation layer 34, a vacuum thin film manufacturing method and a casting method from a solution dispersion system can be largely mentioned.
[0027]
For the former method, a vacuum deposition method or the like is used, and it can be formed satisfactorily. Further, in order to provide a charge generation layer by a casting method described later, a ball mill using a solvent such as tetrahydrofuran, cyclohexanone, dioxane, dichloroethane, butanone together with a binder resin, if necessary, the inorganic or organic charge generation material described above, It can be formed by dispersing with an attritor, sand mill or the like, and applying the solution after diluting the dispersion appropriately. The coating can be performed using a dip coating method, a spray coating method, a bead coating method, or the like.
[0028]
The thickness of the charge generation layer provided as described above is suitably about 0.01 to 5 μm, preferably 0.05 to 2 μm.
[0029]
Next, the charge transport layer 35 will be described.
The charge transport layer 35 can be formed by dissolving or dispersing a charge transport material and a binder resin in a suitable solvent, and applying and drying the solution on the charge generation layer. Moreover, a plasticizer, a leveling agent, antioxidant, etc. can also be added as needed.
[0030]
Charge transport materials include hole transport materials and electron transport materials. Examples of the electron transporting material include chloroanil, bromoanil, tetracyanoethylene, tetracyanoquinodimethane, 2,4,7-trinitro-9-fluorenone, 2,4,5,7-tetranitro-9-fluorenone, 2,4 , 5,7-tetranitroxanthone, 2,4,8-trinitrothioxanthone, 2,6,8-trinitro-4H-indeno [1,2-b] thiophen-4-one, 1,3,7-tri Examples thereof include electron-accepting substances such as nitrodibenzothiophene-5,5-dioxide and benzoquinone derivatives.
[0031]
Examples of hole transport materials include poly-N-vinylcarbazole and derivatives thereof, poly-γ-carbazolylethyl glutamate and derivatives thereof, pyrene-formaldehyde condensates and derivatives thereof, polyvinylpyrene, polyvinylphenanthrene, polysilane, oxazole derivatives, Oxadiazole derivatives, imidazole derivatives, monoarylamine derivatives, diarylamine derivatives, triarylamine derivatives, stilbene derivatives, α-phenylstilbene derivatives, benzidine derivatives, diarylmethane derivatives, triarylmethane derivatives, 9-styrylanthracene derivatives, pyrazolines Derivatives, divinylbenzene derivatives, hydrazone derivatives, indene derivatives, butadiene derivatives, pyrene derivatives, etc., bisstilbene derivatives, enamine derivatives, etc. Other known materials may be mentioned. These charge transport materials may be used alone or in combination of two or more.
[0032]
Among these many charge transport materials, particularly excellent properties are obtained when those having a structure represented by the following general formula are used.
[0033]
[Chemical 3]
Figure 0003871863
(Wherein R 1 , R 2 , R Three And R Four Represents a hydrogen element, a substituted or unsubstituted lower alkyl group, a substituted or unsubstituted aryl group, Ar 1 Represents a substituted or unsubstituted aryl group, Ar 2 Represents a substituted or unsubstituted arylene group, Ar 1 And R 1 May jointly form a ring, and n is an integer of 0 or 1. )
[0034]
Next, Ar 1 , Ar 2 , R 1 , R 2 , R Three And R Four Specific examples of the substituent represented by are shown below.
[0035]
[Table 1]
Figure 0003871863
[Table 2]
Figure 0003871863
[Table 3]
Figure 0003871863
[Table 4]
Figure 0003871863
[Table 5]
Figure 0003871863
[0036]
As the binder resin for the charge transport layer, polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyester, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, Polyvinyl acetate, polyvinylidene chloride, polyarate, phenoxy resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal, polyvinyl toluene, poly-N-vinyl carbazole, acrylic resin, silicone resin, epoxy resin, melamine resin, Thermoplastic or thermosetting resins such as urethane resin, phenol resin, alkyd resin and the like can be mentioned. These binder resins can be used alone or as a mixture of two or more.
[0037]
The amount of the charge transport material is appropriately 20 to 300 parts by weight, preferably 40 to 150 parts by weight, based on 100 parts by weight of the binder resin. As the solvent used here, tetrahydrofuran, dioxane, toluene, dichloromethane, monochlorobenzene, dichloroethane, cyclohexanone, methyl ethyl ketone, acetone and the like are used.
[0038]
In the present invention, a plasticizer or a leveling agent may be added to the charge transport layer 35.
[0039]
As the plasticizer, those used as plasticizers for general resins such as dibutyl phthalate and dioctyl phthalate can be used as they are, and the amount used is about 0.1 to 30 parts by weight with respect to 100 parts by weight of the binder resin. Is appropriate. As the leveling agent, silicone oils such as dimethyl silicone oil and methylphenyl silicone oil, polymers or oligomers having a perfluoroalkyl group in the side chain are used, and the amount used is 100 parts by weight of the binder resin. About 0.01 to 1 part by weight is appropriate. In the present invention, an antioxidant may be added for the purpose of preventing the decrease in sensitivity and the increase in residual potential, in order to improve environmental resistance. The antioxidant may be added to any layer containing an organic substance, but good results are obtained when it is added to a layer containing a charge transport material.
[0040]
The following are mentioned as antioxidant which can be used for this invention.
Monophenolic compounds
2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-4-ethylphenol, stearyl-β- (3,5-di-t-butyl-4 -Hydroxyphenyl) propionate and the like.
[0041]
Bisphenol compounds
2,2′-methylene-bis- (4-methyl-6-tert-butylphenol), 2,2′-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4′-thiobis- ( 3-methyl-6-t-butylphenol), 4,4′-butylidenebis- (3-methyl-6-t-butylphenol) and the like.
[0042]
High molecular phenolic compounds
1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t- Butyl-4-hydroxybenzyl) benzene, tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, bis [3,3′-bis (4 ′) -Hydroxy-3'-t-butylphenyl) butyric acid] glycol ester, tocophenols and the like.
[0043]
Paraphenylenediamines
N-phenyl-N'-isopropyl-p-phenylenediamine, N, N'-di-sec-butyl-p-phenylenediamine, N-phenyl-N-sec-butyl-p-phenylenediamine, N, N'- Di-isopropyl-p-phenylenediamine, N, N′-dimethyl-N, N′-di-t-butyl-p-phenylenediamine and the like.
[0044]
Hydroquinones
2,5-di-t-octylhydroquinone, 2,6-didodecylhydroquinone, 2-dodecylhydroquinone, 2-dodecyl-5-chlorohydroquinone, 2-t-octyl-5-methylhydroquinone, 2- (2-octadecenyl) ) -5-methylhydroquinone and the like.
[0045]
Organic sulfur compounds
Dilauryl-3,3′-thiodipropionate, distearyl-3,3′-thiodipropionate, ditetradecyl-3,3′-thiodipropionate, and the like.
[0046]
Organophosphorus compounds
Triphenylphosphine, tri (nonylphenyl) phosphine, tri (dinonylphenyl) phosphine, tricresylphosphine, tri (2,4-dibutylphenoxy) phosphine, and the like.
[0047]
These compounds are known as antioxidants such as rubbers, plastics, oils and fats, and commercially available products can be easily obtained.
[0048]
The addition amount of the antioxidant in the present invention is 0.1 to 100 parts by weight, preferably 2 to 30 parts by weight with respect to 100 parts by weight of the charge transport material.
[0049]
Next, the electrophotographic method and the electrophotographic apparatus of the present invention will be described in detail.
FIG. 2 is a schematic view for explaining the electrophotographic process and the electrophotographic apparatus of the present invention, and the following modifications also belong to the category of the present invention.
[0050]
In FIG. 2, the photosensitive member 1 has a drum shape, but may be a sheet shape or an endless belt shape. As the charging charger 3, the pre-transfer charger 7, the transfer charger 10, the separation charger 11, and the pre-cleaning charger 13, known means such as a corotron, a scorotron, a solid state charger (solid state charger), and a charging roller are used. It is done.
[0051]
As the transfer means, the above charger can be generally used. However, as shown in the figure, a combination of a transfer charger and a separation charger is effective.
[0052]
The light source such as the image exposure unit 5 and the charge removal lamp 2 emits light such as a fluorescent lamp, a tungsten lamp, a halogen lamp, a mercury lamp, a sodium lamp, a light emitting diode (LED), a semiconductor laser (LD), and an electroluminescence (EL). All things can be used. Various types of filters such as a sharp cut filter, a band pass filter, a near infrared cut filter, a dichroic filter, an interference filter, and a color temperature conversion filter can be used to irradiate only light in a desired wavelength range.
Such a light source or the like irradiates the photosensitive member with light by providing a transfer step, a static elimination step, a cleaning step, or a pre-exposure step in combination with light irradiation in addition to the steps shown in FIG.
[0053]
The toner developed on the photosensitive member 1 by the developing unit 6 is transferred to the transfer paper 9, but not all is transferred, and some toner remains on the photosensitive member 1. Such toner is removed from the photoreceptor by the fur brush 14 and the blade 15. Cleaning may be performed only with a cleaning brush, and a known brush such as a fur brush or a mag fur brush is used as the cleaning brush.
[0054]
When the electrophotographic photosensitive member is positively (negatively) charged and image exposure is performed, a positive (negative) electrostatic latent image is formed on the surface of the photosensitive member.
When this is developed with negative (positive) polarity toner (electrodetection fine particles), a positive image can be obtained, and when developed with positive (negative) polarity toner, a negative image can be obtained.
[0055]
A known method is applied to the developing unit, and a known method is also used for the charge eliminating unit.
[0056]
The above illustrated electrophotographic process is illustrative of an embodiment of the present invention, and of course other embodiments are possible.
[0057]
The image forming means as described above may be fixedly incorporated in a copying apparatus, a facsimile, or a printer, but may be incorporated in these apparatuses in the form of a process cartridge. A process cartridge is a single device (part) that contains a photosensitive member and includes a charging unit, an exposure unit, a developing unit, a transfer unit, a cleaning unit, and a charge eliminating unit. There are many shapes and the like of the process cartridge, but a general example is shown in FIG. The photosensitive member 16 has the photosensitive layer of the present invention on a conductive support.
[0058]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to a following example. In addition, all the parts used in an Example represent a weight part.
[0059]
Example 1
Coating solution for intermediate layer 1 (conductive support side), coating solution for intermediate layer 2 (photosensitive layer side), charge generation layer prepared as follows, on an aluminum drum of φ30 mm as a conductive support 17. Coating solution for coating and coating solution for charge transport layer are sequentially applied and dried, so that the intermediate layer 1 having a thickness of 3 μm, the intermediate layer 2 having a thickness of 1 μm, the charge generating layer having a thickness of 0.2 μm, A 2 μm charge transport layer was formed to obtain the electrophotographic photoreceptor of the present invention.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.5 μm. Thus, an intermediate layer 1 coating solution was obtained.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.06 μm. Thus, a coating solution for the intermediate layer 2 was obtained.
[Coating liquid for charge generation layer]
The following components were mixed and dispersed with a ball mill.
Figure 0003871863
This dispersion was used as a charge generation layer coating solution.
[Coating liquid for charge transport layer]
The following components were mixed and dissolved to form a charge transport layer coating solution.
7 parts of charge transport material with the following structure
[0060]
[Formula 4]
Figure 0003871863
10 parts of polycarbonate
100 parts methylene chloride
[0061]
Example 2
The intermediate layer 1 (conductive support side) coating solution and the intermediate layer 2 (photosensitive layer side) coating solution in Example 1 were changed as follows, and the intermediate layer 1 having a film thickness of 4.5 μm and The electrophotographic photosensitive member of Example 2 was obtained in the same manner as in Example 1 except that the intermediate layer 2 of 0.8 μm was used.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.65 μm. Thus, a coating solution for the intermediate layer 1 was obtained.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.04 μm. Thus, a coating solution for the intermediate layer 2 was obtained.
[0062]
Example 3
The intermediate layer 1 (conductive support side) coating solution and the intermediate layer 2 (photosensitive layer side) coating solution in Example 1 were changed as follows, and the intermediate layer 1 having a film thickness of 4.5 μm and The electrophotographic photosensitive member of Example 3 was obtained in the same manner as in Example 1 except that the intermediate layer 2 having a thickness of 0.8 μm was used.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.65 μm. Thus, a coating solution for the intermediate layer 1 was obtained.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.12 μm. Thus, a coating solution for the intermediate layer 2 was obtained.
[0063]
Example 4
An electrophotographic photoreceptor of Example 4 was produced in the same manner as in Example 1 except that the charge transport material used in the charge transport layer in Example 1 was changed to the one having the structure shown below.
[0064]
[Chemical formula 5]
Figure 0003871863
Example 5
In Example 4, the same amount of Y-type oxotitanyl phthalocyanine pigment was used in place of the metal-free phthalocyanine pigment [Fastgen Blue 8120B (Dainippon Ink and Chemicals)] in the coating solution for charge generation layer in Example 4. In the same manner as described above, an electrophotographic photosensitive member of Example 5 was produced.
[0065]
Example 6
In Example 4, the electrophotographic photoreceptor of Example 6 was changed in the same manner as in Example 4 except that the charge generation layer coating solution was changed as follows to form a charge generation layer having a thickness of 0.3 μm. Obtained.
[Coating liquid for charge generation layer]
The following components were mixed and dispersed with a ball mill.
Disazo compound with the following structure: 5 parts
[0066]
[Chemical 6]
Figure 0003871863
Polyvinyl butyral (ESREC BL-S: manufactured by Sekisui Chemical) 1 part
30 parts of cyclohexanone
30 parts of methyl ethyl ketone
This dispersion was used as a charge generation layer coating solution.
[0067]
Example 7
The electrophotographic photosensitive member of Example 7 was exactly the same as Example 4 except that the charge generation layer coating solution was changed as follows in Example 4 to form a charge generation layer having a thickness of 0.3 μm. Obtained.
[Coating liquid for charge generation layer]
The following components were mixed and dispersed with a ball mill.
5 parts of trisazo compound of the following structure
[0068]
[Chemical 7]
Figure 0003871863
Polyvinyl butyral (ESREC BL-S: manufactured by Sekisui Chemical) 1 part
30 parts of cyclohexanone
30 parts of methyl ethyl ketone
This dispersion was used as a charge generation layer coating solution.
[0069]
Example 8
Example 1 Example 1 was carried out in the same manner as Example 1 except that a photosensitive layer having a thickness of 19.5 μm was provided using the following photosensitive layer coating solution instead of providing the charge generation layer and the charge transport layer. 8 electrophotographic photosensitive member was produced.
[Coating solution for photosensitive layer]
The following components were mixed and dispersed with a ball mill.
50 parts of charge transport material with the following structure
[Chemical 8]
Figure 0003871863
Disazo compound with the following structure: 5 parts
[Chemical 9]
Figure 0003871863
97 parts of Z-type polycarbonate (molecular weight 60,000)
328 parts of tetrahydrofuran
This dispersion was used as a charge generation layer coating solution.
[0070]
Example 9
In Example 5, the electrophotographic photosensitive member of Example 9 was produced in the same manner as Example 5 except that the film thickness of the charge transport layer was 25 μm.
[0071]
Example 10
In Example 1, only the coating liquid for the intermediate layer 2 (photosensitive layer side) was changed as follows, and the film thickness was changed to 4.5 μm intermediate layer 1 and 0.8 μm intermediate layer 2. The electrophotographic photosensitive member of Example 10 was obtained in exactly the same manner as in Example 1.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the alumina powder was 0.08 μm. Thus, an intermediate layer 2 coating solution was obtained.
[0072]
Example 11
The intermediate layer 1 (conductive support side) coating solution and the intermediate layer 2 (photosensitive layer side) coating solution in Example 1 were changed as follows, and the intermediate layer 1 having a film thickness of 4.5 μm and The electrophotographic photoreceptor of Example 11 was obtained in exactly the same manner as in Example 1 except that the intermediate layer 2 having a thickness of 0.8 μm was used.
[Coating liquid for intermediate layer 1]
Titanium oxide powder [TA-300 (Fuji Titanium Industry)] 45 parts
Polyamide resin [Amilan CM-8000 (manufactured by Toray Industries, Inc.)] 142.5 parts
Conductive polymer [Chemist 6120 (manufactured by Sanyo Chemical Co., Ltd.)] 7.2 parts
0.64 parts lithium sulfate
400 parts of methanol
45.5 parts of ion exchange water
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.4 μm to obtain a coating solution for the intermediate layer 1.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle diameter of the titanium oxide powder was 0.03 μm. Thus, a coating solution for the intermediate layer 2 was obtained.
[0073]
Example 12
In Example 1, the intermediate layer 1 (conductive support side) coating solution and the intermediate layer 2 (photosensitive layer side) coating solution were changed as follows, and the inorganic compounds contained in each of the plurality of intermediate layers were The electrophotograph of Example 12 is exactly the same as Example 1 except that the amount is 2 parts by weight with respect to 1 part by weight of the binder resin, and the intermediate layer 1 is 4.5 μm and the intermediate layer 2 is 0.8 μm. A photoreceptor was obtained.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.5 μm. Thus, an intermediate layer 1 coating solution was obtained.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.06 μm. Thus, a coating solution for the intermediate layer 2 was obtained.
[0074]
Example 13
In Example 1, the intermediate layer 1 (conductive support side) coating solution and the intermediate layer 2 (photosensitive layer side) coating solution were changed as follows, and the inorganic compounds contained in each of the plurality of intermediate layers were The electrophotograph of Example 13 is exactly the same as Example 1 except that the weight is 8 parts by weight with respect to 1 part by weight of the binder resin, and the film thickness is 4.5 μm intermediate layer 1 and 0.8 μm intermediate layer 2. A photoreceptor was obtained.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.5 μm. Thus, an intermediate layer 1 coating solution was obtained.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.06 μm. Thus, a coating solution for the intermediate layer 2 was obtained.
[0075]
Comparative Example 1
An electrophotographic photosensitive member of Comparative Example 1 was produced in the same manner as in Example 1 except that no intermediate layer was provided in Example 1.
[0076]
Comparative Example 2
Comparative Example 2 was the same as Example 1 except that the intermediate layer 2 coating solution was not used in Example 1 and only the intermediate layer 1 coating solution was used to form a single intermediate layer having a thickness of 4.5 μm. An electrophotographic photosensitive member was produced.
[0077]
Comparative Example 3
Comparative Example 3 was the same as Example 1 except that the intermediate layer 1 coating solution was not used in Example 1 and only the intermediate layer 2 coating solution was used to form a single intermediate layer having a thickness of 4.5 μm. An electrophotographic photosensitive member was produced.
[0078]
Comparative Example 4
The intermediate layer 1 (conductive support side) coating solution and the intermediate layer 2 (photosensitive layer side) coating solution in Example 1 were changed as follows, and the intermediate layer 1 having a film thickness of 4.5 μm and The electrophotographic photosensitive member of Comparative Example 4 was obtained in the same manner as in Example 1 except that the intermediate layer 2 of 0.8 μm was used.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.6 μm. Thus, a coating solution for the intermediate layer 1 was obtained.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.15 μm. Thus, a coating solution for the intermediate layer 2 was obtained.
[0079]
Comparative Example 5
The intermediate layer 1 (conductive support side) coating solution and the intermediate layer 2 (photosensitive layer side) coating solution in Example 1 were changed as follows, and the intermediate layer 1 having a film thickness of 4.5 μm and The electrophotographic photosensitive member of Comparative Example 5 was obtained in the same manner as in Example 1 except that the intermediate layer 2 of 0.8 μm was used.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.5 μm. Thus, an intermediate layer 1 coating solution was obtained.
Figure 0003871863
The above components were mixed and ball milled, and the dispersion conditions were adjusted so that the average particle size of the titanium oxide powder was 0.25 μm. Thus, a coating solution for the intermediate layer 2 was obtained.
[0080]
The electrophotographic photosensitive members of Examples 1 to 13 and Comparative Examples 1 to 5 thus produced were subjected to respective photosensitivity by using an electrophotographic copying machine Imagio MF2200 [manufactured by Ricoh Co., Ltd.] modified machine (writing laser light source wavelength 655 nm). The body was tested up to 40,000 sheets. Evaluation of the potential characteristics and image quality characteristics of the photoconductor was performed in a timely manner at the beginning of the paper passing test and after 40000 sheets of the paper passing test.
[0081]
Dark area potential: Photoreceptor surface potential when moved to the development position after primary charging
Bright part potential: After primary charging, image exposure (solid exposure), and photoreceptor surface potential when moved to the development position
Image quality: Overall evaluation of solid density, fine line reproducibility, local defects such as black spots, background stains, abnormal images, etc.
The evaluation results are shown in Table-1.
[0082]
[Table 6]
Figure 0003871863
As is apparent from Table 1, the electrophotographic photoreceptors of Examples 1 to 13 satisfying the claims of the present invention are excellent in reproducibility of dark part potential bright part potential, little deterioration in electrical characteristics, and high image quality. It can be seen that a hard copy of can be obtained stably for a long time. On the other hand, in the electrophotographic photoreceptors of Comparative Examples 1 to 5, both or both of the electrical characteristics and the image quality are greatly deteriorated, and the superiority of the photoreceptor of the present invention is clear.
[0083]
【The invention's effect】
As described above, an electrophotographic photoreceptor excellent in photosensitivity characteristics, durability, and image quality stability can be obtained by the present invention.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing the structure of an example of an electrophotographic photosensitive member of the present invention.
FIG. 2 is a schematic view of an example of an electrophotographic process and an electrophotographic apparatus of the present invention.
FIG. 3 is a schematic view of a general example of a process cartridge of the present invention.
[Explanation of symbols]
31 Conductive support
32 Intermediate layer in contact with conductive support
33 Intermediate layer in contact with photosensitive layer
34 Charge generation layer
35 Charge transport layer
36 middle class
37 Photosensitive layer

Claims (11)

導電性支持体上に、少なくとも無機化合物及び結着樹脂からなる複数の中間層と、感光層とを順次形成してなる電子写真感光体において、該複数の中間層のうち該導電性支持体に接する中間層に含まれる無機化合物の平均粒径をD1とし、該感光層に接する中間層に含まれる無機化合物の平均粒径をD2とした場合に、D2/D1≦1/5の関係を満たすことを特徴とする電子写真感光体。In an electrophotographic photoreceptor in which a plurality of intermediate layers composed of at least an inorganic compound and a binder resin and a photosensitive layer are sequentially formed on a conductive support, the conductive support of the plurality of intermediate layers is formed on the conductive support. When the average particle diameter of the inorganic compound contained in the intermediate layer in contact is D 1 and the average particle diameter of the inorganic compound contained in the intermediate layer in contact with the photosensitive layer is D 2 , D 2 / D 1 ≦ 1/5 An electrophotographic photoreceptor characterized by satisfying the following relationship: 前記感光層が電荷発生層及び電荷輸送層からなる積層構造であることを特徴とする請求項1記載の電子写真感光体。2. The electrophotographic photosensitive member according to claim 1, wherein the photosensitive layer has a laminated structure comprising a charge generation layer and a charge transport layer. 前記中間層に含まれる無機化合物が酸化チタンであることを特徴とする請求項1又は2記載の電子写真感光体。3. The electrophotographic photoreceptor according to claim 1, wherein the inorganic compound contained in the intermediate layer is titanium oxide. 前記中間層に含まれる結着樹脂がアルキッド樹脂とメラミン樹脂からなることを特徴とする請求項1〜3のいずれかに記載の電子写真感光体。The electrophotographic photosensitive member according to claim 1, wherein the binder resin contained in the intermediate layer is composed of an alkyd resin and a melamine resin. 前記複数の中間層それぞれに含まれる無機化合物が、結着樹脂1重量部に対し3〜7重量部であることを特徴とする請求項1〜4のいずれかに記載の電子写真感光体。The electrophotographic photosensitive member according to any one of claims 1 to 4, wherein the inorganic compound contained in each of the plurality of intermediate layers is 3 to 7 parts by weight with respect to 1 part by weight of the binder resin. 前記電荷輸送層中に下記一般式で表される構造を有する電荷輸送物質が含まれることを特徴とする請求項2〜5のいずれかに記載の電子写真感光体。
Figure 0003871863
(式中、R1、R2、R3およびR4は水素元素、置換又は無置換の低級アルキル基、置換又は無置換のアリール基を表し、Ar1は置換又は無置換のアリール基を表し、Ar2は置換又は無置換のアリーレン基を表し、Ar1とR1は共同で環を形成してもよく、またnは0又は1の整数である。)
6. The electrophotographic photoreceptor according to claim 2, wherein the charge transport layer contains a charge transport material having a structure represented by the following general formula.
Figure 0003871863
(Wherein R 1 , R 2 , R 3 and R 4 represent a hydrogen element, a substituted or unsubstituted lower alkyl group, a substituted or unsubstituted aryl group, and Ar 1 represents a substituted or unsubstituted aryl group. Ar 2 represents a substituted or unsubstituted arylene group, Ar 1 and R 1 may form a ring together, and n is an integer of 0 or 1.)
前記電荷発生層に含まれる電荷発生物質が非対称ジスアゾ顔料であることを特徴とする請求項2〜6のいずれかに記載の電子写真感光体。The electrophotographic photosensitive member according to claim 2, wherein the charge generation material contained in the charge generation layer is an asymmetric disazo pigment. 前記電荷発生層に含まれる電荷発生物質がY型オキシチタニルフタロシアニンであることを特徴とする請求項2〜6のいずれかに記載の電子写真感光体。The electrophotographic photosensitive member according to claim 2, wherein the charge generation material contained in the charge generation layer is Y-type oxytitanyl phthalocyanine. 前記電荷輸送層の膜厚が20μm以下であることを特徴とする請求項2〜8のいずれかに記載の電子写真感光体。The electrophotographic photosensitive member according to claim 2, wherein the charge transport layer has a thickness of 20 μm or less. 電子写真感光体に、少なくとも帯電、画像露光、現像、転写、クリーニング、除電を繰返しおこなう電子写真方法において、該電子写真感光体が請求項1〜9のいずれかに記載のものであることを特徴とする電子写真方法。In an electrophotographic method in which at least charging, image exposure, development, transfer, cleaning, and charge removal are repeatedly performed on an electrophotographic photosensitive member, the electrophotographic photosensitive member is one according to any one of claims 1 to 9. And an electrophotographic method. 少なくとも電子写真感光体を具備してなる電子写真装置および電子写真装置用プロセスカートリッジであって、該電子写真感光体が請求項1〜9のいずれかに記載のものであることを特徴とする電子写真装置および電子写真装置用プロセスカートリッジ。An electrophotographic apparatus comprising at least an electrophotographic photosensitive member and a process cartridge for an electrophotographic apparatus, wherein the electrophotographic photosensitive member is one according to any one of claims 1 to 9. Process cartridge for photographic apparatus and electrophotographic apparatus.
JP2000230536A 2000-07-31 2000-07-31 Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus, and process cartridge for electrophotographic apparatus Expired - Fee Related JP3871863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000230536A JP3871863B2 (en) 2000-07-31 2000-07-31 Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus, and process cartridge for electrophotographic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000230536A JP3871863B2 (en) 2000-07-31 2000-07-31 Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus, and process cartridge for electrophotographic apparatus

Publications (2)

Publication Number Publication Date
JP2002040698A JP2002040698A (en) 2002-02-06
JP3871863B2 true JP3871863B2 (en) 2007-01-24

Family

ID=18723482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000230536A Expired - Fee Related JP3871863B2 (en) 2000-07-31 2000-07-31 Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus, and process cartridge for electrophotographic apparatus

Country Status (1)

Country Link
JP (1) JP3871863B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5361666B2 (en) 2009-11-02 2013-12-04 キヤノン株式会社 Electrophotographic photosensitive member, process cartridge, and electrophotographic apparatus

Also Published As

Publication number Publication date
JP2002040698A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
US6326112B1 (en) Electrophotographic photoreceptor, and process cartridge and image forming apparatus using the photoreceptor
US6844124B2 (en) Electrophotographic photoreceptor, method for manufacturing the photoreceptor, and image forming method and apparatus using the photoreceptor
US7189487B2 (en) Electrophotographic photoreceptor, and electrophotographic apparatus, process cartridge and method using the photoreceptor
JP3878445B2 (en) Electrophotographic photosensitive member, electrophotographic method using the electrophotographic photosensitive member, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
US20070287083A1 (en) Electrophotographic photoreceptor and method of preparing the photoreceptor, and image forming apparatus, image forming method and process cartridge using the photoreceptor
US20040170911A1 (en) Electrophotographic photoreceptor, and image forming method, image forming apparatus and process cartridge for image forming apparatus using the electrophotographic photoreceptor
JP5605693B2 (en) Electrophotographic photosensitive member, and image forming method, image forming apparatus, and process cartridge using the same
JP2004258253A (en) Electrophotographic photoreceptor, image forming method and image forming apparatus using the electrophotographic photoreceptor, and process cartridge for image formation
JP2011191744A (en) Electrophotographic photoconductor, and image forming method, image forming apparatus and process cartridge for image forming apparatus using the same
JP4194776B2 (en) Electrophotographic photosensitive member, manufacturing method thereof, electrophotographic method and electrophotographic apparatus
JP3871863B2 (en) Electrophotographic photosensitive member, electrophotographic method using the same, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
JP4097658B2 (en) Electrophotographic photosensitive member, electrophotographic method, electrophotographic apparatus, and process cartridge for electrophotographic apparatus
JP5884438B2 (en) Electrophotographic photosensitive member, and image forming apparatus and process cartridge using the same
JP5862134B2 (en) Electrophotographic photoreceptor, image forming method, image forming apparatus, and process cartridge
JP2002049163A (en) Method for manufacturing electrophotographic photoreceptor
JP2000292954A (en) Electrophotographic photoreceptor
JP2002156773A (en) Electrophotographic photoreceptor, method for forming image by using the same, image forming device, process cartridge for the image forming device
JP3985990B2 (en) Electrophotographic photosensitive member and electrophotographic apparatus
JP4073021B2 (en) Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process cartridge for image forming apparatus
JP2005049886A (en) Electrophotographic photoreceptor and electrophotographic apparatus
JP3833954B2 (en) Electrophotographic photosensitive member, image forming method using the same, image forming apparatus, and process unit for image forming apparatus
JP2003076043A (en) Electrophotographic photoreceptor, method for manufacturing the same, image forming device and process cartridge for image forming device
JP2004004543A (en) Electrophotographic photoreceptor, and image forming method using same
JP2001296681A (en) Electrophotographic photoreceptor, electrophotographic method using the same, electrophotographic device and process cartridge for the electrophotographic device
JP2002258506A (en) Electrophotographic sensitive body, electrophotographic method, electrophotographic device and process cartridge for electrophotographic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees