JP3871619B2 - Method for determining dynamic transmission characteristics of drive transmission system and recording medium - Google Patents

Method for determining dynamic transmission characteristics of drive transmission system and recording medium Download PDF

Info

Publication number
JP3871619B2
JP3871619B2 JP2002189242A JP2002189242A JP3871619B2 JP 3871619 B2 JP3871619 B2 JP 3871619B2 JP 2002189242 A JP2002189242 A JP 2002189242A JP 2002189242 A JP2002189242 A JP 2002189242A JP 3871619 B2 JP3871619 B2 JP 3871619B2
Authority
JP
Japan
Prior art keywords
load
drive transmission
relationship
time
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002189242A
Other languages
Japanese (ja)
Other versions
JP2004028948A (en
Inventor
波 兪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2002189242A priority Critical patent/JP3871619B2/en
Publication of JP2004028948A publication Critical patent/JP2004028948A/en
Application granted granted Critical
Publication of JP3871619B2 publication Critical patent/JP3871619B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、駆動伝達系の動的伝達特性決定方法及び記録媒体、より詳細には、非線型特性を有する動的駆動伝達系の荷重(応力)―ひずみ特性を高精度に求めるための動的伝達特性決定方法及び記録媒体に関し、本発明における最適化手法を用いた駆動伝達系の動的伝達特性決定方法で求めた駆動伝達部の荷重(応力)―ひずみ特性解析結果は、例えば駆動伝達部により駆動伝達を行う場合、または複写機など駆動系の設計に好適に応用されるものである。
【0002】
【従来の技術】
材料の機械的性質を計測するには、引張り試験が標準的な方法として一般的に用いられている。例えば、JIS−Z2241に標準的な試験法が記載されている。これはいわゆる準静的な状態での引張り試験特性を計測するものであって、試験時の負荷速度は動的な効果が問題とならない程度の速度で試験を行うものである。試験した材料を用いて構造物を設計する際、静的な状態での強度を基準として設計を行うことがほとんどであるため、この試験データは十分であった。
【0003】
しかしながら、例えば、ベルトのような時間の進行とともに材料のヤング率の変化を生じる粘弾性材料を用いた駆動系において、駆動機構の急速な立上げ、あるいは立下げの際、駆動系全体の挙動を正確に評価するために、立上げ(立下げ)速度の変化に伴うベルト特性を正確に評価する必要がある。この速度の変化、すなわち加速度での材料特性の計測は動的な状態計測であるため、通常の引張り試験では不可能である。
【0004】
【発明が解決しようとする課題】
本発明は、上述のごとき実情に鑑みてなされたものであり、駆動伝達部を含む、駆動軸と従動軸から構成された実験装置から、駆動軸と従動軸それぞれの回転量と時間の関係を計測し、これに基づいて、実験装置の機構解析モデルにより、最適化手法を用いて、従動軸の回転量の実験データとその解析データとを比較しながら、大域最適解の探索と局部最適解の探索とに分け、各設計変数を反復して、両者が一致するように、短時間で効率よく駆動伝達部の速度の変化に伴う動的荷重(応力)―ひずみ特性を算出することができる駆動伝達系の動的伝達特性決定方法及び記録媒体を提供すること、を目的としてなされたものである。
【0005】
【課題を解決するための手段】
請求項1の発明は、駆動部と駆動伝達部と従動部とからなる駆動伝達系の伝達特性を決定するための駆動伝達系の動的伝達特性決定方法において、前記駆動部の回転量と時間の関係を計測するとともに、前記従動部の回転量と時間の関係を計測し、該従動部の回転量と時間の関係の計測値に近づくように該従動部の回転量と時間の関係式をシミュレーションし、該シミュレーションによる計算値と、前記計測値との差が予め定められた範囲以下になるように、前記駆動伝達部の荷重―ひずみ、または応力―ひずみ特性を決定することを特徴としたものである。
【0006】
請求項2の発明は、請求項1の発明において、前記駆動伝達部の荷重―ひずみ、または応力―ひずみ特性の初期値を設定し、最適手法を用いて、前記従動部の回転量と時間の関係の計測値と、前記シミュレーションによる計算値とを比較しながら、前記駆動伝達部の荷重―ひずみ、または応力―ひずみ特性を算出することを特徴としたものである。
【0007】
請求項3の発明は、請求項1の発明において、前記駆動伝達部の荷重―ひずみ特性は、荷重付加の加速度と荷重―ひずみ特性の関係によって、動的特性を表現することを特徴としたものである。
【0008】
請求項4の発明は、請求項1ないし3のいずれか1の発明において、駆動源とするモータと、該モータによって回転する駆動軸とを備え、該駆動軸にプーリを取り付けた上、該プーリにベルトを回し、該ベルトによって従動軸側プーリを駆動させて、該従動軸を回すための実験装置と、該実験装置の駆動軸と従動軸それぞれの回転量と時間の関係を計測する計測装置とを用いて、前記駆動軸の回転量と時間の関係と、前記従動軸の回転量と時間の関係とを計測することを特徴としたものである。
【0009】
請求項5の発明は、請求項4の発明において、前記ベルトに任意の負荷(テンション)を付加することを特徴としたものである。
【0010】
請求項6の発明は、請求項4または5の発明において、前記駆動軸及び/又は従動軸に負荷を加えることを特徴としたものである。
【0011】
請求項7の発明は、請求項4ないし6のいずれか1の発明において、前記モータをモータ制御プログラムにより制御することにより、前記駆動軸に任意の加速度を与えることを特徴としたものである。
【0012】
請求項8の発明は、請求項4ないし7のいずれか1の発明において、前記駆動軸と従動軸それぞれの回転量と時間の関係をリアルタイムで計測することを特徴としたものである。
【0013】
請求項9の発明は、請求項1ないし8のいずれか1の発明において、前記実験装置の機構解析モデルを構築し、該構築した機構解析モデルは、前記計測して得られた駆動軸の回転量と時間の関係を用いて、予め定義した荷重(応力)―ひずみ特性から、前記従動軸の回転量と時間の関係を算出することを特徴としたものである。
【0014】
請求項10の発明は、請求項9の発明において、前記機構解析モデルは、任意の準静的引張予備試験から得られた前記駆動伝達部の荷重(応力)―ひずみ特性を計算の初期値として予め定義することを特徴としたものである。
【0015】
請求項11の発明は、請求項9または10の発明において、前記機構解析モデルは、前記駆動伝達部の接触角、接触プーリの半径および接触プーリ角速度から求められる瞬間ひずみに、前記実験装置のテンション付加機構による駆動伝達部の初期ひずみを加えることを特徴としたものである。
【0016】
請求項12の発明は、請求項9ないし11のいずれか1の発明において、前記機構解析モデルは、前記計測して得られた駆動軸の回転量と時間の関係から、前記従動軸の回転量と時間の関係を所定の微小時間間隔ごとに算出する際に、その計算途中における前記駆動伝達部の瞬間張力を、予め定義した駆動伝達部の荷重(応力)―ひずみ特性に対応付けて決定することを特徴としたものである。
【0017】
請求項13の発明は、請求項1ないし12のいずれか1の発明において、前記従動軸の回転量と時間との関係を計測して得られたデータに対して、前記機構解析モデルにおける所定の微少時間間隔と一致するように、間引き処理を施すことを特徴としたものである。
【0018】
請求項14の発明は、請求項1ないし13のいずれか1の発明において、前記駆動伝達部の荷重(応力)―ひずみ特性の初期値から、最適手法を用いて、前記従動軸の回転量と時間の関係の計測値と、前記シミュレーションによる計算値とを比較しながら、前記駆動伝達部の荷重(応力)―ひずみ特性を算出することを特徴としたものである。
【0019】
請求項15の発明は、請求項14の発明において、前記駆動伝達部の荷重(応力)―ひずみ特性の初期値にシフト量係数を乗じ、該シフト量係数を設計変数として順次変化させて計算し、該計算した従動軸の回転量と時間の関係の計算値と、該従動軸の回転量と時間の関係の計測値とを比較し、各回転量データ差分の合計値を最小にすることによって、前記シフト量係数を決定する第一最適化ステップを有することを特徴としたものである。
【0020】
請求項16の発明は、請求項14または15の発明において、前記機構解析モデルを用いて、前記シフト量係数を乗じた駆動伝達部の荷重(応力)―ひずみ特性における各荷重データを設計変数として反復して変化させて計算し、該計算した従動軸の回転量と時間の関係の計算値と、該従動軸の回転量と時間の関係の計測値とを比較し、各回転量データ差分の合計値を最小にすることによって、前記駆動伝達部の荷重(応力)―ひずみ特性を決定する第二最適化ステップを有することを特徴としたものである。
【0021】
請求項17の発明は、請求項14ないし16のいずれか1の発明において、前記シフト量係数を乗じた駆動伝達部の荷重(応力)―ひずみ特性における各荷重データを設計変数として反復して変化させる際、前記荷重(応力)―ひずみ特性における各荷重データに対し、ひずみ量の増加に伴い、所定の制約条件を設けることを特徴としたものである。
【0022】
請求項18の発明は、請求項1ないし17のいずれか1に記載の駆動伝達系の動的伝達特性決定方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体である。
【0023】
【発明の実施の形態】
図1は、本発明の一実施形態に係わる駆動伝達系の動的伝達特性解析方法の一例を説明するためのフロー図である。本発明の駆動伝達系の動的伝達特性解析方法は、図1に示すような手順に従って解析を行う。ここでは、駆動伝達部に加えた負荷により発生する荷重(応力)―ひずみ特性の解析方法について説明する。まず、ベルトなどの駆動伝達部を介して、駆動軸の挙動を従動軸に伝達する実験装置(詳細については後述する)を用いて、モータ制御プログラムにより制御されたモータにより駆動軸を駆動させ(ステップS1,S2)、実験装置の駆動軸と従動軸とに設けられた計測装置を用いて、駆動軸の回転量と時間との関係と、従動軸の回転量と時間との関係とをリアルタイム計測プログラムにより計測する(ステップS3,S4)。次に、ステップS3,S4で計測して得られた駆動軸の回転量と時間との関係曲線を、予め構築された実験装置の機構解析モデルに入力し(ステップS5)、予め定義されたベルト荷重(応力)―ひずみ特性の初期値から(ステップS6)、上記機構解析モデルを用いて(ステップS7)、所定の微少時間間隔ごとに、解析を行い、従動軸の回転量と時間との関係を算出する(ステップS8)。
【0024】
また、上記ステップS4で計測された従動軸の回転量と時間との関係を示す計測データに対して、上記実験装置の機構解析モデルにおける所定の微少時間間隔に応じて、間引きプログラムを用いて間引き処理を行う(ステップS9,S10)。次に、上記ステップS5〜S8において、ベルト荷重(応力)―ひずみ特性の初期値に基づいて算出された従動軸の回転量と時間との関係と、上記ステップS9,S10において計測された従動軸の回転量と時間との関係とを比較解析し(ステップS11〜S13)、両者のデータの差分の合計値が最小になったかどうかを判断し(ステップS14)、両者データの差分の合計値が最小になった場合(YESの場合)、この際のベルト荷重(応力)―ひずみ特性を決定する(ステップS15)。また、ステップS14で両者データの差分の合計値が最小ではない場合(NOの場合)、所定の制約条件に基づいて、ステップS6に戻り、駆動伝達部の荷重(応力)―ひずみ特性を決定するための計算を繰り返し行う(ステップS16,S6)。ここで、上記ステップS11〜S13において実行される第一最適化ステップから第二最適化ステップに至る各ステップの詳細については、後述するものとする。
【0025】
以下、本発明の駆動伝達部における動的伝達特性計測方法について、具体的な解析例を用いて詳細に説明する。図2は、駆動軸の回転量と時間との関係と、従動軸の回転量と時間との関係とを計測した計測結果の一例を示す図で、図中、1は駆動軸の回転量と時間との関係の計測値を示す関係曲線で、2は従動軸の回転量と時間との関係の計測値を示す関係曲線である。尚、本例において、横軸は時間(単位:sec),縦軸は回転量(単位:rad/sec)を示すものとする。関係曲線1は、実験装置を用いて、実験装置の駆動軸と従動軸にそれぞれ設けられた計測装置により、駆動軸の回転量と時間との関係を計測したものであり、同様に関係曲線2は従動軸の回転量と時間との関係を計測したものである。
【0026】
図3は、ベルト荷重(応力)―ひずみ特性曲線の初期値の一例を示す図である。図4は、従動軸の回転量と時間との関係の算出値と、その計測値との関係の一例を示す図で、3は従動軸の回転量と時間との関係の計測値を示す関係曲線で、4は従動軸の回転量と時間との関係の算出値を示す関係曲線である。ここで、実験装置の機構解析モデルを構築し、図3に示したベルト荷重(応力)―ひずみ特性曲線の初期値を、構築した機構解析モデルに入力する。この機構解析モデルは、入力された初期値に基づいて従動軸の回転量と時間との関係を算出し、その算出値を図4の関係曲線4に示す。次に、ベルト荷重(応力)―ひずみ特性の初期値に基づいて算出された関係曲線4と、計測された回転量と時間との関係を示す関係曲線3とを比較し、両者データの差分の合計値を最小にするように、所定の制約条件下において各設計変数を反復して変化させ、駆動伝達部の動的荷重(応力)―ひずみ特性を算出する。
【0027】
図5は、計算が収束する際の従動軸の回転量と時間との関係曲線の算出値と、その計測値とを比較した一例を示した図で、図中、5は従動軸の回転量と時間との関係の計測値を示す関係曲線で、6は従動軸の回転量と時間との関係の算出値を示す関係曲線である。図6は、最後に決定された駆動伝達部の荷重(応力)―ひずみ特性曲線と、荷重(応力)―ひずみ特性曲線初期値とを比較した一例を示す図で、図中、7は最後に決定された駆動伝達部(例えば、ベルトなど)の荷重(応力)―ひずみ特性曲線、8は駆動伝達部の荷重(応力)―ひずみ特性曲線の初期値を示す特性曲線である。
【0028】
本発明における駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、駆動伝達部の動的荷重(応力)―ひずみ特性を精度良く解析することができる。
【0029】
ここで、本発明の駆動伝達部における動的伝達特性計測方法において、上述したような動的荷重―ひずみ特性は、荷重付加の加速度と荷重―ひずみ特性の関係によって、動的特性を表現するものである。
【0030】
本発明における駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、荷重付加の加速度と荷重―ひずみ特性の関係を計測することによって、動的荷重(応力)―ひずみ特性を表現することができる。
【0031】
図7は、本発明の一実施形態に係わる駆動伝達部の動的伝達特性計測方法を実行するための実験装置の基本構成の一例を示す図で、図中、10は実験装置で、該実験装置10は、駆動軸の回転量と時間関係の計測装置11、プーリ12,16、モータ13、駆動軸負荷14、従動軸の回転量と時間関係の計測装置15、従動軸負荷17、ベルト18を有する。本実施形態においては、駆動伝達部としてベルトを代表例に用いて説明するものとする。この実験装置10は、モータ13と、モータ13によって回転する駆動軸とを備え、この駆動軸にプーリ12を取り付けた上、プーリ12にベルト18を回し、このベルト18によって従動軸を駆動させて、従動軸を回すものである。さらに、本実験装置10は、駆動軸と従動軸それぞれにおける回転量と時間との関係を計測できる計測装置11,15を設け、駆動軸の回転量と時間との関係と、従動軸の回転量と時間との関係を計測するものである。この計測装置の具体例として、例えば、回転量と時間との関係を計測することができるエンコーダなどを好適に用いることができる。
【0032】
本発明における駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、解析対象となる駆動伝達部を含む実験装置を構築し、解析のベースとする駆動軸と従動軸それぞれの回転量と時間との関係を計測装置により、計測することができる。
【0033】
また、本発明の駆動伝達部における動的伝達特性計測方法を実行するための実験装置10は、駆動伝達部(ベルト)に任意の負荷を加えるため、負荷(テンション)を付加する機構を有するものである。例えば、図7に示した従動側の全体を可動ステージに載せ、可動ステージにテンション計測装置を備え、所定テンションに達するまで、可動ステージの位置を調整し、最後に可動ステージを固定する。
【0034】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、解析対象となる駆動伝達部に任意の負荷(テンション)を加えることにより、該負荷下の荷重(応力)―ひずみ特性を解析することができる。
【0035】
また、本発明の実験装置10は、軸の負荷変動によるベルト荷重(応力)―ひずみ特性を解析するため、駆動軸及び従動軸に負荷を加える機構を有するものである。このような負荷を加える機構の具体例として、例えば、図7に示したように、駆動軸と従動軸に任意のフライホイールを付加し、軸の負荷を変化させるようにするとよい。
【0036】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、実験装置の駆動軸、従動軸それぞれに任意の負荷を加えることにより、該負荷下の荷重(応力)―ひずみ特性を解析することができる。
【0037】
また、本発明の実験装置10は、駆動軸の加速度によるベルト18の荷重(応力)―ひずみ特性を解析するため、駆動源とするモータ13をモータ制御プログラムにより、駆動軸に任意の加速度を与えるものである。この駆動源の具体例としては、例えば、5相ステッピングモータを用いて、モータ制御プログラムにより、モータの加速度を10ms/kppsに設定した際、駆動軸の回転速度の特性は前述の図2に示した関係曲線1のようになる。
【0038】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、実験装置の駆動軸に対してモータ制御プログラムにより任意の加速度を与えることにより、該加速度下の荷重(応力)―ひずみ特性を解析することができる。
【0039】
また、本発明に係わる計測装置11,15は、駆動軸と従動軸それぞれの回転量と時間との関係を計測中に、計測用に設けたPC(パーソナルコンピュータ)のCPU追従速度に応じて発生するデータ落ち現象を回避するため、駆動軸と従動軸それぞれの回転量と時間との関係をリアルタイムで計測するものである。例えば、リアルタイム計測を実現可能なDSPボードを上記計測用PCに設けるものである。
【0040】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、計測中に計測用PCのCPU追従速度に応じて発生するデータ落ち現象を回避し、駆動軸と従動軸の回転量と時間との関係を精度良く、リアルタイムで計測することができる。
【0041】
ここで、駆動伝達部の動的伝達特性計測方法における機構解析モデルにより、上述の計測装置11で計測して得られた駆動軸の回転量と時間との関係を用いて、仮のベルト荷重(応力)―ひずみ特性から、従動軸の回転量と時間との関係を算出する方法について説明する。まず、実験装置10と対照付けて、下記に示す式(1)の運動方程式に基づいて、実験装置10の機構解析モデルを構築する。
[J][dθ2/d2t]+[C][dθ/dt]+[k][θ]=[T]・・・式(1)
ただし、[J]:各慣性モーメントを含む慣性モーメントマトリックス
[k]:ベルト剛性係数を含むバネ剛性マトリックス
[C]:ベルト粘性係数を含むバネ粘性マトリックス
[θ]:駆動軸、従動軸の回転角を含む回転角ベクトル
[T]:トルクベクトル
【0042】
図8は、実験装置10の機構解析モデルの一例を示す概略図で、図中、20は機構解析モデルで、該機構解析モデル20は、駆動軸の回転量と時間関係の計測装置21、プーリ22,27、粘弾性モデル23、モータ24、駆動軸負荷25、従動軸の回転量と時間関係の計測装置26、従動軸負荷28,29を有する。ここでは、実験装置10で計測して得られた駆動軸の回転量と時間との関係を示す計測値を機構解析モデル20に入力し、機構解析モデル20により、予め定義されたベルト荷重(応力)―ひずみ特性に基づいて、従動軸の回転量と時間との関係を算出する。
【0043】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、実験装置で計測して得られた駆動軸の回転量と時間との関係データに基づき、機構解析モデルを用いて、従動軸の回転量と時間との関係を効率的に計算することができる。
【0044】
図9は、ばねとダッシュポットからなる粘弾性モデル23の一例を示す図である。上記の機構解析モデル20は、任意の引張り試験から得られた駆動伝達部の荷重(応力)―ひずみ特性を計算の初期値として予め定義するものである。機構解析モデル20において、例えばベルトのような粘弾性材料の弾性体および粘性体としての挙動を表現するため、図9に示すようなばねとダッシュポットによる粘弾性モデル23で表現する。前記式(1)におけるベルトの剛性係数マトリックス[k]の初期値は、前述の図3に示した任意の引張り試験から得られたベルト荷重―ひずみ特性曲線を用いて定義する。
【0045】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、解析の初期状態を容易に設定することができる。
【0046】
ここで、機構解析モデル20は、下記の式(2)に示した計算方法により、ベルト18の接触プーリの半径および接触プーリ角速度から求められるベルト瞬間ひずみに、実験装置10のベルトテンション付加機構によるベルトの初期ひずみに加えて、ベルトの瞬間ひずみを算出するものである。
Ε=ε + (∫ω11 dt −∫ω dt) / l・・・式(2)
ただし、Ε:ベルト瞬間ひずみ
ε0:ベルト初期ひずみ
ω:駆動軸の回転角速度
:駆動軸プーリピッチ円半径
ω:従動軸の回転角速度
:従動軸プーリピッチ円半径
l:ベルトと駆動軸プーリ、従動軸プーリ接点間のベルト長さ
【0047】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、機構解析モデルにおいて、駆動伝達部の瞬間ひずみを計算することができる。
【0048】
機構解析モデル20は、実験装置10で計測して得られた駆動軸の回転量と時間との関係から、従動軸の回転量と時間との関係を所定の解析微小時間の間隔ごとに算出する際に、その計算途中で上記式(2)により算出された瞬間ひずみを用いて、駆動伝達部の瞬間張力を、その計算の瞬間に決定された駆動伝達部の荷重―ひずみ特性と対応付けて決定するものである。この際、ベルトが弛むときに、ベルト張力が0になるように設定しておく。
【0049】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、機構解析モデルにおいて、駆動伝達部の瞬間張力を計算することができる。
【0050】
本発明の駆動伝達部における動的伝達特性計測方法は、従動軸の回転量と時間との関係曲線に応じた計測値と、その算出値において、両者における同時刻の回転量の差分を取るため、従動軸の回転量と時間との関係を測定して得られるデータに対して、機構解析モデル20により解析された所定の解析微少時間の間隔と一致するように、間引き処理を施すようにしたものである。まず、従動軸の回転量と時間との関係を測定して得られるデータに対して、補間処理を行い、従動軸の回転量と時間との関係曲線を構成し、次に補間された関係曲線から、機構解析モデル20により解析された所定の解析微少時間の間隔と一致するように、等時間間隔にデータを抜き出し、差分計算用のデータを構成する。
【0051】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、従動軸の回転量と時間との関係曲線からの計測値と、その算出値において、両者における同時刻の回転量の差分を取るために、計測して得られた従動軸の回転量と時間との関係データを間引き処理することができる。
【0052】
また、本発明の駆動伝達部における動的伝達特性計測方法は、ベルト荷重(応力)―ひずみ特性の初期値に基づいて、従動軸の回転量と時間との関係の計測値と、その計算値とを、後述するような最適手法を用いて、比較しながら、駆動伝達部における荷重(応力)―ひずみ特性を算出する。
【0053】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、最適手法を用いて、駆動伝達部の動的荷重(応力)―ひずみ特性を精度良く算出することができる。
【0054】
図10は、駆動伝達部の動的伝達特性計測方法における最適化手法の一例を説明するための図である。まず、図10に示す第一最適化ステップに示すような手順で解析を行う。本実施形態においては、ベルト荷重(応力)―ひずみ特性の初期値にシフト量係数を乗じ、そのシフト量係数を設計変数として順次変化させ、機構解析モデル20で算出された従動軸の回転量と時間との関係と、計測された従動軸の回転量と時間との関係とを比較し、各回転量データ差分の合計値を最小にすることによって、シフト量係数を決定する第一最適化ステップについて以下に説明する。
上記第一最適化ステップにおいて、まず、ベルト荷重(応力)―ひずみ特性の初期値にシフト量係数を乗じ、そのシフト量係数を単因子実験変数として、例えば、1から30(ベルトの物理特性の可能範囲)まで0.1間隔で順次変化させ、算出された従動軸の回転量と時間との関係(図4に示した関係曲線4)と、計測された従動軸の回転量と時間との関係(図4に示した関係曲線3)とを比較し、回転量データ差分の合計値が最小になるように、シフト量係数を決定する。次に、この決定されたシフト量係数を、後述する第二最適化ステップの計算に持ち込む。
【0055】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、シフト量係数を決定することにより、大域最適解を探索することができる。
【0056】
さらに、図10の第二最適化ステップに示すような手順で解析を行う。機構解析モデル20を用いて、上記シフト量係数を乗じたベルト荷重(応力)―ひずみ特性における各荷重データを設計変数として反復して変化させ、算出された従動軸の回転量と時間との関係と、その計測された回転量と時間との関係とを比較し、各回転量データ差分の合計値が最小になるように、駆動伝達部の荷重(応力)―ひずみ特性を決定する第二最適化ステップについて以下に説明する。
上記第二最適化ステップにおいて、まず、上記シフト量係数を乗じたベルト荷重(応力)―ひずみ特性における荷重値(x)、および機構解析モデル20から算出された従動軸の回転量と時間との関係と、その計測された回転量と時間との関係における各回転量データ差分の合計値(y)の勾配を下記の式(3)で計算し、これによって適切な探索方向を決定する。
【0057】
【式3】

Figure 0003871619
【0058】
次に決定された探索方向に沿って、新しい設計変数が設定され、算出された従動軸の回転量と時間との関係と、その計測された回転量と時間との関係における各回転量データ差分の合計値が最小になるまで上記計算を繰り返す。
【0059】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、局部最適解を探索することができる。
【0060】
また、本発明の駆動伝達部における動的伝達特性計測方法に基づいて、荷重(応力)―ひずみ特性を決定する決定方法について説明する。これは、シフト量係数を乗じたベルト荷重(応力)―ひずみ特性における各荷重データを設計変数として反復して変化させる際、荷重(応力)―ひずみ特性において、各荷重がひずみ量の増加に伴い、単調増加するという制約条件を設け、駆動伝達部の荷重(応力)―ひずみ特性を決定するための計算を行う途中、上記制約条件を満足しているかどうかを常にチェックし、制約条件を満足するように駆動伝達部の荷重(応力)―ひずみ特性を決定する計算を繰り返し行うものである。
【0061】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測方法によれば、駆動伝達部における荷重(応力)―ひずみ特性を解析する際、荷重(応力)―ひずみ曲線の形を維持しながら解析を進めることができる。
【0062】
次に、駆動伝達部の荷重(応力)―ひずみ特性を求める駆動伝達部の動的伝達特性計測システムについて以下に説明する。図11は、本発明が適用される駆動伝達部の荷重(応力)―ひずみ特性計測システムの一実施形態を示すブロック図で、図中、30は駆動伝達部の荷重(応力)―ひずみ特性計測システムで、該荷重(応力)―ひずみ特性計測システム30は、実験装置31,計測装置32,入力装置33,演算装置34,データ処理装置35,および表示装置36とで構成されている。ここで、実験装置31は実験装置駆動手段31aを有し、計測装置32は駆動軸、従動軸における回転量と時間との関係計測手段32aを有し、演算装置34は機構解析手段34a,第一最適化手段34b,第二最適化手段34c及びベルト荷重(応力)―ひずみ特性決定手段(図示せず)を有し、データ処理装置35は従動軸の回転量と時間との関係曲線における間引き処理手段35aを有している。これらの各手段は予め各装置に組み込まれている。実験装置31はモータと、該モータによって回転する駆動軸と、該駆動軸に取り付けたプーリと、該プーリに回したベルトと、そのベルトによって駆動する従動軸とで構成されている。この実験装置31の基本的な構成は、図7に示した実験装置10と同じである。計測装置32は各軸回転量と時間との関係を計測する、例えば、エンコーダで構成されている。演算装置34は、例えば普通のPCなどで構成される。
【0063】
本発明に係わる荷重(応力)―ひずみ特性計測システム30において、まず、実験装置駆動手段31aは、所定の実験条件で実験装置31を駆動し、次に、関係計測手段32aは、実験装置31の駆動軸と従動軸それぞれの回転量と時間との関係を計測し、次に、入力装置33は、計測装置32により計測して得られた駆動軸の回転量と時間との関係を演算装置34に入力し、機構解析手段34aは、予め定義したベルト荷重(応力)―ひずみ特性に基づいて、従動軸の回転量と時間との関係を算出し、次に、ベルト荷重(応力)―ひずみ特性決定手段(図示せず)は、機構解析モデル20を用いて、ベルト荷重(応力)―ひずみ特性の初期値にシフト量係数をかけ、そのシフト量係数を単因子実験変数として順次に変化させ、算出された従動軸の回転量と時間との関係と、その計測された回転量と時間との関係とを比較し、各回転量データ差分の合計値が最小になるように、シフト量係数を求め、求めたシフト量係数を第二最適化手段34cの計算に持ち込む。
【0064】
次に、第二最適化手段34cは、ベルト荷重(応力)―ひずみ特性の初期値に上記シフト量係数をかけ、このベルト荷重(応力)―ひずみ特性の関係曲線における各荷重データを設計変数として反復して変化させ、算出された従動軸の回転量と時間との関係と、その計測された回転量と時間との関係とを比較し、各データ差分の合計値を最小にすることによって、駆動伝達部の荷重(応力)―ひずみ特性を決定し、最後に、表示装置36により決定されたベルトの荷重(応力)―ひずみ特性を表示する。
【0065】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測システムによれば、駆動伝達部の動的荷重(応力)―ひずみ特性を精度良く解析することができる。
【0066】
また、駆動伝達部の動的伝達特性計測システムにおいて、実験装置31は、モータと、該モータによって回転する駆動軸とを備え、該駆動軸にプーリを取り付けた上、該プーリに、駆動伝達部としてベルトを回し、このベルトによって従動軸を駆動させる。この際、実験装置駆動手段31aは、実験装置31を駆動させるためのものである。
【0067】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測システムによれば、実験装置駆動手段を用いて、実験装置を駆動させることができる。
【0068】
また、駆動伝達部の動的伝達特性計測システムにおいて、実験装置31は、モータと、該モータによって回転する駆動軸とを備え、該駆動軸にプーリを取り付けた上、該プーリに、駆動伝達部としてベルトを回し、このベルトによって従動軸を駆動させる。この際、関係計測手段32aは、実験装置31における駆動軸の回転量と時間との関係と、従動軸の回転量と時間との関係とを計測するものである。
【0069】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測システムによれば、実験装置駆動手段を用いて、実験装置を駆動させるとともに、関係計測手段を用いて、駆動軸と従動軸それぞれの回転量と時間との関係を計測することができる。
【0070】
また、駆動伝達部の動的伝達特性計測システムにおいて、実験装置31の機構解析モデル20は、関係計測手段32aにより計測して得られた駆動軸の回転量と時間との関係を用いて、予め定義したベルト荷重(応力)―ひずみ特性から、機構解析手段34aにより、従動軸の回転量と時間との関係を算出するものである。
【0071】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測システムによれば、機構解析手段を用いて、所定の解析微少時間間隔で、従動軸の回転量と時間との関係を計算することができる。
【0072】
また、駆動伝達部の動的伝達特性計測システムは、関係計測手段32aにより計測して得られた従動軸の回転量と時間との関係を示すデータに対し、実験装置31の機構解析モデル20における所定の微少時間間隔と一致するように、間引き処理手段35aにより、間引き処理を行うものである。
【0073】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測システムによれば、間引き処理手段により、同時刻の従動軸の回転量と時間との関係曲線における計測値とその算出値との差分を取ることができる。
【0074】
また、駆動伝達部の動的伝達特性計測システムは、機構解析モデル20を用いて、ベルト荷重(応力)―ひずみ特性の初期値にシフト量係数を乗じ、そのシフト量係数を設計変数として順次変化させ、算出された従動軸の回転量と時間との関係と、その計測された回転量と時間との関係とを比較し、各回転量データ差分の合計値を最小にすることによって、上記シフト量係数を決定する演算装置34の第一最適化手段34bと、第一最適化手段34bにより算出されたベルト荷重(応力)―ひずみ特性における各荷重データを設計変数として反復して変化させ、算出された従動軸の回転量と時間との関係と、その計測された回転量と時間との関係とを比較し、各回転量データ差分の合計値を最小にすることによって、駆動伝達部の荷重(応力)―ひずみ特性を決定する第二最適化手段34cとにより、駆動伝達部の荷重(応力)―ひずみ特性を決定するものである。
【0075】
本発明に係わる駆動伝達部の荷重(応力)―ひずみ特性計測システムによれば、第一最適化手段と第二最適化手段とにより、負荷による駆動伝達部の荷重(応力)―ひずみ特性を最適化することができる。
【0076】
以上、本発明における駆動伝達系の動的伝達特性決定方法に係わる各実施形態の各ステップを中心に説明してきたが、本発明は、システムとしても説明したように動的伝達特性決定システムとしての形態をとることも可能である。また、この各ステップを有する動的伝達特性決定方法と同様に、コンピュータに動的伝達特性決定方法を実行させるための、あるいは、コンピュータに動的伝達特性決定システムとして機能させるためのプログラムとしての形態も、あるいは、そのプログラムを記録したコンピュータ読み取り可能な記録媒体としての形態も可能である。
【0077】
本発明による動的伝達特性決定の機能を実現するためのプログラムやデータを記憶した記録媒体の実施形態を説明する。記録媒体としては、具体的には、CD−ROM、光磁気ディスク、DVD−ROM、FD、フラッシュメモリ、メモリカードや、メモリスティック及びその他各種ROMやRAM等が想定でき、これら記録媒体に上述した本発明における各実施形態の方法のステップ、あるいは、各実施形態のシステムの機能をコンピュータに実行させ、動的伝達特性決定の機能を実現するためのプログラムを記録して流通させることにより、当該機能の実現を容易にする。そしてコンピュータ等の情報処理装置に上記のごとくの記録媒体を装着して情報処理装置によりプログラムを読み出すか、若しくは情報処理装置が備えている記憶媒体に当該プログラムを記憶させておき、必要に応じて読み出すことにより、本発明に関わる動的伝達特性決定の機能を実行することができる。
【0078】
【発明の効果】
本発明によると、駆動伝達部を含む、駆動軸と従動軸から構成された実験装置から、駆動軸と従動軸それぞれの回転量と時間の関係を計測し、これに基づいて、実験装置の機構解析モデルにより、最適化手法を用いて、従動軸の回転量の実験データとその解析データとを比較しながら、大域最適解の探索と局部最適解の探索とに分け、各設計変数を反復して、両者が一致するように、短時間で効率よく駆動伝達部の速度の変化に伴う動的荷重(応力)―ひずみ特性を算出することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係わる駆動伝達系の動的伝達特性解析方法の一例を説明するためのフロー図である。
【図2】 駆動軸の回転量と時間との関係と、従動軸の回転量と時間との関係とを計測した計測結果の一例を示す図である。
【図3】 ベルト荷重(応力)―ひずみ特性曲線の初期値の一例を示す図である。
【図4】 従動軸の回転量と時間との関係の算出値と、その計測値との関係の一例を示す図である。
【図5】 計算が収束する際の従動軸の回転量と時間との関係曲線の算出値と、その計測値とを比較した一例を示した図である。
【図6】 最後に決定された駆動伝達部の荷重(応力)―ひずみ特性曲線と、荷重(応力)―ひずみ特性曲線初期値とを比較した一例を示す図である。
【図7】 本発明の一実施形態に係わる駆動伝達部の動的伝達特性計測方法を実行するための実験装置の基本構成の一例を示す図である。
【図8】 実験装置の機構解析モデルの概略図である。
【図9】 ばねとダッシュポットからなる粘弾性モデルの一例を示す図である。
【図10】 駆動伝達部の動的伝達特性計測方法における最適化手法の一例を説明するための図である。
【図11】 本発明が適用される駆動伝達部の荷重(応力)―ひずみ特性計測システムの一実施形態を示すブロック図である。
【符号の説明】
1,2,3,4,5,6…関係曲線、7…荷重(応力)―ひずみ特性曲線、8…荷重(応力)―ひずみ特性曲線の初期値を示す特性曲線、10,31…実験装置、11,15,21,26,32…計測装置、12,16,22,27…プーリ、13,24…モータ、14,25…駆動軸負荷、17,28,29…従動軸負荷、18…ベルト、20…機構解析モデル、23…粘弾性モデル、30…荷重(応力)―ひずみ特性計測システム、31…実験装置、32…計測装置、31a…実験装置駆動手段、32a…関係計測手段、33…入力装置、34…演算装置、34a…機構解析手段、34b…第一最適化手段、34c…第二最適化手段、35…データ処理装置、35a…間引き処理手段、36…表示装置。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and a recording medium for determining a dynamic transmission characteristic of a drive transmission system, and more specifically, to determine a load (stress) -strain characteristic of a dynamic drive transmission system having nonlinear characteristics with high accuracy. Regarding the transmission characteristic determination method and the recording medium, the load (stress) -strain characteristic analysis result of the drive transmission part obtained by the dynamic transmission characteristic determination method of the drive transmission system using the optimization method in the present invention is, for example, the drive transmission part Therefore, the present invention is suitably applied to the case where drive transmission is performed by the above-mentioned method or the design of a drive system such as a copying machine.
[0002]
[Prior art]
Tensile testing is commonly used as a standard method for measuring the mechanical properties of materials. For example, a standard test method is described in JIS-Z2241. This is to measure the tensile test characteristics in a so-called quasi-static state, and the load speed during the test is to be tested at such a speed that the dynamic effect does not become a problem. When designing a structure using the tested material, this test data was sufficient because the design was mostly based on the strength in a static state.
[0003]
However, for example, in a drive system using a viscoelastic material that changes the Young's modulus of the material with the progress of time, such as a belt, the behavior of the entire drive system is affected when the drive mechanism is quickly started up or down. In order to evaluate accurately, it is necessary to accurately evaluate the belt characteristics accompanying the change in the starting (falling) speed. This change in speed, that is, measurement of material properties by acceleration, is a dynamic state measurement, and is impossible in a normal tensile test.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the circumstances as described above. From an experimental apparatus including a drive transmission unit and including a drive shaft and a driven shaft, the relationship between the amount of rotation and time of each of the drive shaft and the driven shaft is obtained. Based on this, based on the mechanism analysis model of the experimental device, the optimization method is used to compare the experimental data of the amount of rotation of the driven shaft with the analysis data, and search for the global optimal solution and the local optimal solution. It is possible to calculate the dynamic load (stress) -strain characteristics accompanying the change in the speed of the drive transmission part in a short time and efficiently so that the design variables are repeated and the two match. The object of the present invention is to provide a dynamic transmission characteristic determination method for a drive transmission system and a recording medium.
[0005]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a dynamic transmission characteristic determination method for a drive transmission system for determining a transmission characteristic of a drive transmission system comprising a drive unit, a drive transmission unit, and a driven unit. The relationship between the amount of rotation of the driven unit and time is measured, and the relationship between the amount of rotation of the driven unit and time is approximated to the measured value of the relationship between the amount of rotation of the driven unit and time. A simulation is performed, and a load-strain or stress-strain characteristic of the drive transmission unit is determined so that a difference between a calculated value by the simulation and the measured value is equal to or less than a predetermined range. Is.
[0006]
According to a second aspect of the present invention, in the first aspect of the invention, an initial value of the load-strain or stress-strain characteristic of the drive transmission unit is set, and the rotation amount and time of the driven unit are determined using an optimum method. The load-strain or stress-strain characteristic of the drive transmission unit is calculated while comparing the measured value of the relationship with the calculated value by the simulation.
[0007]
According to a third aspect of the present invention, in the first aspect of the invention, the load-strain characteristic of the drive transmission unit is a dynamic characteristic expressed by the relationship between the load-added acceleration and the load-strain characteristic. It is.
[0008]
According to a fourth aspect of the present invention, there is provided a motor according to any one of the first to third aspects, comprising: a motor as a drive source; a drive shaft that is rotated by the motor; and a pulley attached to the drive shaft; An experimental device for rotating the driven shaft and driving the driven shaft side pulley by the belt to rotate the driven shaft, and a measuring device for measuring the relationship between the rotation amount and time of each of the driving shaft and the driven shaft of the experimental device Are used to measure the relationship between the rotation amount of the drive shaft and time, and the relationship between the rotation amount of the driven shaft and time.
[0009]
The invention according to claim 5 is the invention according to claim 4, wherein an arbitrary load (tension) is applied to the belt.
[0010]
A sixth aspect of the invention is characterized in that, in the fourth or fifth aspect of the invention, a load is applied to the drive shaft and / or the driven shaft.
[0011]
A seventh aspect of the invention is characterized in that, in the invention according to any one of the fourth to sixth aspects, an arbitrary acceleration is given to the drive shaft by controlling the motor by a motor control program.
[0012]
The invention of claim 8 is characterized in that, in the invention of any one of claims 4 to 7, the relationship between the rotation amount and time of each of the drive shaft and the driven shaft is measured in real time.
[0013]
A ninth aspect of the present invention provides the mechanism analysis model of the experimental apparatus according to any one of the first to eighth aspects of the invention, and the constructed mechanism analysis model is a rotation of the drive shaft obtained by the measurement. The relationship between the amount of rotation of the driven shaft and the time is calculated from a predefined load (stress) -strain characteristic using the relationship between the amount and time.
[0014]
According to a tenth aspect of the present invention, in the ninth aspect, the mechanism analysis model uses the load (stress) -strain characteristics of the drive transmission unit obtained from an arbitrary quasi-static tensile preliminary test as an initial value for calculation. It is characterized by being defined in advance.
[0015]
According to an eleventh aspect of the present invention, in the ninth or tenth aspect of the present invention, the mechanism analysis model is configured such that the instantaneous strain obtained from the contact angle of the drive transmission unit, the radius of the contact pulley, and the contact pulley angular velocity is a tension of the experimental device. The initial distortion of the drive transmission part by an additional mechanism is added.
[0016]
According to a twelfth aspect of the present invention, in the invention according to any one of the ninth to eleventh aspects, the mechanism analysis model is configured such that the rotation amount of the driven shaft is determined from the relationship between the rotation amount of the drive shaft and the time obtained by the measurement. When calculating the relationship between time and time for each predetermined minute time interval, the instantaneous tension of the drive transmission unit during the calculation is determined in association with the predefined load (stress) -strain characteristics of the drive transmission unit It is characterized by that.
[0017]
A thirteenth aspect of the present invention is the invention according to any one of the first to twelfth aspects, wherein the data obtained by measuring the relationship between the rotation amount of the driven shaft and time is a predetermined value in the mechanism analysis model. A thinning process is performed so as to coincide with a minute time interval.
[0018]
The invention of claim 14 is the invention according to any one of claims 1 to 13, wherein the amount of rotation of the driven shaft is determined from the initial value of the load (stress) -strain characteristic of the drive transmission unit using an optimum method. The load (stress) -strain characteristic of the drive transmission unit is calculated while comparing the measured value of the time relationship with the calculated value by the simulation.
[0019]
According to a fifteenth aspect of the invention, in the invention of the fourteenth aspect, the initial value of the load (stress) -strain characteristic of the drive transmission unit is multiplied by a shift amount coefficient, and the shift amount coefficient is sequentially changed as a design variable. By comparing the calculated value of the relationship between the rotation amount of the driven shaft and time and the measured value of the relationship between the rotation amount of the driven shaft and time and minimizing the total value of each rotation amount data difference And a first optimization step for determining the shift amount coefficient.
[0020]
The invention of claim 16 is the invention of claim 14 or 15, wherein each load data in the load (stress) -strain characteristic of the drive transmission unit multiplied by the shift amount coefficient is used as a design variable in the mechanism analysis model. It is calculated by repeatedly changing, and the calculated value of the relationship between the calculated rotation amount of the driven shaft and the time is compared with the measured value of the relationship between the rotation amount of the driven shaft and the time. It has a second optimization step for determining a load (stress) -strain characteristic of the drive transmission unit by minimizing the total value.
[0021]
The invention according to claim 17 is the invention according to any one of claims 14 to 16, wherein each load data in the load (stress) -strain characteristic of the drive transmission section multiplied by the shift amount coefficient is repeatedly changed as a design variable. In this case, a predetermined constraint condition is provided for each load data in the load (stress) -strain characteristic as the amount of strain increases.
[0022]
An eighteenth aspect of the present invention is a computer-readable recording medium recording a program for executing the dynamic transmission characteristic determining method for a drive transmission system according to any one of the first to seventeenth aspects.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a flowchart for explaining an example of a dynamic transmission characteristic analysis method for a drive transmission system according to an embodiment of the present invention. The dynamic transmission characteristic analysis method for a drive transmission system according to the present invention performs analysis according to the procedure shown in FIG. Here, a method for analyzing a load (stress) -strain characteristic generated by a load applied to the drive transmission unit will be described. First, the driving shaft is driven by a motor controlled by a motor control program using an experimental device (details will be described later) that transmits the behavior of the driving shaft to the driven shaft via a drive transmission unit such as a belt ( Steps S1 and S2) Using a measuring device provided on the drive shaft and driven shaft of the experimental apparatus, the relationship between the rotation amount of the drive shaft and time and the relationship between the rotation amount of the driven shaft and time are real-time. It measures by a measurement program (step S3, S4). Next, the relationship curve between the amount of rotation of the drive shaft and time obtained by measurement in steps S3 and S4 is input to the mechanism analysis model of the experimental device constructed in advance (step S5), and the belt defined in advance. From the initial value of load (stress) -strain characteristics (step S6), using the mechanism analysis model (step S7), analysis is performed at predetermined minute time intervals, and the relationship between the rotation amount of the driven shaft and time Is calculated (step S8).
[0024]
Further, the measurement data indicating the relationship between the amount of rotation of the driven shaft measured in step S4 and time is thinned using a thinning program according to a predetermined minute time interval in the mechanism analysis model of the experimental apparatus. Processing is performed (steps S9 and S10). Next, in steps S5 to S8, the relationship between the rotation amount of the driven shaft calculated based on the initial value of the belt load (stress) -strain characteristic and time, and the driven shaft measured in steps S9 and S10. The relationship between the amount of rotation and the time is compared and analyzed (steps S11 to S13), and it is determined whether the total value of the difference between the two data is minimized (step S14). When the value is minimum (in the case of YES), the belt load (stress) -strain characteristic at this time is determined (step S15). In step S14, if the total difference between the two data is not the minimum (in the case of NO), the process returns to step S6 based on a predetermined constraint condition to determine the load (stress) -strain characteristic of the drive transmission unit. The calculation for this is repeated (steps S16 and S6). Here, details of each step from the first optimization step to the second optimization step executed in steps S11 to S13 will be described later.
[0025]
Hereinafter, the dynamic transmission characteristic measurement method in the drive transmission unit of the present invention will be described in detail using specific analysis examples. FIG. 2 is a diagram showing an example of measurement results obtained by measuring the relationship between the amount of rotation of the drive shaft and time and the relationship between the amount of rotation of the driven shaft and time. In the figure, 1 is the amount of rotation of the drive shaft. A relation curve 2 indicates a measurement value of the relationship with time, and 2 is a relationship curve indicating a measurement value of the relationship between the amount of rotation of the driven shaft and time. In this example, the horizontal axis represents time (unit: sec), and the vertical axis represents the amount of rotation (unit: rad / sec). The relationship curve 1 is obtained by measuring the relationship between the amount of rotation of the drive shaft and the time using a measurement device provided on each of the drive shaft and the driven shaft of the experiment device using the experiment device. Is a measurement of the relationship between the amount of rotation of the driven shaft and time.
[0026]
FIG. 3 is a diagram illustrating an example of an initial value of a belt load (stress) -strain characteristic curve. FIG. 4 is a diagram illustrating an example of a relationship between a calculated value of the relationship between the rotation amount of the driven shaft and time and a measurement value thereof, and 3 is a relationship indicating a measurement value of the relationship between the rotation amount of the driven shaft and time. A curve 4 is a relationship curve showing a calculated value of the relationship between the amount of rotation of the driven shaft and time. Here, a mechanism analysis model of the experimental apparatus is constructed, and the initial value of the belt load (stress) -strain characteristic curve shown in FIG. 3 is input to the constructed mechanism analysis model. In this mechanism analysis model, the relationship between the rotation amount of the driven shaft and time is calculated based on the input initial value, and the calculated value is shown in the relationship curve 4 in FIG. Next, the relationship curve 4 calculated based on the initial value of the belt load (stress) -strain characteristic is compared with the relationship curve 3 indicating the relationship between the measured rotation amount and time, and the difference between the two data is compared. In order to minimize the total value, each design variable is repeatedly changed under a predetermined constraint condition, and the dynamic load (stress) -strain characteristic of the drive transmission unit is calculated.
[0027]
FIG. 5 is a diagram showing an example in which the calculated value of the relationship curve between the amount of rotation of the driven shaft and time when the calculation converges and the measured value are compared. In FIG. 5, 5 is the amount of rotation of the driven shaft. 6 is a relationship curve showing the calculated value of the relationship between the amount of rotation of the driven shaft and time. FIG. 6 is a diagram showing an example of comparing the load (stress) -strain characteristic curve of the drive transmission section determined last and the initial value of the load (stress) -strain characteristic curve. In FIG. The determined load (stress) -strain characteristic curve of the drive transmission unit (for example, a belt), and 8 is a characteristic curve showing the initial value of the load (stress) -strain characteristic curve of the drive transmission unit.
[0028]
According to the load (stress) -strain characteristic measuring method of the drive transmission unit in the present invention, the dynamic load (stress) -strain characteristic of the drive transmission unit can be analyzed with high accuracy.
[0029]
Here, in the dynamic transmission characteristic measuring method in the drive transmission part of the present invention, the dynamic load-strain characteristic as described above expresses the dynamic characteristic by the relationship between the acceleration applied to the load and the load-strain characteristic. It is.
[0030]
According to the load (stress) -strain characteristic measuring method of the drive transmission part in the present invention, the dynamic load (stress) -strain characteristic is expressed by measuring the relationship between the acceleration of the load and the load-strain characteristic. Can do.
[0031]
FIG. 7 is a diagram showing an example of a basic configuration of an experimental apparatus for executing the dynamic transmission characteristic measuring method of the drive transmission unit according to the embodiment of the present invention. In the figure, reference numeral 10 denotes an experimental apparatus. The apparatus 10 includes a measuring device 11 that is related to the amount of rotation of the drive shaft, pulleys 12 and 16, a motor 13, a drive shaft load 14, a measuring device 15 that is related to the amount of rotation of the driven shaft and time, a driven shaft load 17, and a belt 18. Have In the present embodiment, a belt will be described as a representative example of the drive transmission unit. The experimental apparatus 10 includes a motor 13 and a drive shaft that is rotated by the motor 13. A pulley 12 is attached to the drive shaft, a belt 18 is rotated around the pulley 12, and the driven shaft is driven by the belt 18. The driven shaft is rotated. Furthermore, this experimental apparatus 10 is provided with measuring devices 11 and 15 that can measure the relationship between the rotation amount and time of each of the drive shaft and the driven shaft, and the relationship between the rotation amount of the drive shaft and time and the rotation amount of the driven shaft. And the relationship between time and time. As a specific example of this measuring apparatus, for example, an encoder that can measure the relationship between the rotation amount and time can be suitably used.
[0032]
According to the load (stress) -strain characteristic measurement method of the drive transmission unit in the present invention, an experimental apparatus including the drive transmission unit to be analyzed is constructed, and the rotation amounts of the drive shaft and the driven shaft as the bases of the analysis are calculated. The relationship with time can be measured by a measuring device.
[0033]
Moreover, the experimental apparatus 10 for executing the dynamic transmission characteristic measuring method in the drive transmission unit of the present invention has a mechanism for adding a load (tension) to apply an arbitrary load to the drive transmission unit (belt). It is. For example, the entire driven side shown in FIG. 7 is placed on a movable stage, a tension measuring device is provided on the movable stage, the position of the movable stage is adjusted until a predetermined tension is reached, and finally the movable stage is fixed.
[0034]
According to the load (stress) -strain characteristic measuring method of the drive transmission unit according to the present invention, by applying an arbitrary load (tension) to the drive transmission unit to be analyzed, the load (stress) -strain under the load Characteristics can be analyzed.
[0035]
Further, the experimental apparatus 10 of the present invention has a mechanism for applying a load to the drive shaft and the driven shaft in order to analyze the belt load (stress) -strain characteristic due to the load variation of the shaft. As a specific example of a mechanism for applying such a load, for example, as shown in FIG. 7, an arbitrary flywheel may be added to the drive shaft and the driven shaft to change the load on the shaft.
[0036]
According to the load (stress) -strain characteristic measuring method of the drive transmission unit according to the present invention, by applying an arbitrary load to each of the drive shaft and the driven shaft of the experimental apparatus, the load (stress) -strain characteristics under the load. Can be analyzed.
[0037]
In addition, the experimental apparatus 10 of the present invention applies an arbitrary acceleration to the drive shaft by the motor control program using the motor 13 as a drive source in order to analyze the load (stress) -strain characteristics of the belt 18 due to the acceleration of the drive shaft. Is. As a specific example of this drive source, for example, when a 5-phase stepping motor is used and the motor acceleration is set to 10 ms / kpps by the motor control program, the rotational speed characteristics of the drive shaft are shown in FIG. The relationship curve 1 is as follows.
[0038]
The load (stress) of the drive transmission unit according to the present invention-strain characteristic measurement method, by applying an arbitrary acceleration to the drive shaft of the experimental device by a motor control program, the load (stress) under the acceleration- Strain characteristics can be analyzed.
[0039]
The measuring devices 11 and 15 according to the present invention are generated according to the CPU follow-up speed of a PC (personal computer) provided for measurement during measurement of the relationship between the rotation amount and time of each of the drive shaft and the driven shaft. In order to avoid the data drop phenomenon, the relationship between the rotation amount and time of each of the drive shaft and the driven shaft is measured in real time. For example, a DSP board capable of real-time measurement is provided on the measurement PC.
[0040]
According to the load (stress) -strain characteristic measurement method of the drive transmission unit according to the present invention, the data drop phenomenon that occurs according to the CPU follow-up speed of the measurement PC during the measurement is avoided, and the drive shaft and the driven shaft rotate. The relationship between quantity and time can be measured accurately and in real time.
[0041]
Here, using the relationship between the amount of rotation of the drive shaft and the time obtained by measurement with the above-described measurement device 11 using the mechanism analysis model in the dynamic transmission characteristic measurement method of the drive transmission unit, a temporary belt load ( A method for calculating the relationship between the rotation amount of the driven shaft and time from the stress) -strain characteristic will be described. First, in contrast to the experimental apparatus 10, a mechanism analysis model of the experimental apparatus 10 is constructed based on the equation of motion of the following equation (1).
[J] [dθ 2 / D 2 t] + [C] [dθ / dt] + [k] [θ] = [T] (1)
[J]: Inertia moment matrix including each moment of inertia
[K]: Spring stiffness matrix including belt stiffness coefficient
[C]: Spring viscosity matrix including belt viscosity coefficient
[Θ]: Rotation angle vector including rotation angle of drive shaft and driven shaft
[T]: Torque vector
[0042]
FIG. 8 is a schematic diagram illustrating an example of a mechanism analysis model of the experimental apparatus 10, in which 20 is a mechanism analysis model, and the mechanism analysis model 20 includes a measurement device 21 for a rotational relationship between the rotation amount of a drive shaft and a time, pulley 22, 27, viscoelastic model 23, motor 24, drive shaft load 25, measuring device 26 relating to the amount of rotation of the driven shaft and time, and driven shaft loads 28 and 29. Here, a measurement value indicating the relationship between the amount of rotation of the drive shaft and time obtained by measurement with the experimental apparatus 10 is input to the mechanism analysis model 20, and a belt load (stress defined in advance) is determined by the mechanism analysis model 20. )-Calculate the relationship between the amount of rotation of the driven shaft and time based on the strain characteristics.
[0043]
According to the load (stress) -strain characteristic measurement method of the drive transmission unit according to the present invention, based on the relational data between the rotation amount of the drive shaft and the time obtained by measurement with an experimental apparatus, a mechanism analysis model is used. The relationship between the amount of rotation of the driven shaft and time can be calculated efficiently.
[0044]
FIG. 9 is a diagram illustrating an example of a viscoelastic model 23 including a spring and a dashpot. The mechanism analysis model 20 defines in advance the load (stress) -strain characteristic of the drive transmission unit obtained from an arbitrary tensile test as an initial value of the calculation. In the mechanism analysis model 20, in order to express the behavior of a viscoelastic material such as a belt as an elastic body and a viscous body, it is expressed by a viscoelastic model 23 using a spring and a dashpot as shown in FIG. The initial value of the belt stiffness coefficient matrix [k] in the equation (1) is defined using the belt load-strain characteristic curve obtained from the arbitrary tensile test shown in FIG.
[0045]
According to the load (stress) -strain characteristic measuring method of the drive transmission unit according to the present invention, the initial state of analysis can be easily set.
[0046]
Here, the mechanism analysis model 20 is obtained by the belt tension applying mechanism of the experimental apparatus 10 to the belt instantaneous strain obtained from the radius of the contact pulley of the belt 18 and the contact pulley angular velocity by the calculation method shown in the following formula (2). In addition to the initial strain of the belt, the instantaneous strain of the belt is calculated.
Ε = ε 0 + (∫ω 1 r 1 dt −∫ω 2 r 2 dt) / l Formula (2)
Ε: Belt instantaneous strain
ε 0 : Belt initial strain
ω 1 : Rotational angular velocity of drive shaft
r 1 : Drive shaft pulley pitch circle radius
ω 2 : Rotational angular velocity of driven shaft
r 2 : Driven shaft pulley pitch circle radius
l: Belt length between the belt, drive shaft pulley and driven shaft pulley contacts
[0047]
According to the load (stress) -strain characteristic measuring method of the drive transmission unit according to the present invention, the instantaneous strain of the drive transmission unit can be calculated in the mechanism analysis model.
[0048]
The mechanism analysis model 20 calculates the relationship between the amount of rotation of the driven shaft and time from the relationship between the amount of rotation of the drive shaft and time obtained by measurement with the experimental apparatus 10 at intervals of a predetermined analysis minute time. In the course of the calculation, the instantaneous strain calculated by the above equation (2) is used to associate the instantaneous tension of the drive transmission unit with the load-strain characteristic of the drive transmission unit determined at the moment of the calculation. To decide. At this time, the belt tension is set to be zero when the belt is slack.
[0049]
According to the load (stress) -strain characteristic measuring method of the drive transmission unit according to the present invention, the instantaneous tension of the drive transmission unit can be calculated in the mechanism analysis model.
[0050]
The dynamic transmission characteristic measuring method in the drive transmission unit of the present invention is to obtain a difference between the rotation amount at the same time in the measured value according to the relationship curve between the rotation amount of the driven shaft and time and the calculated value thereof. The data obtained by measuring the relationship between the amount of rotation of the driven shaft and time is subjected to a thinning process so as to coincide with a predetermined analysis minute time interval analyzed by the mechanism analysis model 20. Is. First, interpolation processing is performed on the data obtained by measuring the relationship between the amount of rotation of the driven shaft and time, a relationship curve between the amount of rotation of the driven shaft and time is constructed, and then the interpolated relationship curve Then, data is extracted at equal time intervals so as to coincide with a predetermined analysis minute time interval analyzed by the mechanism analysis model 20, and data for difference calculation is configured.
[0051]
According to the load (stress) -strain characteristic measuring method of the drive transmission unit according to the present invention, the measured value from the relationship curve between the amount of rotation of the driven shaft and time, and the calculated value, the amount of rotation at the same time in both In order to obtain the difference, the relation data between the rotation amount of the driven shaft and time obtained by measurement can be thinned out.
[0052]
Further, the dynamic transmission characteristic measuring method in the drive transmission part of the present invention is based on the initial value of the belt load (stress) -strain characteristic, the measured value of the relationship between the rotation amount of the driven shaft and time, and the calculated value thereof. The load (stress) -strain characteristic in the drive transmission unit is calculated while comparing the above and the like using an optimum method as described later.
[0053]
According to the load (stress) -strain characteristic measuring method of the drive transmission unit according to the present invention, the dynamic load (stress) -strain characteristic of the drive transmission unit can be calculated with high accuracy using an optimum method.
[0054]
FIG. 10 is a diagram for explaining an example of an optimization method in the dynamic transmission characteristic measurement method of the drive transmission unit. First, analysis is performed according to the procedure shown in the first optimization step shown in FIG. In the present embodiment, the initial value of the belt load (stress) -strain characteristic is multiplied by a shift amount coefficient, the shift amount coefficient is sequentially changed as a design variable, and the rotation amount of the driven shaft calculated by the mechanism analysis model 20 is calculated. First optimization step for determining the shift amount coefficient by comparing the relationship between time and the relationship between the measured rotation amount of the driven shaft and time and minimizing the total value of each rotation amount data difference Is described below.
In the first optimization step, first, the initial value of the belt load (stress) -strain characteristic is multiplied by a shift amount coefficient, and the shift amount coefficient is set as a single factor experimental variable. The relationship between the calculated rotation amount of the driven shaft and time (relation curve 4 shown in FIG. 4) and the measured rotation amount of the driven shaft and time The relationship (the relationship curve 3 shown in FIG. 4) is compared, and the shift amount coefficient is determined so that the total value of the rotation amount data differences is minimized. Next, the determined shift amount coefficient is brought into the calculation of the second optimization step described later.
[0055]
According to the load (stress) -strain characteristic measuring method of the drive transmission unit according to the present invention, the global optimum solution can be searched for by determining the shift amount coefficient.
[0056]
Further, the analysis is performed according to the procedure shown in the second optimization step of FIG. Using the mechanism analysis model 20, each load data in the belt load (stress) -strain characteristic multiplied by the shift amount coefficient is repeatedly changed as a design variable, and the relationship between the calculated amount of rotation of the driven shaft and time is calculated. And the relationship between the measured rotation amount and time, and determine the load (stress) -strain characteristics of the drive transmission unit so that the total value of each rotation amount data difference is minimized. The conversion step will be described below.
In the second optimization step, first, the load value (x) in the belt load (stress) -strain characteristic multiplied by the shift amount coefficient, and the rotation amount and time of the driven shaft calculated from the mechanism analysis model 20 are calculated. The gradient of the total value (y) of each rotation amount data difference in the relationship and the relationship between the measured rotation amount and time is calculated by the following equation (3), thereby determining an appropriate search direction.
[0057]
[Formula 3]
Figure 0003871619
[0058]
Next, along the determined search direction, a new design variable is set, and the calculated rotation amount of the driven shaft and the relationship between the rotation amount and each rotation amount data difference in the relationship between the measured rotation amount and the time. The above calculation is repeated until the total value of is minimized.
[0059]
According to the load (stress) -strain characteristic measuring method of the drive transmission unit according to the present invention, a local optimum solution can be searched.
[0060]
A determination method for determining load (stress) -strain characteristics based on the dynamic transmission characteristic measurement method in the drive transmission unit of the present invention will be described. This is because when each load data in the belt load (stress) -strain characteristics multiplied by the shift amount coefficient is repeatedly changed as a design variable, each load in the load (stress) -strain characteristics increases as the strain amount increases. In the middle of performing the calculation to determine the load (stress) -strain characteristics of the drive transmission unit, always check whether the above constraint conditions are satisfied and satisfy the constraint conditions Thus, the calculation for determining the load (stress) -strain characteristics of the drive transmission unit is repeated.
[0061]
According to the load (stress) -strain characteristic measurement method of the drive transmission unit according to the present invention, while analyzing the load (stress) -strain characteristic in the drive transmission unit, the shape of the load (stress) -strain curve is maintained. Analysis can proceed.
[0062]
Next, a dynamic transmission characteristic measurement system for a drive transmission unit for obtaining a load (stress) -strain characteristic of the drive transmission unit will be described below. FIG. 11 is a block diagram showing an embodiment of a load (stress) -strain characteristic measurement system of a drive transmission unit to which the present invention is applied. In the figure, 30 is a load (stress) -strain characteristic measurement of the drive transmission unit. In the system, the load (stress) -strain characteristic measurement system 30 includes an experimental device 31, a measurement device 32, an input device 33, a calculation device 34, a data processing device 35, and a display device 36. Here, the experimental device 31 has an experimental device driving means 31a, the measuring device 32 has a relationship measuring means 32a between the rotation amount and time of the driving shaft and the driven shaft, and the arithmetic device 34 has a mechanism analyzing means 34a, a second one. The data processor 35 includes a first optimization unit 34b, a second optimization unit 34c, and a belt load (stress) -strain characteristic determination unit (not shown), and the data processor 35 thins out a relationship curve between the rotation amount of the driven shaft and time. It has processing means 35a. Each of these means is incorporated in each device in advance. The experimental apparatus 31 includes a motor, a drive shaft rotated by the motor, a pulley attached to the drive shaft, a belt rotated around the pulley, and a driven shaft driven by the belt. The basic configuration of the experimental apparatus 31 is the same as that of the experimental apparatus 10 shown in FIG. The measuring device 32 is configured by, for example, an encoder that measures the relationship between the amount of rotation of each axis and time. The arithmetic device 34 is configured by, for example, an ordinary PC.
[0063]
In the load (stress) -strain characteristic measuring system 30 according to the present invention, first, the experimental device driving means 31 a drives the experimental device 31 under predetermined experimental conditions, and then the relation measuring means 32 a is used for the experimental device 31. The relationship between the rotation amount and time of each of the drive shaft and the driven shaft is measured. Next, the input device 33 calculates the relationship between the rotation amount of the drive shaft and time obtained by the measurement device 32 and the arithmetic device 34. The mechanism analysis means 34a calculates the relationship between the rotation amount of the driven shaft and time based on the belt load (stress) -strain characteristic defined in advance, and then the belt load (stress) -strain characteristic. The determination means (not shown) uses the mechanism analysis model 20 to multiply the initial value of the belt load (stress) -strain characteristic by a shift amount coefficient, and sequentially changes the shift amount coefficient as a single factor experimental variable. Calculated subordinate The relationship between the amount of rotation of the shaft and time and the relationship between the measured amount of rotation and time were compared, and the shift amount coefficient was calculated so as to minimize the total value of each rotation amount data difference. The shift amount coefficient is brought into the calculation of the second optimization means 34c.
[0064]
Next, the second optimization means 34c multiplies the initial value of the belt load (stress) -strain characteristic by the shift amount coefficient, and uses each load data in the relationship curve of the belt load (stress) -strain characteristic as a design variable. By repeatedly changing, comparing the calculated relationship between the rotation amount of the driven shaft and time and the relationship between the measured rotation amount and time, and minimizing the total value of each data difference, The load (stress) -strain characteristic of the drive transmission unit is determined, and finally, the load (stress) -strain characteristic of the belt determined by the display device 36 is displayed.
[0065]
According to the load (stress) -strain characteristic measurement system of the drive transmission unit according to the present invention, the dynamic load (stress) -strain characteristic of the drive transmission unit can be analyzed with high accuracy.
[0066]
Further, in the dynamic transmission characteristic measurement system of the drive transmission unit, the experimental apparatus 31 includes a motor and a drive shaft that is rotated by the motor, and a pulley is attached to the drive shaft, and the drive transmission unit is attached to the pulley. Then, the belt is rotated and the driven shaft is driven by this belt. At this time, the experimental device driving means 31 a is for driving the experimental device 31.
[0067]
According to the load (stress) -strain characteristic measurement system of the drive transmission unit according to the present invention, the experimental device can be driven using the experimental device driving means.
[0068]
Further, in the dynamic transmission characteristic measurement system of the drive transmission unit, the experimental apparatus 31 includes a motor and a drive shaft that is rotated by the motor, and a pulley is attached to the drive shaft, and the drive transmission unit is attached to the pulley. Then, the belt is rotated and the driven shaft is driven by this belt. At this time, the relationship measuring unit 32a measures the relationship between the rotation amount of the drive shaft and time in the experimental apparatus 31 and the relationship between the rotation amount of the driven shaft and time.
[0069]
According to the load (stress) -strain characteristic measurement system of the drive transmission unit according to the present invention, the experimental device is driven using the experimental device driving means, and the drive shaft and the driven shaft are respectively measured using the relationship measuring means. The relationship between the amount of rotation and time can be measured.
[0070]
Further, in the dynamic transmission characteristic measurement system of the drive transmission unit, the mechanism analysis model 20 of the experimental device 31 uses the relationship between the rotation amount of the drive shaft and time obtained by measurement by the relationship measurement unit 32a in advance. Based on the defined belt load (stress) -strain characteristics, the mechanism analysis means 34a calculates the relationship between the rotation amount of the driven shaft and time.
[0071]
According to the load (stress) -strain characteristic measurement system of the drive transmission unit according to the present invention, the relationship between the amount of rotation of the driven shaft and time is calculated at a predetermined analysis minute time interval using the mechanism analysis means. Can do.
[0072]
Further, the dynamic transmission characteristic measurement system of the drive transmission unit uses the mechanism analysis model 20 of the experimental apparatus 31 for data indicating the relationship between the amount of rotation of the driven shaft and time obtained by measurement by the relationship measuring unit 32a. Thinning processing is performed by the thinning processing means 35a so as to coincide with a predetermined minute time interval.
[0073]
According to the load (stress) -strain characteristic measurement system of the drive transmission unit according to the present invention, the difference between the measured value and the calculated value in the relationship curve between the rotation amount of the driven shaft and the time at the same time by the thinning processing means. Can take.
[0074]
The dynamic transmission characteristic measurement system of the drive transmission unit uses the mechanism analysis model 20 to multiply the initial value of the belt load (stress) -strain characteristic by the shift amount coefficient, and sequentially change the shift amount coefficient as a design variable. And comparing the calculated relationship between the rotation amount of the driven shaft and time with the relationship between the measured rotation amount and time, and minimizing the total value of each rotation amount data difference, thereby shifting the above-mentioned shift. The first optimization means 34b of the arithmetic unit 34 for determining the quantity coefficient, and the load data in the belt load (stress) -strain characteristics calculated by the first optimization means 34b are repeatedly changed as design variables to calculate. By comparing the relationship between the measured rotation amount of the driven shaft and time and the relationship between the measured rotation amount and time and minimizing the total value of each rotation amount data difference, the load of the drive transmission unit is reduced. (stress - by a second optimization means 34c for determining a distortion characteristic, the load of the drive transmitting portion (stress) - it is what determines the distortion characteristics.
[0075]
According to the load (stress) -strain characteristic measurement system of the drive transmission part according to the present invention, the load (stress) -strain characteristic of the drive transmission part due to the load is optimized by the first optimization means and the second optimization means. Can be
[0076]
As described above, the steps of each embodiment related to the method for determining the dynamic transmission characteristic of the drive transmission system according to the present invention have been mainly described. However, the present invention is a dynamic transmission characteristic determination system as described above as a system. It can also take a form. Further, similarly to the dynamic transfer characteristic determination method having each step, a form as a program for causing a computer to execute the dynamic transfer characteristic determination method or causing the computer to function as a dynamic transfer characteristic determination system Alternatively, a form as a computer-readable recording medium in which the program is recorded is also possible.
[0077]
An embodiment of a recording medium storing a program and data for realizing the function of dynamic transfer characteristic determination according to the present invention will be described. Specifically, a CD-ROM, a magneto-optical disk, a DVD-ROM, an FD, a flash memory, a memory card, a memory stick, and various other ROMs and RAMs can be assumed as the recording medium. By causing a computer to execute the function of the method of each embodiment in the present invention or the function of the system of each embodiment and recording and distributing a program for realizing the function of dynamic transfer characteristic determination, the function Make it easier to implement. Then, the recording medium as described above is mounted on an information processing apparatus such as a computer and the program is read by the information processing apparatus, or the program is stored in a storage medium provided in the information processing apparatus. By reading, it is possible to execute the function of dynamic transfer characteristic determination related to the present invention.
[0078]
【The invention's effect】
According to the present invention, the relationship between the amount of rotation of each of the drive shaft and the driven shaft and the time is measured from the experimental device including the drive transmission unit and including the drive shaft and the driven shaft, and based on this, the mechanism of the experimental device is measured. Depending on the analysis model, the optimization method is used to compare the experimental data of the amount of rotation of the driven shaft with the analysis data, and it is divided into the search for the global optimal solution and the search for the local optimal solution, and each design variable is repeated. Thus, the dynamic load (stress) -strain characteristic associated with the change in the speed of the drive transmission unit can be calculated efficiently in a short time so that they match.
[Brief description of the drawings]
FIG. 1 is a flowchart for explaining an example of a dynamic transmission characteristic analysis method for a drive transmission system according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating an example of measurement results obtained by measuring a relationship between a rotation amount of a drive shaft and time and a relationship between a rotation amount of a driven shaft and time.
FIG. 3 is a diagram illustrating an example of an initial value of a belt load (stress) -strain characteristic curve;
FIG. 4 is a diagram illustrating an example of a relationship between a calculated value of a relationship between a rotation amount of a driven shaft and time and a measured value thereof.
FIG. 5 is a diagram showing an example in which a calculated value of a relationship curve between a rotation amount of a driven shaft and time when calculation converges and a measured value thereof are compared.
FIG. 6 is a diagram showing an example in which a load (stress) -strain characteristic curve of a drive transmission unit determined last and a load (stress) -strain characteristic curve initial value are compared.
FIG. 7 is a diagram illustrating an example of a basic configuration of an experimental apparatus for executing a dynamic transmission characteristic measurement method for a drive transmission unit according to an embodiment of the present invention.
FIG. 8 is a schematic diagram of a mechanism analysis model of an experimental apparatus.
FIG. 9 is a diagram illustrating an example of a viscoelastic model including a spring and a dashpot.
FIG. 10 is a diagram for explaining an example of an optimization method in the dynamic transmission characteristic measurement method of the drive transmission unit.
FIG. 11 is a block diagram showing an embodiment of a load (stress) -strain characteristic measurement system of a drive transmission unit to which the present invention is applied.
[Explanation of symbols]
1, 2, 3, 4, 5, 6... Relational curve, 7... Load (stress) -strain characteristic curve, 8... Load (stress)-Strain characteristic curve showing initial values, 10, 31. 11, 15, 21, 26, 32 ... measuring device, 12, 16, 22, 27 ... pulley, 13, 24 ... motor, 14, 25 ... drive shaft load, 17, 28, 29 ... driven shaft load, 18 ... Belt 20, mechanism analysis model 23, viscoelastic model 30, load (stress) -strain characteristic measuring system 31, experimental device 32, measuring device 31 a, experimental device driving means 32 a, relationship measuring means 33 ... input device, 34 ... arithmetic unit, 34a ... mechanism analysis means, 34b ... first optimization means, 34c ... second optimization means, 35 ... data processing device, 35a ... thinning processing means, 36 ... display device.

Claims (18)

駆動部と駆動伝達部と従動部とからなる駆動伝達系の伝達特性を決定するための駆動伝達系の動的伝達特性決定方法において、前記駆動部の回転量と時間の関係を計測するとともに、前記従動部の回転量と時間の関係を計測し、該従動部の回転量と時間の関係の計測値に近づくように該従動部の回転量と時間の関係式をシミュレーションし、該シミュレーションによる計算値と、前記計測値との差が予め定められた範囲以下になるように、前記駆動伝達部の荷重―ひずみ、または応力―ひずみ特性を決定することを特徴とする駆動伝達系の動的伝達特性決定方法。In the dynamic transmission characteristic determination method of the drive transmission system for determining the transmission characteristic of the drive transmission system composed of the drive unit, the drive transmission unit and the driven unit, while measuring the relationship between the rotation amount of the drive unit and time, The relationship between the amount of rotation of the driven unit and time is measured, and the relational expression of the amount of rotation of the driven unit and time is simulated so as to approach the measured value of the relationship between the amount of rotation of the driven unit and time. The load-strain or stress-strain characteristics of the drive transmission unit are determined so that the difference between the measured value and the measured value is not more than a predetermined range. Characterization method. 前記駆動伝達部の荷重―ひずみ、または応力―ひずみ特性の初期値を設定し、最適手法を用いて、前記従動部の回転量と時間の関係の計測値と、前記シミュレーションによる計算値とを比較しながら、前記駆動伝達部の荷重―ひずみ、または応力―ひずみ特性を算出することを特徴とする請求項1に記載の駆動伝達系の動的伝達特性決定方法。Set the initial value of the load-strain or stress-strain characteristics of the drive transmission unit, and compare the measured value of the relationship between the amount of rotation and the time of the driven unit and the calculated value by the simulation using an optimal method. 2. The method for determining dynamic transmission characteristics of a drive transmission system according to claim 1, wherein the load-strain or stress-strain characteristics of the drive transmission unit are calculated. 前記駆動伝達部の荷重―ひずみ特性は、荷重付加の加速度と荷重―ひずみ特性の関係によって、動的特性を表現することを特徴とする請求項1に記載の駆動伝達系の動的伝達特性決定方法。2. The dynamic transmission characteristic determination of the drive transmission system according to claim 1, wherein the load-strain characteristic of the drive transmission unit expresses a dynamic characteristic by a relationship between acceleration of load application and load-strain characteristic. Method. 駆動源とするモータと、該モータによって回転する駆動軸とを備え、該駆動軸にプーリを取り付けた上、該プーリにベルトを回し、該ベルトによって従動軸側プーリを駆動させて、該従動軸を回すための実験装置と、該実験装置の駆動軸と従動軸それぞれの回転量と時間の関係を計測する計測装置とを用いて、前記駆動軸の回転量と時間の関係と、前記従動軸の回転量と時間の関係とを計測することを特徴とする請求項1ないし3のいずれか1に記載の駆動伝達系の動的伝達特性決定方法。A motor as a drive source; and a drive shaft that is rotated by the motor. A pulley is attached to the drive shaft, a belt is rotated around the pulley, and the driven shaft side pulley is driven by the belt to drive the driven shaft. And a measurement device that measures the relationship between the rotation amount and time of each of the drive shaft and the driven shaft of the experimental device, and the relationship between the rotation amount of the drive shaft and time, and the driven shaft. The dynamic transmission characteristic determination method for a drive transmission system according to any one of claims 1 to 3, characterized in that a relationship between a rotation amount and a time is measured. 前記ベルトに任意の負荷(テンション)を付加することを特徴とする請求項4に記載の駆動伝達系の動的伝達特性決定方法。The dynamic transmission characteristic determination method for the drive transmission system according to claim 4, wherein an arbitrary load (tension) is applied to the belt. 前記駆動軸及び/又は従動軸に負荷を加えることを特徴とする請求項4または5に記載の駆動伝達系の動的伝達特性決定方法。6. The dynamic transmission characteristic determination method for a drive transmission system according to claim 4 or 5, wherein a load is applied to the drive shaft and / or the driven shaft. 前記モータをモータ制御プログラムにより制御することにより、前記駆動軸に任意の加速度を与えることを特徴とする請求項4ないし6のいずれか1に記載の駆動伝達系の動的伝達特性決定方法。7. The method for determining a dynamic transmission characteristic of a drive transmission system according to claim 4, wherein an arbitrary acceleration is applied to the drive shaft by controlling the motor by a motor control program. 前記駆動軸と従動軸それぞれの回転量と時間の関係をリアルタイムで計測することを特徴とする請求項4ないし7のいずれか1に記載の駆動伝達系の動的伝達特性決定方法。The dynamic transmission characteristic determination method for a drive transmission system according to any one of claims 4 to 7, wherein a relationship between a rotation amount and time of each of the drive shaft and the driven shaft is measured in real time. 前記実験装置の機構解析モデルを構築し、該構築した機構解析モデルは、前記計測して得られた駆動軸の回転量と時間の関係を用いて、予め定義した荷重(応力)―ひずみ特性から、前記従動軸の回転量と時間の関係を算出することを特徴とする請求項1ないし8のいずれか1に記載の駆動伝達系の動的伝達特性決定方法。A mechanism analysis model of the experimental apparatus is constructed, and the constructed mechanism analysis model is obtained from a load (stress) -strain characteristic defined in advance using the relationship between the rotation amount of the drive shaft obtained by the measurement and time. 9. The method for determining a dynamic transmission characteristic of a drive transmission system according to claim 1, wherein a relationship between a rotation amount of the driven shaft and time is calculated. 前記機構解析モデルは、任意の準静的引張予備試験から得られた前記駆動伝達部の荷重(応力)―ひずみ特性を計算の初期値として予め定義することを特徴とする請求項9に記載の駆動伝達系の動的伝達特性決定方法。10. The mechanism analysis model according to claim 9, wherein a load (stress) -strain characteristic of the drive transmission unit obtained from an arbitrary quasi-static tensile preliminary test is defined in advance as an initial value of calculation. A method for determining the dynamic transmission characteristics of a drive transmission system. 前記機構解析モデルは、前記駆動伝達部の接触角、接触プーリの半径および接触プーリ角速度から求められる瞬間ひずみに、前記実験装置のテンション付加機構による駆動伝達部の初期ひずみを加えることを特徴とする請求項9または10に記載の駆動伝達系の動的伝達特性決定方法。The mechanism analysis model is characterized by adding an initial strain of a drive transmission unit by a tension applying mechanism of the experimental apparatus to an instantaneous strain obtained from a contact angle of the drive transmission unit, a radius of a contact pulley, and a contact pulley angular velocity. The method for determining dynamic transmission characteristics of a drive transmission system according to claim 9 or 10. 前記機構解析モデルは、前記計測して得られた駆動軸の回転量と時間の関係から、前記従動軸の回転量と時間の関係を所定の微小時間間隔ごとに算出する際に、その計算途中における前記駆動伝達部の瞬間張力を、予め定義した駆動伝達部の荷重(応力)―ひずみ特性に対応付けて決定することを特徴とする請求項9ないし11のいずれか1に記載の駆動伝達系の動的伝達特性決定方法。The mechanism analysis model calculates the relationship between the amount of rotation of the driven shaft and time from the relationship between the amount of rotation of the drive shaft obtained by the measurement and time, and calculates the relationship between the rotation amount and time for each predetermined minute time interval. 12. The drive transmission system according to claim 9, wherein an instantaneous tension of the drive transmission unit is determined in association with a predefined load (stress) -strain characteristic of the drive transmission unit. Of determining dynamic transfer characteristics 前記従動軸の回転量と時間との関係を計測して得られたデータに対して、前記機構解析モデルにおける所定の微少時間間隔と一致するように、間引き処理を施すことを特徴とする請求項1ないし12のいずれか1に記載の駆動伝達系の動的伝達特性決定方法。The thinning process is performed on the data obtained by measuring the relationship between the rotation amount of the driven shaft and time so as to coincide with a predetermined minute time interval in the mechanism analysis model. 13. A method for determining a dynamic transmission characteristic of a drive transmission system according to any one of 1 to 12. 前記駆動伝達部の荷重(応力)―ひずみ特性の初期値から、最適手法を用いて、前記従動軸の回転量と時間の関係の計測値と、前記シミュレーションによる計算値とを比較しながら、前記駆動伝達部の荷重(応力)―ひずみ特性を算出することを特徴とする請求項1ないし13のいずれか1に記載の駆動伝達系の動的伝達特性決定方法。From the initial value of the load (stress) -strain characteristic of the drive transmission unit, using an optimal method, comparing the measured value of the relationship between the rotation amount of the driven shaft and time and the calculated value by the simulation, 14. The method for determining a dynamic transmission characteristic of a drive transmission system according to claim 1, wherein a load (stress) -strain characteristic of the drive transmission unit is calculated. 前記駆動伝達部の荷重(応力)―ひずみ特性の初期値にシフト量係数を乗じ、該シフト量係数を設計変数として順次変化させて計算し、該計算した従動軸の回転量と時間の関係の計算値と、該従動軸の回転量と時間の関係の計測値とを比較し、各回転量データ差分の合計値を最小にすることによって、前記シフト量係数を決定する第一最適化ステップを有することを特徴とする請求項14に記載の駆動伝達系の動的伝達特性決定方法。The initial value of the load (stress) -strain characteristic of the drive transmission unit is multiplied by a shift amount coefficient, the shift amount coefficient is sequentially changed as a design variable, and the calculated relationship between the rotation amount of the driven shaft and time A first optimization step of determining the shift amount coefficient by comparing the calculated value with a measured value of the relationship between the rotation amount of the driven shaft and time and minimizing the total value of each rotation amount data difference. 15. The method for determining a dynamic transmission characteristic of a drive transmission system according to claim 14, further comprising: 前記機構解析モデルを用いて、前記シフト量係数を乗じた駆動伝達部の荷重(応力)―ひずみ特性における各荷重データを設計変数として反復して変化させて計算し、該計算した従動軸の回転量と時間の関係の計算値と、該従動軸の回転量と時間の関係の計測値とを比較し、各回転量データ差分の合計値を最小にすることによって、前記駆動伝達部の荷重(応力)―ひずみ特性を決定する第二最適化ステップを有することを特徴とする請求項14または15に記載の駆動伝達系の動的伝達特性決定方法。Using the mechanism analysis model, each load data in the load (stress) -strain characteristics of the drive transmission unit multiplied by the shift amount coefficient is repeatedly calculated as a design variable, and the calculated rotation of the driven shaft is calculated. By comparing the calculated value of the relationship between the amount and time with the measured value of the relationship between the rotation amount of the driven shaft and the time and minimizing the total value of each rotation amount data difference, the load of the drive transmission unit ( 16. The method for determining dynamic transmission characteristics of a drive transmission system according to claim 14 or 15, further comprising a second optimization step of determining (stress) -strain characteristics. 前記シフト量係数を乗じた駆動伝達部の荷重(応力)―ひずみ特性における各荷重データを設計変数として反復して変化させる際、前記荷重(応力)―ひずみ特性における各荷重データに対し、ひずみ量の増加に伴い、所定の制約条件を設けることを特徴とする請求項14ないし16のいずれか1に記載の駆動伝達系の動的伝達特性決定方法。When each load data in the load (stress) -strain characteristic of the drive transmission section multiplied by the shift amount coefficient is repeatedly changed as a design variable, the strain amount is calculated for each load data in the load (stress) -strain characteristic. The method for determining a dynamic transmission characteristic of a drive transmission system according to claim 14, wherein a predetermined constraint is provided as the number of the transmission increases. 請求項1ないし17のいずれか1に記載の駆動伝達系の動的伝達特性決定方法を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体。A computer-readable recording medium having recorded thereon a program for executing the method for determining a dynamic transmission characteristic of a drive transmission system according to any one of claims 1 to 17.
JP2002189242A 2002-06-28 2002-06-28 Method for determining dynamic transmission characteristics of drive transmission system and recording medium Expired - Fee Related JP3871619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002189242A JP3871619B2 (en) 2002-06-28 2002-06-28 Method for determining dynamic transmission characteristics of drive transmission system and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002189242A JP3871619B2 (en) 2002-06-28 2002-06-28 Method for determining dynamic transmission characteristics of drive transmission system and recording medium

Publications (2)

Publication Number Publication Date
JP2004028948A JP2004028948A (en) 2004-01-29
JP3871619B2 true JP3871619B2 (en) 2007-01-24

Family

ID=31183720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002189242A Expired - Fee Related JP3871619B2 (en) 2002-06-28 2002-06-28 Method for determining dynamic transmission characteristics of drive transmission system and recording medium

Country Status (1)

Country Link
JP (1) JP3871619B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004039738A1 (en) * 2004-08-17 2006-02-23 Zf Friedrichshafen Ag Dynamic gear state change detecting method for use in motor vehicle, involves calculating state variables of gear from speed signals for diagnostics purpose, and evaluating measurement signals to simulate physical system performance of gear
US10222769B2 (en) * 2012-10-12 2019-03-05 Emerson Process Management Power & Water Solutions, Inc. Method for determining and tuning process characteristic parameters using a simulation system
CN110032087B (en) * 2019-04-19 2022-09-09 太原科技大学 Continuous-mining equipment crawler belt running system dynamic load estimation method based on similarity theory
CN115753455B (en) * 2022-11-03 2024-02-13 上海理工大学 Multi-dimensional load prediction method of electric drive system based on model and data hybrid drive

Also Published As

Publication number Publication date
JP2004028948A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
Chasalevris et al. Identification of multiple cracks in beams under bending
CN106483872B (en) Simulate the precision judge method of flexible solar wing driving dynamics simulation testing stand
RU2008141159A (en) METHOD AND DEVICE FOR ASSESSING THE MUSCULAR WORK OF ATHLETES BY USING SHORT TESTS
CN111546336B (en) Ash box model parameter identification method and system for robot system
JP2009192391A (en) Method and device for evaluating asphalt mixture and sample
WO2013111608A1 (en) Viscoelasticity measurement method and viscoelasticity measurement device
CN103207120A (en) Test device and test method for asphalt rotational shear creep and repeated creep recovery
JP3871619B2 (en) Method for determining dynamic transmission characteristics of drive transmission system and recording medium
JP4851660B2 (en) Universal material testing method and apparatus
JP6113577B2 (en) Engine simulation test method
US6609428B2 (en) Nonresonant technique for estimation of the mechanical properties of viscoelastic materials
JP2001050863A (en) Bearing tester and bearing testing method
JP3640583B2 (en) Earthquake response analysis method
JP2003344223A (en) Method and device for analyzing vibration of transmission belt, and program therefor
JP4520718B2 (en) Torsional vibration analysis method and program thereof
RU137120U1 (en) INSTALLATION FOR TESTING SAMPLES FROM MATERIAL WITH EFFECT OF MEMORY OF FORM UNDER COMPLEX THERMAL POWER LOADING
JP3760380B2 (en) Viscoelastic material belt characteristic analysis apparatus, method, system, program, and recording medium
JP6304676B2 (en) Golf swing analysis apparatus and golf swing analysis method
CN109357827A (en) A kind of experiment of shuttling device shafting vibration and analysis method
JP4015004B2 (en) Helicopter airfoil simulation method
JPH11352020A (en) Device and method for measuring dynamic torsion characteristic of damper assembly
JP4513776B2 (en) Earthquake response analysis method
JP2005156394A (en) Method and apparatus for analyzing vibration of drive belt, and program
JP2000329654A (en) Apparatus for testing bearing of rotating machine
JP4692705B2 (en) Test method for viscoelastic materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees