JP3870276B2 - Methane storage method and methane purification and storage facility - Google Patents

Methane storage method and methane purification and storage facility Download PDF

Info

Publication number
JP3870276B2
JP3870276B2 JP15085498A JP15085498A JP3870276B2 JP 3870276 B2 JP3870276 B2 JP 3870276B2 JP 15085498 A JP15085498 A JP 15085498A JP 15085498 A JP15085498 A JP 15085498A JP 3870276 B2 JP3870276 B2 JP 3870276B2
Authority
JP
Japan
Prior art keywords
methane
activated carbon
adsorbent
digestion gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15085498A
Other languages
Japanese (ja)
Other versions
JPH11344200A (en
Inventor
建司 関
康紀 住江
修一 落
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
National Research and Development Agency Public Works Research Institute
Original Assignee
Public Works Research Institute
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Public Works Research Institute, Osaka Gas Co Ltd filed Critical Public Works Research Institute
Priority to JP15085498A priority Critical patent/JP3870276B2/en
Publication of JPH11344200A publication Critical patent/JPH11344200A/en
Application granted granted Critical
Publication of JP3870276B2 publication Critical patent/JP3870276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水処理場、ビール製造工場、家畜・家禽類(牛、豚、鶏など)の飼育場での廃棄物処理場などにおける生物学的処理に際し発生する消化ガスの貯蔵方法に関し、より詳細には、消化ガス中のメタンガスを効率的に回収/貯蔵し、得られたメタンを燃料として有効利用する方法に関する。
【0002】
【従来の技術】
従来からも、上述の生物学的処理を大規模に行う処理施設(以下「大規模処理施設」ということがある)では、発生ガスを常圧あるいは加圧下にガスホルダーに貯蔵し、必要に応じて発電用あるいは加熱用の原料として使用することが、行われている。しかしながら、従来の貯蔵方法においては、貯蔵密度が低いので、大規模なガスホルダーが必要となり、そのための十分な設置スペースが得られない場合には、発生ガスの一部をそのまま燃焼放散させている。また、小規模処理施設では、発生ガスの殆どを有効に利用することなく、そのまま燃焼放散している。
【0003】
【発明が解決しようとする課題】
従って、本発明は、処理設備の規模の大小にかかわりなく、生物学的処理に伴って発生する消化ガスを全量有効利用する技術を提供することを主な目的とする。
【0004】
【課題を解決するための手段】
本発明者は、上記の様な技術の現状に留意しつつ、研究を重ねた結果、吸着材を使用する場合には、消化ガスを効率よく貯蔵することが可能となり、生物学的処理設備の規模に関係なく、消化ガス中の有用成分をほぼ全量利用し得ることを見出した。すなわち、本発明は、下記の消化ガスの貯蔵方法を提供するものである:
1.生物学的処理に際し発生する消化ガスをそのままあるいは各ガス成分に分離した後、吸着貯蔵することを特徴とする消化ガスの貯蔵方法。
2.吸着貯蔵するガスが、メタン、二酸化炭素および硫化水素である上記項1に記載の方法。
3.吸着貯蔵するガスが、メタンである請求項1に記載の方法。
4.吸着材が、活性炭、ゼオライト、シリカゲルおよび有機錯体金属の少なくとも1種である上記項1に記載の方法。
5.消化ガス中の各成分を硫化水素、二酸化炭素およびメタンの順序で分離し、メタンを吸着貯蔵する上記項1に記載の方法。
【0005】
【発明の実施の形態】
本発明においては、(A)消化ガス中の硫化水素、二酸化炭素およびメタンをこの順序で分離した後、メタンを吸着材を充填したタンク内に吸着貯蔵するか、あるいは(B)消化ガス中の硫化水素と二酸化炭素とを同時に除去した後、メタンを吸着材を充填したタンク内に吸着貯蔵するか、(C)消化ガスの主成分であるメタン、二酸化炭素および硫化水素を混合状態で、吸着材を充填したタンク内に吸着貯蔵する。本発明においては、消化ガス中の主成分を相互に分離し、高純度のメタンを吸着貯蔵する(A)法がより好ましい。以下においては、主に(A)法について、詳細に説明する。
【0006】
(A)法においては、まず、消化ガスを脱硫用の吸着材が充填されている吸着塔に通し、硫化水素を吸着・除去する。吸着材としては、従来から脱硫剤として使用されている活性炭、ゼオライト、金属酸化物(酸化銅、酸化亜鉛など)が例示される。吸着時の温度および圧力は、消化ガス発生状態そのままでも良く、特に制限されないが、温度は、通常常温〜100℃程度(より好ましくは、常温〜60℃程度)であり、圧力は、常圧〜1MPa程度である。脱硫操作は、バッチ方式で行っても良く、或いは2塔以上を使用して、脱硫操作と脱硫剤の再生操作とを交互に行う連続再生処理方式で行っても良い。脱硫用吸着材の再生は、吸着塔に加熱水蒸気を吹き込んで、硫化水素を分離することにより行われる。
【0007】
硫化水素を吸着・除去された消化ガスは、次いで、二酸化炭素吸着材が充填された吸着塔に通される。この吸着材としては、従来から二酸化炭素の吸着材として使用されている活性炭、ゼオライト、有機金属錯体(フマル酸銅、シクロヘキサンジカルボン酸銅、スチルベンジカルボン酸銅、テレフタル酸銅、ターフェニルジカルボン酸、ビフェニルジカルボン酸銅、トランジカルボン酸銅など)などが例示される。吸着時の温度および圧力は、特に制限されないが、温度は常温〜100℃程度(より好ましくは、常温或いはその近傍)であり、圧力は常圧〜1MPa程度(より好ましくは、常圧或いはその近傍)である。二酸化炭素の吸着操作も、バッチ方式で行っても良く、或いは2塔以上を使用してPSA方式で行っても良い。PSA方式によれば、純度99%以上の高純度メタンを得ることができる。また、二酸化炭素吸着材の再生も、脱硫用吸着材の再生と同様にして行うことができる。
【0008】
かくして得られたメタンを貯蔵タンク内に充填された吸着材に吸着させ、貯蔵する。吸着時の温度および圧力は、特に制限されないが、温度は通常常温〜100 ℃程度(より好ましくは、常温或いはその近傍)であり、圧力は、常圧〜3.4MPa程度である。メタン吸着材としては、活性炭、ゼオライト、シリカゲル、有機金属錯体(フマル酸銅、シクロヘキサンジカルボン酸銅、スチルベンジカルボン酸銅、テレフタル酸銅、ターフェニルジカルボン酸、ビフェニルジカルボン酸銅、トランジカルボン酸銅など)などが例示される。これらのメタン吸着材は、単独で或いは2種以上を併用することができる。メタン吸着材として活性炭、ゼオライト或いはシリカゲルを使用する場合には、比表面積はできるだけ大きいことが好ましく、実用上少なくとも1000m2/g以上であることを必要とする。また、その細孔径は通常4〜12Å程度であり、より好ましくは8〜12Å程度である。
【0009】
メタン吸着時の温度および圧力は、メタン収得時そのままの温度および圧力でも良く、特に制限されないが、温度は、通常常温〜100℃程度(より好ましくは、常温〜60℃程度)であり、圧力は、常圧以上(より好ましくは常圧〜3.4MPa程度)である。貯蔵圧力を高める必要がある場合には、コンプレッサーによりメタンを昇圧した後、吸着し、貯蔵する。
【0010】
(B)法においては、消化ガスを吸収液としての水酸化ナトリウム水溶液(好ましくは20〜40%程度)中にバブリングすることにより、消化ガスの硫化水素と二酸化炭素とを同時に分離除去した後、(A)法と同様にして、メタン(純度93%以上)を吸着材を充填したタンク内に吸着貯蔵する。
【0011】
【発明の効果】
本発明によれば、吸着材を充填したガスホルダーを使用して、消化ガス或いは消化ガスから分離回収したメタンを貯蔵することにより、ガスホルダーを小型化し、貯蔵施設の設備コストを低減させることができる。
【0012】
従って、本発明によれば、処理設備の規模の大小にかかわりなく、生物学的処理に伴って発生する消化ガスを有効利用することが可能となる。
【0013】
【実施例】
以下に実施例を示し、本発明の特徴とするところをより一層明確にする。
実施例1
下水処理場において発生した消化ガス4000Nm3をゼオライト充填塔を通過させて硫化水素を吸着除去し、次いで活性炭充填塔を通過させて二酸化炭素を吸着除去した。
【0014】
かくして得られた99%メタン2600Nm3は、粉末活性炭(比表面積1400m2/g)78トンを充填した124m3のガスホルダーに常温且つ常圧で貯蔵することが可能であった。
比較例1
実施例1と同様の消化ガス4000Nm3を従来法に従って常温且つ常圧で貯蔵するためには、4000m3のガスホルダーが必要であった。
実施例2
実施例1と同様にして得た99%メタン2600Nm3を実施例1と同様の粉末活性炭を使用して、常温かつ1.0MPaの圧力で吸着したところ、26トンの粉末活性炭を充填する37m3のガスホルダーにより貯蔵を行うことが可能であった。
比較例2
実施例1と同様の消化ガス4000Nm3を常温且つ1.0MPaの圧力で吸着貯蔵するためには、400m3のガスホルダーが必要であった。
実施例3
実施例1と同様にして得た99%メタン2600Nm3を実施例1と同様の粉末活性炭を使用して、常温かつ3.4MPaの圧力で吸着したところ、18トンの粉末活性炭を充填する23m3のガスホルダーにより貯蔵を行うことが可能であった。
比較例3
実施例1と同様の消化ガス4000Nm3を常温且つ3.4MPaの圧力で吸着貯蔵するためには、114m3のガスホルダーが必要であった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for storing digestion gas generated during biological treatment in a waste treatment plant in a sewage treatment plant, a beer manufacturing plant, a livestock / poultry (cattle, pig, chicken, etc.) breeding plant, and more. Specifically, the present invention relates to a method for efficiently recovering / storing methane gas in digestion gas and effectively using the obtained methane as fuel.
[0002]
[Prior art]
Conventionally, in a treatment facility that performs the above-described biological treatment on a large scale (hereinafter sometimes referred to as a “large-scale treatment facility”), the generated gas is stored in a gas holder under normal pressure or under pressure, and as necessary. It is used as a raw material for power generation or heating. However, in the conventional storage method, since the storage density is low, a large-scale gas holder is required, and when a sufficient installation space is not obtained, a part of the generated gas is burned and diffused as it is. . Further, in a small-scale processing facility, most of the generated gas is burned and diffused without being effectively used.
[0003]
[Problems to be solved by the invention]
Therefore, the main object of the present invention is to provide a technique for effectively utilizing the entire amount of digestion gas generated by biological treatment regardless of the scale of the treatment facility.
[0004]
[Means for Solving the Problems]
As a result of repeated research while paying attention to the current state of the technology as described above, the present inventor can efficiently store digestion gas when using an adsorbent, It has been found that almost all useful components in digestion gas can be utilized regardless of the scale. That is, the present invention provides the following digestion gas storage method:
1. A method for storing digestion gas, characterized in that digestion gas generated during biological treatment is stored as it is or after being separated into each gas component and then adsorbed and stored.
2. Item 2. The method according to Item 1, wherein the gas to be adsorbed and stored is methane, carbon dioxide and hydrogen sulfide.
3. The method according to claim 1, wherein the gas to be adsorbed and stored is methane.
4). Item 2. The method according to Item 1, wherein the adsorbent is at least one of activated carbon, zeolite, silica gel, and organic complex metal.
5). Item 2. The method according to Item 1, wherein each component in the digestion gas is separated in the order of hydrogen sulfide, carbon dioxide, and methane, and methane is adsorbed and stored.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, (A) after separating hydrogen sulfide, carbon dioxide and methane in the digestion gas in this order, the methane is adsorbed and stored in a tank filled with an adsorbent, or (B) in the digestion gas. After removing hydrogen sulfide and carbon dioxide at the same time, adsorb and store methane in a tank filled with adsorbent, or (C) adsorb methane, carbon dioxide and hydrogen sulfide, which are the main components of digestion gas, in a mixed state Adsorb and store in a tank filled with materials. In the present invention, the (A) method in which the main components in the digestion gas are separated from each other and high-purity methane is adsorbed and stored is more preferable. In the following, the method (A) will be mainly described in detail.
[0006]
In the method (A), first, the digestion gas is passed through an adsorption tower filled with an adsorbent for desulfurization to adsorb and remove hydrogen sulfide. Examples of the adsorbent include activated carbon, zeolite, and metal oxide (such as copper oxide and zinc oxide) conventionally used as a desulfurizing agent. The temperature and pressure at the time of adsorption may be the digestion gas generation state as it is, and are not particularly limited, but the temperature is usually from room temperature to about 100 ° C. (more preferably from room temperature to about 60 ° C.), and the pressure is from normal pressure to About 1MPa. The desulfurization operation may be performed in a batch system, or may be performed in a continuous regeneration treatment system in which two or more towers are used and a desulfurization operation and a desulfurization agent regeneration operation are alternately performed. Regeneration of the adsorbent for desulfurization is performed by blowing heated steam into the adsorption tower to separate hydrogen sulfide.
[0007]
The digestion gas from which hydrogen sulfide has been adsorbed and removed is then passed through an adsorption tower packed with a carbon dioxide adsorbent. As this adsorbent, there are activated carbon, zeolite, organometallic complexes (copper fumarate, copper cyclohexanedicarboxylate, copper stilbene dicarboxylate, copper terephthalate, terphenyl dicarboxylic acid, biphenyl, which are conventionally used as carbon dioxide adsorbents. Examples thereof include copper dicarboxylate and copper dicarboxylate). The temperature and pressure at the time of adsorption are not particularly limited, but the temperature is from room temperature to about 100 ° C. (more preferably, at or near room temperature), and the pressure is from normal pressure to about 1 MPa (more preferably from normal pressure or its vicinity). ). The adsorption operation of carbon dioxide may be performed by a batch method, or may be performed by a PSA method using two or more towers. According to the PSA method, high-purity methane having a purity of 99% or more can be obtained. Further, the regeneration of the carbon dioxide adsorbent can be performed in the same manner as the regeneration of the adsorbent for desulfurization.
[0008]
The methane thus obtained is adsorbed by the adsorbent filled in the storage tank and stored. The temperature and pressure at the time of adsorption are not particularly limited, but the temperature is usually from room temperature to 100 ° C. (more preferably from room temperature or in the vicinity thereof), and the pressure is from normal pressure to about 3.4 MPa. As methane adsorbents, activated carbon, zeolite, silica gel, organometallic complex (copper fumarate, copper cyclohexanedicarboxylate, copper stilbene dicarboxylate, copper terephthalate, terphenyl dicarboxylic acid, copper biphenyl dicarboxylate, copper transition dicarboxylate, etc.) Etc. are exemplified. These methane adsorbents can be used alone or in combination of two or more. When activated carbon, zeolite or silica gel is used as the methane adsorbent, the specific surface area is preferably as large as possible, and practically needs to be at least 1000 m 2 / g or more. The pore diameter is usually about 4 to 12 mm, more preferably about 8 to 12 mm.
[0009]
The temperature and pressure at the time of methane adsorption may be the same temperature and pressure at the time of methane acquisition, and are not particularly limited, but the temperature is usually from room temperature to about 100 ° C. (more preferably from room temperature to about 60 ° C.), and the pressure is The pressure is equal to or higher than normal pressure (more preferably from normal pressure to about 3.4 MPa). When it is necessary to increase the storage pressure, methane is boosted by a compressor, adsorbed and stored.
[0010]
In the method (B), digestion gas is bubbled into an aqueous solution of sodium hydroxide (preferably about 20 to 40%) as an absorbing solution, so that hydrogen sulfide and carbon dioxide in the digestion gas are separated and removed simultaneously, Similarly to the method (A), methane (purity of 93% or more) is adsorbed and stored in a tank filled with an adsorbent.
[0011]
【The invention's effect】
According to the present invention, by using a gas holder filled with an adsorbent and storing the digested gas or methane separated and recovered from the digested gas, the gas holder can be reduced in size and the equipment cost of the storage facility can be reduced. it can.
[0012]
Therefore, according to the present invention, it is possible to effectively use digestion gas generated with biological treatment regardless of the scale of the treatment facility.
[0013]
【Example】
Examples are shown below to further clarify the features of the present invention.
Example 1
Digestion gas 4000 Nm 3 generated in the sewage treatment plant was passed through a zeolite packed tower to adsorb and remove hydrogen sulfide, and then passed through an activated carbon packed tower to adsorb and remove carbon dioxide.
[0014]
99% methane 2600Nm 3 thus obtained could be stored at normal temperature and normal pressure in a 124 m 3 gas holder filled with 78 tons of powdered activated carbon (specific surface area 1400 m 2 / g).
Comparative Example 1
In order to store the same digestive gas 4000Nm 3 as in Example 1 at normal temperature and normal pressure according to the conventional method, a 4000 m 3 gas holder was required.
Example 2
99% methane 2600 nm 3 obtained in the same manner as in Example 1 using the same powdered activated carbon as in Example 1, was adsorbed at a pressure of normal temperature and 1.0 MPa, of 37m 3 which fill 26 tons of powdered activated carbon It was possible to store with a gas holder.
Comparative Example 2
In order to adsorb and store the same digestive gas 4000Nm 3 as in Example 1 at normal temperature and a pressure of 1.0 MPa, a 400 m 3 gas holder was required.
Example 3
Using a similar powdered activated carbon as in Example 1 Example 99% methane 2600 nm 3 obtained in the same manner as 1, was adsorbed at a pressure of normal temperature and 3.4 MPa, of 23m 3 which fill 18 tons of powdered activated carbon It was possible to store with a gas holder.
Comparative Example 3
In order to adsorb and store the same digestion gas 4000 Nm 3 as in Example 1 at normal temperature and a pressure of 3.4 MPa, a 114 m 3 gas holder was required.

Claims (3)

下水処理場における下水の生物学的処理により発生する消化ガス中の、硫化水素をゼオライトを充填した吸着塔に通すことにより、および二酸化炭素を活性炭を充填した吸着塔に通すことにより、順次吸着分離した後、メタンを、活性炭を充填した貯蔵タンクに吸着貯蔵することを特徴とするメタンの貯蔵方法。Sequential adsorption separation by passing hydrogen sulfide in the digestion gas generated by biological treatment of sewage in a sewage treatment plant through an adsorption tower packed with zeolite and carbon dioxide through an adsorption tower packed with activated carbon Then, methane is adsorbed and stored in a storage tank filled with activated carbon. 生物学的処理に際し発生する消化ガス(下水処理場における下水の生物学的処理により発生する消化ガスを除く)中の、硫化水素をゼオライトを充填した吸着塔に通すことにより、および二酸化炭素を活性炭を充填した吸着塔に通すことにより、順次吸着分離した後、メタンを、活性炭を充填した貯蔵タンクに吸着貯蔵することを特徴とするメタンの貯蔵方法。By passing hydrogen sulfide in the digestion gas generated during biological treatment (excluding digestion gas generated by biological treatment of sewage in a sewage treatment plant) through an adsorption tower packed with zeolite, and carbon dioxide by activated carbon A method of storing methane, characterized in that the methane is adsorbed and stored in a storage tank filled with activated carbon after sequentially separating by adsorption by passing through an adsorption tower filled with. 脱硫用の吸着材であるゼオライトを充填した吸着塔、二酸化炭素吸着材である活性炭を充填した吸着塔およびメタンの吸着材である活性炭を充填した貯蔵タンクを含む、消化ガス由来のメタンの精製および貯蔵設備。Purification of digestion gas-derived methane, including an adsorption tower filled with zeolite, an adsorbent for desulfurization, an adsorption tower filled with activated carbon, a carbon dioxide adsorbent, and a storage tank filled with activated carbon, an adsorbent for methane Storage facilities.
JP15085498A 1998-06-01 1998-06-01 Methane storage method and methane purification and storage facility Expired - Lifetime JP3870276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15085498A JP3870276B2 (en) 1998-06-01 1998-06-01 Methane storage method and methane purification and storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15085498A JP3870276B2 (en) 1998-06-01 1998-06-01 Methane storage method and methane purification and storage facility

Publications (2)

Publication Number Publication Date
JPH11344200A JPH11344200A (en) 1999-12-14
JP3870276B2 true JP3870276B2 (en) 2007-01-17

Family

ID=15505831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15085498A Expired - Lifetime JP3870276B2 (en) 1998-06-01 1998-06-01 Methane storage method and methane purification and storage facility

Country Status (1)

Country Link
JP (1) JP3870276B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6613126B2 (en) 1998-09-30 2003-09-02 Toyota Jidosha Kabushiki Kaisha Method for storing natural gas by adsorption and adsorbing agent for use therein
BR0009253A (en) * 1999-03-05 2001-11-20 Toyota Motor Co Ltd Process for storing natural gas by adsorption and adsorption agent for the same use
JP2001187998A (en) * 1999-12-28 2001-07-10 Osaka Gas Co Ltd Digestive gas adsorptive storage device
JP4812194B2 (en) * 2000-08-11 2011-11-09 大阪瓦斯株式会社 Natural gas adsorption storage device and adsorption storage method
JP4812183B2 (en) * 2001-05-01 2011-11-09 大阪瓦斯株式会社 Natural gas adsorption storage device and adsorption storage method
JP2009249571A (en) * 2008-04-09 2009-10-29 Taiyo Nippon Sanso Corp Method for eliminating hydrogen sulfide contained in biogas
JP7106275B2 (en) * 2015-06-01 2022-07-26 カルゴン カーボン コーポレーション Method and system for purifying crude biogas

Also Published As

Publication number Publication date
JPH11344200A (en) 1999-12-14

Similar Documents

Publication Publication Date Title
EP2134446B1 (en) Biogas upgrading
KR100985911B1 (en) System for preprocessing of bio-gas
US4581044A (en) Process for separating carbonic acid gas from methane-rich gas
JP3870276B2 (en) Methane storage method and methane purification and storage facility
CN101219919B (en) Method for purifying and recycling methyl hydride from garbage landfill gas
TW201808791A (en) A method for recovering hydrogen from a biomass pyrolysis gas
JP6659717B2 (en) Hydrogen recovery method
JP2001170695A (en) Gaseous methane refining equipment and domestic animal dung treatment facility
JP3985006B2 (en) High purity hydrogen production method
JP4348471B2 (en) Whole processing method of natural gas in storage
JP3815445B2 (en) Hydrogen gas purification apparatus and purification method
JP2001137646A (en) Device and method for adsorption treating waste gas
CA2453155A1 (en) Propane desulphurization
JP3111530B2 (en) Carbon dioxide conversion method
JP3592648B2 (en) Method and apparatus for using digestive gas
JP4313882B2 (en) Method for removing organic impurities in methanol decomposition gas by closed TSA method
JP2000294266A (en) Method and device for recovering energy
JP4819349B2 (en) Production of hydrogen gas for fuel cells
JP2002327896A (en) Adsorption type digester gas storing device and storing method for digester gas
JP2003240195A (en) Storage method for digestion gas
JP2001214175A (en) Method for storing digestive gas
CN215712846U (en) Natural gas dry-type purifier
CN103130184B (en) A kind of PTA device of refining unit release gas comprehensive utilization method
CN221117367U (en) Blast furnace gas desulfurization device
CN113214879A (en) Dry type natural gas purification device and process

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040308

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151027

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term