JP3868905B2 - Plate laminate, hollow laminate using plate laminate, and plate heat pipe using hollow laminate - Google Patents

Plate laminate, hollow laminate using plate laminate, and plate heat pipe using hollow laminate Download PDF

Info

Publication number
JP3868905B2
JP3868905B2 JP2002559202A JP2002559202A JP3868905B2 JP 3868905 B2 JP3868905 B2 JP 3868905B2 JP 2002559202 A JP2002559202 A JP 2002559202A JP 2002559202 A JP2002559202 A JP 2002559202A JP 3868905 B2 JP3868905 B2 JP 3868905B2
Authority
JP
Japan
Prior art keywords
plate
hollow
laminate
laminated
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002559202A
Other languages
Japanese (ja)
Other versions
JPWO2002058879A1 (en
Inventor
謹二 西條
真司 大澤
浩明 岡本
一雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Publication of JPWO2002058879A1 publication Critical patent/JPWO2002058879A1/en
Application granted granted Critical
Publication of JP3868905B2 publication Critical patent/JP3868905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • F28F3/14Elements constructed in the shape of a hollow panel, e.g. with channels by separating portions of a pair of joined sheets to form channels, e.g. by inflation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/04Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal
    • B21D53/045Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of sheet metal by inflating partially united plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

技術分野
本発明は、パーソナルコンピュータのMPU等の放熱等に用いられるプレート型ヒートパイプおよびそのプレート型ヒートパイプ等に用いられる中空積層体およびその中空積層体に用いられるプレート積層体に関する。
背景技術
パーソナルコンピュータのMPU等のコンピュータ機器においては、その高性能化が急速に進められているが、この高性能化を実現していくためには、MPU等から発生する熱を効率よく放熱させることができる放熱器が必要とされていた。
このような放熱器として、近年、アルミニウム合金材を複数枚積層圧着し、積層境界面に蛇行した細径のトンネルをロールボンド法により形成し、そのトンネル内にヒートパイプ作動液としてフロン134a等を封入した熱拡散板に用いられるプレート型ヒートパイプが提案されている(特開平10−185465)。図1の(A)および(B)に示すように、このプレート型ヒートパイプ1は2枚の金属薄板3、4を積層し熱間圧延にて接合して、予め圧着防止剤を所定のパターンで塗布し未圧着となった境界面のパターン部を膨管して前記蛇行した細径のトンネル2を形成しており、単位幅あたりの蛇行ターン数を格段に増加させることにより放熱性能を向上させるものである。
しかしながら、上記のような従来のプレート型ヒートパイプを用いた放熱器では、近年の環境問題からフロン系冷媒の使用が規制される状況には対応できず、さらに一層のMPUの高性能化に対しては放熱効率が追いつかない等の問題点が生じている。また熱間圧延により金属薄板を接合するため、母材の変形が大きく、トンネルの形状を精度良く形成できないばかりでなく、接合面における異種金属間の合金化等により接合強度が低下する等の問題点も生じている。さらに圧着防止剤の塗布むらが発生して圧着部と圧着防止部との境界が精度良く形成できないばかりでなく、圧着防止剤の印刷や洗浄等に余分な工程を必要とし、洗浄しても圧着防止剤を完全には除去できない等の問題点も生じている。
本発明は、上記のような技術的背景に鑑み、環境上の制約を受けることなく軽量でしかも放熱効率のより一層の向上を図ることができる放熱器等に用いられるプレート型ヒートパイプ、そのプレート型ヒートパイプ等に用いられる中空積層体およびその中空積層体に用いられるプレート積層体を提供することを課題とする。
発明の開示
請求項1記載のプレート積層体は、複数枚の金属板が積層接合され、隣り合う金属板の対向面に所定のパターンで圧着抑止部が形成されたプレート積層体において、該金属板の積層接合が、真空槽内で該金属板の接合面が予め活性化処理された後、該金属板の活性化処理面同士が対向するように当接して重ね合わせて冷間圧接される積層体である。
この場合、活性化処理が10〜1×10−3Paの極低圧不活性ガス雰囲気中で、金属板をアース接地した一方の電極Aとし、絶縁支持された他の電極Bとの間に1〜50MHzの交流を印加してグロー放電を行わせ、かつグロー放電によって生じたプラズマ中に露出される電極Aの面積が、電極Bの面積の1/3以下でスパッタエッチング処理されることが好ましい。前記圧着抑止部は、圧接装置の圧接面に前記所定のパターンに対応するように非加圧部を設けて、前記複数枚の金属板を冷間圧接して形成されることが好ましい。
前記圧着抑止部の表面粗度Ra(JIS B 0610)が1〜10μmであることが好ましい。前記金属板が銅板であることが好ましい。前記金属板の少なくとも一方が2層の積層金属板からなり、圧着抑止部側の金属板が銅板であり、圧着抑止部とは隔離された側の金属板がアルミニウム板であることが好ましい。前記銅板の厚さが0.01〜0.6mmで、前記アルミニウム板の厚さが0.05〜0.5mmである構成とした。プレート積層体の前記圧着抑止部を膨らませることによって、前記隣り合う金属板の対向面に所定形状の中空部が形成されることが好ましい。中空積層体は、前記中空部がトンネル状部を有することが好ましい。プレート型ヒートパイプは、中空積層体の前記中空部内にヒートパイプ作動体が封入される構成とした。本発明のプレート型ヒートパイプは、前記ヒートパイプ作動体が水である構成とした。
発明を実施するための最良の形態
図2は、本発明の中空積層体の一実施形態を示すもので、(C)は概略平面図、(D)は金属板2枚で中空部を形成した例を示す。図3は、本発明の中空積層体の他の実施形態を示すもので、(E)は金属板2枚で形成された中空部の一方の側にさらに別の金属板を積層接合した例を示し、(F)は金属板2枚で形成された中空部の両側にさらに別の金属板を積層接合した例を示す。
図2の(C)に示される中空積層体10において、11は中空部である。この中空部11は(D)に示すように、2枚の金属板を、その対向面に活性化処理を行った後、形成される中空部のパターンに対応する非加圧部を圧接面に設けた圧接装置を用いて冷間圧接して圧着抑止部を形成するように積層接合し、この圧着抑止部を膨らませて形成したものである。
具体的には、2枚の金属板として、それぞれ銅板12、13を用いる。銅板材料としては、銅または銅合金が利用できる。銅合金としては、JIS H 3100に示す合金番号として、C1000番台やC2000番台の銅合金、および黄銅、快削黄銅、すず入り黄銅、アドミラルティ黄銅、ネーバル黄銅、アルミニウム青銅、白銅等が利用できる。熱伝導の観点からは、純銅であることが望ましい。また銅板の厚さは、0.01〜0.6mmとすることが好ましい。0.01mm未満では充分な強度や耐食性が得られず、0.6mmを超えて厚くなれば重くなりすぎる。
さらに中空部11の内部にヒートパイプ作動体を封入した場合に毛細管効果領域を拡大させるために、2枚の金属板間に形成される圧着抑止部に微少な凹凸を設けてもよい。この凹凸は、電解処理やエッチング処理等の粗化処理やエンボスロールによる表面仕上げ等により形成可能である。この凹凸の表面粗度Ra(JIS B 0601)は、1〜10μmとすることが好ましい。1μm未満では充分な毛細管効果が得にくく、10μmを超えると生産性が落ちたり毛細管効果が飽和してくる。ついでこれら2枚の金属板の対向面に、下記に示す活性化処理を行う。
活性化処理は、以下のようにして実施する。すなわち銅板12、13を真空槽内に装填し、銅板12、13をそれぞれアース接地した一方の電極Aとし、絶縁支持された他の電極Bとの間に10〜1×10−3Paの極低圧不活性ガス雰囲気好ましくはアルゴンガス中で、1〜50MHzの交流を印加してグロー放電を行わせ、かつ、グロー放電によって生じたプラズマ中に露出される電極Aの面積が、電極Bの面積の1/3以下で、スパッタエッチング処理する。なお不活性ガス圧力が1×10−3Pa未満では安定したグロー放電が行いにくく高速エッチングが困難であり、10Paを超えると活性化処理効率が低下する。印加する交流は、1MHz未満では安定したグロー放電を維持するのが難しく連続エッチングが困難であり、50MHzを超えると発振し易く電力の供給系が複雑となり好ましくない。また、効率よくエッチングするためには電極Aの面積を電極Bの面積より小さくする必要があり、1/3以下とすることにより充分な効率でエッチング可能となる。
その後、両金属板を下記に示すように積層接合する。すなわち、銅板12、13の活性化処理された面が対向するようにして両者を当接して重ね合わせて冷間圧接して積層接合する。この際に冷間圧接に使用する圧接装置の圧接面に、形成される中空部のパターンに対応した窪み部等の非加圧部を設けることにより、中空部を形成させる部分の圧着が抑制された状態で積層接合することができる。なおこの際の積層接合は、低温度・低圧延率下で可能であり、熱間圧接や高圧延率の圧接におけるような金属板ならびに積層接合に組織変化や合金化、破断等といった悪影響を軽減または排除することが可能である。また中空積層体の変形や延びを低く押さえることが可能であり、中空部形状を精度良く加工できる。この積層接合時の金属板の温度T(℃)は、300℃以下が好ましい。より好ましくは0℃を超えて300℃以下の範囲であることが好ましい。0℃以下では大掛かりな冷却装置が必要となり、300℃を超えると接合部が合金化し接合強度が低下するため好ましくない。圧延率R(%)は、30%以下が好ましい。より好ましくは、0.1%〜30%の範囲がよい。0.1%未満では充分な接合強度が得られず、30%を超えると変形が大きくなり加工精度上好ましくない。
上記のように積層接合することにより、形成される中空部のパターン部分の圧着が抑制された状態で圧接され、圧着抑止部が形成される。その後、必要により所定の大きさに切り出して本発明の圧着抑止部を有するプレート積層体が製造される。
本発明の中空積層体は、上記のようにプレート積層体を作成した後、必要により切り出して、プレート積層体の圧着抑止部に封入口11aから圧縮空気を送り込んで金型により金属板の一方の片面のみを膨らませる。このようにして中空部11が形成される。以上のようにして本発明の中空部11を有する中空積層体10が製造される。
さらに本発明のプレート型ヒートパイプは、上記のようにして中空積層体を作成した後、中空積層体の封入口11aを通じてヒートパイプ作動体を所定量封入し、内部を真空状態または減圧状態にして封入口を溶接等の方法を用いて密封する。ヒートパイプ作動体としては取り扱いの容易な液体、特に脱フロン化の観点等から、水、純水または超純水を用いる。このようにして本発明のプレート型ヒートパイプが製造される。
また、図3の(E)に示すように、中空部の一方の側に用いる金属板として銅板12にアルミニウム板14を積層接合した2層の積層金属板を用いても良い。この場合、予め銅板12とアルミニウム板14とを積層接合して積層金属板を製造しておき、その後、銅板13と前記積層金属板の銅板12側を対向させた状態で上記の如くに製造する。
図3の(F)に示すように、中空部の両側に用いる金属板として銅板12、13にそれぞれアルミニウム板14、15を積層接合した2層の積層金属板を用いても良い。この場合も、予め銅板12、13とアルミニウム板14、15とをそれぞれ積層接合して積層金属板を製造しておき、その後2枚の2層の積層金属板の銅板面同士を対向させた状態で上記の如くに製造する。
なお銅板を用いるのは、水に対する耐食性が高いためであり、銅−アルミニウムの積層金属板を用いるのは、銅板のみの場合よりも軽量化が図れ比強度を高くできるからである。アルミニウム板材料としては、アルミニウムまたはアルミニウム合金が利用できる。アルミニウム合金としては、JIS H 4000あるいは4160に記載の2000系、3000系、5000系、6000系、7000系等が利用できる。さらにこの積層金属板においては、銅板の厚さを0.01〜0.6mmとすることが好ましい。0.01mm未満では充分な耐食性が得られず、0.6mmを超えて厚くなれば重くなりすぎるとともに強度面から積層接合して補強する必要もなくなる。またアルミニウム板の厚さは0.05〜0.5mmとすることが好ましい。0.05mm未満では充分な強度を得られず、0.5mmを超えて厚くなれば重くなりすぎ、また単位幅あたりの中空部の個数が減少するため好ましくない。
このようにして製造されたプレート型ヒートパイプにおいては、中空部11内の幅方向両側部に毛細管力によるヒートパイプ作動体の引き込み部17が形成され、保持姿勢に影響されることなく放熱性能を発揮することが可能となる。
次に、本発明に用いる2層の積層金属板の製造方法を、図3の(E)または(F)の銅−アルミニウム接合を例にとり説明する。図4の積層金属板製造装置において、巻き戻しリール20、21からそれぞれ巻き戻された銅板材22とアルミニウム板材23は、その一部がエッチングチャンバ24内において、前記した条件でスパッタエッチング処理され活性化する。その後、真空槽27内に設けた圧延ユニット28によって前記した条件で冷間圧延され、一体化した積層金属板29は巻き取りリール30に巻き取られる。
なお銅−銅接合の場合は、前記説明のアルミニウム板材23を銅板材と置き換えることによって達成される。この接合法ではこの他、アルミニウム−アルミニウム接合や金属板と積層金属板の接合、積層金属板同士の接合、その他の金属板間の組み合わせにおける接合も可能である。
図4に示した装置の冷間圧延装置の圧延ユニットロールの少なくとも一方に、形成される中空部のパターンに対応した窪み部等の非加圧部を設けて圧着を抑制することにより、図4に示した装置を用いて上記の如く金属板を積層接合して所定パターンの圧着抑止部を有する積層金属板のプレート積層体が得られ、この圧着抑止部を膨らませることにより所要の中空部形状を有する中空積層体を得ることができる。圧延ユニットロールの表面に作る窪みの深さは0.1mm以上が好ましい。より好ましくは、0.2〜1mmの範囲が良い。0.1mm未満では、積層接合時、窪み部分のロールに接した金属板はもう一方の金属板に接合し、膨管の形状が一定とならない。窪みの深さは1.0mmを超えても使用上問題ないが、窪みを作るためのの加工費が高くなる。より好ましくは1.0mm以下が良い。窪みの断面形状は長方形、台形、半円あるいは楕円状等が可能であり、特に限定するものではない。なお巻き取りロール部の代わりに所定の大きさに切り出す切り出し工程を設けても良い。
また前記の真空槽内の冷間圧延装置を、プレス加工装置と置き換えることによっても積層接合が達成される。この場合、プレス金型の少なくとも一方にロールに設けたような所定パターンの圧着抑止部に対応した窪み部等の非加圧部を設けることにより、所定パターンの圧着抑止部を有する積層金属板のプレート積層体が得られる。この場合、窪みの深さは0.1mm以上が好ましい。より好ましくは、0.2〜1mmの範囲が良い。0.1mm未満では、積層接合時、窪み部分のロールに接した金属板はもう一方の金属板に接合し、膨管の形状が一定とならない。窪みの深さは1.0mmを超えても使用上問題ないが、窪みを作るためのの加工費が高くなる。より好ましくは1.0mm以下が良い。窪みの断面形状は長方形、台形、半円あるいは楕円状等が可能であり、特に限定するものではない。さらにスパッタエッチング処理後に、銅板材等を所定の大きさに切り出した後積層し、プレス加工を行うことも可能である。また先に銅板材等を所定の大きさに切り出した後に、スパッタエッチング処理を行って、積層しプレス加工を行うことも可能である。なおこの場合は安全面等から、金属板を絶縁支持された一方の電極Aとし、アース接地した他の電極Bとの間で活性化処理を行ってもよい。
なお、中空部として外周側と内周側にそれぞれ角形のループ状トンネルを設けて、その間を放射状に延びる複数のトンネルによって接続した形態をとっており、発熱源は内周トンネルの膨管部間の平坦部または裏面平坦部に取り付けられ、コンピュータのMPUに適用した場合優れた冷却効果が得られるが、中空部の形態はこれに限定されることはなく、自由度の高い形状設計が可能である。また金型により片面のみならず、両面を膨らませることも可能である。
実施例
以下実施例について説明する。
(実施例1)
金属板として厚み200μmの銅板と厚み100μmの銅板を用意した。
▲1▼活性化処理
銅板22および、金属板巻き戻しリール21から巻き戻された厚み100μmの銅板はエッチングチャンバ24内の電極ロール25、26においてそれぞれ巻き付け、スパッタエッチング法により、銅板22及び銅板のそれぞれの片面を活性化した。
▲2▼圧接
表面を活性化処理した銅板22および銅板は、次の圧延ユニット28で活性化処理した面同士を、1%の低圧下率で圧接し、銅板(厚み200μm)/銅板(厚み100μm)の積層板を得た。この場合、銅板22(厚み200μm)は、表面にパターン化した窪み(窪みの深さ:0.25mm、断面形状:楕円形)を持った圧延ロールに接し、一方の銅板(厚み100μm)は、窪みのないロールに接し、2枚の銅板を圧延した。圧着抑止部となる窪み部分の圧延ロールに接した銅板は、積層接合しなかった。この積層板を板状に裁断し、圧縮空気をこの窪み部に通し、膨管した。更に真空雰囲気で冷却水として純水を膨管の中に注入し、封止してヒートパイプを作製した。封止は開口部をつぶし、更に半田付けにより行った。
(実施例2)
金属板としてAl板(JIS H 1050、厚み400μm)、Al板(JIS H 6003、厚み400μm)、銅板(厚み100μm)と銅板(厚み100μm)を用意した。
▲1▼活性化処理
銅板および、金属板巻き戻しリール21から巻き戻された厚み400μmのAl板23(JIS H 1050)はエッチングチャンバ24内の電極ロール25、26においてそれぞれ巻き付け、スパッタエッチング法により、銅板及びAl板のそれぞれの片面を活性化した。
▲2▼圧接
表面を活性化処理した銅板およびAl板(JIS H 1050)は、次の圧延ユニット28で活性化処理した面同士を、1%の低圧下率で圧接し、銅板(厚み100μm)/Al板(JIS H 1050、厚み400μm)の積層板を得た。
▲3▼活性化処理
銅板および、金属板巻き戻しリール21から巻き戻されたAl板23(JIS H 6003、厚み400μm)はエッチングチャンバ24内の電極ロール25、26においてそれぞれ巻き付け、スパッタエッチング法により、銅板及びAl板のそれぞれの片面を活性化した。
▲4▼圧接
表面を活性化処理した銅板およびAl板(JIS H 6003)は、次の圧延ユニット28で活性化処理した面同士を、5%の低圧下率で圧接し、銅板(厚み100μm)/Al板(JIS H 6003、厚み400μm)の積層板を得た。
▲5▼活性化処理
銅板(厚み100μm)/Al板(JIS H 1050、厚み400μm)の積層板と、金属板巻き戻しリール21から巻き戻された銅板(厚み100μm)/Al板(JIS H 6003、厚み400μm)の積層板はエッチングチャンバ24内の電極ロール25、26においてそれぞれ巻き付け、スパッタエッチング法により、積層板の銅板の表面を活性化した。
▲6▼圧接
表面を活性化処理した銅板(厚み100μm)/Al板(JIS H 1050、厚み400μm)の積層板および、銅板(厚み100μm)/Al板(JIS H 6003、厚み400μm)の積層板は、次の圧延ユニット28で活性化処理した面同士を、5%の低圧下率で圧接し、Al板(JIS H 1050、厚み400μm)/銅板(厚み100μm)/銅板(厚み100μm)/Al板(JIS H 6003、厚み400μm)の積層板を得た。
この場合、銅板(厚み100μm)/Al板(JIS H 1050、厚み400μm)の積層板は、表面にパターン化した窪み(窪みの深さ0.25mm、断面形状:楕円形)を持った圧延ロールに接し、一方の銅板(厚み100μm)/Al板(JIS H 6003、厚み400μm)の積層板は、窪みのないロールに接し、2枚の銅板を圧延した。圧着抑止部となる窪み部分の圧延ロールに接した銅板(厚み100μm)/Al板(JIS H 1050、厚み400μm)の積層板の銅板は、もう一方の積層板の銅板には、積層接合しなかった。この積層板を板状に裁断し、銅板(厚み100μm)/銅板(厚み100μm)の接合してない部分に圧縮空気で膨管した。更に真空雰囲気で冷却水として純水を膨管の中に注入し、封止してヒートパイプを作製した。封止は開口部をつぶし、更に溶接により行った。
産業上の利用可能性
以上説明したように本発明のプレート積層体は、複数枚の金属板に表面を活性化処理した後、活性化処理面同士を対向するように当接し重ね合わせて、所定のパターンの非加圧部を設けた圧接装置を用いて低圧延率で冷間圧接して圧着抑止部を形成したものである。また本発明の中空積層体は、形成された圧着抑止部を膨らませて中空部を形成したものである。さらに本発明のプレート型ヒートパイプは、この中空部内にヒートパイプ作動体を封入したものであり、フロン系冷媒の代わりに水をヒートパイプ作動体として封入可能であるため、環境に優しく放熱効率の向上を図ることが可能で、また薄い金属板を低圧延率で接合が可能であるので形状の高精度化および軽量薄形化を実現できる。
【図面の簡単な説明】
図1は、従来のプレート型ヒートパイプを示すもので、(A)は概略平面図、(B)は概略断面図である。図2は、本発明の中空積層体の一実施形態を示すもので、(C)は概略平面図、(D)は概略断面図である。図3は、本発明の中空積層体の他の実施形態を示すもので、(E)は他の実施例の概略断面図、(F)はさらに他の実施例の概略断面図である。図4は、本発明に用いる金属板を積層接合する製造装置の概略断面正面図である。
TECHNICAL FIELD The present invention relates to a plate-type heat pipe used for heat dissipation of an MPU of a personal computer, a hollow laminate used for the plate-type heat pipe and the like, and a plate laminate used for the hollow laminate.
BACKGROUND ART Computer devices such as MPUs for personal computers have been rapidly improved in performance, but in order to achieve this higher performance, heat generated from MPUs and the like can be efficiently dissipated. There was a need for a heatsink that could.
In recent years, as such a heatsink, a plurality of aluminum alloy materials are laminated and pressure-bonded, a narrow tunnel meandering at the boundary of the lamination is formed by a roll bond method, and Freon 134a or the like is used as a heat pipe working fluid in the tunnel. A plate-type heat pipe used for an enclosed heat diffusion plate has been proposed (Japanese Patent Laid-Open No. 10-185465). As shown in FIGS. 1A and 1B, this plate-type heat pipe 1 includes two thin metal plates 3 and 4 which are laminated and joined together by hot rolling, and an anti-bonding agent is applied in a predetermined pattern in advance. The pattern part of the boundary surface that has been applied and unbonded is expanded to form the meandering small diameter tunnel 2, and the heat dissipation performance is improved by dramatically increasing the number of meandering turns per unit width. It is something to be made.
However, the conventional radiator using the plate-type heat pipe as described above cannot cope with the situation where the use of chlorofluorocarbon refrigerant is restricted due to recent environmental problems. As a result, problems such as inability to catch up with heat dissipation efficiency arise. In addition, since the thin metal plates are joined by hot rolling, the deformation of the base metal is large and the shape of the tunnel cannot be formed with high accuracy, but also the joint strength is reduced due to alloying between different metals on the joint surface. There are also points. Furthermore, uneven application of the anti-bonding agent occurs, so that the boundary between the press-bonding part and the anti-crimping part cannot be accurately formed, and an extra step is required for printing or cleaning the anti-bonding agent. There is also a problem that the inhibitor cannot be completely removed.
In view of the technical background as described above, the present invention is a plate-type heat pipe used for a radiator, etc., which is lightweight and can further improve the heat radiation efficiency without being restricted by the environment, and its plate It is an object of the present invention to provide a hollow laminate used for a mold heat pipe or the like and a plate laminate used for the hollow laminate.
Disclosure of Invention The plate laminate according to claim 1 is a plate laminate in which a plurality of metal plates are laminated and joined, and a pressure-bonding suppression portion is formed in a predetermined pattern on the opposing surface of adjacent metal plates. In the lamination bonding, after the joining surfaces of the metal plates are activated in advance in the vacuum chamber, the activation surfaces of the metal plates are brought into contact with each other so as to face each other and are cold-welded. Is the body.
In this case, in an extremely low pressure inert gas atmosphere where the activation treatment is 10 to 1 × 10 −3 Pa, the metal plate is used as one electrode A grounded and between the other electrode B that is insulated and supported. It is preferable that glow discharge is performed by applying an alternating current of ˜50 MHz, and the area of the electrode A exposed in the plasma generated by the glow discharge is sputter-etched so that it is 1/3 or less of the area of the electrode B. . It is preferable that the crimping suppression portion is formed by providing a non-pressurizing portion on the pressure contact surface of the pressure welding device so as to correspond to the predetermined pattern and cold-welding the plurality of metal plates.
It is preferable that the surface roughness Ra (JIS B 0610) of the pressure-bonding suppressing portion is 1 to 10 μm. The metal plate is preferably a copper plate. It is preferable that at least one of the metal plates is a two-layered laminated metal plate, the metal plate on the side of the crimping suppression portion is a copper plate, and the metal plate on the side isolated from the crimping suppression portion is an aluminum plate. The copper plate had a thickness of 0.01 to 0.6 mm, and the aluminum plate had a thickness of 0.05 to 0.5 mm. It is preferable that a hollow portion having a predetermined shape is formed on the opposing surface of the adjacent metal plates by inflating the pressure-bonding suppressing portion of the plate laminate. In the hollow laminate, the hollow portion preferably has a tunnel-like portion. The plate-type heat pipe was configured such that the heat pipe working body was enclosed in the hollow portion of the hollow laminate. In the plate heat pipe of the present invention, the heat pipe operating body is water.
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 2 shows one embodiment of a hollow laminate of the present invention, (C) is a schematic plan view, and (D) is a hollow part formed by two metal plates. An example is shown. FIG. 3 shows another embodiment of the hollow laminate of the present invention. (E) shows an example in which another metal plate is laminated and joined to one side of a hollow portion formed of two metal plates. (F) shows an example in which another metal plate is laminated and bonded to both sides of a hollow portion formed by two metal plates.
In the hollow laminate 10 shown in FIG. 2C, 11 is a hollow portion. As shown in (D), the hollow portion 11 is formed by subjecting two metal plates to activation processing on the opposing surfaces, and then setting the non-pressurized portion corresponding to the pattern of the hollow portion to be formed as a pressure contact surface. It is formed by laminating and joining so as to form a pressure-bonding restraining part by cold-welding using the provided pressure welding device, and expanding the pressure-bonding restraining part.
Specifically, copper plates 12 and 13 are used as the two metal plates, respectively. Copper or copper alloy can be used as the copper plate material. As an alloy number shown in JIS H3100, a copper alloy of C1000 series or C2000 series, brass, free-cutting brass, tin-containing brass, admiralty brass, naval brass, aluminum bronze, bronze, or the like can be used as the copper alloy. From the viewpoint of heat conduction, pure copper is desirable. Moreover, it is preferable that the thickness of a copper plate shall be 0.01-0.6 mm. If it is less than 0.01 mm, sufficient strength and corrosion resistance cannot be obtained, and if it exceeds 0.6 mm, it becomes too heavy.
Furthermore, in order to expand the capillary effect region when the heat pipe working body is sealed inside the hollow portion 11, a slight unevenness may be provided in the crimping suppression portion formed between the two metal plates. The unevenness can be formed by roughening treatment such as electrolytic treatment or etching treatment, surface finishing by an embossing roll, or the like. The surface roughness Ra (JIS B 0601) of the irregularities is preferably 1 to 10 μm. If it is less than 1 μm, it is difficult to obtain a sufficient capillary effect, and if it exceeds 10 μm, the productivity is lowered or the capillary effect is saturated. Next, the following activation process is performed on the opposing surfaces of the two metal plates.
The activation process is performed as follows. That is, the copper plates 12 and 13 are loaded in a vacuum chamber, the copper plates 12 and 13 are each grounded as one electrode A, and the other electrode B that is insulated and supported is 10 to 1 × 10 −3 Pa. The area of the electrode A exposed to the plasma generated by glow discharge by applying an alternating current of 1 to 50 MHz in a low-pressure inert gas atmosphere, preferably argon gas, is the area of the electrode B. Sputter etching is performed at 1/3 or less. If the inert gas pressure is less than 1 × 10 −3 Pa, stable glow discharge is difficult to perform and high-speed etching is difficult, and if it exceeds 10 Pa, the activation treatment efficiency decreases. If the alternating current applied is less than 1 MHz, it is difficult to maintain a stable glow discharge, and continuous etching is difficult, and if it exceeds 50 MHz, oscillation tends to occur and the power supply system becomes complicated, which is not preferable. Moreover, in order to etch efficiently, it is necessary to make the area of the electrode A smaller than the area of the electrode B. By setting it to 1/3 or less, it becomes possible to etch with sufficient efficiency.
Thereafter, the two metal plates are laminated and bonded as shown below. That is, the activated surfaces of the copper plates 12 and 13 are opposed to each other so that they are abutted and overlapped and cold-welded and laminated and joined. At this time, the pressure contact surface of the pressure welding device used for cold pressure welding is provided with a non-pressurized part such as a hollow part corresponding to the pattern of the hollow part to be formed, thereby suppressing the crimping of the part forming the hollow part. In such a state, it can be laminated and joined. In this case, lamination joining is possible under low temperature and low rolling rate, reducing the adverse effects such as metal plate and lamination joining in hot welding and high rolling rate, such as structural change, alloying, fracture, etc. Or it can be eliminated. Further, the deformation and extension of the hollow laminate can be suppressed to a low level, and the shape of the hollow portion can be processed with high accuracy. The temperature T (° C.) of the metal plate during the lamination joining is preferably 300 ° C. or less. More preferably, it is in the range of more than 0 ° C. and 300 ° C. or less. If it is 0 ° C. or less, a large cooling device is required, and if it exceeds 300 ° C., the joint is alloyed and the joint strength is lowered, which is not preferable. The rolling rate R (%) is preferably 30% or less. More preferably, the range is 0.1% to 30%. If it is less than 0.1%, sufficient bonding strength cannot be obtained, and if it exceeds 30%, deformation becomes large, which is not preferable in terms of processing accuracy.
By laminating and bonding as described above, the press-bonding is performed in a state in which the press-bonding of the pattern portion of the formed hollow portion is suppressed, and the press-bonding suppressing portion is formed. Then, if necessary, a plate laminate having a predetermined size is cut out to produce a plate laminate having the pressure-inhibiting portion of the present invention.
The hollow laminated body of the present invention is prepared as described above, and then cut out as necessary. The hollow laminated body is cut out as necessary, and compressed air is fed into the pressure-inhibiting portion of the plate laminated body from the sealing port 11a, and one of the metal plates is formed by a mold. Inflate only one side. In this way, the hollow portion 11 is formed. The hollow laminated body 10 which has the hollow part 11 of this invention as mentioned above is manufactured.
Further, in the plate type heat pipe of the present invention, after the hollow laminated body is produced as described above, a predetermined amount of the heat pipe working body is sealed through the hollow laminated body 11a, and the inside is set in a vacuum state or a reduced pressure state. The sealing port is sealed using a method such as welding. As the heat pipe working body, water, pure water or ultrapure water is used from the viewpoint of easy handling liquid, particularly from the viewpoint of defluorination. Thus, the plate type heat pipe of the present invention is manufactured.
Moreover, as shown to (E) of FIG. 3, you may use the two-layer laminated metal plate which laminated | stacked and joined the aluminum plate 14 to the copper plate 12 as a metal plate used for one side of a hollow part. In this case, the copper plate 12 and the aluminum plate 14 are laminated and joined in advance to produce a laminated metal plate, and then produced as described above with the copper plate 13 and the copper plate 12 side of the laminated metal plate facing each other. .
As shown in FIG. 3F, a two-layered metal plate in which aluminum plates 14 and 15 are laminated and joined to copper plates 12 and 13 may be used as the metal plates used on both sides of the hollow portion. Also in this case, the copper plates 12 and 13 and the aluminum plates 14 and 15 are laminated and joined in advance to produce a laminated metal plate, and then the copper plate surfaces of the two two-layer laminated metal plates are opposed to each other. And manufactured as described above.
The copper plate is used because it has high corrosion resistance to water, and the copper-aluminum laminated metal plate is used because the weight can be reduced and the specific strength can be increased as compared with the case of using only a copper plate. Aluminum or an aluminum alloy can be used as the aluminum plate material. As the aluminum alloy, 2000 series, 3000 series, 5000 series, 6000 series, 7000 series, etc. described in JIS H 4000 or 4160 can be used. Furthermore, in this laminated metal plate, the thickness of the copper plate is preferably 0.01 to 0.6 mm. If it is less than 0.01 mm, sufficient corrosion resistance cannot be obtained, and if it exceeds 0.6 mm, it becomes too heavy and there is no need to reinforce by laminating and joining from the strength aspect. The thickness of the aluminum plate is preferably 0.05 to 0.5 mm. If it is less than 0.05 mm, sufficient strength cannot be obtained, and if it exceeds 0.5 mm, it becomes too heavy, and the number of hollow parts per unit width decreases, which is not preferable.
In the plate-type heat pipe manufactured in this way, the drawing-in portions 17 of the heat pipe operating body by capillary force are formed on both sides in the width direction in the hollow portion 11, and the heat dissipation performance is not affected by the holding posture. It becomes possible to demonstrate.
Next, a method for producing a two-layered laminated metal plate used in the present invention will be described by taking the copper-aluminum bonding of FIG. 3 (E) or (F) as an example. In the laminated metal sheet manufacturing apparatus of FIG. 4, a part of the copper sheet material 22 and the aluminum sheet material 23 rewound from the rewinding reels 20 and 21, respectively, are partly sputter-etched in the etching chamber 24 and activated. Turn into. Thereafter, the rolled metal unit 29 provided in the vacuum chamber 27 is cold-rolled under the above-described conditions, and the integrated laminated metal plate 29 is taken up by the take-up reel 30.
In the case of copper-copper bonding, this is achieved by replacing the aluminum plate 23 described above with a copper plate. In addition to this, in this joining method, aluminum-aluminum joining, joining between a metal plate and a laminated metal plate, joining between laminated metal plates, and joining in a combination between other metal plates are also possible.
By providing a non-pressurized portion such as a recess corresponding to the pattern of the hollow portion to be formed on at least one of the rolling unit rolls of the cold rolling apparatus of the apparatus shown in FIG. Using the apparatus shown in Fig. 4, the metal plate is laminated and bonded as described above to obtain a laminated plate of laminated metal plates having a predetermined pattern of the crimping restraining part, and the required hollow part shape is obtained by expanding the crimping restraining part. The hollow laminated body which has can be obtained. As for the depth of the hollow made in the surface of a rolling unit roll, 0.1 mm or more is preferable. More preferably, the range of 0.2-1 mm is good. If the thickness is less than 0.1 mm, the metal plate in contact with the dent roll is joined to the other metal plate at the time of lamination joining, and the shape of the expansion tube is not constant. Even if the depth of the depression exceeds 1.0 mm, there is no problem in use, but the processing cost for making the depression increases. More preferably, it is 1.0 mm or less. The cross-sectional shape of the recess can be rectangular, trapezoidal, semicircular or elliptical, and is not particularly limited. In addition, you may provide the cutting-out process cut out to a predetermined magnitude | size instead of a winding roll part.
Laminate joining can also be achieved by replacing the cold rolling device in the vacuum chamber with a press working device. In this case, by providing a non-pressurized part such as a depression corresponding to the press-inhibiting part with a predetermined pattern as provided on the roll in at least one of the press dies, the laminated metal plate having the press-inhibiting part with the predetermined pattern is provided. A plate stack is obtained. In this case, the depth of the recess is preferably 0.1 mm or more. More preferably, the range of 0.2-1 mm is good. If the thickness is less than 0.1 mm, the metal plate in contact with the dent roll is joined to the other metal plate at the time of lamination joining, and the shape of the expansion tube is not constant. Even if the depth of the depression exceeds 1.0 mm, there is no problem in use, but the processing cost for making the depression increases. More preferably, it is 1.0 mm or less. The cross-sectional shape of the recess can be rectangular, trapezoidal, semicircular or elliptical, and is not particularly limited. Furthermore, after the sputter etching process, a copper plate material or the like can be cut out to a predetermined size and then laminated and pressed. It is also possible to first cut a copper plate material or the like into a predetermined size, and then perform a sputter etching process to laminate and press the sheet. In this case, for safety reasons, the metal plate may be used as one electrode A that is insulated and supported, and the activation treatment may be performed between the other electrode B that is grounded.
In addition, a square loop-shaped tunnel is provided on each of the outer peripheral side and the inner peripheral side as a hollow portion, and a configuration is adopted in which a plurality of radially extending tunnels are connected between them, and the heat source is between the expanded pipe portions of the inner peripheral tunnel. It can be attached to the flat part or back flat part of the PC and applied to the MPU of the computer to obtain an excellent cooling effect. However, the shape of the hollow part is not limited to this, and a shape design with a high degree of freedom is possible. is there. It is also possible to inflate both sides with a mold.
EXAMPLES Examples will be described below.
Example 1
A copper plate having a thickness of 200 μm and a copper plate having a thickness of 100 μm were prepared as metal plates.
(1) The activated copper plate 22 and the 100 μm-thick copper plate unwound from the metal plate unwinding reel 21 are wound around the electrode rolls 25 and 26 in the etching chamber 24, respectively, and the copper plate 22 and the copper plate are formed by sputter etching. Each side was activated.
(2) The copper plate 22 and the copper plate whose activation surfaces were activated were pressure-bonded to each other at a low rate of 1% by the following rolling unit 28, and the copper plate (thickness 200 μm) / copper plate (thickness 100 μm) ) Was obtained. In this case, the copper plate 22 (thickness: 200 μm) is in contact with a rolling roll having a patterned recess (depth of the recess: 0.25 mm, cross-sectional shape: elliptical), and one copper plate (thickness: 100 μm) is Two copper plates were rolled in contact with a roll having no depression. The copper plate that was in contact with the rolling roll in the recessed portion serving as the pressure-inhibiting portion was not laminated and bonded. The laminated plate was cut into a plate shape, and compressed air was passed through the recess and expanded. Further, pure water was poured into the expansion tube as cooling water in a vacuum atmosphere and sealed to prepare a heat pipe. Sealing was performed by crushing the opening and further soldering.
(Example 2)
As a metal plate, an Al plate (JIS H 1050, thickness 400 μm), an Al plate (JIS H 6003, thickness 400 μm), a copper plate (thickness 100 μm), and a copper plate (thickness 100 μm) were prepared.
(1) The activated copper plate and the 400 μm thick Al plate 23 (JIS H 1050) unwound from the metal plate unwinding reel 21 are respectively wound around the electrode rolls 25 and 26 in the etching chamber 24 and sputter-etched. Each side of the copper plate and the Al plate was activated.
(2) The copper plate and the Al plate (JIS H 1050) whose activation surfaces were activated were pressure-bonded to each other at a low pressure rate of 1% between the surfaces activated in the next rolling unit 28, and a copper plate (thickness: 100 μm). A laminated plate of Al plate (JIS H 1050, thickness 400 μm) was obtained.
(3) The activated copper plate and the Al plate 23 (JIS H 6003, thickness 400 μm) rewound from the metal plate rewinding reel 21 are respectively wound around the electrode rolls 25 and 26 in the etching chamber 24, and sputter etching is used. Each side of the copper plate and the Al plate was activated.
(4) The copper plate and the Al plate (JIS H 6003) whose activation surfaces were subjected to activation treatment were pressure-welded with the surfaces subjected to activation treatment in the next rolling unit 28 at a low pressure ratio of 5% to obtain a copper plate (thickness: 100 μm). A laminated plate of / Al plate (JIS H 6003, thickness 400 μm) was obtained.
(5) Laminated plate of activated copper plate (thickness 100 μm) / Al plate (JIS H 1050, thickness 400 μm) and copper plate (thickness 100 μm) / Al plate (JIS H 6003) rewound from the metal plate rewind reel 21 , 400 μm thick) was wound around electrode rolls 25 and 26 in the etching chamber 24, and the surface of the copper plate of the laminated plate was activated by sputter etching.
(6) Copper plate (thickness 100 μm) / Al plate (JIS H 1050, thickness 400 μm) laminated plate and copper plate (thickness 100 μm) / Al plate (JIS H 6003, thickness 400 μm) laminated plate whose press contact surfaces are activated Press the surfaces activated by the next rolling unit 28 at a low pressure reduction rate of 5%, Al plate (JIS H 1050, thickness 400 μm) / copper plate (thickness 100 μm) / copper plate (thickness 100 μm) / Al A laminated plate (JIS H 6003, thickness 400 μm) was obtained.
In this case, the laminated sheet of copper plate (thickness 100 μm) / Al plate (JIS H 1050, thickness 400 μm) is a rolling roll having a patterned recess (depth of recess 0.25 mm, cross-sectional shape: elliptical). The laminated plate of one copper plate (thickness 100 μm) / Al plate (JIS H 6003, thickness 400 μm) was in contact with a roll having no depression, and two copper plates were rolled. A copper plate of a copper plate (thickness 100 μm) / Al plate (JIS H 1050, thickness 400 μm) in contact with a rolling roll in a hollow portion serving as a pressure-inhibiting portion is not laminated and bonded to the copper plate of the other laminated plate. It was. The laminated plate was cut into a plate shape and expanded with compressed air to a portion of the copper plate (thickness 100 μm) / copper plate (thickness 100 μm) that was not joined. Further, pure water was poured into the expansion tube as cooling water in a vacuum atmosphere and sealed to prepare a heat pipe. Sealing was performed by crushing the opening and further welding.
INDUSTRIAL APPLICABILITY As described above, the plate laminate of the present invention activates the surface of a plurality of metal plates, and then abuts and overlaps the activated surfaces so as to face each other. Using the pressure welding apparatus provided with the non-pressurized portion of the pattern, cold pressure welding is performed at a low rolling rate to form a pressure-bonding restraining portion. Moreover, the hollow laminated body of this invention expands the formed crimping | compression-bonding suppression part, and forms a hollow part. Furthermore, the plate-type heat pipe of the present invention is such that a heat pipe working body is enclosed in this hollow portion, and water can be sealed as a heat pipe working body instead of a chlorofluorocarbon-based refrigerant. Improvement can be achieved, and a thin metal plate can be joined at a low rolling rate, so that the shape can be highly accurate and lightweight.
[Brief description of the drawings]
1A and 1B show a conventional plate heat pipe, in which FIG. 1A is a schematic plan view and FIG. 1B is a schematic cross-sectional view. FIG. 2 shows one embodiment of the hollow laminate of the present invention, in which (C) is a schematic plan view and (D) is a schematic cross-sectional view. FIG. 3 shows another embodiment of the hollow laminate of the present invention, wherein (E) is a schematic sectional view of another example, and (F) is a schematic sectional view of still another example. FIG. 4 is a schematic cross-sectional front view of a manufacturing apparatus for laminating and joining metal plates used in the present invention.

Claims (10)

複数枚の金属板が積層接合され、隣り合う金属板の対向面に所定のパターンで圧着抑止部が形成されたプレート積層体において、該金属板の積層接合が、真空槽内で該金属板の接合面が予め活性化処理された後、該金属板の活性化処理面同士が対向するように当接して重ね合わせ、前記圧着抑止部は、圧接装置の圧接面に前記所定のパターンに対応するように圧延ロールの表面に窪みの深さが0.1〜1mmの非加圧部を設けて冷間圧接されることを特徴とするプレート積層体。In a plate laminate in which a plurality of metal plates are laminated and bonded, and a pressure-inhibiting portion is formed in a predetermined pattern on the opposing surface of adjacent metal plates, the lamination of the metal plates is performed in the vacuum chamber. After the joining surfaces have been activated in advance, the activated surfaces of the metal plates are brought into contact with each other so as to face each other , and the pressure-bonding suppressing portion corresponds to the predetermined pattern on the pressure- contacting surface of the pressure- contacting device. Thus, the plate laminated body characterized by providing the non-pressurization part whose depth of a hollow is 0.1-1 mm on the surface of a rolling roll, and cold-welding. 前記活性化処理が10〜1×10−3Paの極低圧不活性ガス雰囲気中で、金属板をアース接地した一方の電極Aとし、絶縁支持された他の電極Bとの間に1〜50MHzの交流を印加してグロー放電を行わせ、かつグロー放電によって生じたプラズマ中に露出される電極Aの面積が、電極Bの面積の1/3以下でスパッタエッチング処理されることを特徴とする請求項1に記載のプレート積層体。In the extremely low pressure inert gas atmosphere where the activation treatment is 10 to 1 × 10 −3 Pa, the metal plate is grounded as one electrode A and 1 to 50 MHz between the other electrode B that is insulated and supported. The area of the electrode A exposed to the plasma generated by the glow discharge is sputter-etched so that it is 1/3 or less of the area of the electrode B. The plate laminate according to claim 1. 前記圧着抑止部の表面粗度Ra(JIS B 0601)が1〜10μmであることを特徴とする請求項1または2に記載のプレート積層体。 3. The plate laminate according to claim 1, wherein a surface roughness Ra (JIS B 0601) of the pressure-bonding suppressing portion is 1 to 10 μm. 前記金属板が銅板であることを特徴とする請求項1〜のいずれか1項に記載のプレート積層体。The said metal plate is a copper plate, The plate laminated body of any one of Claims 1-3 characterized by the above-mentioned. 前記金属板の少なくとも一方が2層の積層金属板からなり、圧着抑止部側の金属板が銅板であり、圧着抑止部とは隔離された側の金属板がアルミニウム板であることを特徴とする請求項1〜のいずれか1項に記載のプレート積層体。At least one of the metal plates is formed of a two-layered laminated metal plate, the metal plate on the side of the crimping suppression part is a copper plate, and the metal plate on the side isolated from the crimping suppression part is an aluminum plate. The plate laminated body of any one of Claims 1-4 . 前記銅板の厚さが0.01〜0.6mmで、前記アルミニウム板の厚さが0.05〜0.5mmであることを特徴とする請求項に記載のプレート積層体。The thickness of the said copper plate is 0.01-0.6 mm, and the thickness of the said aluminum plate is 0.05-0.5 mm, The plate laminated body of Claim 5 characterized by the above-mentioned. 請求項1〜のいずれか1項に記載のプレート積層体の前記圧着抑止部を膨らませることによって、前記隣り合う金属板の対向面に所定形状の中空部が形成されることを特徴とする中空積層体。By inflating the crimp preventing part of the plate laminate according to any one of claims 1 to 6, characterized in that the hollow portion of a predetermined shape is formed on the opposing surface of the metal plate, wherein the adjacent Hollow laminate. 前記中空部がトンネル状部を有することを特徴とする請求項に記載の中空積層体。The hollow laminate according to claim 7 , wherein the hollow portion has a tunnel-like portion. 請求項またはに記載の中空積層体の前記中空部内にヒートパイプ作動体が封入されることを特徴とするプレート型ヒートパイプ。A plate-type heat pipe, wherein a heat pipe working body is enclosed in the hollow portion of the hollow laminated body according to claim 7 or 8 . 前記ヒートパイプ作動体が水であることを特徴とする請求項に記載のプレート型ヒートパイプ。The plate-type heat pipe according to claim 9 , wherein the heat pipe operating body is water.
JP2002559202A 2001-01-25 2002-01-10 Plate laminate, hollow laminate using plate laminate, and plate heat pipe using hollow laminate Expired - Fee Related JP3868905B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001016598 2001-01-25
JP2001016598 2001-01-25
PCT/JP2002/000070 WO2002058879A1 (en) 2001-01-25 2002-01-10 Plate stacked body, hollow stacked body using plate stacked body, and plate heat pipe using hollow stacked body

Publications (2)

Publication Number Publication Date
JPWO2002058879A1 JPWO2002058879A1 (en) 2004-05-27
JP3868905B2 true JP3868905B2 (en) 2007-01-17

Family

ID=18882937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002559202A Expired - Fee Related JP3868905B2 (en) 2001-01-25 2002-01-10 Plate laminate, hollow laminate using plate laminate, and plate heat pipe using hollow laminate

Country Status (2)

Country Link
JP (1) JP3868905B2 (en)
WO (1) WO2002058879A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6311279B2 (en) * 2013-11-11 2018-04-18 大日本印刷株式会社 Heat dissipation member, manufacturing method thereof, and structure using heat dissipation member
JP6311278B2 (en) * 2013-11-11 2018-04-18 大日本印刷株式会社 Heat dissipation member, manufacturing method thereof, and structure using heat dissipation member
US20220120509A1 (en) 2019-03-11 2022-04-21 Dai Nippon Printing Co., Ltd. Vapor chamber, electronic device and sheet for vapor chamber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755384B2 (en) * 1988-03-02 1995-06-14 東洋鋼板株式会社 Clad metal plate manufacturing method and apparatus
JPH08210790A (en) * 1995-02-01 1996-08-20 Mitsubishi Shindoh Co Ltd Heat pipe and its manufacture method
JPH10185465A (en) * 1996-12-24 1998-07-14 Showa Alum Corp Plate type heat pipe

Also Published As

Publication number Publication date
WO2002058879A1 (en) 2002-08-01
JPWO2002058879A1 (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP3432520B2 (en) Clad material
JP3108360B2 (en) Battery safety valve element and battery case lid with safety valve
JP4110440B2 (en) Manufacturing method of lead frame clad plate and manufacturing method of lead frame
JPWO2002039046A1 (en) Hollow laminate and heat sink using the same
JP3868905B2 (en) Plate laminate, hollow laminate using plate laminate, and plate heat pipe using hollow laminate
JP6016095B2 (en) Joining method and joining parts
JP4100498B2 (en) Method for producing plate laminate, method for producing hollow laminate using plate laminate, and method for producing plate heat pipe
JP3327396B2 (en) Safety valve element for condenser and condenser case lid with safety valve
JP4100497B2 (en) Plate laminate, hollow laminate using plate laminate and plate heat pipe
JP2002221398A (en) Plate laminate, hollow laminate using the same, and plate-type heat pipe using the hollow laminate
JP2002219582A (en) Manufacturing method for plate laminate, manufacturing method for hollow laminate using the plate laminate, and manufacturing method for plate type heat pipe using the hollow laminate
JP2002221397A (en) Plate laminate, hollow laminate using the same, plate- type heat pipe using the hollow laminate, and their manufacturing method
JP2002219767A (en) Method for manufacturing plate laminate, method for manufacturing hollow laminate using plate laminate, and method for manufacturing plate-shaped heat pipe using hollow laminate
JP2002151637A (en) Hollow laminate and method for manufacturing heat sink using the same
JP3843851B2 (en) Roll bond panel
JPH10185465A (en) Plate type heat pipe
JP2006010305A (en) Rollbond panel, and its manufacturing method
JP2004034127A (en) Metal sheet joint body manufacturing method, method for manufacturing laminate body using the metal sheet joint body, and method for manufacturing component using the laminate body
JP2005066677A (en) Method for manufacturing metal clad material
WO2001000508A1 (en) Semiconductor package clad material and semiconductor package using the same
JP4836220B2 (en) Method for manufacturing conductive plate laminate
JPH10196899A (en) Formation method of piping circuit
JP2002168578A (en) Method for manufacturing heat pipe
JP2005074913A (en) Manufacturing method of light/heavy laminated material and manufacturing method of part using light/heavy laminated material
JP2006220382A (en) Plate piping body and component using it

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Ref document number: 3868905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees