JP3867030B2 - Negative electrode for lithium secondary battery, positive electrode and lithium secondary battery - Google Patents

Negative electrode for lithium secondary battery, positive electrode and lithium secondary battery Download PDF

Info

Publication number
JP3867030B2
JP3867030B2 JP2002256462A JP2002256462A JP3867030B2 JP 3867030 B2 JP3867030 B2 JP 3867030B2 JP 2002256462 A JP2002256462 A JP 2002256462A JP 2002256462 A JP2002256462 A JP 2002256462A JP 3867030 B2 JP3867030 B2 JP 3867030B2
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
graphite
lithium secondary
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002256462A
Other languages
Japanese (ja)
Other versions
JP2004095426A (en
Inventor
岳彦 澤井
慎治 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEI Corp
Original Assignee
SEI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEI Corp filed Critical SEI Corp
Priority to JP2002256462A priority Critical patent/JP3867030B2/en
Publication of JP2004095426A publication Critical patent/JP2004095426A/en
Application granted granted Critical
Publication of JP3867030B2 publication Critical patent/JP3867030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はリチウム二次電池用負極、正極および、該負極および正極を用いたリチウム二次電池に関する。
【0002】
【従来の技術】
リチウムイオンの吸蔵、放出が可能な炭素材料を用いて負極材層を形成したリチウム二次電池は、金属リチウムを用いて負極材層を形成したリチウム二次電池に比べてデントライトの析出を抑制することができる。そのため、電池の短絡を防止して安全性を高めたうえで高容量な電池を提供できる利点を有している。
近年ではこのリチウムイオン電池の高容量化が求められ、電池反応物質である正極複合金属リチウム酸化物や負極炭素材自体の高容量化や電池設計による電極面積の増加、さらにはセパレータの薄形化による反応物質量の増加等の工夫がなされてきた。
【0003】
例えば、負極炭素材として、アスペクト比が5以下、比表面積が 10m2/g 以下、101〜105nm の範囲の全細孔容積が 0.4〜2.0 ml/g で、偏平状の粒子を複数配向面が非平行となるように集合または結合してなる形状を有してなる黒鉛粒子が知られている(例えば、特許文献1〜4参照)。
【0004】
【特許文献1】
特開平10−158005号公報(特許請求の範囲)
【特許文献2】
特開平10−236808号公報(特許請求の範囲)
【特許文献3】
特開平10−236809号公報(特許請求の範囲)
【特許文献4】
特開2001−089118号公報(特許請求の範囲)
【0005】
【発明が解決しようとする課題】
しかしながら、負極炭素材として上記黒鉛粒子を用いた場合、高容量化は達成できるが、電池寿命性能や安全性が劣る場合があるという問題がある。リチウム二次電池が携帯電話やノートパソコンなどの一般民生用用途に多用されるようになると電池寿命性能や安全性は特に重要な電池特性となる。
本発明はこのような問題に対処するためになされたもので、高容量化を達成した上で長寿命かつ安全性の高いリチウム二次電池用負極、正極および、該負極および正極を用いたリチウム二次電池の提供を目的とする。
【0006】
【課題を解決するための手段】
本発明に係るリチウム二次電池は、リチウムイオンの吸蔵、放出が可能な負極材と正極材とがリチウム塩含有非水電解質を介して積層あるいは捲回されてなるリチウム二次電池であって、上記負極材は、比表面積が 0.5 4 m 2 /g 10 1 10 5 nm の範囲の全細孔容積が 0.4 2.0 ml/g 、タップ密度が 0.5 1.2 g/cm 3 の偏平状の粒子を複数配向面が非平行となるように集合または結合してなる形状を有する主剤黒鉛粒子が 70 90 重量%と、メソフェーズ小球体炭素および気相成長炭素繊維状黒鉛から選ばれた少なくとも一つの配合材 30 10 重量%とが配合されてなる炭素材であり、上記正極材は、粒径がD 50 7 12 μ m のリチウム含有金属酸化物粒子であり、上記リチウム塩含有非水電解質はビニレンカーボネートが配合されてなることを特徴とする。
【0007】
本発明に係る他のリチウム二次電池は、リチウムイオンの吸蔵、放出が可能な負極材と正極材とがリチウム塩含有非水電解質を介して積層あるいは捲回されてなるリチウム二次電池であって、上記負極材は、比表面積が 0.5 4 m 2 /g 10 1 10 5 nm の範囲の全細孔容積が 0.4 2.0 ml/g 、タップ密度が 0.5 1.2 g/cm 3 の偏平状の粒子を複数配向面が非平行となるように集合または結合してなる形状を有する主剤黒鉛粒子が 70 90 重量%と、メソフェーズ小球体炭素および気相成長炭素繊維状黒鉛から選ばれた少なくとも一つの配合材 30 10 重量%とが配合されてなる炭素材であり、上記正極材は、粒径がD 50 7 12 μ m の金属酸化物粒子と、粒径がD 50 4 5 μ m の金属酸化物粒子とを混合したリチウム含有金属酸化物粒子であり、上記リチウム塩含有非水電解質はビニレンカーボネートが配合されてなることを特徴とする。
【0009】
高容量で長寿命かつ安全性の高いリチウム二次電池の研究を進めたところ、所定の物性を有し、偏平状の粒子を複数配向面が非平行となるように集合または結合した形状の主剤となる黒鉛粒子と、メソフェーズ小球体炭素および気相成長炭素繊維状黒鉛から選ばれた少なくとも一つの配合材とを配合した負極材を用いることにより、初充電量に対する初回の放電量割合として定義される充放電効率が増加し、かつ高密度に炭素材を詰められることにより、容量が増大することが分かった。また、メソフェーズ小球体炭素および/または気相成長炭素繊維状黒鉛は、電子伝導性を向上させることに加えて、リチウムイオンを黒鉛エッジ部でLiFやLi2CO3の化合物に変化させないで速やかにリチウムイオンとして黒鉛層のステージに挿入するため、容量が増大することが分かった。
また、正極材として粒径が異なるリチウム含有金属酸化物粒子を用いることにより、最密充填が可能となり、正極の活物質量を増加させることができ、容量が増加した。
さらに、非水電解液にビニレンカーボネートを配合することにより、初回充放電中に生じる負極電極上でのLiF、Li2CO3、金属リチウム等の生成を抑え、または電解液中のエチレンカーボネートが分解してCO2や水、エチレンガスに変化することを防止して効率よくリチウムイオンを充放電に関与させ、長寿命かつ安全性の高いリチウム二次電池が得られた。本発明はこのような知見に基づくものである。
【0010】
【発明の実施の形態】
本発明に係るリチウム二次電池用負極材に使用できる炭素材は、比表面積が 0.5〜4 m2/g 、および 101〜105nm の範囲の全細孔容積が 0.4〜2.0 ml/g 、タップ密度が 0.5〜1.2 g/cm3で、その形状は、偏平状の粒子を複数配向面が非平行となるように集合または結合している黒鉛粒子を主成分とする。
この黒鉛粒子の比表面積は、 0.5〜4 m2/g 、好ましくは 0.7〜1.5 m2/g である。比表面積がこの範囲であると、充放電効率を高く維持しながら、高密度に詰まった負極材を得ることができる。なお、比表面積は、BET法(窒素ガス吸着法)などの既知の方法で測定できる。
また、黒鉛粒子における、101nm〜105nm の範囲の全細孔容積は 0.4〜2.0 ml/g 、好ましくは 0.4〜1.0 ml/g である。全細孔容積がこの範囲にあると、サイクル寿命を維持してリチウム二次電池の容量の低下を防ぐことができる。なお、全細孔容積は水銀圧入法による細孔径分布測定により求めることができる。細孔の大きさもまた水銀圧入法による細孔径分布測定により知ることができる。
【0011】
上記黒鉛粒子は、偏平状の粒子を複数配向面が非平行となるように集合または結合している形状を有する。扁平状の粒子とは、鱗状、鱗片状、球形でない塊状等、粒子の径に長軸径と短軸径を有するものをいい、この粒子の配向面が非平行とは、扁平した面、換言すれば最も平らに近い面が相互に同一方向を有することなく集合または結合していることをいう。
また、この黒鉛粒子における結合とは互いの粒子が、タール、ピッチ等のバインダーを炭素化した炭素質を介して、化学的に結合している状態をいい、集合とは互いの粒子が化学的に結合してはないが、その形状等に起因して、その集合体としての形状を保っている状態をいう。機械的な強度の面から、黒鉛粒子同士が結合しているものが好ましい。1つの黒鉛粒子において、扁平状の粒子の集合または結合する数としては、3 個以上であることが好ましい。個々の扁平状の粒子の大きさとしては、粒径で 1〜100μm であることが好ましく、これらが集合または結合した黒鉛粒子の平均粒径の 2/3 以下であることが好ましい。
【0012】
各黒鉛粒子のX線広角回析における結晶の層間距離d(002)は0.338nm 以下が好ましく、0.335〜0.337nm の範囲がより好ましい。結晶の層間距離d(002)が 0.338nm をこえると放電容量が小さくなる傾向がある。
また、黒鉛粒子のタップ密度は 0.5〜1.2 g/cm3である。タップ密度の測定は、容量 100cm3のメスシリンダーを斜めにし、これに試料粉末 100cm3をさじを用いて徐々に投入し、メスシリンダーに栓をした後、メスシリンダーを 5cm の高さから 50 回落下させた後の試料粉末の重量および容積から算出できる。
【0013】
上記特性を有する黒鉛粒子の市販品としては、リチウムイオン電池負極材MAGD、MAGCまたはMAGB(日立化成社製)が挙げられる。
【0014】
本発明に使用できるメソフェーズ小球体炭素は、例えば常圧または減圧されたアルゴンガス、窒素ガスなどの不活性ガス雰囲気中にてメソフェーズピッチ等を 2800〜3000℃で熱処理することで得られる炭素粒子である。このメソフェーズ小球体炭素粒子の粒子径は炭素材の主成分となる上記黒鉛粒子が集合または結合した隙間に充填できる粒子径であれば使用でき、具体的には 5〜30 μm 、好ましくは 10〜20 μm である。黒鉛粒子の隙間に充填することで炭素材の最密充填が可能となり、電池寿命が向上する。
メソフェーズ小球体炭素の市販品としては、大阪ガス社製MCMBなどが挙げられる。
【0015】
本発明に使用できる気相成長炭素繊維状黒鉛は、いわゆる基板成長法または流動気相法いずれの方法で製造されたものであってもよい。また、この気相成長炭素繊維状黒鉛を 2000℃以上、好ましくは 2000℃〜3000℃の範囲に加熱処理することにより黒鉛化することにより得られる黒鉛化気相成長炭素繊維状黒鉛であってもよい。
気相成長炭素繊維状黒鉛のD50は 14〜21 μm であることが好ましい。また、これら気相成長炭素繊維状黒鉛にホウ素を添加したものは、炭素層間距離を広げることができ、リチウムのインターカレートを助長させ、容量増加できるので好ましい。
気相成長炭素繊維状黒鉛の市販品としては、メルブロンミルドFM62(BMCF)、XM66(ペトカマテリアルズ社製)等が挙げられる。
【0016】
本発明に係るリチウム二次電池用負極材に使用できる黒鉛炭素材は、上述したMAGCのような黒鉛粒子とメソフェーズ小球体炭素との組み合わせ、上述したMAGCのような黒鉛粒子と気相成長炭素繊維状黒鉛との組み合わせ、または上述したMAGCのような黒鉛粒子とメソフェーズ小球体炭素と気相成長炭素繊維状黒鉛との組み合わせとすることができる。
黒鉛炭素材の配合割合は、主剤となる黒鉛粒子が 70〜90 重量%、配合材となるメソフェーズ小球体炭素および/または気相成長炭素繊維状黒鉛が 30〜10 重量%である。配合材が 30 重量%をこえると充放電効率の低下や、材料そのものの放電能力が低いために高容量化に対して効果が小さくなり、逆に 10 重量%未満であると充放電サイクル中にリチウムイオンが負極表面に集中して、金属リチウムの析出を助長させ電池寿命性能の劣化をきたす。また、配合材のより好ましい配合割合は 10〜15 重量%である。
【0017】
リチウム二次電池用負極材は、活物質となる上記配合されたそれぞれの黒鉛粒と、結着剤と、分散溶媒とを混練してペースト状にし、集電体に塗布しシート状にすることで得られる。
結着剤としては、イオン伝導率の大きな高分子化合物等が使用できる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド、カルボニル化変性ポリフッ化ビニリデン、ポリアクリロニトリル、スチレンブタジエンゴム等が例示できる。結着剤の配合割合は炭素材 100 重量部に対して、1〜20 重量部用いることが好ましい。
用いる分散溶媒としては、炭素材と結着剤とをペースト状にできる溶媒であれば使用できる。好適な溶媒としては、N−メチル−2−ピロリドン、水等が挙げられる。
集電体としては、例えば銅の金属箔、金属メッシュなどの金属集電体が好適に使用できる。
【0018】
本発明に係るリチウム二次電池用正極材に使用できるリチウム含有金属酸化物粒子は、リチウムを含有する金属酸化物粒子であれば特に制限なく使用できる。例えばLiNiO2、LiCoO2、LiMn24等を単独または混合して、さらにはNi、Co、Mnの複合金属酸化物を使用できる。
本発明に使用できるリチウム含有金属酸化物粒子は、粒径がD50で 7〜12μm の金属酸化物粒子と、粒径がD50で 4〜5μm の金属酸化物粒子とを混合して使用する。上記範囲の粒径の異なるリチウム含有金属酸化物粒子を混合することにより、リチウム含有金属酸化物粒子の最密充填が可能となる。その結果、正極の活物質量が増加し、電極密度が増大する。
【0019】
リチウム二次電池用正極材は、活物質となるリチウム含有金属酸化物粒子と、導電剤と、結着剤と、分散溶媒とを混練してペースト状にし、集電体に塗布しシート状にすることで得られる。
導電剤としては、黒鉛粉末、アセチレンブラック等の炭素材粉末などが挙げられる。結着剤、分散溶媒は負極材に用いたものを使用できる。集電体はアルミニウムの金属箔、金属メッシュなどを用いる。
【0020】
本発明に係るリチウム二次電池は、上記負極材と上記正極材とを用いて、リチウム塩含有非水電解質を介して積層あるいは捲回されて得られる。
非水電解質の非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、メチルエチルカーボネート(MEC)等が挙げられる。
本発明は、特にビニレンカーボネートを上記非水溶媒に配合する。ビニレンカーボネートを配合することにより、効率よくリチウムイオンを充放電に関与させることができる。ビニレンカーボネートの配合割合は非水溶媒100重量部に対して 0.5〜5 重量部、好ましくは 1〜3 重量部である。
【0021】
非水溶媒に溶解できるリチウム塩としては、六フッ化燐酸リチウム(LiPF6)、ホウ四フッ化リチウム(LiBF4)、トリフルオロメタンスルホン酸リチウム(LiSO3CF4)等が挙げられる。リチウム塩の配合量としては非水溶媒 100 重量部に対して 0.6〜1.5 重量部、好ましくは 0.8〜1.2 重量部である。
【0022】
【実施例】
実施例1
活物質として黒鉛粉末 94.5 重量部に結着剤として 5.5 重量部のポリフッ化ビニリデンを添加し、これに分散溶媒としてN−メチル−2−ピロリドンを添加、混練したスラリを作製した。主剤の黒鉛粉末には比表面積が 0.5〜2 m2/g である黒鉛(MAGC、日立化成社製)を用いた。主剤の黒鉛粉末に対して、ホウ素添加の気相成長炭素繊維状黒鉛(BMCF、ペトカマテリアルズ社製)を 10 重量%配合した。厚さ 10μm の圧延銅箔の両面に当該スラリを塗布・乾燥後、プレス、裁断することにより圧延銅箔を含む負極電極厚さ約 137μm のリチウム二次電池用負極を得た。
【0023】
実施例2
ホウ素添加の気相成長炭素繊維状黒鉛の代わりにメソフェーズ小球体炭素(MCMB、大阪ガス社製)を混合する以外は実施例1と同一の材料、方法でリチウム二次電池用負極を作製した。
【0024】
実施例3
粒径がD50で 10μm のコバルト酸リチウム粒子と、粒径がD50で 5μm のコバルト酸リチウム粒子との混合物を正極活物質とし、この活物質 95.3 重量部に、導電剤 2.2 重量部と結着剤として 2.5 重量部のポリフッ化ビニリデンを添加し、これに分散溶媒としてN−メチル−2−ピロリドンを添加、混練した正極合剤(スラリ)を作製した。作製したスラリを厚さ 15μm の集電体としてのアルミニウム箔の両面に塗布、乾燥し、その後、プレス、裁断してアルミニウム箔を含む正極電極厚さ約 140μm のリチウム二次電池用正極を得た。
【0025】
実施例4
実施例1で得られたリチウム二次電池用負極と、粒径がD50で 10μm のコバルト酸リチウム粒子を用いる以外は実施例3と同一の材料、方法で得られたリチウム二次電池用正極を用いてリチウム二次電池を作製した。
上記のリチウム二次電池用正負極を、厚さ 16〜20μm のポリエチレン製セパレータを介し捲回して電極群とし、この電極群を円筒形の電池容器に挿入、電解液を所定量注入後、上蓋をカシメ封口することにより円筒形リチウムイオン二次電池を得た。電解液にはEC、DMC、DECを体積比で 25:50:15 に混合した溶液中に6フッ化リン酸リチウム(LiPF6)を 1 モル/リットル溶解し、さらにその溶液にビニレンカーボネートを電解液の 1 重量%混合したものを用いた。この電池の設計容量は 2200 mAhである。
【0026】
実施例5
実施例1の黒鉛粉末 94.5 重量部に結着剤として 5.5 重量部のポリフッ化ビニリデンを添加するのは同一であるが、主剤の黒鉛(MAGC、日立化成社製) 85 重量部に、メソフェーズ小球体炭素(MCMB、大阪ガス社製)を 7.5 重量部、ホウ素添加の気相成長炭素繊維状黒鉛(BMCF、ペトカマテリアルズ社製)を 7.5 重量部混合して得られたリチウム二次電池用負極と、実施例3で得られたリチウム二次電池用正極を用いる以外は実施例4と同一の材料、方法で円筒形のリチウム二次電池を得た。この電池の設計容量は 2400 mAhである。
【0027】
比較例1
負極材料に比表面積が 0.5〜2 m2/g 以外の通常市販されている人造黒鉛を用いた以外は実施例4と同様にして円筒形のリチウムイオン電池を得た。この電池の設計容量は 1800 mAhである。
【0028】
比較例2
実施例4の電解液にビニレンカーボネートを混合しない以外は上記比較例1と同様にして円筒形のリチウムイオン電池を得た。この電池の設計容量は 1800 mAhである。
【0029】
実施例4、5および比較例1、2で得られたリチウム二次電池の充放電試験を実施し、容量、サイクル寿命性能および安全性評価を比較した。
容量試験の測定では、4.2V 充電状態の電池を、それぞれ1時間率(1C)にて終止電圧である 2.75V まで放電し、電流値と時間との積にて求めた。結果を表1に示す。
【表1】

Figure 0003867030
表1の結果より、実施例5は正極のコバルト酸リチウムの粒子が最密充填されて正極の電極密度が 3.74g/cm3から 3.77g/cm3に増大し、結果正極の活物質量が増加したためであると結論づけられる。一方比較例1および2に対して実施例4の容量が増加したのは負極の黒鉛を一般的に用いられる人造黒鉛の電極密度を増加したことに加えて比表面積が 0.5〜2 m2/g である炭素材にメソフェーズ小球体炭素材または気相成長炭素繊維状黒鉛を混合した材料を用いたことによる。これはMAGCのような黒鉛で比表面積を通常の人造黒鉛の 3 m2/g よりも小さくすることにより初充電量に対する初回の放電量割合(充放電効率)が増加し、結果容量が増大したものである。また、さらに当該充放電効率を増加させる目的でリチウムイオンのインターカレーションを効率よく行なわせるようにメソフェーズ小球体炭素材またはホウ素添加の気相成長炭素繊維状黒鉛を混合した材料を用いた。これらによりリチウムイオンが黒鉛エッジ部でLiFやLi2CO3の化合物に変化せずリチウムイオンとして黒鉛層のステージに挿入した結果容量を発現したものと考えられる。
【0030】
サイクル寿命試験では、25℃±2℃の雰囲気温度にて、1時間率(1C)、上限電圧 4.2V で定電流定電圧充電し、1時間率(1C)で終止電圧 2.75V まで放電するサイクルを繰り返した。結果を図1に示す。
図1より、比較例2<比較例1<実施例4≒実施例5の順序で(ただし、容量は実施例5の方が大きい。)容量低下率が改善されていることがわかる。これは、まず比較例1と2とを比較すると、比較例1では電解液にビニレンカーボネートを添加したことにより黒鉛表面部に初充電時、リチウムイオン伝導性の高分子被膜を生成し(学術的にはSEIと呼ばれる被膜)、サイクル寿命中の充電時にリチウムイオンがLiFやLi2CO3の化合物を生成したり、金属リチウムを生成したり、または電解液中のエチレンカーボネートが分解してCO2や水、エチレンガスに変化することを防止して効率よくリチウムイオンを充放電に関与させることができたためである。
【0031】
さらには実施例4および5が比較例2に比べて寿命特性が向上したのは、比表面積が 0.5〜2 m2/g である黒鉛材は充放電効率は高くなるが、充放電サイクルに対しては特に充電中に比表面積の小ささからリチウムイオンが黒鉛表面に集中して、場合によっては金属リチウムが生成し結果、正極から放出されたリチウムが充放電に関与できない状態になる。そこでメソフェーズ小球体炭素材またはホウ素添加の気相成長炭素繊維状黒鉛を混合した炭素材料を用いたことによって主剤である比表面積の小さい黒鉛の表面に集中したリチウムイオンを素早くメソフェーズ小球体や気相成長炭素繊維状黒鉛の炭素材の中に取り込んだために金属リチウムの生成を防止し、寿命性能が向上したものと考えられる。中でも気相成長炭素繊維状黒鉛炭素材にホウ素を添加したものは、炭素層間距離を広げたためにリチウムのインターカレートを助長させてさらに金属リチウムの生成を防止できた。このことは、充放電中の電池を解体して負極電極の表面を観察した結果、実施例4,5と比較例1,2で金属リチウムの生成状態からも顕著に違いを実証できた。
【0032】
つぎに各電池を各種安全性試験に供して、安全性の確認を行なった。結果を表2に示す。
安全性試験は、リチウム二次電池を完全充電または完全放電の状態にして、試験温度、判定基準、試験個数を表2に示す条件で行なった。なお、安全性試験の各試験項目の試験方法はUL規格(UL1642、UL2054)に準拠した。
【0033】
【表2】
Figure 0003867030
表2に示すように、比較例2<比較例1<実施例4≒実施例5の順序で(ただし、容量は実施例5の方が大きい。)安全性が確保されることがわかった。この理由は、上記サイクル寿命試験の結果において考察したように、ビニレンカーボネートによるSEIの生成やリチウムイオンのメソフェーズ小球体やホウ素添加の気相成長炭素繊維状黒鉛材への取り込みにより金属リチウムの生成を防止して過充電試験や圧壊、衝突試験で安全性が確保されたものと考えられる。
【0034】
【発明の効果】
本発明のリチウム二次電池用負極材は、比表面積が 0.5〜2 m2/g 、101〜105nm の範囲の全細孔容積が 0.4〜2.0 ml/g 、タップ密度が 0.5〜1.2 g/cm3の偏平状の粒子を複数配向面が非平行となるように集合または結合してなる形状を有してなる主剤黒鉛粒子と、メソフェーズ小球体炭素および気相成長炭素繊維状黒鉛から選ばれた少なくとも一つの配合材黒鉛とが配合されてなる炭素材を用いるので、また、黒鉛粒子が 70〜90 重量%、配合材黒鉛が 30〜10 重量%配合されてなるので、充放電中に負極電極上でのLiF、Li2CO3の化合物を生成したり、金属リチウムを生成したりする現象を抑える。その結果、高容量で長寿命かつ高安全性なリチウムイオン電池製造が可能になる。
【0035】
本発明のリチウム二次電池用正極材は、粒径がD50で 7〜12μm の金属酸化物粒子と、粒径がD50で 4〜5μm の金属酸化物粒子とを混合したリチウム含有金属酸化物粒子であるので、金属酸化物粒子の最密充填が可能となる。その結果、正極の活物質量が増加するため、高容量のリチウムイオン電池製造が可能になる。
【0036】
本発明のリチウム二次電池は、上記負極材および/または正極材を用いるので、また、これら電極材とともに、電解液にビニレンカーボネートが配合されたリチウム塩含有非水電解質を用いるので、充放電中に負極電極上でのLiF、Li2CO3の化合物を生成したり、金属リチウムを生成したり、または電解液中のエチレンカーボネートが分解してCO2や水、エチレンガスに変化することを防止して効率よくリチウムイオンを充放電に関与させることができ、結果、高容量で長寿命かつ高安全性なリチウム二次電池が得られる。
【図面の簡単な説明】
【図1】サイクル寿命試験結果を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a negative electrode for a lithium secondary battery, a positive electrode, and a lithium secondary battery using the negative electrode and the positive electrode.
[0002]
[Prior art]
Lithium secondary batteries with a negative electrode material layer formed using a carbon material capable of occluding and releasing lithium ions suppress dentrite precipitation compared to lithium secondary batteries with a negative electrode material layer formed using metallic lithium. can do. Therefore, there is an advantage that a high-capacity battery can be provided after the short circuit of the battery is prevented to improve safety.
In recent years, there has been a demand for higher capacity of this lithium ion battery, the capacity of the positive electrode composite metal lithium oxide and the negative electrode carbon material itself, which are battery reactants, increase of the electrode area due to battery design, and further reduction of the separator thickness. Ingenuity has been devised such as an increase in the amount of reactants due to.
[0003]
For example, as a negative electrode carbon material, a plurality of flat particles having an aspect ratio of 5 or less, a specific surface area of 10 m 2 / g or less, and a total pore volume in the range of 10 1 to 10 5 nm of 0.4 to 2.0 ml / g. There are known graphite particles having a shape formed by aggregation or bonding so that the orientation planes are non-parallel (see, for example, Patent Documents 1 to 4).
[0004]
[Patent Document 1]
JP-A-10-158005 (Claims)
[Patent Document 2]
JP-A-10-236808 (Claims)
[Patent Document 3]
JP-A-10-236809 (Claims)
[Patent Document 4]
JP 2001-089118 A (Claims)
[0005]
[Problems to be solved by the invention]
However, when the graphite particles are used as the negative electrode carbon material, a high capacity can be achieved, but there is a problem that battery life performance and safety may be inferior. When lithium secondary batteries are widely used in general consumer applications such as mobile phones and laptop computers, battery life performance and safety become particularly important battery characteristics.
The present invention has been made to cope with such problems, and has achieved a high capacity and a long life and high safety for a negative electrode and a positive electrode for a lithium secondary battery, and lithium using the negative electrode and the positive electrode The purpose is to provide a secondary battery.
[0006]
[Means for Solving the Problems]
The lithium secondary battery according to the present invention is a lithium secondary battery in which a negative electrode material capable of occluding and releasing lithium ions and a positive electrode material are laminated or wound via a lithium salt-containing nonaqueous electrolyte, the negative electrode material has a specific surface area of 0.5 ~ 4 m 2 / g, 10 1 ~ 10 5 total pore volume of the nm range is 0.4 ~ 2.0 ml / g, tap density flat of 0.5 ~ 1.2 g / cm 3 70 to 90 % by weight of a main graphite particle having a shape formed by assembling or bonding a plurality of particles so that a plurality of orientation planes are non-parallel, at least selected from mesophase microsphere carbon and vapor-grown carbon fibrous graphite a carbon material in which one and compounding material 30 to 10% by weight is formed by blending, the cathode material has a particle size is lithium-containing metal oxide particles 7 ~ 12 mu m at D 50, containing the lithium salt The non-aqueous electrolyte is characterized in that vinylene carbonate is blended.
[0007]
Another lithium secondary battery according to the present invention is a lithium secondary battery in which a negative electrode material capable of occluding and releasing lithium ions and a positive electrode material are laminated or wound via a lithium salt-containing non-aqueous electrolyte. Te, the negative electrode material has a specific surface area of 0.5 ~ 4 m 2 / g, 10 1 ~ 10 5 total pore volume of the nm range is 0.4 ~ 2.0 ml / g, a tap density of 0.5 ~ 1.2 g / cm 3 70 to 90 wt% of the main graphite particles having a shape formed by assembling or bonding flat particles so that their orientation planes are non-parallel, and selected from mesophase microsphere carbon and vapor grown carbon fibrous graphite at least one of the mixing member 30 to 10 wt% is a carbon material which is formed by mixing, the cathode material, a metal oxide particles having a particle size is in the D 50 7 ~ 12 mu m, particle size D 50 was in a 4 ~ 5 mu m of the metal oxide particles and a mixed lithium-containing metal oxide particles, the lithium salt The contained non-aqueous electrolyte is characterized in that vinylene carbonate is blended.
[0009]
Research on lithium secondary batteries with high capacity, long life, and high safety has progressed, and the main agent has the specified physical properties and is formed by combining or bonding flat particles so that multiple orientation planes are non-parallel. Is defined as a ratio of the initial discharge amount to the initial charge amount by using a negative electrode material containing graphite particles and at least one compound material selected from mesophase microsphere carbon and vapor grown carbon fibrous graphite. It has been found that the capacity increases as the charge / discharge efficiency increases and the carbon material is packed at a high density. In addition to improving the electronic conductivity, mesophase microsphere carbon and / or vapor-grown carbon fibrous graphite can be used quickly without changing lithium ions to LiF or Li 2 CO 3 compounds at the graphite edge. It was found that the capacity increased because lithium ions were inserted into the stage of the graphite layer.
Further, by using lithium-containing metal oxide particles having different particle diameters as the positive electrode material, closest packing is possible, the amount of the active material of the positive electrode can be increased, and the capacity is increased.
Furthermore, by adding vinylene carbonate to the non-aqueous electrolyte, the production of LiF, Li 2 CO 3 , metallic lithium, etc. on the negative electrode that occurs during the first charge / discharge is suppressed, or ethylene carbonate in the electrolyte is decomposed. Thus, the lithium secondary battery was prevented from changing to CO 2 , water, or ethylene gas, and lithium ions were efficiently involved in charging / discharging, and a long-life and high-safety lithium secondary battery was obtained. The present invention is based on such knowledge.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Carbon material that can be used in the negative electrode material for lithium secondary battery according to the present invention has a specific surface area of 0.5 to 4 m 2 / g, and 10 1 to 10 5 total pore volume of the nm range is 0.4 to 2.0 ml / g The tap density is 0.5 to 1.2 g / cm 3 , and the shape is mainly composed of graphite particles in which flat particles are assembled or bonded so that a plurality of orientation planes are non-parallel.
The specific surface area of the graphite particles is 0.5 to 4 m 2 / g, preferably 0.7 to 1.5 m 2 / g. When the specific surface area is within this range, it is possible to obtain a negative electrode material packed with high density while maintaining high charge / discharge efficiency. The specific surface area can be measured by a known method such as a BET method (nitrogen gas adsorption method).
Further, in the graphite particles, the total pore volume in the range from 10 1 nm~10 5 nm is 0.4 to 2.0 ml / g, preferably from 0.4 to 1.0 ml / g. When the total pore volume is within this range, the cycle life can be maintained and the capacity of the lithium secondary battery can be prevented from decreasing. The total pore volume can be obtained by measuring the pore size distribution by mercury porosimetry. The pore size can also be determined by measuring the pore size distribution by mercury porosimetry.
[0011]
The graphite particles have a shape in which flat particles are aggregated or bonded so that a plurality of orientation planes are non-parallel. A flat particle means a particle having a major axis diameter and a minor axis diameter, such as a scaly shape, a scale shape, a non-spherical lump shape, and the like. In other words, the surfaces that are closest to each other are gathered or joined together without having the same direction.
In addition, the bond in the graphite particles means a state in which the particles are chemically bonded through a carbonaceous material obtained by carbonizing a binder such as tar and pitch. Although it is not bonded to the surface, it means a state in which the shape as an aggregate is maintained due to the shape or the like. From the viewpoint of mechanical strength, those in which graphite particles are bonded to each other are preferable. In one graphite particle, the number of flat particles aggregated or bonded is preferably 3 or more. The size of the individual flat particles is preferably 1 to 100 μm in particle size, and preferably 2/3 or less of the average particle size of the aggregated or bonded graphite particles.
[0012]
The crystal interlayer distance d (002) in the X-ray wide-angle diffraction of each graphite particle is preferably 0.338 nm or less, and more preferably in the range of 0.335 to 0.337 nm. When the crystal interlayer distance d (002) exceeds 0.338 nm, the discharge capacity tends to decrease.
The tap density of the graphite particles is 0.5 to 1.2 g / cm 3 . To measure the tap density, graduated a 100 cm 3 measuring cylinder, slowly put 100 cm 3 of the sample powder with a spoon, plug the measuring cylinder, and then drop the measuring cylinder 50 times from a height of 5 cm. It can be calculated from the weight and volume of the sample powder after being lowered.
[0013]
Examples of commercially available graphite particles having the above characteristics include lithium ion battery negative electrode materials MAGD, MAGC, or MAGB (manufactured by Hitachi Chemical Co., Ltd.).
[0014]
The mesophase microsphere carbon that can be used in the present invention is a carbon particle obtained by heat-treating mesophase pitch or the like at 2800 to 3000 ° C. in an inert gas atmosphere such as argon gas or nitrogen gas at normal pressure or reduced pressure. is there. The mesophase small spherical carbon particles can be used as long as the particle size can fill the gaps in which the graphite particles, which are the main components of the carbon material, are assembled or bonded, specifically 5 to 30 μm, preferably 10 to 20 μm. By filling the gaps between the graphite particles, the carbon material can be closely packed, and the battery life is improved.
Examples of commercially available mesophase microsphere carbon include MCMB manufactured by Osaka Gas Co., Ltd.
[0015]
The vapor-grown carbon fibrous graphite that can be used in the present invention may be one produced by a so-called substrate growth method or fluidized vapor phase method. Moreover, even if it is graphitized vapor-grown carbon fibrous graphite obtained by graphitizing this vapor-grown carbon fibrous graphite by heat treatment at 2000 ° C. or higher, preferably 2000 ° C. to 3000 ° C. Good.
The vapor growth carbon fiber graphite preferably has a D 50 of 14 to 21 μm. Further, those obtained by adding boron to the vapor-grown carbon fiber graphite are preferable because the distance between carbon layers can be increased, the intercalation of lithium can be promoted, and the capacity can be increased.
Examples of commercially available vapor-grown carbon fiber graphite include Melbronn Milled FM62 (BMCF), XM66 (manufactured by Petka Materials Co., Ltd.), and the like.
[0016]
The graphite carbon material that can be used for the negative electrode material for a lithium secondary battery according to the present invention is a combination of graphite particles such as MAGC described above and mesophase microsphere carbon, and graphite particles such as MAGC described above and vapor-grown carbon fibers. It can be a combination of graphite and a combination of graphite particles such as the above-mentioned MAGC, mesophase microsphere carbon and vapor grown carbon fibrous graphite.
The blending ratio of the graphite carbon material is 70 to 90% by weight of the graphite particles as the main component, and 30 to 10% by weight of the mesophase microsphere carbon and / or the vapor-grown carbon fibrous graphite as the blending material. If the compounding material exceeds 30% by weight, the charge / discharge efficiency decreases and the discharge capacity of the material itself is low, so the effect on the increase in capacity is reduced. Conversely, if it is less than 10% by weight, the charge / discharge cycle is reduced. Lithium ions concentrate on the surface of the negative electrode, promote the precipitation of metallic lithium, and deteriorate the battery life performance. Further, a more preferable mixing ratio of the compounding material is 10 to 15% by weight.
[0017]
The negative electrode material for a lithium secondary battery is prepared by kneading each of the above-mentioned blended graphite particles as an active material, a binder, and a dispersion solvent into a paste, and applying the paste to a current collector to form a sheet It is obtained by.
As the binder, a polymer compound having a high ionic conductivity can be used. For example, polyvinylidene fluoride, polytetrafluoroethylene, polyimide, carbonylation-modified polyvinylidene fluoride, polyacrylonitrile, styrene butadiene rubber and the like can be exemplified. It is preferable to use 1 to 20 parts by weight of the binder based on 100 parts by weight of the carbon material.
As the dispersion solvent to be used, any solvent that can paste the carbon material and the binder can be used. Suitable solvents include N-methyl-2-pyrrolidone, water and the like.
As the current collector, for example, a metal current collector such as a copper metal foil or a metal mesh can be suitably used.
[0018]
The lithium-containing metal oxide particles that can be used in the positive electrode material for a lithium secondary battery according to the present invention can be used without particular limitation as long as they are metal oxide particles containing lithium. For example, LiNiO 2 , LiCoO 2 , LiMn 2 O 4 or the like can be used alone or in combination, and a composite metal oxide of Ni, Co, and Mn can be used.
Lithium-containing metal oxide particles for use in the present invention, the particle size and the metal oxide particles of 7~12μm at D 50 particle size is used by mixing the metal oxide particles 4~5μm at D 50 . By mixing lithium-containing metal oxide particles having different particle diameters within the above range, it is possible to close-pack lithium-containing metal oxide particles. As a result, the amount of the active material of the positive electrode increases and the electrode density increases.
[0019]
A positive electrode material for a lithium secondary battery is prepared by kneading a lithium-containing metal oxide particle as an active material, a conductive agent, a binder, and a dispersion solvent into a paste, applying it to a current collector, and forming a sheet It is obtained by doing.
Examples of the conductive agent include graphite powder and carbon material powder such as acetylene black. As the binder and the dispersion solvent, those used for the negative electrode material can be used. As the current collector, an aluminum metal foil, a metal mesh, or the like is used.
[0020]
The lithium secondary battery according to the present invention is obtained by laminating or winding a lithium salt-containing nonaqueous electrolyte using the negative electrode material and the positive electrode material.
Examples of the nonaqueous solvent for the nonaqueous electrolyte include ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC).
In the present invention, in particular, vinylene carbonate is blended in the non-aqueous solvent. By blending vinylene carbonate, lithium ions can be efficiently involved in charging and discharging. The blending ratio of vinylene carbonate is 0.5 to 5 parts by weight, preferably 1 to 3 parts by weight with respect to 100 parts by weight of the nonaqueous solvent.
[0021]
Examples of lithium salts that can be dissolved in a non-aqueous solvent include lithium hexafluorophosphate (LiPF 6 ), lithium borotetrafluoride (LiBF 4 ), lithium trifluoromethanesulfonate (LiSO 3 CF 4 ), and the like. The blending amount of the lithium salt is 0.6 to 1.5 parts by weight, preferably 0.8 to 1.2 parts by weight, based on 100 parts by weight of the nonaqueous solvent.
[0022]
【Example】
Example 1
A slurry was prepared by adding 94.5 parts by weight of graphite powder as an active material and 5.5 parts by weight of polyvinylidene fluoride as a binder, and adding N-methyl-2-pyrrolidone as a dispersion solvent thereto and kneading. Graphite (MAGC, manufactured by Hitachi Chemical Co., Ltd.) having a specific surface area of 0.5 to 2 m 2 / g was used as the main graphite powder. 10% by weight of boron-added vapor-grown carbon fiber graphite (BMCF, manufactured by Petka Materials Co., Ltd.) was blended with the main graphite powder. The slurry was applied on both sides of a 10 μm-thick rolled copper foil, dried, pressed, and cut to obtain a negative electrode for a lithium secondary battery having a negative electrode thickness of about 137 μm including the rolled copper foil.
[0023]
Example 2
A negative electrode for a lithium secondary battery was produced by the same material and method as in Example 1 except that mesophase microsphere carbon (MCMB, manufactured by Osaka Gas Co., Ltd.) was mixed instead of boron-added vapor-grown carbon fibrous graphite.
[0024]
Example 3
A mixture of lithium cobalt oxide particles having a particle size of D 50 and 10 μm and lithium cobalt oxide particles having a particle size of D 50 and 5 μm was used as a positive electrode active material, and 95.3 parts by weight of this active material was combined with 2.2 parts by weight of a conductive agent. A positive electrode mixture (slurry) was prepared by adding 2.5 parts by weight of polyvinylidene fluoride as an adhesive, adding N-methyl-2-pyrrolidone as a dispersion solvent thereto, and kneading. The prepared slurry was applied to both sides of an aluminum foil as a current collector with a thickness of 15 μm, dried, then pressed and cut to obtain a positive electrode for a lithium secondary battery having a thickness of about 140 μm, including the aluminum foil. .
[0025]
Example 4
A positive electrode for a lithium secondary battery obtained by the same material and method as in Example 3 except that the negative electrode for a lithium secondary battery obtained in Example 1 and lithium cobaltate particles having a particle size of D 50 and 10 μm were used. A lithium secondary battery was fabricated using
The positive and negative electrodes for a lithium secondary battery are wound around a polyethylene separator having a thickness of 16 to 20 μm to form an electrode group. The electrode group is inserted into a cylindrical battery container, and a predetermined amount of electrolyte is injected. The cylindrical lithium ion secondary battery was obtained by caulking. In the electrolyte, 1 mol / liter of lithium hexafluorophosphate (LiPF 6 ) is dissolved in a solution in which EC, DMC, and DEC are mixed at a volume ratio of 25:50:15, and vinylene carbonate is electrolyzed in the solution. A mixture containing 1% by weight of the liquid was used. The design capacity of this battery is 2200 mAh.
[0026]
Example 5
It is the same to add 5.5 parts by weight of polyvinylidene fluoride as a binder to 94.5 parts by weight of the graphite powder of Example 1, but 85 parts by weight of the main graphite (MAGC, manufactured by Hitachi Chemical Co., Ltd.) Negative electrode for lithium secondary battery obtained by mixing 7.5 parts by weight of carbon (MCMB, manufactured by Osaka Gas Co., Ltd.) and 7.5 parts by weight of boron-added vapor-grown carbon fiber graphite (BMCF, manufactured by Petka Materials Co., Ltd.) A cylindrical lithium secondary battery was obtained using the same material and method as in Example 4 except that the positive electrode for a lithium secondary battery obtained in Example 3 was used. The design capacity of this battery is 2400 mAh.
[0027]
Comparative Example 1
A cylindrical lithium ion battery was obtained in the same manner as in Example 4 except that commercially available artificial graphite having a specific surface area other than 0.5-2 m 2 / g was used as the negative electrode material. The design capacity of this battery is 1800 mAh.
[0028]
Comparative Example 2
A cylindrical lithium ion battery was obtained in the same manner as in Comparative Example 1 except that vinylene carbonate was not mixed in the electrolyte solution of Example 4. The design capacity of this battery is 1800 mAh.
[0029]
The charge and discharge tests of the lithium secondary batteries obtained in Examples 4 and 5 and Comparative Examples 1 and 2 were performed, and the capacity, cycle life performance, and safety evaluation were compared.
In the capacity test, 4.2V charged batteries were each discharged to a final voltage of 2.75V at 1 hour rate (1C), and the product of current value and time was obtained. The results are shown in Table 1.
[Table 1]
Figure 0003867030
From the results in Table 1, in Example 5, the lithium cobalt oxide particles of the positive electrode are closely packed, and the electrode density of the positive electrode increases from 3.74 g / cm 3 to 3.77 g / cm 3. As a result, the amount of active material of the positive electrode is increased. It is concluded that this is because of the increase. On the other hand, the capacity of Example 4 was increased with respect to Comparative Examples 1 and 2 in addition to the increase in the electrode density of artificial graphite generally used for negative electrode graphite, and the specific surface area was 0.5-2 m 2 / g. This is because a material obtained by mixing a mesophase microsphere carbon material or a vapor-grown carbon fiber graphite with a carbon material is used. This is because the specific surface area of graphite such as MAGC is smaller than 3 m 2 / g of ordinary artificial graphite, so that the ratio of the initial discharge amount (charge / discharge efficiency) to the initial charge amount increases, resulting in an increase in capacity. Is. Further, for the purpose of further increasing the charge / discharge efficiency, a material mixed with mesophase microsphere carbon material or boron-added vapor-grown carbon fiber graphite was used so as to efficiently perform lithium ion intercalation. It is considered that, as a result, lithium ions did not change to LiF or Li 2 CO 3 compounds at the graphite edge portion, and as a result, lithium ions were inserted into the stage of the graphite layer as a lithium ion.
[0030]
In the cycle life test, a constant current and constant voltage charge at an hourly rate (1C) and an upper limit voltage of 4.2V at an ambient temperature of 25 ° C ± 2 ° C and a discharge to a final voltage of 2.75V at an hourly rate (1C) Was repeated. The results are shown in FIG.
From FIG. 1, it can be seen that the capacity reduction rate is improved in the order of Comparative Example 2 <Comparative Example 1 <Example 4≈Example 5 (however, the capacity is larger in Example 5). First, when Comparative Examples 1 and 2 are compared, in Comparative Example 1 , vinylene carbonate was added to the electrolyte solution to produce a lithium ion conductive polymer film on the graphite surface during the initial charge (academic). A film called SEI), lithium ions produce LiF or Li 2 CO 3 compounds during charging during the cycle life, or metal lithium is produced, or ethylene carbonate in the electrolyte decomposes to produce CO 2. This is because lithium ions can be efficiently involved in charge and discharge by preventing the change to water, ethylene gas.
[0031]
Furthermore, the life characteristics of Examples 4 and 5 were improved compared to Comparative Example 2. The graphite material having a specific surface area of 0.5 to 2 m 2 / g has a higher charge / discharge efficiency, but the charge / discharge cycle is improved. In particular, during charging, lithium ions concentrate on the graphite surface due to the small specific surface area, and in some cases, metallic lithium is generated. As a result, lithium released from the positive electrode cannot participate in charging / discharging. Therefore, by using a mesophase microsphere carbon material or a carbon material mixed with boron-added vapor-grown carbon fibrous graphite, lithium ions concentrated on the surface of graphite with a small specific surface area, which is the main agent, can be quickly absorbed into mesophase microspheres and gas phase. It is thought that the life performance was improved by preventing the formation of metallic lithium because it was incorporated into the carbon material of the grown carbon fibrous graphite. Among these, the vapor-grown carbon fiber graphite carbon material added with boron was able to promote the intercalation of lithium and further prevent the formation of metallic lithium because the distance between the carbon layers was increased. As a result of disassembling the battery being charged and discharged and observing the surface of the negative electrode, it was possible to demonstrate a significant difference between Examples 4 and 5 and Comparative Examples 1 and 2 from the state of formation of metallic lithium.
[0032]
Next, each battery was subjected to various safety tests to confirm safety. The results are shown in Table 2.
In the safety test, the lithium secondary battery was fully charged or completely discharged, and the test temperature, determination criteria, and number of tests were performed under the conditions shown in Table 2. In addition, the test method of each test item of the safety test complied with UL standards (UL1642 and UL2054).
[0033]
[Table 2]
Figure 0003867030
As shown in Table 2, it was found that safety was ensured in the order of Comparative Example 2 <Comparative Example 1 <Example 4≈Example 5 (where the capacity is larger in Example 5). The reason for this is that, as discussed in the results of the cycle life test above, the formation of metallic lithium by the generation of SEI by vinylene carbonate and the incorporation of lithium ions into mesophase spherules and vapor-grown carbon fiber graphite materials with boron addition. It is considered that safety was ensured by overcharge test, crushing, and collision test.
[0034]
【The invention's effect】
The negative electrode material for lithium secondary battery of the present invention, the total pore volume in the range specific surface area of 0.5~2 m 2 / g, 10 1 ~10 5 nm is 0.4 to 2.0 ml / g, a tap density of 0.5 to 1.2 a main graphite particle having a shape formed by assembling or bonding g / cm 3 flat particles so that a plurality of orientation planes are non-parallel, and mesophase microsphere carbon and vapor grown carbon fibrous graphite. Since the carbon material is blended with at least one selected compounding material graphite, 70 to 90% by weight of graphite particles and 30 to 10% by weight of compounding material graphite are mixed. In addition, a phenomenon that a compound of LiF or Li 2 CO 3 or a metal lithium is generated on the negative electrode is suppressed. As a result, it is possible to manufacture a lithium ion battery with a high capacity, a long life, and a high safety.
[0035]
Positive electrode material for lithium secondary battery of the present invention, the metal oxide particles of 7~12μm in particle size D 50, the lithium-containing metal oxide having a particle size was mixed with the metal oxide particles 4~5μm at D 50 Since it is a product particle, it becomes possible to close-pack the metal oxide particles. As a result, since the amount of the active material of the positive electrode is increased, a high capacity lithium ion battery can be manufactured.
[0036]
The lithium secondary battery of the present invention uses the above negative electrode material and / or positive electrode material, and also uses a lithium salt-containing non-aqueous electrolyte in which vinylene carbonate is blended in an electrolytic solution together with these electrode materials. Prevents LiF and Li 2 CO 3 compounds on the negative electrode, metallic lithium, or decomposition of ethylene carbonate in the electrolyte into CO 2 , water, or ethylene gas Thus, lithium ions can be efficiently involved in charging and discharging, and as a result, a lithium secondary battery having a high capacity, a long life, and high safety can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cycle life test result.

Claims (2)

リチウムイオンの吸蔵、放出が可能な負極材と正極材とがリチウム塩含有非水電解質を介して積層あるいは捲回されてなるリチウム二次電池であって、
前記負極材は、比表面積が 0.5〜4 m2/g 、101〜105nm の範囲の全細孔容積が 0.4〜2.0 ml/g 、タップ密度が 0.5〜1.2 g/cm3の偏平状の粒子を複数配向面が非平行となるように集合または結合してなる形状を有する主剤黒鉛粒子が 70〜90 重量%と、メソフェーズ小球体炭素および気相成長炭素繊維状黒鉛から選ばれた少なくとも一つの配合材 30〜10 重量%とが配合されてなる炭素材であり、
前記正極材は、粒径がD50で 7〜12μm のリチウム含有金属酸化物粒子であり、
前記リチウム塩含有非水電解質はビニレンカーボネートが配合されてなることを特徴とするリチウム二次電池。
A lithium secondary battery in which a negative electrode material capable of occluding and releasing lithium ions and a positive electrode material are laminated or wound through a lithium salt-containing non-aqueous electrolyte,
The negative electrode material is a flat shape having a specific surface area of 0.5 to 4 m 2 / g, a total pore volume in the range of 10 1 to 10 5 nm of 0.4 to 2.0 ml / g, and a tap density of 0.5 to 1.2 g / cm 3 . 70 to 90% by weight of a main graphite particle having a shape formed by assembling or bonding a plurality of particles so that their orientation planes are non-parallel, at least selected from mesophase microsphere carbon and vapor-grown carbon fibrous graphite It is a carbon material composed of 30 to 10% by weight of one compounding material,
The positive electrode material has a particle size is lithium-containing metal oxide particles of 7~12μm at D 50,
The lithium secondary battery including the lithium salt-containing nonaqueous electrolyte is blended with vinylene carbonate.
リチウムイオンの吸蔵、放出が可能な負極材と正極材とがリチウム塩含有非水電解質を介して積層あるいは捲回されてなるリチウム二次電池であって、
前記負極材は、比表面積が 0.5〜4 m2/g 、101〜105nm の範囲の全細孔容積が 0.4〜2.0 ml/g 、タップ密度が 0.5〜1.2 g/cm3の偏平状の粒子を複数配向面が非平行となるように集合または結合してなる形状を有する主剤黒鉛粒子が 70〜90 重量%と、メソフェーズ小球体炭素および気相成長炭素繊維状黒鉛から選ばれた少なくとも一つの配合材 30〜10 重量%とが配合されてなる炭素材であり、
前記正極材は、粒径がD50で 7〜12μm の金属酸化物粒子と、粒径がD50で 4〜5μm の金属酸化物粒子とを混合したリチウム含有金属酸化物粒子であり、
前記リチウム塩含有非水電解質はビニレンカーボネートが配合されてなることを特徴とするリチウム二次電池。
A lithium secondary battery in which a negative electrode material capable of occluding and releasing lithium ions and a positive electrode material are laminated or wound through a lithium salt-containing non-aqueous electrolyte,
The negative electrode material is a flat shape having a specific surface area of 0.5 to 4 m 2 / g, a total pore volume in the range of 10 1 to 10 5 nm of 0.4 to 2.0 ml / g, and a tap density of 0.5 to 1.2 g / cm 3 . 70 to 90% by weight of a main graphite particle having a shape formed by assembling or bonding a plurality of particles so that their orientation planes are non-parallel, at least selected from mesophase microsphere carbon and vapor-grown carbon fibrous graphite It is a carbon material composed of 30 to 10% by weight of one compounding material,
The positive electrode material includes a metal oxide particles of 7~12μm in particle size D 50, the particle size is lithium-containing metal oxide particles obtained by mixing the metal oxide particles 4~5μm at D 50,
The lithium secondary battery including the lithium salt-containing nonaqueous electrolyte is blended with vinylene carbonate.
JP2002256462A 2002-09-02 2002-09-02 Negative electrode for lithium secondary battery, positive electrode and lithium secondary battery Expired - Lifetime JP3867030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256462A JP3867030B2 (en) 2002-09-02 2002-09-02 Negative electrode for lithium secondary battery, positive electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256462A JP3867030B2 (en) 2002-09-02 2002-09-02 Negative electrode for lithium secondary battery, positive electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004095426A JP2004095426A (en) 2004-03-25
JP3867030B2 true JP3867030B2 (en) 2007-01-10

Family

ID=32061681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256462A Expired - Lifetime JP3867030B2 (en) 2002-09-02 2002-09-02 Negative electrode for lithium secondary battery, positive electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3867030B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136361A1 (en) 2007-04-27 2008-11-13 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery, its manufacturing method, and secondary battery
KR20180020857A (en) 2014-05-30 2018-02-28 에스 이 아이 가부시키가이샤 Electrode material, manufacturing method for same, and lithium battery
WO2018131094A1 (en) 2017-01-11 2018-07-19 エス・イー・アイ株式会社 Electrochemical device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101181623B1 (en) * 2003-09-05 2012-09-10 산요덴키가부시키가이샤 Non-aqueous electrolyte secondary battery-use cathode material, production method therefor, non-aqueous electrolyte secondary battery-use cathode and non-aqueous electrolyte secondary battery using the cathode material
TWI459616B (en) * 2004-08-16 2014-11-01 Showa Denko Kk Lithium batteries with positive and the use of its lithium batteries
JP4530822B2 (en) * 2004-11-30 2010-08-25 三洋電機株式会社 Nonaqueous electrolyte secondary battery and charging method thereof
JP4530845B2 (en) * 2004-12-28 2010-08-25 三洋電機株式会社 Nonaqueous electrolyte secondary battery and charging method thereof
JP4952186B2 (en) * 2005-10-20 2012-06-13 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP4797577B2 (en) 2005-10-31 2011-10-19 ソニー株式会社 battery
JP5162092B2 (en) * 2005-12-20 2013-03-13 昭和電工株式会社 Graphite material, carbon material for battery electrode, and battery
JP5303822B2 (en) 2006-02-13 2013-10-02 ソニー株式会社 Positive electrode active material and non-aqueous electrolyte secondary battery
CN101667663B (en) * 2007-10-10 2013-05-15 日立麦克赛尔能源株式会社 Nonaqueous secondary battery and apparatus using the same
JP5147892B2 (en) * 2010-04-16 2013-02-20 三洋電機株式会社 Nonaqueous electrolyte secondary battery and charging method thereof
JP5147890B2 (en) * 2010-04-16 2013-02-20 三洋電機株式会社 Nonaqueous electrolyte secondary battery and charging method thereof
JP5177211B2 (en) * 2010-12-09 2013-04-03 ソニー株式会社 Negative electrode active material, negative electrode and battery
US20120321960A1 (en) * 2011-06-20 2012-12-20 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including the same
JP2014017363A (en) * 2012-07-09 2014-01-30 Daido Metal Co Ltd Active material sheet, electrode using the same
JP6153124B2 (en) * 2012-12-13 2017-06-28 日東電工株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
US10403893B2 (en) 2013-08-21 2019-09-03 Hydro-Quebec Positive electrode material for lithium secondary battery
CN112602212A (en) * 2018-09-28 2021-04-02 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136361A1 (en) 2007-04-27 2008-11-13 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery, its manufacturing method, and secondary battery
US9537150B2 (en) 2007-04-27 2017-01-03 Toyota Jidosha Kabushiki Kaisha Electrode for secondary battery and production process for the same and secondary battery
KR20180020857A (en) 2014-05-30 2018-02-28 에스 이 아이 가부시키가이샤 Electrode material, manufacturing method for same, and lithium battery
WO2018131094A1 (en) 2017-01-11 2018-07-19 エス・イー・アイ株式会社 Electrochemical device
KR20190101999A (en) 2017-01-11 2019-09-02 에스 이 아이 가부시키가이샤 Electrochemical devices

Also Published As

Publication number Publication date
JP2004095426A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP3867030B2 (en) Negative electrode for lithium secondary battery, positive electrode and lithium secondary battery
JP5882516B2 (en) Lithium secondary battery
TWI637550B (en) Negative electrode material for non-aqueous electrolyte battery and method for producing negative electrode active material particles
JP5162825B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP3726958B2 (en) battery
JP4834030B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
CA2851994A1 (en) Lithium secondary cell with high charge and discharge rate capability
WO2016121585A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2007188861A (en) Battery
WO2012001844A1 (en) Negative electrode for nonaqueous electrolyte secondary battery
US10263248B2 (en) Lithium secondary battery
JP2007173222A (en) Lithium ion secondary battery
JPWO2012144177A1 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2017520892A (en) Positive electrode for lithium battery
WO2012127548A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010062164A (en) Nonaqueous electrolyte secondary battery, nonaqueous electrolyte for the nonaqueous electrolyte secondary battery
JP2007165292A (en) Nonaqueous electrolyte for secondary battery, and secondary battery using it
JP2010225366A (en) Nonaqueous electrolyte secondary battery
WO2021088167A1 (en) Positive electrode and electronic device and electrochemical device including positive electrode
JP2011070802A (en) Nonaqueous electrolyte secondary battery
JPH07134988A (en) Nonaqueous electrolyte secondary battery
JPH06295744A (en) Nonaqueous secondary battery
US20230387384A1 (en) Method for Manufacturing Positive Electrode for Lithium Secondary Battery and Positive Electrode for Lithium Secondary Battery Manufactured Thereby
KR102273781B1 (en) Negative active material and preparation method thereof
JP2019057446A (en) Lithium ion battery and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

R150 Certificate of patent or registration of utility model

Ref document number: 3867030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161013

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term