JP3866853B2 - Branch pipe - Google Patents

Branch pipe Download PDF

Info

Publication number
JP3866853B2
JP3866853B2 JP09172698A JP9172698A JP3866853B2 JP 3866853 B2 JP3866853 B2 JP 3866853B2 JP 09172698 A JP09172698 A JP 09172698A JP 9172698 A JP9172698 A JP 9172698A JP 3866853 B2 JP3866853 B2 JP 3866853B2
Authority
JP
Japan
Prior art keywords
branch pipe
piece
diameter
shell
main pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09172698A
Other languages
Japanese (ja)
Other versions
JPH11287378A (en
Inventor
弘 村山
浩司 西川
Original Assignee
弘 村山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 弘 村山 filed Critical 弘 村山
Priority to JP09172698A priority Critical patent/JP3866853B2/en
Publication of JPH11287378A publication Critical patent/JPH11287378A/en
Application granted granted Critical
Publication of JP3866853B2 publication Critical patent/JP3866853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/02Branch units, e.g. made in one piece, welded, riveted

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、水力発電所の水圧管路や流体機械等の水力施設において、液体の分流又は合流のために用いられる分岐管に関するものである。
【0002】
【従来の技術】
水力発電所の水圧管路や液体機械においては、分岐管内部で生じる流体のエネルギー損失が無視できない大きさとなるため、これを極力低減することが要求される。
【0003】
一方、このような分岐管はいくつかの管部分を接合することにより構成されるが、その接合部における流体圧力等に起因する力の均衡を保つために、何らかの補強手段を施す必要がある。その補強が適切でない場合には、分岐管の構造部分に高い応力を生じ、破壊の原因となる。
【0004】
以上のような分岐管のエネルギー損失、あるいは接合部に生じる力又は応力は、分岐管の形状及び構造によってその特性が規定される。
【0005】
図3に示した従来例(特公昭36−10880号公報参照)の分岐管は、1本の主管1と、これより小径の2本の枝管2、3とを接合して構成される。また、主管1に3本の枝管を接合する場合もある。
【0006】
主管1は円筒状の主管片1aと円錐状の主管片1Aとを接合して構成され、その円錐状の主管片1Aは、それぞれ円錐状の小径シェル1bと大径シェル1cとを段差なく接合して構成される。その小径シェル1bと上記の円筒状の主管片1aとが段差なく接合される。
【0007】
各主管2、3は、円筒状の枝管片2a、3aと、円錐状の枝管片2A、3Aとを接合して構成され、その円錐状の枝管片2A、3Aは、それぞれ円錐状の小径シェル2b、3b、中径シェル2c、3c及び大径シェル2d、3dをそれぞれ段差なく接合して構成される。その小径シェル2b、3bと上記の円筒状の枝管片2a、3aとが段差なく接合される。
【0008】
上記の円錐状の主管片1Aと2本の円錐状の枝管片2A、3Aとは、主管片1Aの直径より大きい直径を有する1つの共通の仮想球5に外接する形状に形成されることにより、枝管片2A、3Aの大径シェル2d、3d相互間に交截部6が生じると共に、主管片1Aと2本の枝管片2A、3Aの三者がすき間無く接合される。
【0009】
上記の交截部6に三日月板状(以下、「三日月状」又は「三日月形」という)の補強部材8の外周円弧部8aが挟着され、接合される。補強部材8の内周円弧部8bは分岐管の内部に突き出し、その両端は、交截部6の両端、即ち主管片1Aと、2つの枝管片2A、3Bの三者の接合箇所9に達する。
【0010】
上記のような構造により、分岐管内部で生じる流体のエネルギー損失の低減がはかられると共に、補強部材8はその断面内に主として引張応力のみが発生するため使用材料の量の低減がはかられる。
【0011】
上記の補強部材8のように、隣接する2つの枝管2、3の交截部6に取付けられる形式の分岐管においては、その補強部材8に流体の圧力に起因する引張力等がその板厚方向に作用するためラメラティア等の割れが発生する恐れがあり、これを防止するために、その材料が一般の鋼材ではなく、いわゆる耐ラメラティア鋼材のように前記の力学条件に耐えうる性能を有するものが使用される。
【0012】
【発明が解決しようとする課題】
上記従来の分岐管においては、三日月形の補強部材8が隣接する2つの枝管2、3の大径シェル2d、3d相互間の交截部6に設けられ、その両端は主管片1Aと2つの枝管2A、3Aの三者の接合箇所9に達している。このため、特に、管路口径の大きい場合には、上記補強部材8の寸法が大きくなり、その材料費が高くつく。また、流体圧が高い場合は、使用材料が極めて厚くなるので、材料費が一層高くつき、分岐管の建造費が著しく高価になる問題がある。
【0013】
材料費を低減する対策として、補強部材8を複数の小部材の接合により構成する方法が考えられるが、接合費用の増加が避けられないので、有効な対策とはならない。
【0014】
一方、分岐管における流体のエネルギー損失をより小さくすることは常に追求される課題であり、また例えば揚水式発電所の水圧管路に用いられる分岐管のように分流と合流の両方で用いられるような場合は、どの場合においても流体のエネルギー損失のより小さいことが強く要求されるようになっている。
【0015】
この発明の課題は、三日月形の補強材の寸法を従来のものに比べて小さくし、その材料費及び分岐管の建造費を低減すると共に、分流時においても合流時においても、分岐管内部で生じる流体のエネルギー損失を従来のものより低減できる分岐管を提供することである。
【0016】
【課題を解決するための手段】
上記の課題を解決するために、この発明は、1本の主管と、これに接合された複数本の枝管とから成り、上記の主管と枝管は該主管より大径の1つの共通の仮想球に外接する円錐状の主管片と円錐状の枝管片とを有し、上記の主管片は、上記仮想球に外接する大径シェルと小径シェルを接合して形成され、上記の枝管片は、大径シェル、中径シェル及び小径シェルを接合して形成されると共に、その各枝管片の大径シェルは隣接する他の枝管片の大径シェルとの間に生じる交截部を有し、上記の主管片と上記の各枝管片の大径シェルとが接合され、上記交截部にその内側に突き出した三日月状の補強部材を設けてなる分岐管において、上記枝管片の大径シェルは、上記主管片と接合される上記仮想球に外接する主管側シェル片と、上記中径シェルと接合される枝管側シェル片を接合することにより構成され、上記の補強部材は上記枝管側シェル片の交截部のみに設けられ、その補強部材の両端がその枝管側シェル片の交截部の両端に達した構成とした。
【0017】
【作用】
この発明によると、各枝管の枝管片の大径シェルが、主管側シェル片と中径シェル側シェル片とを接合することにより構成されるので、分流の場合は主管から各枝管に至るまで、また合流の場合は各枝管から主管に至るまでの流路の方向転換角が緩やかになり、流体の方向転換が円滑に達成される。
【0018】
一方、上記のような構造によると、補強部材の両端部附近における発生応力が大きくなく、その結果補強部材を従来より相当小形化しても、分岐管全体の強度に影響を及ぼさない。
【0019】
なお、補強部材があまり小さくなると、整流効果を失うことになり好ましくないが、その両端点が上記両シェル片の接合箇所に達する程度である場合は、整流効果を有し、エネルギー損失の増大を避けることができる。
【0020】
【発明の実施の形態】
以下、この発明の実施形態を添付図面に基づいて説明する。
図1に示した第1実施形態の分岐管は前述の従来例と同様に、主管1と、これより小径の2本の枝管2、3とを接合してなる。主管1は円筒状の主管1aと円錐状の主管片1Aとを接合して構成され、その円錐状の主管片1Aは、それぞれ円錐状の小径シェル1bと大径シェル1cとを段差なく接合して構成される。その小径シェル1bと上記の円筒状の主管片1aとが段差なく接合される。
【0021】
各枝管2、3は、それぞれ円筒状の枝管片2a、3aと、円錐状の枝管片2A、3Aとを接合して構成され、その円錐状の枝管片2A、3Aは、それぞれ円錐状の小径シェル2b、3b、中径シェル2c、3c及び大径シェル2d、3dをそれぞれ段差なく接合して構成される。その小径シェル2b、3bと上記の円筒状の枝管片2a、3aとが段差なく接合される。
【0022】
上記の主管片1Aと2本の枝管片2A、3Aとは、主管片1Aの直径より大きい直径を有する1つの共通の仮想球5に外接する形状に形成されることにより、枝管片2A、3Aの大径シェル2d、3d相互間に交截部6a、6bが生じると共に、主管片1Aと2本の枝管片2A、3Aの三者がすき間無く接合される。
【0023】
以上の構成は従来例と同じであるが、以下の構成においては相違がある。即ち、相違点の第1は、上述の枝管片2A、3Aの大径シェル2d、3dが、枝管片2A、3Aの中径シェル2c、3cと接合される枝管側シェル片2d1 、3d1 と、主管片1Aの大径シェル1cと接合される主管側シェル片2d2 、3d2 とが、接合部10、11において段差なく接合することにより構成された点である。これらの枝管側シェル片2d1 、3d1 は、交截部6aを有し、また主管側シェル片2d2 、3d2 は、交截部6bを有する。
【0024】
また、相違点の第2は、補強部材8の大きさである。即ち、この場合の補強部材8は、三日月形をなしている点で従来と共通しているが、その寸法は従来のものに比べて相当小形化され、その外周円弧部8aが前記の枝管側シェル片2d1 、3d1 の交截部6aに挟着され接合される。補強部材8の内周円弧部8bは、分岐管の内部に突き出し、その両端は枝管側シェル片2d1 、3d1 の交截部6aの両端、即ち枝管側シェル片2d1 、3d1 と主管側シェル片2d2 、3d2 との接合部10、11と、交截部6aの両端との2箇所の接合箇所9a、9aに達する。
【0026】
なお、図1において、大径シェル2d2 、3d2 の交截部6bの両端点を符号9b、9bで示す。
【0027】
上記のように構成することにより、補強部材8の寸法は、従来例に比べて相当小さい寸法となる。図2(a)は、従来例の寸法の長い補強部材8を用いた場合のその従来例内を流れる流体圧力による応力分布を示すものであり、図2(b)は上記の実施形態の寸法の短い補強部材8を用いた場合のその実施形態内を流れる流体圧力による応力分布図である。これらの応力分布図は、補強部材8の各部の応力σを基準応力(σ0=1)に対する比率(σ/σ0)で表したものである。
【0028】
両者を比較すると、この実施形態の場合のように、寸法の短い補強材8を用いた場合でも著しい応力増加のないことが確認できる。また、補強部材8の端部において、従来の場合は、接合箇所9に至る長い範囲において応力の発生が認められるのに対し、この実施形態の場合は、接合箇所9aまでの短い範囲において応力が十分に小さくなっていることが確認できる。即ち、この発明による補強部材8は、従来のものに比べて寸法が相当小さいにもかかわらず、分岐管の安定性を低下させないということができる。
【0029】
また、流れの方向が主管1から枝管2、3の方向、即ち分流である場合と、枝管2、3から主管1の方向、即ち合流である場合に分けて、分岐管におけるエネルギー損失係数の検討結果を表1に示す。
【0030】
【表1】

Figure 0003866853
【0031】
上記の表1からわかるように、分流及び合流のいずれの場合も従来例に比べこの実施形態の方がエネルギー損失係数が小さい。
【0032】
【発明の効果】
以上のように、この発明は各枝管片の大径シェルを、主管側シェル片と中径シェル側シェル片とを接合して形成したことにより、分流及び合流のいずれの場合も流体の方向転換が円滑に行われる。このため、補強部材の寸法を従来に比べて相当小形化しても分岐管全体の強度を従来と同様に維持することができる。また、上記の流体の方向転換の円滑化と補強部材の小形化とが相いまって、分流、合流いずれの場合にも分岐管における流体のエネルギー損失が著しく低減される。更に、補強部材が小形化されることにより、材料費及び分岐管の建造費が低減される。
【図面の簡単な説明】
【図1】(a) 第1実施形態の横断平面図
(b) 同上の縦断正面図
【図2】(a) 従来例の応力分布図
(b) 第1実施形態の場合の応力分布図
【図3】(a) 従来例の横断平面図
(b) 同上の縦断正面図
【符号の説明】
1 主管
1a 主管片
1b 小径シェル
1c 大径シェル
1A 主管片
2 枝管
2a 枝管片
2b 小径シェル
2c 中径シェル
2d 大径シェル
2d1 枝管側シェル片
2d2 主管側シェル片
2A 枝管片
3 枝管
3a 枝管片
3b 小径シェル
3c 中径シェル
3d 大径シェル
3d1 枝管側シェル片
3d2 主管側シェル片
3A 枝管片
4 枝管
4a 枝管片
4b 小径シェル
4c 中径シェル
4d 大径シェル
4d1 枝管側シェル片
4d2 主管側シェル片
4A 枝管片
5 仮想球
6 交截部
6a、6b 交截部
7 分岐点
8 補強部材
8a 外周円弧部
8b 内周円弧部
9 接合箇所
10、11 接合部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a branch pipe used for splitting or merging liquids in a hydraulic facility such as a hydraulic line of a hydroelectric power plant or a fluid machine.
[0002]
[Prior art]
In the hydraulic pipelines and liquid machines of hydroelectric power plants, the energy loss of the fluid generated inside the branch pipe is not negligible, and it is required to reduce this as much as possible.
[0003]
On the other hand, such a branch pipe is constituted by joining several pipe parts, but some reinforcing means must be applied in order to maintain a balance of forces caused by fluid pressure and the like at the joint. If the reinforcement is not appropriate, a high stress is generated in the structural portion of the branch pipe, which causes breakage.
[0004]
The characteristics of the energy loss of the branch pipe as described above or the force or stress generated in the joint are defined by the shape and structure of the branch pipe.
[0005]
The branch pipe of the conventional example shown in FIG. 3 (see Japanese Patent Publication No. 36-10880) is constructed by joining one main pipe 1 and two branch pipes 2 and 3 having a smaller diameter. Also, Ru mower when joining three branch pipes of the main pipe 1.
[0006]
The main pipe 1 is constituted by joining a cylindrical main pipe piece 1a and a conical main pipe piece 1A, and the conical main pipe piece 1A joins a conical small diameter shell 1b and a large diameter shell 1c without any step. Configured. The small-diameter shell 1b and the cylindrical main pipe piece 1a are joined without a step.
[0007]
Each of the main pipes 2 and 3 is configured by joining cylindrical branch pipe pieces 2a and 3a and conical branch pipe pieces 2A and 3A, and each of the conical branch pipe pieces 2A and 3A has a conical shape. The small-diameter shells 2b and 3b, the medium-diameter shells 2c and 3c, and the large-diameter shells 2d and 3d are joined without any step. The small-diameter shells 2b and 3b and the cylindrical branch pipe pieces 2a and 3a are joined without a step.
[0008]
The conical main pipe piece 1A and the two conical branch pipe pieces 2A and 3A are formed in a shape circumscribing one common phantom sphere 5 having a diameter larger than the diameter of the main pipe piece 1A. the lateral pipe pieces 2A, large diameter shell 2d of 3A, with交截section 6 is generated between 3d each other, main piece 1A and two branch pipes pieces 2A, tripartite 3A is Ru are gaps without bonding.
[0009]
A crescent plate-like (hereinafter referred to as “crescent shape” or “crescent shape”) reinforcing member 8 is sandwiched and joined to the mating portion 6. The inner peripheral circular arc portion 8b of the reinforcing member 8 protrudes into the branch pipe, and both ends thereof are at both ends of the mating portion 6, that is, the joint portion 9 of the main pipe piece 1A and the two branch pipe pieces 2A and 3B. Reach.
[0010]
With the structure as described above, energy loss of the fluid generated inside the branch pipe can be reduced, and the reinforcing member 8 can mainly reduce the amount of material used because only the tensile stress is generated in the cross section. .
[0011]
In the branch pipe of the type attached to the intersection 6 of the two adjacent branch pipes 2 and 3 like the reinforcing member 8 described above, the tensile force or the like resulting from the fluid pressure is applied to the reinforcing member 8 on the plate. Since it acts in the thickness direction, there is a risk that cracks such as lamellar tears may occur, and in order to prevent this, the material is not a general steel material, but has a performance that can withstand the above mechanical conditions like a so-called lamellar steel material Things are used.
[0012]
[Problems to be solved by the invention]
In the conventional branch pipe, the crescent-shaped reinforcing member 8 is provided at the crossing portion 6 between the large diameter shells 2d and 3d of the two adjacent branch pipes 2 and 3, and both ends thereof are the main pipe pieces 1A and 2A. The junction 9 of the three branches 2A and 3A is reached. For this reason, especially when the pipe diameter is large, the dimension of the reinforcing member 8 is large, and the material cost is high. In addition, when the fluid pressure is high, the material used is extremely thick, so that there is a problem that the material cost is further increased and the construction cost of the branch pipe is remarkably high.
[0013]
As a measure for reducing the material cost, a method of constructing the reinforcing member 8 by joining a plurality of small members is conceivable, but an increase in joining cost is inevitable, so it is not an effective measure.
[0014]
On the other hand, reducing the energy loss of the fluid in the branch pipe is always a challenge to be pursued, and for example, it may be used for both shunting and merging such as the branch pipe used in the hydraulic pipe of a pumped storage power plant. In any case, there is a strong demand for less energy loss of the fluid in any case.
[0015]
The object of the present invention is to reduce the size of the crescent-shaped reinforcing material as compared with the conventional one, reduce the material cost and the construction cost of the branch pipe, and at the inside of the branch pipe at the time of diversion and merge. It is an object of the present invention to provide a branch pipe capable of reducing the energy loss of a generated fluid as compared with the conventional one.
[0016]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention comprises one main pipe and a plurality of branch pipes joined to the main pipe, and the main pipe and the branch pipe have one common diameter larger than the main pipe. A conical main pipe piece circumscribing the phantom sphere and a conical branch pipe piece, wherein the main pipe piece is formed by joining a large diameter shell and a small diameter shell circumscribing the phantom sphere; The pipe piece is formed by joining a large-diameter shell, a medium-diameter shell, and a small-diameter shell, and the large-diameter shell of each branch pipe piece is an intersection formed between the large-diameter shells of other adjacent branch pipe pieces. In the branch pipe having a collar portion, the main pipe piece and the large-diameter shell of each branch pipe piece are joined, and a crescent-shaped reinforcing member projecting inwardly is provided in the mating part. the large diameter shell of the branch stub, and main side shell pieces circumscribing the virtual sphere which is joined to the main pipe piece, the in diameter Shi Is constructed by joining a branch pipe side shell pieces to be joined and Le, said reinforcing member is provided only on交截portion of the branch pipe side shell pieces, both ends of the reinforcing member that branch pipe side shell piece It was set as the structure which reached the both ends of the mating part .
[0017]
[Action]
According to the present invention, the large-diameter shell of the branch pipe piece of each branch pipe is configured by joining the main pipe-side shell piece and the medium-diameter shell-side shell piece. In the case of merging, the direction change angle of the flow path from each branch pipe to the main pipe becomes gradual, and the direction change of the fluid is smoothly achieved.
[0018]
On the other hand, according to the structure as described above, the generated stress in the vicinity of both ends of the reinforcing member is not large, and as a result, even if the reinforcing member is considerably reduced in size compared to the conventional structure, the strength of the entire branch pipe is not affected.
[0019]
Incidentally, the reinforcing member is too small, undesirably lose rectifying effect, if the two end points is the extent to reach the junction箇plants of both shell piece has a rectifying effect, the increase in energy loss Can be avoided.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
The branch pipe of the first embodiment shown in FIG. 1 is formed by joining a main pipe 1 and two branch pipes 2 and 3 having a smaller diameter than the main pipe 1 as in the above-described conventional example. The main pipe 1 is configured by joining a cylindrical main pipe 1a and a conical main pipe piece 1A, and the conical main pipe piece 1A joins a conical small diameter shell 1b and a large diameter shell 1c without any step. Configured. The small-diameter shell 1b and the cylindrical main pipe piece 1a are joined without a step.
[0021]
Each of the branch pipes 2 and 3 is formed by joining cylindrical branch pipe pieces 2a and 3a and conical branch pipe pieces 2A and 3A, respectively. The conical small-diameter shells 2b and 3b, the medium-diameter shells 2c and 3c, and the large-diameter shells 2d and 3d are joined without any step. The small-diameter shells 2b and 3b and the cylindrical branch pipe pieces 2a and 3a are joined without a step.
[0022]
The main pipe piece 1A and the two branch pipe pieces 2A, 3A are formed in a shape circumscribing one common phantom sphere 5 having a diameter larger than the diameter of the main pipe piece 1A, whereby the branch pipe piece 2A. large diameter shell 2d of 3A,交截portion 6a between 3d each other, with 6b occurs, main piece 1A and two branch pipes pieces 2A, tripartite 3A is Ru are gaps without bonding.
[0023]
The above configuration is the same as the conventional example, but there is a difference in the following configuration. That is, the first difference is that the branch stub 2A above, the large diameter shell 2d of 3A, 3d are lateral pipe pieces 2A, branch pipe side shell piece 2d 1 to be joined middle diameter shell 2c of 3A, 3c and 3d 1 and the main pipe side shell pieces 2d 2 and 3d 2 to be joined to the large diameter shell 1c of the main pipe piece 1A are joined at the joining portions 10 and 11 without any step. These branch pipe side shell pieces 2d 1 , 3d 1 have crossed portions 6a, and the main pipe side shell pieces 2d 2 , 3d 2 have crossed portions 6b.
[0024]
The second difference is the size of the reinforcing member 8. In other words, the reinforcing member 8 in this case is the same as the conventional one in that it has a crescent shape, but its size is considerably smaller than that of the conventional one, and the outer peripheral arc portion 8a has the branch pipe described above. The side shell pieces 2d 1 and 3d 1 are clamped and joined to the crossing portion 6a. Arc-shaped inner peripheral portion 8b of the reinforcing member 8 protrudes into the interior of the branch pipe, both ends of the both ends branch pipe side shell pieces 2d 1, 3d 1 of交截portion 6a, i.e. the branch pipe side shell pieces 2d 1, 3d 1 And the main pipe side shell pieces 2d 2 and 3d 2, and the joint portions 9a and 9a at the two ends of the joining portion 6a.
[0026]
In FIG. 1, both end points of the crossed portion 6b of the large-diameter shells 2d 2 and 3d 2 are denoted by reference numerals 9b and 9b.
[0027]
By comprising as mentioned above, the dimension of the reinforcing member 8 becomes a considerably small dimension compared with a prior art example. FIG. 2A shows the stress distribution due to the fluid pressure flowing in the conventional example when the reinforcing member 8 having a long dimension of the conventional example is used, and FIG. 2B shows the dimension of the above embodiment. It is a stress distribution figure by the fluid pressure which flows in the embodiment at the time of using the short reinforcement member 8 of this. These stress distribution diagram, Ru der those expressed by the ratio (σ / σ 0) the stress sigma of each part of the reinforcing member 8 with respect to the reference stress (σ 0 = 1).
[0028]
When both are compared, it can be confirmed that there is no significant increase in stress even when the reinforcing material 8 having a short size is used as in this embodiment. In addition, in the conventional case, stress is generated in the end of the reinforcing member 8 in a long range up to the joint 9, whereas in this embodiment, stress is applied in a short range up to the joint 9 a. It can be confirmed that it is sufficiently small. That is, it can be said that the reinforcing member 8 according to the present invention does not deteriorate the stability of the branch pipe although the size is considerably smaller than that of the conventional member.
[0029]
In addition, the energy loss coefficient in the branch pipe is divided into a case where the flow direction is the direction from the main pipe 1 to the branch pipes 2 and 3, that is, a branch flow, and a case where the flow direction is from the branch pipes 2 and 3 to the main pipe 1. The examination results are shown in Table 1.
[0030]
[Table 1]
Figure 0003866853
[0031]
As can be seen from Table 1 above, the energy loss coefficient of this embodiment is smaller than that of the conventional example in both cases of diversion and merging.
[0032]
【The invention's effect】
As described above, according to the present invention, the large-diameter shell of each branch pipe piece is formed by joining the main pipe-side shell piece and the medium-diameter shell-side shell piece. Conversion is done smoothly. For this reason, even if the size of the reinforcing member is considerably reduced compared to the conventional size, the strength of the entire branch pipe can be maintained as in the conventional case. In addition, the smooth transition of the direction of the fluid and the downsizing of the reinforcing member are combined, so that the energy loss of the fluid in the branch pipe is remarkably reduced in both cases of diversion and merging. Furthermore, since the reinforcing member is reduced in size, the material cost and the construction cost of the branch pipe are reduced.
[Brief description of the drawings]
1A is a cross-sectional plan view of the first embodiment. FIG. 1B is a longitudinal front view of the same. FIG. 2A is a stress distribution diagram of a conventional example. FIG. 1B is a stress distribution diagram of the first embodiment. Fig. 3 (a) Cross-sectional plan view of a conventional example (b) Vertical front view of the same
1 Main pipe 1a Main pipe piece 1b Small diameter shell 1c Large diameter shell 1A Main pipe piece 2 Branch pipe 2a Branch pipe piece 2b Small diameter shell 2c Medium diameter shell 2d Large diameter shell 2d 1 Branch pipe side shell piece 2d 2 Main pipe side shell piece 2A Branch pipe piece 3 Branch pipe 3a Branch pipe piece 3b Small diameter shell 3c Medium diameter shell 3d Large diameter shell 3d 1 Branch pipe side shell piece 3d 2 Main pipe side shell piece 3A Branch pipe piece 4 Branch pipe 4a Branch pipe piece 4b Small diameter shell 4c Medium diameter shell 4d Large diameter shell 4d 1 Branch pipe side shell piece 4d 2 Main pipe side shell piece 4A Branch pipe piece 5 Virtual sphere 6 Intersection 6a, 6b Intersection 7 Branch point 8 Reinforcement member 8a Outer circular arc 8b Inner circular arc 9 Joining Location 10, 11 Joint

Claims (1)

一本の主管(1)と、これに接合された複数本の枝管(2、3)とから成り、上記の主管(1)と枝管(2、3)は該主管(1)より大径の1つの共通の仮想球(5)に外接する円錐台状の主管片(1A)と円錐台状の枝管片(2A、3A)とを有し、上記主管片(1A)は、上記仮想球(5)に外接する大径シェル(1c)と小径シェル(1b)を接合して形成され、上記枝管片(2A、3A)は、大径シェル(2d、3d)、中径シェル(2c、3c)及び小径シェル(2b、3b)を接合して形成されると共に、その各枝管片(2A、3A)の大径シェル(2d、3d)は隣接する枝管片(2A、3A)の大径シェル(2d、3d)との間に生じる交截部(6)を有し、その交截部(6)にその内側に突き出した三日月板状の補強部材(8)を設けてなる分岐管において、
上記枝管片(2A、3A)の大径シェル(2d、3d)は、上記主管片(1A)の大径シェル(1c)と接合される上記仮想球(5)に外接する主管側シェル片(2d、3d)と、上記中径シェル(2c、3c)に接合される枝管側シェル片(2d、3d)を接合することにより構成され、上記補強部材(8)は上記枝管側シェル片(2d、3d)の交截部(6a)のみに設けられ、その補強部材(8)の両端が上記枝管側シェル片(2d、3d)の交截部(6a)の両端に達している分岐管。
It consists of one main pipe (1) and a plurality of branch pipes (2, 3) joined thereto, and the main pipe (1) and the branch pipes (2, 3) are larger than the main pipe (1). The main pipe piece (1A) includes a truncated cone-shaped main pipe piece (1A) and a truncated cone-shaped branch pipe piece (2A, 3A) circumscribing one common phantom sphere (5) having a diameter. A large-diameter shell (1c) and a small-diameter shell (1b) circumscribing the phantom sphere (5) are joined, and the branch pipe pieces (2A, 3A) are large-diameter shells (2d, 3d), medium-diameter shells. (2c, 3c) and a small-diameter shell (2b, 3b) are joined together, and the large-diameter shell (2d, 3d) of each branch pipe piece (2A, 3A) is adjacent to the adjacent branch pipe piece (2A, A crescent-plate-shaped reinforcing member having a mating portion (6) generated between the large-diameter shell (2d, 3d) of 3A) and projecting inside the mating portion (6) In the branch pipe formed by providing a 8),
The large diameter shell (2d, 3d) of the branch pipe piece (2A, 3A) is a main pipe side shell piece circumscribing the phantom sphere (5) joined to the large diameter shell (1c) of the main pipe piece (1A). (2d 2 , 3d 2 ) and a branch pipe side shell piece (2d 1 , 3d 1 ) joined to the medium diameter shell (2c, 3c) are joined together, and the reinforcing member (8) is交截portion of the branch pipe side shell piece (2d 1, 3d 1) ( 6a) only provided et al is, exchange of the both ends the branch pipe side shell piece of the reinforcing member of that (8) (2d 1, 3d 1) A branch pipe reaching both ends of the buttocks (6a).
JP09172698A 1998-04-03 1998-04-03 Branch pipe Expired - Lifetime JP3866853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09172698A JP3866853B2 (en) 1998-04-03 1998-04-03 Branch pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09172698A JP3866853B2 (en) 1998-04-03 1998-04-03 Branch pipe

Publications (2)

Publication Number Publication Date
JPH11287378A JPH11287378A (en) 1999-10-19
JP3866853B2 true JP3866853B2 (en) 2007-01-10

Family

ID=14034520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09172698A Expired - Lifetime JP3866853B2 (en) 1998-04-03 1998-04-03 Branch pipe

Country Status (1)

Country Link
JP (1) JP3866853B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101813225B (en) * 2010-05-25 2011-06-15 西安建筑科技大学 Low-resistance square pant tee joint
CN103968400A (en) * 2014-04-28 2014-08-06 中国能源建设集团广东省电力设计研究院 Smoke duct and two-in-one converging pipe thereof
JP6450182B2 (en) * 2014-12-18 2019-01-09 株式会社ブリヂストン Fitting
CN107588262B (en) * 2017-10-18 2024-02-23 中国电建集团中南勘测设计研究院有限公司 Crescent rib bifurcated pipe
CN110715134A (en) * 2019-09-06 2020-01-21 西安理工大学 Branch pipe for pumped storage power station
CZ308857B6 (en) * 2020-05-15 2021-07-14 České vysoké učení technické v Praze Economical fitting for connecting two pressure pipes to one outlet pipe
CN112594470B (en) * 2020-12-16 2022-07-15 中国电建集团昆明勘测设计研究院有限公司 Method for arranging crescent rib bifurcated pipe stiffening beam

Also Published As

Publication number Publication date
JPH11287378A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
JP3866853B2 (en) Branch pipe
CN101479122A (en) Torsion beam axle having connecting tube between torsion beam and trailing arm
KR102065697B1 (en) Joint structure of circular steel tube truss construction
TW200404973A (en) Butt joint between two pipe segments of sheet metal and process for manufacture thereof
KR20170143143A (en) Joint Structure of Circular Hollow Tube Truss and it's Fabrication Method
JPS6236095B2 (en)
JP2018193247A (en) Telescopic boom and mobile crane
KR102533316B1 (en) Nodes for offshore wind power substructures manufactured by casting
US3951440A (en) Pipe branch piece
CN217759318U (en) Steel pipe tower plane TY type intersecting node structure capable of improving limit bearing capacity
JP3136209U (en) Pipe with flange
CN208225528U (en) Connecting pin box based on composite plate
JP7272823B2 (en) Beam reinforcement structure and beam reinforcement method
JPS6212435B2 (en)
CN201306561Y (en) 45 DEG Y-shaped forging tee structure
KR20200036435A (en) Cross member for vehicle
CN105134680A (en) Integrate valve block, integrate valve group and hydraulic system
JPS6367075B2 (en)
CN210004003U (en) kinds of square steel branch pipe
JPS61105373A (en) Butterfly valve
JP7203270B1 (en) jacket structure
CN211057775U (en) Concatenation type concrete pipe pile
CN214037042U (en) Multi-way universal valve
CN201074419Y (en) Combinatorial structure pylon of angle steel and round tube
CN216555418U (en) Truss structure butterfly plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061006

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151013

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term