JP3866705B2 - Fluid supply adjustment device - Google Patents
Fluid supply adjustment device Download PDFInfo
- Publication number
- JP3866705B2 JP3866705B2 JP2003324468A JP2003324468A JP3866705B2 JP 3866705 B2 JP3866705 B2 JP 3866705B2 JP 2003324468 A JP2003324468 A JP 2003324468A JP 2003324468 A JP2003324468 A JP 2003324468A JP 3866705 B2 JP3866705 B2 JP 3866705B2
- Authority
- JP
- Japan
- Prior art keywords
- sealing member
- elastic sealing
- filter
- pressing
- fluid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Feeding And Controlling Fuel (AREA)
- Lighters Containing Fuel (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
Description
この発明は、流動体の供給量の調整を行う装置、例えばガスライタ等の着火装置やヘアカラやアイロン等の燃料ガスの燃焼装置、或いは医療用の液体薬品の点滴装置において、その最大流量を規定する構造に関する。 The present invention regulates the maximum flow rate in an apparatus for adjusting the supply amount of a fluid, for example, an ignition device such as a gas writer, a fuel gas combustion device such as a hair collar or an iron, or a medical liquid medicine drip device. Concerning structure.
従来、ガス透過性を有するフィルタのガス透過面積を変化させて、ガスの流量を調整する面積調整式のガスライタ等に応用されているガス供給量の調整装置の構造及びそのガス供給量の調整メカニズムは、ガス貯蔵槽に連通するガス通路を有する基盤上に配置される上下面に貫通したガス通孔を有し、下面が平坦に形成された配設面と、該ガス通孔の上端開口に向かって椀状に凹んだ内底面が凹設されてなる弾性密封部材の上部にガス透過性フィルタを配置し、ローレット嵌合によって流量調整レバーの回動に連動して上下動し、前記弾性密封部材に、該フィルタを介して押圧力を加えて該弾性密封部材とフィルタの密接する面積を変えるための押圧部材を備え、前記レバーを操作して該面積を変えることによってガス流量を調整するという構造になっている。このような構造を採るものの代表例として特許第2503117号公報に示されるような技術が挙げられる。 Conventionally, the structure of a gas supply amount adjusting device applied to an area-adjustable gas writer that adjusts the gas flow rate by changing the gas permeation area of a gas permeable filter, and the mechanism for adjusting the gas supply amount Has a gas passage hole penetrating the upper and lower surfaces arranged on the base having a gas passage communicating with the gas storage tank, and has a flat bottom surface and a top opening of the gas passage hole. A gas permeable filter is arranged on the upper part of the elastic sealing member whose inner bottom surface is recessed in a bowl shape, and moves up and down in conjunction with the rotation of the flow rate adjusting lever by knurling. The member is provided with a pressing member for changing a contact area between the elastic sealing member and the filter by applying a pressing force through the filter, and the gas flow rate is adjusted by changing the area by operating the lever. It has become an elephant. As a typical example of such a structure, there is a technique as shown in Japanese Patent No. 2503117.
このような構造を用いたガス供給量調整装置におけるガス供給量の調節は、上述のように、弾性密封部材とフィルタが密接する面積を押圧力によって変えることで、ガスがフィルタを透過する面積、すなわちガス透過面積を調整してガス流量を変えるようになっている。 As described above, the adjustment of the gas supply amount in the gas supply amount adjusting device using such a structure changes the area where the elastic sealing member and the filter are in close contact with each other by the pressing force, thereby allowing the gas to pass through the filter, That is, the gas permeation area is adjusted to change the gas flow rate.
したがって、ガスの流量は弾性密封部材に対する押圧力が解除された状態において最大量となり、押圧力を目一杯加えて弾性密封部材とフィルタの密接する面積を最大化し、ガス透過面積を最小化する状態において最小量となる。特許第2503117号公報にも記載されている上述のような構成のガス供給量調整装置の場合、必要に応じた炎長の調整については十分な配慮がなされている。 Therefore, the gas flow rate becomes the maximum when the pressing force against the elastic sealing member is released, and the area where the elastic sealing member and the filter are in close contact with each other by applying the pressing force is maximized and the gas permeation area is minimized. At the minimum amount. In the case of the gas supply amount adjusting device having the above-described configuration described in Japanese Patent No. 2503117, sufficient consideration is given to the adjustment of the flame length as necessary.
ところが、ガス流量が最大となる押圧力の解除状態は、押圧部材がフィルタに接触するか否かの境界的な状態であって、実際にこのような状態を作出するするには難があり、また押圧部材によってフィルタと弾性密封部材とが多少なりとも押圧されていないとガスがシールされずガス漏れの原因となってしまう。従って、実際にはフィルタと弾性密封部材を若干押圧した状態にする必要があるが、量産上ではこの押圧状態がバラつくため、押圧力が解除されるに近く、ガス流量が一定且つ最大となるような状態を製品毎に作出することは製造上極めて困難である。特に、組み立てられた状態で前記レバーを調整して最大流量に設定しようとする場合には、フィルタや弾性密封部材、押圧部材等の位置関係を視認することが出来ないのでより一層困難となる。つまり、製品毎に押圧状態が微妙に異なるためガスの最大流量の安定性を確保することが出来ないという問題点があった。 However, the release state of the pressing force that maximizes the gas flow rate is a boundary state whether or not the pressing member contacts the filter, and it is difficult to actually create such a state. Further, if the filter and the elastic sealing member are not pressed to some extent by the pressing member, the gas is not sealed, causing a gas leak. Therefore, in actuality, it is necessary to make the filter and the elastic sealing member slightly pressed. However, in mass production, this pressing state varies, so that the pressing force is released and the gas flow rate is constant and maximum. It is extremely difficult to manufacture such a state for each product. In particular, when the lever is adjusted to be set to the maximum flow rate in the assembled state, the positional relationship among the filter, the elastic sealing member, the pressing member, and the like cannot be visually confirmed, which becomes more difficult. That is, there is a problem that the stability of the maximum gas flow rate cannot be ensured because the pressing state is slightly different for each product.
このため、ガスライタのように燃焼火炎を直接利用する場合には、その最大炎長を一定に規定することが困難となる。
この発明は、以上のような問題点に鑑みてなされたものであり、必要に応じた流動体の供給量の調整を行うことが出来るとともに、流動体の最大流量を予め規定した量で安定して得ることの出来る最大流量の規定構造を施した流動体供給量の調整装置を提供せんとするものである。 The present invention has been made in view of the above problems, and can adjust the supply amount of the fluid as necessary, and can stabilize the maximum flow rate of the fluid at a predetermined amount. It is an object of the present invention to provide a fluid supply amount adjusting device having a specified structure of the maximum flow rate that can be obtained.
上記課題を解決するためにこの発明が採った手段は、流動体貯蔵槽に連通する流通路を備えた基盤上に配置される略板状の弾性密封部材と、該弾性密封部材を押圧、圧縮し得る押圧部材と、該押圧部材と弾性密封部材との間に介挿される流動体透過性を有するフィルタとを備え、前記弾性密封部材には前記基盤の流通路に連通する流通孔と、該流通孔に連通し且つ凹状に窪んだ凹陥部が形成され、押圧部材で押圧、圧縮するとき、該凹陥部における下流側の開口の開放面積を変化させてフィルタを通過するガス流量を調整するようにしたガス供給量の調整装置において、前記弾性密封部材の凹陥部には、下流に向かって漸次広くなるように傾斜した内底面が形成され且つ内周壁が弾性密封部材の配置面に対してほぼ垂直に形成されていて、前記押圧部材でフィルタを介して弾性密封部材を押圧するとき、凹陥部の周壁が圧潰するまでの間、凹陥部の開放面積を変化させず最大ガス流量が一定量に保持されるようにしたことを特徴とする。 In order to solve the above-mentioned problems, the invention adopts a substantially plate-like elastic sealing member disposed on a base having a flow passage communicating with a fluid storage tank, and presses and compresses the elastic sealing member. A pressing member capable of being fluidized, and a fluid-permeable filter interposed between the pressing member and the elastic sealing member, the elastic sealing member having a flow hole communicating with the flow passage of the base, A recessed portion that is communicated with the flow hole and recessed in a concave shape is formed, and when the pressing member is pressed and compressed, the open area of the downstream opening in the recessed portion is changed to adjust the gas flow rate passing through the filter. In the gas supply amount adjusting device, the concave portion of the elastic sealing member is formed with an inner bottom surface which is inclined so as to become gradually wider toward the downstream side, and the inner peripheral wall is substantially with respect to the arrangement surface of the elastic sealing member. Vertically formed, front When pressing the elastic sealing member through the filter with the pressing member, the maximum gas flow rate is kept constant without changing the open area of the recessed portion until the peripheral wall of the recessed portion is crushed. Features.
凹陥部の周壁面が、弾性密封部材の配置面に対して垂直に形成されていることを特徴とする。 The peripheral wall surface of the recessed portion is formed perpendicular to the arrangement surface of the elastic sealing member.
凹陥部の周壁面が、内底面から開口に向かって漸次拡開するテーパー面に形成されていることを特徴とする。 The peripheral wall surface of the recessed portion is formed as a tapered surface that gradually expands from the inner bottom surface toward the opening.
凹陥部の内底面が、厚さ方向に切る断面に見て直線的な傾斜ラインからなる傾斜面であることを特徴とする。 The inner bottom surface of the recessed portion is an inclined surface formed of a linear inclined line as viewed in a cross section cut in the thickness direction.
凹陥部の内底面が、厚さ方向に切る断面に見て曲線的な傾斜ラインからなる傾斜面であることを特徴とする。 It is characterized in that the inner bottom surface of the recessed portion is an inclined surface composed of a curved inclined line as viewed in a cross section cut in the thickness direction.
弾性密封部材と、この押圧面上に配置されるフィルタとが、熔着によって一体化されてなることを特徴とする。 The elastic sealing member and the filter disposed on the pressing surface are integrated by welding.
弾性密封部材が、この押圧面に、フィルタを配置する位置を規定しつつ弾性密封部材とフィルタとを熔着するための位置決め熔着突起を有することを特徴とする。 The elastic sealing member is characterized by having a positioning welding projection for welding the elastic sealing member and the filter to the pressing surface while defining a position where the filter is disposed.
フィルタが、最大孔径0.02μm〜0.4μm程度の微細孔を空孔率38%〜45%程度でほぼ全面に渡って均一に有するマイクロポーラスフィルムからなることを特徴とする。 The filter is characterized by comprising a microporous film having micropores having a maximum pore diameter of about 0.02 μm to 0.4 μm and having a porosity of about 38% to 45% and uniformly over almost the entire surface.
フィルタを介して接合される弾性密封部材と押圧部材の接合面をなすそれぞれの面が、面積及び形状共に、互いにほぼ同等であることを特徴とする。 The respective surfaces forming the joining surfaces of the elastic sealing member and the pressing member joined through the filter are substantially the same in both area and shape.
押圧部材が、弾性密封部材を押圧する押圧面から若干上方に向かった位置の内径が、前記押圧面の内径に比べ更に一回り小さくなって段状に形成されている段状流動体透過径部を有して構成されることを特徴とする。 A stepped fluid permeation diameter portion in which the inner diameter at a position where the pressing member faces slightly upward from the pressing surface that presses the elastic sealing member is further smaller than the inner diameter of the pressing surface. It is characterized by comprising.
この発明による最大流量の規定構造を施した流動体の供給量調整装置においては、流動体の供給量調整装置の各部品は弾性密封部材を除いて従来のものと全く同じであってよく、従って製造工程は従来のそれと変わるところなく製造可能であり(ガスライタ等に適用する場合)、よって製造費用の高額化を招くことなく、流動体の供給量調整装置における気体のみならず液体を含めた流動体の供給の自由な調整を可能としつつ、その最大流量を規定することが出来、よって安定性の高い流動体供給を行うことが出来る製品の提供を可能とする。 In the fluid supply amount adjusting device having the maximum flow rate regulating structure according to the present invention, each component of the fluid supply amount adjusting device may be exactly the same as the conventional one except for the elastic sealing member. The manufacturing process can be manufactured without changing from the conventional one (when applied to a gas writer, etc.). Therefore, the flow including not only the gas but also the liquid in the fluid supply amount adjusting device without increasing the manufacturing cost. It is possible to provide a product that can regulate the maximum flow rate while allowing the body supply to be freely adjusted, and thus can perform fluid supply with high stability.
例えば、当該発明の流動体の供給量調整装置をガスライタに利用すれば、一定の大きさに規定された最大炎長で安全性の高いガスライタを高額化を招くことなく提供出来るようになる。 For example, if the fluid supply amount adjusting device of the present invention is used for a gas writer, a highly safe gas writer with a maximum flame length defined to a certain size can be provided without causing an increase in cost.
この発明の好ましい実施の形態を、以下に詳細に説明する。図1を参照して、本発明を適用した弾性密封部材(1a)の構造を示す。PPエラストマからなる平面形状が円形で厚さがHの板状の弾性密封部材(1a)の中心に該弾性密封部材(1a)の上下に貫通した小径で円形の流通孔(2)を有し、この弾性密封部材(1a)の下端に平坦な配設面(3)が形成され、押圧時には配置面(4)に密接し(図5参照)、流動体をシールするようになっている。この弾性密封部材(1a)の上面には、該弾性密封部材(1a)の上部の縁端を周状に残し、その内側を陥落させて、平坦な下面に対しほぼ垂直に形成される周壁(5a)と、この周壁(5a)の内側下端に連なり、該流通孔(2)に向かって椀状に凹んだ内底面(7a)が形成されている。 A preferred embodiment of the present invention will be described in detail below. Referring to FIG. 1, the structure of an elastic sealing member (1a) to which the present invention is applied is shown. A plate-shaped elastic sealing member (1a) having a circular planar shape made of PP elastomer and having a thickness H has a small-diameter circular circulation hole (2) penetrating up and down the elastic sealing member (1a). A flat arrangement surface (3) is formed at the lower end of the elastic sealing member (1a), and when pressed, it is in close contact with the arrangement surface (4) (see FIG. 5) to seal the fluid. On the upper surface of the elastic sealing member (1a), the peripheral edge formed on the upper surface of the elastic sealing member (1a) is left substantially in the shape of a circle, and the inside thereof is dropped to be substantially perpendicular to the flat lower surface ( 5a) and an inner bottom surface (7a) which is continuous with the inner lower end of the peripheral wall (5a) and is recessed in a bowl shape toward the flow hole (2).
また、前記周状に残した該弾性密封部材(1a)上部縁端の天面には、この縁端の幅のほぼ中央に、該周に沿って突出させた位置決め熔着突起(8)を設けて(図1b参照)、該天面に対する流動体透過性フィルタ(9)の配置を容易にすると共に、超音波熔着処理を施して該弾性密封部材(1a)と流動体透過性フィルタ(9)とを固着することが出来るように構成されている。この位置決め熔着突起(8)は必ずしも設けなければならないというものではないが、上述のように位置決め熔着突起(8)を設けて予め弾性密封部材(1a)と流動体透過性フィルタ(9)とを一体化することにより、組立作業の効率化を図ることが出来る。何故ならば、弾性密封部材(1a)と流動体透過性フィルタ(9)とを一体化せずに別個に組み立てると、該フィルタ(9)自体が非常に薄い上に、静電気が発生してフィルタ(9)の組み付け作業に困難を来たし、組立工程が余計に必要となるからである。ただし、前記突起(8)は、弾性密封部材(1a)の天面に流動体透過性フィルタ(9)を配置するときその位置を規定しつつ、配置後に従来知られた超音波熔着やインパルス熔着、或いはこの他の処理によって、弾性密封部材(1a)の天面に該フィルタ(9)を固着出来ればよく、必ずしも天面の周にそった環状の突起(8)である必要はなく、該周上の適所に適当な間隔を以て隆起させた局所的な凸状のものであってもよい。 In addition, on the top surface of the upper edge of the elastic sealing member (1a) left in the circumferential shape, a positioning welding projection (8) that protrudes along the circumference is provided at substantially the center of the width of the edge. (See FIG. 1b) to facilitate disposition of the fluid permeable filter (9) with respect to the top surface, and by applying ultrasonic welding treatment, the elastic sealing member (1a) and the fluid permeable filter ( 9) can be fixed. This positioning weld protrusion (8) is not necessarily provided, but as described above, the positioning weld protrusion (8) is provided and the elastic sealing member (1a) and the fluid permeable filter (9) are provided in advance. As a result, it is possible to improve the efficiency of the assembly work. This is because when the elastic sealing member (1a) and the fluid permeable filter (9) are assembled separately without being integrated, the filter (9) itself is very thin and static electricity is generated. This is because the assembly work of (9) has become difficult and an additional assembly process is required. However, the protrusion (8) defines the position when the fluid permeable filter (9) is disposed on the top surface of the elastic sealing member (1a), and conventionally known ultrasonic welding or impulse after the placement. It is sufficient that the filter (9) can be fixed to the top surface of the elastic sealing member (1a) by welding or other treatment, and it is not always necessary to have the annular protrusion (8) along the periphery of the top surface. Further, it may be a local convex shape raised at an appropriate position on the circumference with an appropriate interval.
また上記周壁(5a)の微小な高さδに相当する範囲内の幅Δ、すなわちδ≧Δで押圧部材(10)を上下動させても(図9参照)、該弾性密封部材(1a)と、この弾性密封部材(1a)上に配置される流動体透過性フィルタ(9)とが密接する面積がほぼ一定に保たれるため、流動体透過面積が殆ど変わらず流動体の供給量がほぼ一定となって最大流量が規定されるようになっている。 Even if the pressing member (10) is moved up and down by a width Δ within a range corresponding to the minute height δ of the peripheral wall (5a), that is, δ ≧ Δ (see FIG. 9), the elastic sealing member (1a) And the area in close contact with the fluid permeable filter (9) disposed on the elastic sealing member (1a) is kept substantially constant, so that the fluid permeable area is almost unchanged and the amount of fluid supplied is The maximum flow rate is defined almost constant.
上記説明のように構成される本発明を適用した弾性密封部材(1a)の構造は、図2に示す高さがh′の従来の弾性密封部材(11)の構造と比べると、従来の弾性密封部材(11)に付加された様な格好となっている周壁(5a)を除けば、殆ど変わるところがないが、流動体の供給量は微妙な押圧状態の変化で比較的大きな変化がもたらされるので当該発明の如くの周壁(5a)が大きな意味を持つ。流動体の供給量調整装置における基本状態は、流動体の漏れを防ぐシールのために、弾性密封部材は常に押圧力が若干加えられた状態であり、また製造上、この弾性密封部材に対する製造初期の押圧力を一定にすることは非常に難しい。このため図2に示すような従来の弾性密封部材(11)を用いた場合、内底面(7b)とフィルタとの接触面積が製品毎に微妙に異なる状態となり、流動体の供給量として大きな違いとなってしまい最大流量を規定することが出来ず、安定性を欠くことになる。 The structure of the elastic sealing member (1a) to which the present invention is configured as described above is more in comparison with the structure of the conventional elastic sealing member (11) having a height h 'shown in FIG. There is almost no change except for the peripheral wall (5a) that looks like that added to the sealing member (11), but the amount of fluid supply is relatively large due to subtle changes in the pressing state. Therefore, the peripheral wall (5a) like the said invention has a big meaning. The basic state of the fluid supply amount adjusting device is that the elastic sealing member is always subjected to a slight pressing force in order to prevent the fluid from leaking. It is very difficult to make the pressing force constant. For this reason, when the conventional elastic sealing member (11) as shown in FIG. 2 is used, the contact area between the inner bottom surface (7b) and the filter is slightly different for each product, and the amount of fluid supplied is greatly different. As a result, the maximum flow rate cannot be defined and stability is lacking.
これに対して、この発明を適用した弾性密封部材(1a)を用いた流動体の供給量調整装置においては、押圧力が解除された状態を示す図1の状態から、押圧力を加えて周壁(5a)が潰れてその高さδ分がなくなり(図9b参照)、図2に示す押圧力が加えられていない状態の従来の弾性密封部材(11)とほぼ同じ形状になるまでの間、弾性密封部材(1a)と流動体透過性フィルタ(9)の接触面積が殆ど変わらない。従ってこの間、流動体透過面積がほぼ一定に保たれるので、流動体の供給量も一定に保たれることになる。 On the other hand, in the fluid supply amount adjusting device using the elastic sealing member (1a) to which the present invention is applied, the peripheral wall is obtained by applying a pressing force from the state shown in FIG. Until (5a) is crushed and the height δ is eliminated (see FIG. 9b), and until it has substantially the same shape as the conventional elastic sealing member (11) in the state where the pressing force shown in FIG. 2 is not applied, The contact area between the elastic sealing member (1a) and the fluid permeable filter (9) hardly changes. Accordingly, since the fluid permeation area is kept substantially constant during this time, the supply amount of the fluid is also kept constant.
弾性密封部材(1a)に加えられた押圧力が最小の状態において、弾性密封部材(1a)と流動体透過性フィルム(9)との密接面積が最小となるので、流動体の供給量調整装置においてはこの状態が最大流量となる。つまり、製品個々によって微妙に異なる弾性密封部材(1a)の押圧状態の違いを、ほぼ垂直に形成された微小高さδの周壁(5a)によって吸収させて緩和し、その高さδの範囲内において流動体の透過面積が殆ど変わらず最大流量が一定に保たれるので、流動体の供給量調整装置における最大流量の安定性を向上させることが出来るようになっている。 Since the tight contact area between the elastic sealing member (1a) and the fluid permeable film (9) is minimized when the pressing force applied to the elastic sealing member (1a) is minimum, the fluid supply amount adjusting device In this case, this state is the maximum flow rate. In other words, the difference in the pressing state of the elastic sealing member (1a), which differs slightly depending on the product, is absorbed and relaxed by the peripheral wall (5a) of the minute height δ formed almost vertically, and within the range of the height δ. Since the permeation area of the fluid hardly changes and the maximum flow rate is kept constant, the stability of the maximum flow rate in the fluid supply amount adjusting device can be improved.
以下図を参照しながら、この発明の変形例及び実施例を示す。図3は、周壁(5b)が、その付け根においてその断面幅Wが最大で、上方に向かって断面幅が徐々に狭まり、周壁(5b)の上端において最小の断面幅W′となるように形成され、弾性密封部材(1b)を上下に切る断面における流通孔(2)に向かって降下する傾斜ライン(12c)が、直線的なラインからなる内底面(7c)であることを特徴とする最大流量の規定構造である。このように、周壁(5b)を上方に向かってその断面幅を狭めて形成したことによって、周壁(5b)が押圧部材によって加圧され多少潰れて、水平方向に押し広げられた格好になっても、周壁(5b)の微小高さδの範囲内ならば流動体の透過面積が、弾性密封部材(1a)のように垂直に形成された周壁(5a)の場合よりも一層、一定に保つことが出来るようになっている。ただし、周壁はその高さδの範囲内で押圧部材が上下動して周壁が圧潰した格好となっても、その際のフィルタの流動体透過面積が殆ど変わらないように周壁の断面形状が形成されていればよく周壁や弾性密封部材の断面形状は何ら限定されるものではない。 Hereinafter, modifications and embodiments of the present invention will be described with reference to the drawings. In FIG. 3, the peripheral wall (5b) is formed such that the cross-sectional width W is maximum at the base, the cross-sectional width gradually narrows upward, and the minimum cross-sectional width W ′ is at the upper end of the peripheral wall (5b). The inclined line (12c) descending toward the flow hole (2) in the cross section that cuts the elastic sealing member (1b) up and down is an inner bottom surface (7c) composed of a straight line. It is a flow rate regulation structure. Thus, by forming the peripheral wall (5b) with its cross-sectional width narrowing upward, the peripheral wall (5b) is pressed by the pressing member and is somewhat crushed and is spread in the horizontal direction. However, if it is within the range of the minute height δ of the peripheral wall (5b), the permeation area of the fluid is kept more constant than in the case of the peripheral wall (5a) formed vertically like the elastic sealing member (1a). It can be done. However, even if the peripheral wall looks like the pressure member moves up and down within the range of the height δ and the peripheral wall is crushed, the cross-sectional shape of the peripheral wall is formed so that the fluid permeation area of the filter at that time hardly changes. What is necessary is just to be able to do, and the cross-sectional shape of a surrounding wall or an elastic sealing member is not limited at all.
図4に示す当該発明を適用した弾性密封部材(1c)の例は、実施例1に比べて弾性密封部材(1c)の上端における円輪状の天面の幅W〃が広く、そして凹陥部の直径が小さく形成されたものであり、この例の如く流動体の透過面積を比較的小さくした弾性密封部材(1c)と、この天面に配置される流動体透過性フィルタ(9)として、所望の透過量が得られるように選ばれる多孔性のフィルム、好ましくは最大孔径0.02μm〜0.2μm程度の微細孔を空孔率約38%でほぼ全面に渡って均一に有する厚みが25μm程のマイクロポーラスフィルムとを採用して流量調整機構を構成することで、流動体が液体である場合、例えば医薬用の液体で、医療用の点滴装置における流量調整機構として好適に用いることも出来る。 The example of the elastic sealing member (1c) to which the present invention shown in FIG. 4 is applied has a larger width W〃 of the annular top surface at the upper end of the elastic sealing member (1c) than that of Example 1, and The elastic sealing member (1c) is formed with a small diameter, and the permeation area of the fluid is relatively small as in this example, and the fluid permeable filter (9) disposed on the top surface is desired. A porous film selected so as to obtain a permeation amount of preferably about 25 μm having a pore having a maximum pore size of about 0.02 μm to 0.2 μm with a porosity of about 38% and almost uniformly over the entire surface. When the fluid is a liquid, for example, it can be suitably used as a flow rate adjusting mechanism in a medical drip device.
図5〜10を参照して、この発明を適用した弾性密封部材(1)を組み込んでなるガス供給量の調整装置を用いたガスライタの一例を示し、この発明の実施例を説明する。つまり、この例における流動体は燃焼用のガスである。この例の本発明を適用した弾性密封部材(1)は、ライタの主要部の構造とともに図5に示すように、ガス貯蔵槽に連通するガス通路(13a)を有する基盤(14)と、ガス供給口(15)に連通するガス通路(13b)を有する押圧部材(10)と、ガス透過性フィルタ(9)を備えてなるガス供給量調整装置に組み込まれ、本例のガスライタは、このガス供給量調整装置と燃焼用ノズル(16)及び流量調整手段を備えてなる。 With reference to FIGS. 5 to 10, an example of a gas writer using a gas supply amount adjusting device incorporating an elastic sealing member (1) to which the present invention is applied will be described, and an embodiment of the present invention will be described. That is, the fluid in this example is a combustion gas. The elastic sealing member (1) to which the present invention is applied in this example includes a base (14) having a gas passage (13a) communicating with a gas storage tank, as shown in FIG. The gas writer of this example is incorporated in a gas supply amount adjusting device comprising a pressing member (10) having a gas passage (13b) communicating with the supply port (15) and a gas permeable filter (9). A supply amount adjusting device, a combustion nozzle (16), and a flow rate adjusting means are provided.
流量調整手段は、ローレット嵌合によって押圧部材(10)と連動するように構成され所定の角度の範囲内において回動自在に配置された流量調整レバー(17)の回動に連動して押圧部材(10)が上下動し、該フィルタ(9)を介して、下流に向けて拡開した凹陥部を形成した弾性密封部材(1)に押圧力を加えて、該弾性密封部材(1)とフィルタ(9)とが密接する面積を変えることが出来、これによってガス流量を調整するという構造になっている。ただし凹陥部の開口は、必ずしもこの例のように下流に向けていなければならないというものではなく、押圧状態によってガス透過面積を変えられるものであればよいのであって何ら限定されるものではない。 The flow rate adjusting means is configured to be interlocked with the pressing member (10) by knurling, and the pressing member is interlocked with the rotation of the flow rate adjusting lever (17) arranged to be rotatable within a predetermined angle range. (10) is moved up and down, and a pressing force is applied to the elastic sealing member (1) formed with a recessed portion expanding toward the downstream via the filter (9), and the elastic sealing member (1) and The area in close contact with the filter (9) can be changed, thereby adjusting the gas flow rate. However, the opening of the recessed portion does not necessarily have to be directed downstream as in this example, and is not limited as long as the gas permeation area can be changed depending on the pressed state.
ここで、この例において採用される上記フィルタ(9)は、最大孔径0.04μm〜0.4μm程度の微細孔を空孔率約45%程度でほぼ全面に渡って均一に有するマイクロポーラスフィルムからなる。 Here, the filter (9) employed in this example is a microporous film having micropores having a maximum pore diameter of about 0.04 μm to 0.4 μm and having a porosity of about 45% and uniformly over almost the entire surface. Become.
流量調整レバー(17)の回転角によって、弾性密封部材(1)の押圧状態が変化し、それに応じてその状態におけるガスの供給量も変化するので、これによって炎長を調整することが出来る。流量調整レバー(17)を左回りに回転させた場合、弾性密封部材(1)に加えられた押圧力は、流量調整レバー(17)の回転前の状態に比べて小さくなる。従って、該弾性密封部材(1)とフィルタ(9)の接触面積も小さくなって、ガス透過面積は大きくなるので、ガスの供給量も大きくなり、燃焼用ノズル(16)のガス供給口(15)から放射される炎の長さが大きくなる。逆に、流量調整レバー(17)を右回りに回転させた場合、ガス透過面積は回転前と比べて小さくなるので、ガスの供給量も小さくなり、燃焼用ノズル(16)のガス供給口(14)から放射される炎の長さは小さくなる。 Depending on the rotation angle of the flow rate adjusting lever (17), the pressing state of the elastic sealing member (1) changes, and the gas supply amount in that state also changes accordingly, so that the flame length can be adjusted. When the flow rate adjusting lever (17) is rotated counterclockwise, the pressing force applied to the elastic sealing member (1) is smaller than that before the flow rate adjusting lever (17) is rotated. Accordingly, the contact area between the elastic sealing member (1) and the filter (9) is also reduced, the gas transmission area is increased, the gas supply amount is also increased, and the gas supply port (15) of the combustion nozzle (16) is increased. The length of the flame emitted from) increases. Conversely, when the flow rate adjustment lever (17) is rotated clockwise, the gas permeation area is smaller than before rotation, so the amount of gas supply is also reduced, and the gas supply port of the combustion nozzle (16) ( The length of the flame emitted from 14) becomes smaller.
また炎長は、流量調整レバー(17)の位置が多少異なるだけでも比較的大きく相違したものとなる。従って、製造上における組み立て時において、流量調整レバー(17)に設けられたローレット溝(18)と、該レバー(17)が回転する平面内の回転運動をこれと垂直方向の上下運動に変換するための、基盤(14)に設けられた螺旋溝(19)に螺合された変換体(20)に設けられたローレット溝(21)とをローレット嵌合するとき、嵌合位置が僅かでもズレて上手く合わないと、凡そローレット溝一個分のズレが出来てしまうことになり、その結果、最大炎長が大きく異なったものとなってしまう。このため、従来の弾性密封部材(11)を用いたガス供給量調整装置の場合には、最大流量が製品によって異なったものとなり炎長が不安定であったが、図9に示すように当該発明を適用した弾性密封部材(1)を組み込んだガス供給量調整装置の場合、平坦な下面に対しほぼ垂直に形成された周壁(5)により図9aに示す弾性密封部材(1)の状態から、押圧力を加えて図9bに示す弾性密封部材(1)の押圧状態になるまでの間は、該弾性密封部材(1)とフィルタ(9)との密接面積が殆ど変わらず、ガス透過面積がほぼ一定に保たれるためガス供給量が一定に規定されて最大供給量が安定するようになっている。ただし、図9に示される弾性密封部材及び押圧部材は、実施例3のそれとは形状が若干異なり、弾性密封部材の天面の面積よりも押圧部材の押圧面の面積の方が大きく、該押圧面とフィルタ上面との接触面積が一定であるため、ガス透過面積の調整が比較的難しくなっている。 Further, the flame length is relatively different even if the position of the flow rate adjusting lever (17) is slightly different. Therefore, during assembly in manufacturing, the knurled groove (18) provided in the flow rate adjusting lever (17) and the rotational movement in the plane in which the lever (17) rotates are converted into vertical movement in the vertical direction. Therefore, when the knurled groove (21) provided in the converter (20) screwed into the helical groove (19) provided in the base (14) is knurled, even if the fitting position is slightly shifted. If it does not fit well, there will be a gap of about one knurled groove, and as a result, the maximum flame length will be greatly different. For this reason, in the case of the gas supply amount adjusting device using the conventional elastic sealing member (11), the maximum flow rate differs depending on the product and the flame length is unstable. However, as shown in FIG. In the case of the gas supply amount adjusting apparatus incorporating the elastic sealing member (1) to which the invention is applied, the peripheral wall (5) formed substantially perpendicular to the flat lower surface is removed from the state of the elastic sealing member (1) shown in FIG. 9a. Until the elastic sealing member (1) shown in FIG. 9b is pressed until the pressing force is applied, the close contact area between the elastic sealing member (1) and the filter (9) hardly changes, and the gas permeation area Therefore, the gas supply amount is regulated to be constant and the maximum supply amount is stabilized. However, the elastic sealing member and the pressing member shown in FIG. 9 are slightly different in shape from those of Example 3, and the area of the pressing surface of the pressing member is larger than the area of the top surface of the elastic sealing member. Since the contact area between the surface and the upper surface of the filter is constant, it is relatively difficult to adjust the gas transmission area.
これに対して実施例3の場合には、フィルタ(9)を介して接合される弾性密封部材(1)と押圧部材(10)の接合面をなしている両部材それぞれの面が、面積及び形状共に、互いにほぼ同等に形成され、該押圧部材(10)におけるその該接合面から若干上方に向かった位置の内径が、前記接合面の内径に比べ更に一回り小さくなって段状に形成された段状流動体透過径部(22)を有し、押圧時において、該弾性密封部材(10)が圧潰して半径方向に押し広がっても安定したスムーズな流動体の流動性を確保出来るように構成されている。 On the other hand, in the case of Example 3, the surfaces of both members forming the joining surface of the elastic sealing member (1) and the pressing member (10) joined through the filter (9) have an area and Both of the shapes are formed substantially equal to each other, and the inner diameter of the pressing member (10) at a position slightly upward from the joining surface is formed to be a step smaller than the inner diameter of the joining surface. In addition, the elastic sealing member (10) has a stepped fluid permeation diameter portion (22), and can ensure a stable and smooth fluidity even when the elastic sealing member (10) is crushed and pushed in the radial direction during pressing. It is configured.
1 弾性密封部材
2 流通孔
3 配設面
4 配置面
5 周壁
6 開口
7 内底面
8 位置決め熔着突起
9 フィルタ
10 押圧部材
11 従来の弾性密封部材
12 傾斜ライン
13 ガス通路
14 基盤
15 ガス供給口
16 燃焼用ノズル
17 流量調整レバー
18 ローレット溝
19 螺旋溝
20 変換体
21 ローレット溝
22 段状流動体透過径部
DESCRIPTION OF
Claims (10)
A stepped fluid permeation diameter portion in which the inner diameter at a position where the pressing member faces slightly upward from the pressing surface that presses the elastic sealing member is further smaller than the inner diameter of the pressing surface. The adjustment device according to claim 1, comprising:
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003324468A JP3866705B2 (en) | 2003-09-17 | 2003-09-17 | Fluid supply adjustment device |
CNB200410075271XA CN100388146C (en) | 2003-09-17 | 2004-09-16 | Regulating device for supply quantity of fluid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003324468A JP3866705B2 (en) | 2003-09-17 | 2003-09-17 | Fluid supply adjustment device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005090857A JP2005090857A (en) | 2005-04-07 |
JP3866705B2 true JP3866705B2 (en) | 2007-01-10 |
Family
ID=34455219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003324468A Expired - Fee Related JP3866705B2 (en) | 2003-09-17 | 2003-09-17 | Fluid supply adjustment device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3866705B2 (en) |
CN (1) | CN100388146C (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4800918B2 (en) * | 2006-12-26 | 2011-10-26 | 日本碍子株式会社 | Chemical liquid preparation device |
JP5380177B2 (en) * | 2009-06-23 | 2014-01-08 | 甲賀高分子株式会社 | Fuel flow control device |
CN108814808B (en) * | 2018-04-27 | 2021-03-19 | 川北医学院第二附属医院 | Flow regulator for ophthalmology ultrasonic emulsification instrument |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2503117B2 (en) * | 1991-03-11 | 1996-06-05 | 東京マック株式会社 | Fuel gas supply adjustment device |
IL127406A (en) * | 1998-12-06 | 2002-02-10 | Pmp Precise Medical Products L | Wide range flow regulator |
DE60039527D1 (en) * | 2000-07-10 | 2008-08-28 | Yugen Kaisha Kouritu | FLOW CONTROL VALVE |
-
2003
- 2003-09-17 JP JP2003324468A patent/JP3866705B2/en not_active Expired - Fee Related
-
2004
- 2004-09-16 CN CNB200410075271XA patent/CN100388146C/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005090857A (en) | 2005-04-07 |
CN100388146C (en) | 2008-05-14 |
CN1603992A (en) | 2005-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005009678A (en) | Regulating slide valve | |
JPH02225887A (en) | Valve | |
JP2018524529A (en) | Control plate in valve | |
CN103090059A (en) | Check Valve | |
JP3866705B2 (en) | Fluid supply adjustment device | |
TW201132880A (en) | Valve structure of fluid pressure apparatus | |
JP2009250363A (en) | Check valve | |
JP5856917B2 (en) | Pressure reducing valve | |
JP2017129212A (en) | Flow regulating valve | |
RU2031314C1 (en) | Device for regulating flow for gas-release contrivance and method of making filter for application in the device for regulating fuel flow | |
US11885420B2 (en) | Control plate for a high conductance valve | |
JP2013204725A (en) | Diaphragm valve element of flow control valve | |
JP2013204725A5 (en) | ||
JP4217607B2 (en) | Fuel injection valve for internal combustion engine | |
TW201350697A (en) | Aerostatic bearing and linear guide apparatus using the aerostatic bearing | |
CN1656342A (en) | Filter structure of igniter | |
JPH0318852Y2 (en) | ||
JP2017187899A (en) | Pressure regulating valve | |
JP2006189230A (en) | Fluid flow rate adjusting device | |
CN107143675A (en) | Capacity adjusts valve | |
US5490777A (en) | Fuel gas supply adjuster | |
WO2023032359A1 (en) | Pressure reducing valve and manufacturing method therefor | |
JP4365477B2 (en) | Flow control valve | |
JP4137265B2 (en) | Vaporization structure | |
JP2021104822A (en) | Foam discharger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20060703 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060721 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20060721 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20060703 |
|
TRDD | Decision of grant or rejection written | ||
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20060825 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060905 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061005 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091013 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091013 Year of fee payment: 3 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091013 Year of fee payment: 3 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101013 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111013 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121013 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131013 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |