JP3864817B2 - Water treatment method and apparatus, and reverse osmosis membrane contaminant analysis method - Google Patents

Water treatment method and apparatus, and reverse osmosis membrane contaminant analysis method Download PDF

Info

Publication number
JP3864817B2
JP3864817B2 JP2002076272A JP2002076272A JP3864817B2 JP 3864817 B2 JP3864817 B2 JP 3864817B2 JP 2002076272 A JP2002076272 A JP 2002076272A JP 2002076272 A JP2002076272 A JP 2002076272A JP 3864817 B2 JP3864817 B2 JP 3864817B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
adsorbent
water
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002076272A
Other languages
Japanese (ja)
Other versions
JP2003275760A (en
Inventor
光和 益戸
直人 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002076272A priority Critical patent/JP3864817B2/en
Publication of JP2003275760A publication Critical patent/JP2003275760A/en
Application granted granted Critical
Publication of JP3864817B2 publication Critical patent/JP3864817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、医薬品製造工場、半導体製造工場、液晶製造工場、食品工場、発電所などに適用される水処理方法および装置、並びに分析方法に関し、詳しくは、逆浸透膜を用いた水処理方法および装置、並びに逆浸透膜の汚染物質を分析する方法に関する。
【0002】
【従来の技術】
従来、純水の製造などには、逆浸透膜装置を用いた水処理方法が用いられている。逆浸透膜としては、ポリアミド系材料からなるものが多く用いられている。
逆浸透膜、特にポリアミド系材料からなる逆浸透膜は、脱塩率が高く、有機物除去性に優れている反面、有機物汚染を受けやすいため、透過流速が低下しやすいという問題ある。
このため、逆浸透膜装置への供給に先だって、活性炭などの吸着剤を用いて、被処理水の汚染物質を吸着除去する方法がとられることがあるが、この方法では、汚染物質以外の物質も吸着剤に吸着されてしまうため、吸着剤の使用量が多くなり、コスト上昇を招くという問題があった。
【0003】
透過流束に影響する汚染物質は、被処理水ごとに異なることが多い。特にポリアミド系材料からなる逆浸透膜では、陰・陽両方の電荷をもつ官能基を有するため、汚染物質の種類は様々であり、吸着状態は複雑である。
逆浸透膜の汚染に対しては、この汚染物質を分析し、その成分を明らかにし、挙動を把握することが有効であるが、一般に、被処理水中の汚染物質濃度は低いため、分析には濃縮が必要となる。
被処理水中の特定物質を濃縮するには、被処理水を活性炭等の吸着剤を用いて吸着処理する方法が多く用いられている。
しかしながら、この方法で汚染物質を濃縮する場合には、汚染物質以外の物質も同時に吸着されてしまうため、十分な濃縮率を得ることができず、精度の高い分析が難しくなるという問題があった。
【0004】
【発明が解決しようとする課題】
本発明は上記事情に鑑みなされたもので、逆浸透膜の汚染を防ぎ、透過流速の低下を抑えることができる水処理方法および装置、並びに逆浸透膜の汚染物質を精度よく分析することができる分析方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の水処理方法は、被処理水を、逆浸透膜装置に供給するに先だって、この逆浸透膜を構成する材料を含む吸着剤を用いて吸着処理することを特徴とする。
逆浸透膜を構成する材料としては、ポリアミド系材料を用いるのが好ましい。
【0006】
本発明の水処理装置は、逆浸透膜装置の前段に、この逆浸透膜を構成する材料を含む吸着剤を用いた吸着手段が設けられていることを特徴とする。
【0007】
本発明の逆浸透膜汚染物質の分析方法は、この逆浸透膜を構成する材料を含む吸着剤を用いて被処理水を吸着処理し、吸着物を分析することを特徴とする。
【0008】
【発明の実施の形態】
図1は、本発明の水処理装置の一実施形態を示すもので、ここに示す水処理装置は、逆浸透膜装置1の前段に、吸着手段である吸着筒2を備えて構成されている。
逆浸透膜装置1としては、従来公知の材料からなる逆浸透膜を有するものが使用できる。特に、ポリアミド系材料からなる逆浸透膜を用いると、被処理水の供給圧力を低く設定できるため、好ましい。
この逆浸透膜装置1としては、例えばFilm Tec社のFILMTEC Type FT30、日東電工(株)のES20、ES10、NTR759、東レ(株)のSU700を挙げることができる。
吸着筒2は、外筒2a内に吸着剤が充填されて構成されている。
【0009】
本実施形態の水処理装置においては、吸着剤として、逆浸透膜装置1の逆浸透膜を構成する材料を含むもの、好ましくは逆浸透膜の膜分離層を構成する材料を含むものが用いられる。
逆浸透膜装置1の逆浸透膜の膜分離層がポリアミド系材料からなるものである場合には、吸着剤として、このポリアミド系材料を含むものを用いるのが好ましい。
【0010】
以下、図1に示す水処理装置を用いた場合を例として、本発明の水処理方法の一実施形態を説明する。
被処理水貯留槽3からの被処理水を、ポンプ4によって、経路5を通して吸着筒2に導入し、吸着剤に接触させる。
【0011】
逆浸透膜装置1の透過流束に影響を与える汚染物質は、逆浸透膜の膜分離層表面に蓄積しやすい物質であるため、この逆浸透膜に対し選択的に吸着しやすい性質を有する。
吸着筒2の吸着剤は、逆浸透膜の構成材料を含むものであるため、被処理水中の汚染物質は、この吸着剤に選択的に吸着され、吸着筒2内で濃縮される。
【0012】
吸着筒2を経た中間処理水は、経路6を通して逆浸透膜装置1に導入され、逆浸透膜を透過した最終処理水が系外に導出される。
逆浸透膜装置1に導入される中間処理水は、吸着筒2で汚染物質が除去されたものであるため、逆浸透膜の膜孔閉塞が起こりにくく、透過流速が高く維持される。
【0013】
次に、吸着筒2内に濃縮された汚染物質を、次のようにして回収し、分析する。
貯留槽3からの被処理水の供給を停止した後、汚染物質を吸着剤から溶離させる溶離液を、溶離液貯留槽7から、経路8、5を通して吸着筒2に導入する。
【0014】
この溶離液としては、汚染物質を吸着剤から溶離させることができるものであれば特に限定されないが、有機溶媒、酸溶液、アルカリ溶液などを用いることができる。
有機溶媒としては、メタノール、エタノールなどを使用できる。
酸溶液としては、塩酸、硫酸などの水溶液を用いることができ、その濃度は、2質量%以上とするのが好ましい。
アルカリ溶液としては、水酸化ナトリウム、水酸化カリウムなどの水溶液を用いることができ、その濃度は2質量%以上とすることができる。
溶離液は、複数種類を各々異なる貯留槽7に用意しておき、吸着剤や汚染物質に応じて選択使用するのが好ましい。
【0015】
溶離液を吸着筒2に導入することによって、汚染物質は吸着剤から溶離する。
溶離した汚染物質を含む溶離排液は、回収経路9を通して回収される。
溶離排液中の汚染物質は、吸着剤に選択的に吸着されていたものであるため、この溶離排液は、汚染物質の含有濃度が高く、他の物質の含有濃度が低いものとなる。
回収された溶離排液は、従来公知の分析方法、例えば誘導体化−ガスクロマトグラフ法、液体クロマトグラフ−質量分析法などにより分析され、その成分が明らかにされる。
この分析の際には、分析対象である汚染物質の濃度が高い溶離排液が試料となるため、不純物の影響が小さくなり、精度の高い分析が可能となる。
【0016】
本実施形態の水処理方法では、被処理水を、逆浸透膜装置1に供給するに先だって、この逆浸透膜の構成材料を含む吸着剤を用いた吸着筒2により吸着処理するので、逆浸透膜に対し吸着しやすい汚染物質が、吸着筒2において選択的に除去される。
このため、逆浸透膜装置1において、逆浸透膜の膜孔閉塞を起こりにくくし、透過流速を高く維持することができる。
従って、逆浸透膜装置1の洗浄頻度を低くすることができる。また耐用期間を長くすることができる。
また、吸着筒2において汚染物質を選択的に吸着剤に吸着させることができるため、吸着剤使用量を抑え、低コスト化を図ることができる。
【0017】
また、上記分析方法では、逆浸透膜の構成材料を含む吸着剤を用いて被処理水を吸着処理するので、上記汚染物質を吸着筒2で選択的に捕捉することができる。
このため、汚染物質の含有濃度が高い溶離排液を得ることができ、これを分析する際の精度を高めることができる。
【0018】
【実施例】
反応式(1)に示すように、フェニレンジアミンとトリメソイルクロライドを共重合させることによって、芳香族ポリアミドを合成し、これを凍結粉砕により粉末化することによって吸着剤を作製した。
【0019】
【化1】

Figure 0003864817
【0020】
この吸着剤を用いて以下の試験を行った。
上記吸着剤を充填した吸着筒に、界面活性剤の水溶液を供給し、この吸着筒を通過した処理水中の各界面活性剤の濃度(吸光度:−logT)を測定した。
界面活性剤としては、ポリオキシエチレン型非イオン界面活性剤(A)と、ベンジルアンモニウム型陽イオン界面活性剤(B)とを用いた。
吸着筒に充填する吸着剤の量は、0〜100mgとした。
結果を図2に示す。図中記号●はポリオキシエチレン型非イオン界面活性剤(A)を示し、▲はベンジルアンモニウム型陽イオン界面活性剤(B)を示す。
【0021】
1mg/Lのポリオキシエチレン型非イオン界面活性剤(A)を含む水溶液を、図1に示す水処理装置の逆浸透膜装置1に供給し、その透過流束を測定した。
この逆浸透膜装置1としては、式(1)に示すポリアミドを膜分離層に用いた逆浸透膜を用いたものを使用した。結果を図3に示す。
【0022】
図2より、上記吸着剤は、ベンジルアンモニウム型陽イオン界面活性剤(B)に対してはほとんど吸着性がないのに対し、ポリオキシエチレン型非イオン界面活性剤(A)に対しては、高い吸着性を示したことがわかる。
図3より、ポリオキシエチレン型非イオン界面活性剤(A)は、ごく少量で透過流束の低下を引き起こすことがわかる。
このことから、上記ポリアミドからなる吸着剤を用いた吸着処理によって、流速低下の原因となる界面活性剤を除去することができることがわかる。
【0023】
【発明の効果】
以上説明したように、本発明の水処理方法では、被処理水を、逆浸透膜装置に供給するに先だって、この逆浸透膜の構成材料を含む吸着剤を用いて吸着処理するので、逆浸透膜に対し吸着しやすい汚染物質が、吸着剤によって選択的に除去される。
このため、逆浸透膜装置において、逆浸透膜の膜孔閉塞を起こりにくくし、透過流速を高く維持することができる。
従って、逆浸透膜装置の洗浄頻度を低くすることができる。また耐用期間を長くすることができる。
【0024】
本発明の分析方法では、逆浸透膜の構成材料を含む吸着剤を用いて被処理水を吸着処理するので、上記汚染物質を吸着剤で選択的に捕捉することができる。
このため、汚染物質の含有濃度が高い溶離排液を得ることができ、これを分析する際の精度を高めることができる。
【図面の簡単な説明】
【図1】 本発明の水処理装置の一実施形態を示す概略構成図である。
【図2】 試験結果を示すグラフである。
【図3】 試験結果を示すグラフである。
【符号の説明】
1・・・逆浸透膜装置、2・・・吸着筒(吸着手段)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment method and apparatus applied to a pharmaceutical production factory, a semiconductor production factory, a liquid crystal production factory, a food factory, a power plant, and the like, and an analysis method, and more specifically, a water treatment method using a reverse osmosis membrane and The present invention relates to an apparatus and a method for analyzing contaminants in a reverse osmosis membrane.
[0002]
[Prior art]
Conventionally, a water treatment method using a reverse osmosis membrane device has been used for the production of pure water. As the reverse osmosis membrane, a material made of a polyamide-based material is often used.
A reverse osmosis membrane, particularly a reverse osmosis membrane made of a polyamide-based material, has a high desalting rate and excellent organic matter removability, but has a problem that the permeation flow rate tends to decrease because it is susceptible to organic contamination.
For this reason, before supplying to the reverse osmosis membrane device, a method of adsorbing and removing pollutants of the water to be treated using an adsorbent such as activated carbon may be used. In this method, substances other than the pollutants are used. However, the amount of the adsorbent used increases and the cost increases.
[0003]
Contaminants that affect the permeation flux are often different for each treated water. In particular, reverse osmosis membranes made of polyamide-based materials have functional groups having both negative and positive charges, so the types of contaminants are various and the adsorption state is complicated.
For contamination of reverse osmosis membranes, it is effective to analyze this pollutant, clarify its components, and understand its behavior, but in general, the concentration of pollutants in the treated water is low. Concentration is required.
In order to concentrate a specific substance in the water to be treated, a method of adsorbing the water to be treated with an adsorbent such as activated carbon is often used.
However, when pollutants are concentrated by this method, substances other than the pollutants are also adsorbed at the same time, so that there is a problem that a sufficient concentration rate cannot be obtained and accurate analysis becomes difficult. .
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and can accurately analyze the water treatment method and apparatus capable of preventing the contamination of the reverse osmosis membrane and suppressing the decrease in the permeation flow rate, and the contaminant of the reverse osmosis membrane. The purpose is to provide an analysis method.
[0005]
[Means for Solving the Problems]
The water treatment method of the present invention is characterized in that, before supplying water to be treated to a reverse osmosis membrane device, an adsorption treatment is performed using an adsorbent containing a material constituting the reverse osmosis membrane.
As a material constituting the reverse osmosis membrane, a polyamide-based material is preferably used.
[0006]
The water treatment apparatus of the present invention is characterized in that an adsorbing means using an adsorbent containing a material constituting the reverse osmosis membrane is provided upstream of the reverse osmosis membrane apparatus.
[0007]
The method for analyzing a reverse osmosis membrane pollutant of the present invention is characterized in that water to be treated is adsorbed using an adsorbent containing a material constituting the reverse osmosis membrane and the adsorbate is analyzed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of a water treatment apparatus of the present invention, and the water treatment apparatus shown here is configured to include an adsorption cylinder 2 as an adsorption means in the previous stage of a reverse osmosis membrane apparatus 1. .
As the reverse osmosis membrane device 1, a device having a reverse osmosis membrane made of a conventionally known material can be used. In particular, the use of a reverse osmosis membrane made of a polyamide-based material is preferable because the supply pressure of water to be treated can be set low.
Examples of the reverse osmosis membrane device 1 include FILMTEC Type FT30 manufactured by Film Tec, ES20, ES10, NTR759 manufactured by Nitto Denko Corporation, and SU700 manufactured by Toray Industries, Inc.
The adsorption cylinder 2 is configured by filling the outer cylinder 2a with an adsorbent.
[0009]
In the water treatment apparatus of the present embodiment, as the adsorbent, an adsorbent containing a material constituting the reverse osmosis membrane of the reverse osmosis membrane device 1, preferably containing a material constituting the membrane separation layer of the reverse osmosis membrane is used. .
When the membrane separation layer of the reverse osmosis membrane of the reverse osmosis membrane device 1 is made of a polyamide material, it is preferable to use a material containing this polyamide material as an adsorbent.
[0010]
Hereinafter, an embodiment of the water treatment method of the present invention will be described by taking the case of using the water treatment apparatus shown in FIG. 1 as an example.
The treated water from the treated water storage tank 3 is introduced into the adsorption cylinder 2 through the path 5 by the pump 4 and is brought into contact with the adsorbent.
[0011]
The contaminant that affects the permeation flux of the reverse osmosis membrane device 1 is a substance that easily accumulates on the surface of the membrane separation layer of the reverse osmosis membrane, and therefore has a property of being easily adsorbed selectively to the reverse osmosis membrane.
Since the adsorbent of the adsorption cylinder 2 contains the constituent material of the reverse osmosis membrane, the contaminants in the water to be treated are selectively adsorbed on the adsorbent and concentrated in the adsorption cylinder 2.
[0012]
The intermediate treated water that has passed through the adsorption cylinder 2 is introduced into the reverse osmosis membrane device 1 through the path 6, and the final treated water that has permeated through the reverse osmosis membrane is led out of the system.
Since the intermediate treated water introduced into the reverse osmosis membrane device 1 is the one from which the contaminants have been removed by the adsorption cylinder 2, the reverse osmosis membrane is hardly clogged and the permeation flow rate is kept high.
[0013]
Next, the contaminants concentrated in the adsorption cylinder 2 are collected and analyzed as follows.
After the supply of water to be treated from the storage tank 3 is stopped, an eluent that elutes contaminants from the adsorbent is introduced into the adsorption cylinder 2 from the eluent storage tank 7 through paths 8 and 5.
[0014]
The eluent is not particularly limited as long as it can elute contaminants from the adsorbent, and organic solvents, acid solutions, alkaline solutions, and the like can be used.
As the organic solvent, methanol, ethanol or the like can be used.
As the acid solution, an aqueous solution such as hydrochloric acid or sulfuric acid can be used, and the concentration is preferably 2% by mass or more.
As the alkaline solution, an aqueous solution such as sodium hydroxide or potassium hydroxide can be used, and the concentration thereof can be 2% by mass or more.
It is preferable to prepare a plurality of types of eluents in different storage tanks 7 and select and use them depending on the adsorbent and contaminants.
[0015]
By introducing the eluent into the adsorption cylinder 2, the contaminants are eluted from the adsorbent.
The eluate drainage containing the eluted contaminants is recovered through the recovery path 9.
Since the pollutant in the elution drainage liquid is selectively adsorbed by the adsorbent, the elution drainage liquid has a high content concentration of contaminants and a low content concentration of other substances.
The recovered elution drainage liquid is analyzed by a conventionally known analysis method, for example, derivatization-gas chromatography method, liquid chromatography-mass spectrometry method, etc., and its components are clarified.
In this analysis, since the elution effluent having a high concentration of the pollutant to be analyzed becomes a sample, the influence of impurities is reduced, and a highly accurate analysis is possible.
[0016]
In the water treatment method of the present embodiment, since the water to be treated is adsorbed by the adsorption cylinder 2 using the adsorbent containing the constituent material of the reverse osmosis membrane before being supplied to the reverse osmosis membrane device 1, the reverse osmosis is performed. Contaminants that are easily adsorbed to the membrane are selectively removed in the adsorption cylinder 2.
For this reason, in the reverse osmosis membrane device 1, it is difficult to cause the membrane hole of the reverse osmosis membrane to be blocked, and the permeation flow rate can be maintained high.
Therefore, the frequency of cleaning the reverse osmosis membrane device 1 can be lowered. In addition, the service life can be extended.
Moreover, since the contaminant can be selectively adsorbed to the adsorbent in the adsorption cylinder 2, the amount of adsorbent used can be suppressed and the cost can be reduced.
[0017]
In the above analysis method, the water to be treated is adsorbed using an adsorbent containing the constituent material of the reverse osmosis membrane, so that the contaminant can be selectively captured by the adsorption cylinder 2.
For this reason, it is possible to obtain an elution effluent having a high concentration of contaminants, and it is possible to improve the accuracy in analyzing this.
[0018]
【Example】
As shown in the reaction formula (1), an aromatic polyamide was synthesized by copolymerizing phenylenediamine and trimesoyl chloride, and an adsorbent was prepared by pulverizing this by freeze pulverization.
[0019]
[Chemical 1]
Figure 0003864817
[0020]
The following tests were conducted using this adsorbent.
A surfactant aqueous solution was supplied to the adsorption cylinder filled with the adsorbent, and the concentration (absorbance: -log T) of each surfactant in the treated water that passed through the adsorption cylinder was measured.
As the surfactant, polyoxyethylene type nonionic surfactant (A) and benzylammonium type cationic surfactant (B) were used.
The amount of adsorbent filled in the adsorption cylinder was 0 to 100 mg.
The results are shown in FIG. In the figure, the symbol ● represents the polyoxyethylene type nonionic surfactant (A), and the triangle represents the benzylammonium type cationic surfactant (B).
[0021]
An aqueous solution containing 1 mg / L of polyoxyethylene type nonionic surfactant (A) was supplied to the reverse osmosis membrane device 1 of the water treatment device shown in FIG. 1, and the permeation flux was measured.
As this reverse osmosis membrane apparatus 1, the thing using the reverse osmosis membrane which used the polyamide shown to Formula (1) for the membrane separation layer was used. The results are shown in FIG.
[0022]
From FIG. 2, the adsorbent has almost no adsorptivity to the benzylammonium type cationic surfactant (B), whereas the adsorbent for the polyoxyethylene type nonionic surfactant (A) It turns out that the high adsorptivity was shown.
FIG. 3 shows that the polyoxyethylene nonionic surfactant (A) causes a decrease in the permeation flux even in a very small amount.
From this, it is understood that the surfactant that causes a decrease in the flow rate can be removed by the adsorption treatment using the adsorbent composed of the polyamide.
[0023]
【The invention's effect】
As described above, in the water treatment method of the present invention, since the water to be treated is adsorbed using the adsorbent containing the constituent material of the reverse osmosis membrane before being supplied to the reverse osmosis membrane device, reverse osmosis is performed. Contaminants that tend to adsorb to the membrane are selectively removed by the adsorbent.
For this reason, in the reverse osmosis membrane device, it is difficult for the reverse osmosis membrane to block the pores, and the permeation flow rate can be kept high.
Therefore, the frequency of cleaning the reverse osmosis membrane device can be lowered. In addition, the service life can be extended.
[0024]
In the analysis method of the present invention, the water to be treated is adsorbed using the adsorbent containing the constituent material of the reverse osmosis membrane, so that the contaminants can be selectively captured by the adsorbent.
For this reason, it is possible to obtain an elution effluent having a high concentration of contaminants, and it is possible to improve the accuracy in analyzing this.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a water treatment apparatus of the present invention.
FIG. 2 is a graph showing test results.
FIG. 3 is a graph showing test results.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Reverse osmosis membrane apparatus, 2 ... Adsorption cylinder (adsorption means)

Claims (4)

被処理水を、逆浸透膜装置に供給するに先だって、この逆浸透膜を構成する材料を含む吸着剤を用いて吸着処理することを特徴とする水処理方法。A water treatment method comprising subjecting water to be treated to an adsorption treatment using an adsorbent containing a material constituting the reverse osmosis membrane before supplying the water to the reverse osmosis membrane device. 逆浸透膜を構成する材料が、ポリアミド系材料であることを特徴とする請求項1記載の水処理方法。The water treatment method according to claim 1, wherein the material constituting the reverse osmosis membrane is a polyamide-based material. 逆浸透膜装置の前段に、この逆浸透膜を構成する材料を含む吸着剤を用いた吸着手段が設けられていることを特徴とする水処理装置。A water treatment apparatus, characterized in that an adsorption means using an adsorbent containing a material constituting the reverse osmosis membrane is provided in the front stage of the reverse osmosis membrane device. 逆浸透膜の汚染物質を分析する方法であって、この逆浸透膜を構成する材料を含む吸着剤を用いて被処理水を吸着処理し、吸着物を分析することを特徴とする逆浸透膜汚染物質の分析方法。A reverse osmosis membrane which is a method for analyzing contaminants in a reverse osmosis membrane, wherein the water to be treated is adsorbed using an adsorbent containing a material constituting the reverse osmosis membrane and the adsorbed material is analyzed. How to analyze pollutants.
JP2002076272A 2002-03-19 2002-03-19 Water treatment method and apparatus, and reverse osmosis membrane contaminant analysis method Expired - Fee Related JP3864817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002076272A JP3864817B2 (en) 2002-03-19 2002-03-19 Water treatment method and apparatus, and reverse osmosis membrane contaminant analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002076272A JP3864817B2 (en) 2002-03-19 2002-03-19 Water treatment method and apparatus, and reverse osmosis membrane contaminant analysis method

Publications (2)

Publication Number Publication Date
JP2003275760A JP2003275760A (en) 2003-09-30
JP3864817B2 true JP3864817B2 (en) 2007-01-10

Family

ID=29205101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002076272A Expired - Fee Related JP3864817B2 (en) 2002-03-19 2002-03-19 Water treatment method and apparatus, and reverse osmosis membrane contaminant analysis method

Country Status (1)

Country Link
JP (1) JP3864817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200015461A (en) 2017-05-29 2020-02-12 쿠리타 고교 가부시키가이샤 Treatment method and water treatment method of non-ionic surfactant-containing water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231181A (en) * 2005-02-24 2006-09-07 Ngk Insulators Ltd Membrane filtration method of clean water
JP2009061416A (en) * 2007-09-07 2009-03-26 Asahi Kasei Chemicals Corp Method for selecting filtration membrane, method for washing filtration membrane, and means for preprocessing
JP2012091151A (en) * 2010-10-29 2012-05-17 Hitachi Ltd Adsorption structure, adsorption module, and method for producing the same
JP6497843B2 (en) 2014-01-30 2019-04-10 三菱重工エンジニアリング株式会社 Chemical fouling prevention system and method for reverse osmosis membrane
JP7195177B2 (en) * 2019-02-25 2022-12-23 オルガノ株式会社 Method for evaluating organic matter in ultrapure water and method for identifying organic matter in ultrapure water production system
JP2024027294A (en) * 2022-08-17 2024-03-01 オルガノ株式会社 Impurity capture system, quality inspection system and liquid manufacturing supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200015461A (en) 2017-05-29 2020-02-12 쿠리타 고교 가부시키가이샤 Treatment method and water treatment method of non-ionic surfactant-containing water

Also Published As

Publication number Publication date
JP2003275760A (en) 2003-09-30

Similar Documents

Publication Publication Date Title
Boussu et al. Relation between membrane characteristics and performance in nanofiltration
Jin et al. Rejection of pharmaceuticals by forward osmosis membranes
Metcalfe et al. Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers
Barreiro et al. Direct injection of native aqueous matrices by achiral–chiral chromatography ion trap mass spectrometry for simultaneous quantification of pantoprazole and lansoprazole enantiomers fractions
Sánchez-Bayo et al. An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers
Nghiem et al. Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): Mechanisms and role of membrane pore size
Wang et al. Development of an extraction method and LC–MS analysis for N-acylated-l-homoserine lactones (AHLs) in wastewater treatment biofilms
Chimuka et al. Why liquid membrane extraction is an attractive alternative in sample preparation
Lee et al. Mechanisms and factors influencing the removal of microcystin-LR by ultrafiltration membranes
CA2576051A1 (en) A method and apparatus for downhole detection of co2 and h2s using resonators coated with co2 and h2s sorbents
US7114370B2 (en) Air quality sampler using solid phase coated material
EP1463686B1 (en) Chromatography apparatus and electrolytic method for purifying an aqueous stream containing a contaminant ion
Salamanca et al. Study of the rejection of contaminants of emerging concern by a biomimetic aquaporin hollow fiber forward osmosis membrane
Dudziak et al. A study of selected phytoestrogens retention by reverse osmosis and nanofiltration membranes-the role of fouling and scaling
JP3864817B2 (en) Water treatment method and apparatus, and reverse osmosis membrane contaminant analysis method
US5221477A (en) Apparatus and method for reversed permeation membrane extraction of compounds from sample solutions
Plum et al. Process monitoring of anaerobic azo dye degradation by high-performance liquid chromatography–diode array detection continuously coupled to membrane filtration sampling modules
Alonso et al. Evaluation of nanofiltration and reverse osmosis membranes for efficient rejection of organic micropollutants
JP2009236539A (en) Device and method for concentrating and detecting selectively composite gaseous chemical substance
Frei et al. Handling of environmental and biological samples via pre-column technologies
JP2007229605A (en) Method and system for recovering dyestuff for nondestructive test of ceramics
JP2009156657A (en) Automatic solid-phase pretreatment apparatus and solid-phase pretreatment method of sample water
JP4385704B2 (en) Reverse osmosis membrane feed water evaluation method and water treatment device operation management method
Wu et al. Removal of sulfamethoxazole by nanofiltration membrane
Seki et al. Determination of free catecholamines in human urine by direct injection of urine into a liquid chromatographic column-switching system with fluorimetric detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Ref document number: 3864817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees