JP2009061416A - Method for selecting filtration membrane, method for washing filtration membrane, and means for preprocessing - Google Patents

Method for selecting filtration membrane, method for washing filtration membrane, and means for preprocessing Download PDF

Info

Publication number
JP2009061416A
JP2009061416A JP2007232789A JP2007232789A JP2009061416A JP 2009061416 A JP2009061416 A JP 2009061416A JP 2007232789 A JP2007232789 A JP 2007232789A JP 2007232789 A JP2007232789 A JP 2007232789A JP 2009061416 A JP2009061416 A JP 2009061416A
Authority
JP
Japan
Prior art keywords
filtration membrane
membrane
water
treated
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007232789A
Other languages
Japanese (ja)
Inventor
Takashi Tsukahara
隆史 塚原
Yoshihiko Mori
吉彦 森
Yoshikimi Watanabe
義公 渡辺
Katsuteru Kimura
克輝 木村
Hiroshi Yamamura
寛 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Asahi Kasei Chemicals Corp
Original Assignee
Hokkaido University NUC
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC, Asahi Kasei Chemicals Corp filed Critical Hokkaido University NUC
Priority to JP2007232789A priority Critical patent/JP2009061416A/en
Publication of JP2009061416A publication Critical patent/JP2009061416A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To select an appropriate filtration membrane, a method for washing the filtration membrane, and an appropriate means for pre-processing water to be treated, effectively perform washing, and maintaining highly permeated water flux when raw water such as river water, lake water, groundwater, reservoir water, water subjected to secondary sewage processing, factory wastage, and sewage water is filtered with a filtration membrane or valuable substances are separated or concentrated from the raw water. <P>SOLUTION: The selection method comprises measuring adsorption energy generated between various organic and inorganic components contained in water to be treated and membranes, selecting a filtration membrane, with which the sum of the adsorption energy is minimum, as a filtration membrane for a membrane filtration plant, selecting an effective washing method for the removal of a component leading to the maximum adsorption energy level, as a method for washing a filtration membrane to be applied to the water to be treated, and selecting an effective means for pre-processing for the removal of a component leading to the maximum adsorption energy level, as a means for preprocessing upon processing in a filtration membrane plant. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、河川水、湖沼水、地下水、貯水、下水二次処理水、工場排水、下水等を原水として濾過膜で濾過する際、または有価物の分離、或いは濃縮のために濾過膜で濾過する際、被処理液中に含有される各種有機および無機成分と濾過膜との間に発生する吸着エネルギーを測定することにより、膜濾過プラントの設計に最適な濾過膜、濾過膜の洗浄方法および被処理液に対する適切な前処理手段を選択する方法に関する。   The present invention is used when filtering river water, lake water, ground water, stored water, secondary sewage treatment water, factory effluent, sewage, etc. as raw water with a filter membrane, or filtering with a filter membrane for separation or concentration of valuable materials. Filter membrane optimal for membrane filtration plant design, filtration membrane cleaning method, and measurement of adsorption energy generated between various membranes of organic and inorganic components contained in the liquid to be treated and the filtration membrane The present invention relates to a method for selecting an appropriate pretreatment means for a liquid to be treated.

限外濾過膜、精密濾過膜等の濾過膜を用いた膜濾過プラントでは、膜モジュール内に分離対象となる被処理液を流し、膜モジュール外部からこの被処理液体に圧力をかける。そして、主に膜の細孔の大きさに基づいて、ある程度の透過水流束が得られる条件内で目的とする濾過運転を行う。   In a membrane filtration plant using a filtration membrane such as an ultrafiltration membrane or a microfiltration membrane, a liquid to be treated is flowed into the membrane module, and pressure is applied to the liquid to be treated from the outside of the membrane module. Then, based on the size of the pores of the membrane, the target filtration operation is performed within the condition that a certain permeate flux can be obtained.

被処理液の性状は膜濾過プラントごとに別々であり、被処理液に含まれる各種の有機および無機成分が、濾過膜の目詰まり等のファウリングを発生させ、急激に又は徐々に透過水流束の低下をもたらすことが多い。そのため、膜濾過プラントでは、逆洗やエアスクラビング等の物理洗浄やフラッシング等を行い、濾過膜の性能をある程度回復させて使用する。そして、濾過膜の性能を十分に回復させる薬品洗浄を例えば半年に1回と想定した範囲内でかつ可能な運転条件の範囲内で、薬品洗浄までの半年間安定的に運転できる状態を特定し、そのような条件の中で最も効率の良い条件を採用して運転するのが通常である。   The properties of the liquid to be treated are different for each membrane filtration plant, and various organic and inorganic components contained in the liquid to be treated cause fouling such as clogging of the filtration membrane, and the permeate flux rapidly or gradually. Often results in a decline. Therefore, in a membrane filtration plant, physical washing such as back washing and air scrubbing, flushing, etc. are performed to recover the performance of the filtration membrane to some extent. And, specify the state where chemical cleaning that sufficiently restores the performance of the filtration membrane can be performed stably for half a year until chemical cleaning within the range of possible operating conditions within the range that is assumed once every six months, for example. It is usual to operate by adopting the most efficient condition among such conditions.

膜濾過プラントにおいて定流量条件下での運転圧力は、運転の初期には急に立ち上がる。しかし、初期の状態が過ぎると安定期に入り、運転圧力は運転日数に伴って一定の傾きで徐々に増加していく。安定期をすぎると終期となって、急激に運転圧力が上昇して送液ポンプの運転限界に近づき、濾過膜を薬品洗浄する必要が生じる。   In a membrane filtration plant, the operating pressure under constant flow conditions rises rapidly in the initial stage of operation. However, after the initial state, the stable period is entered, and the operating pressure gradually increases with a certain slope with the number of operating days. When the stable period is passed, the operation pressure is suddenly increased, approaching the operation limit of the liquid feed pump, and the filtration membrane needs to be chemically cleaned.

膜濾過プラントの運転条件としては、この初期から終期までの運転期間と短期の洗浄条件とをあらかじめ想定した場合に、この期間に渡って一定流量で安定して運転できる最大の透過水流束で運転するのがもっとも効率が良いことになる。そのため、膜濾過プラントの設計にあたっては、一定の短期の洗浄条件と薬品洗浄までの運転期間とを前提として、安定状態における透過水流束の最大値がどのくらいの値になるかを推定し、それによって膜濾過プラントの設計規模を決定することになる。   The membrane filtration plant is operated with the maximum permeate flux that can be stably operated at a constant flow rate over this period, assuming the operation period from this initial stage to the end and the short-term cleaning conditions in advance. Doing so is the most efficient. Therefore, in designing a membrane filtration plant, assuming the fixed short-term cleaning conditions and the operation period until chemical cleaning, we estimate the maximum permeate flux value in the stable state, The design scale of the membrane filtration plant will be determined.

ところが、実運転時の安定状態の透過水流束は、前処理を含めた被処理液に含まれる物質の種類、粒子の性状、濃度等に影響され、さらに、濾過膜の特性、被処理液に含まれる物質と濾過膜との相互作用、濾過膜の洗浄条件、運転条件等の各種の条件が複雑に影響して決まると考えられる。したがって、従来は、これらの複雑な相互作用のために、様々な被処理液に対して、適切な濾過膜や透過水流束を安定状態で維持するための適切な洗浄方法をあらかじめ推定することは極めて困難であると考えられてきた。   However, the stable permeate flux during actual operation is affected by the types of substances contained in the liquid to be treated, including pretreatment, the properties of the particles, the concentration, etc. Various conditions such as the interaction between the contained substances and the filtration membrane, the washing conditions of the filtration membrane, and the operation conditions are considered to be determined in a complicated manner. Therefore, in the past, due to these complex interactions, it is not possible to estimate in advance an appropriate cleaning method for maintaining an appropriate filtration membrane and permeate flux in a stable state for various liquids to be treated. It has been considered extremely difficult.

これを推定しようとする試みとしては、例えば、一定の濾過フィルターを用いて一定時間一定圧力で被処理液を濾過し、濾過開始時点と濾過終了時点における流量の測定値から安定状態の透過水流束を求めようとするSDI(Silt Density Index)測定方法と呼ばれる方法が提唱された。しかし、この方法を適用できるのはきわめて狭い水質範囲に限定されており、実用的とは言い難い。   As an attempt to estimate this, for example, the liquid to be treated is filtered at a constant pressure for a certain period of time using a constant filtration filter, and the permeate flux in a stable state is determined from the measured flow rate at the start and end of filtration. A method called SDI (Silt Density Index) measurement method has been proposed. However, the application of this method is limited to a very narrow water quality range, which is not practical.

また、特許文献1では濁質量と溶存有機炭素量の測定値および膜濾過流束の関数から、膜濾過流束、物理洗浄間隔、薬液洗浄時期、前処理等の最適化を図る方法が記載されている。しかしながら、この発明ではDOC(溶存有機炭素量)、E260(紫外線吸光度)、濁度を分析する必要があり煩雑である。また、有機成分由来の汚染原因をフミン質に特定し、濾過膜汚染が進む割合をDOCとE260の比率から単に計算で算出しているため、フミン質以外の有機成分が膜汚染に関与する場合には、その影響を正しく評価できないという欠点がある。   Further, Patent Document 1 describes a method for optimizing membrane filtration flux, physical washing interval, chemical washing time, pretreatment, etc., from a function of measured values of turbid mass and dissolved organic carbon amount and membrane filtration flux. ing. However, in this invention, it is necessary to analyze DOC (dissolved organic carbon amount), E260 (ultraviolet ray absorbance), and turbidity, which is complicated. In addition, the cause of contamination from organic components is identified as humic substances, and the rate at which filtration membrane contamination proceeds is simply calculated from the ratio of DOC and E260, so organic components other than humic substances are involved in membrane contamination. Has the disadvantage that its effects cannot be assessed correctly.

そのため、従来、新設の膜濾過プラントの設計にあたっては、複数種類の膜モジュールを使用し、必要に応じて各種前処理手段と膜を経験的または試行錯誤的に組み合わせ、実際の被処理液を用いて最短1カ月から最長で季節変動も含めた1年程度の長期濾過試験をあらかじめ行い、安定的に得られる透過水流束の最大値を決定する、といった過程を踏むことが必要であった。例えば、非特許文献1には、岐阜県山之内浄水場において限外濾過膜と各種前処理を組み合わせた濾過試験を実施し、膜浄水処理システムの長期安定性を検討した試験結果が報告されている。   Therefore, conventionally, when designing a new membrane filtration plant, multiple types of membrane modules have been used, and various pretreatment means and membranes can be combined empirically or by trial and error as required, using the actual liquid to be treated. It was necessary to take a process of conducting a long-term filtration test for about one year from the shortest one month to the longest, including seasonal variations, and determining the maximum permeate flux that can be stably obtained. For example, Non-Patent Document 1 reports a test result obtained by conducting a filtration test combining an ultrafiltration membrane and various pretreatments at a Yamanouchi water purification plant in Gifu Prefecture and examining the long-term stability of the membrane water purification treatment system. .

もしくは、濾過試験にそのような長期間が掛けられない場合は、被処理液の組成が比較的近似すると考えられる過去の膜濾過プラントの透過水流束を参考にして、新規膜濾過プラントにおける安定状態の透過水流束を経験的に想定し、これに安全係数を通常より大きめに掛けて設計値とするようなことも行われていた。   Alternatively, if such a long period of time cannot be applied to the filtration test, the stable state in the new membrane filtration plant can be determined by referring to the permeate flux of the past membrane filtration plant, which is considered to have a relatively approximate composition of the liquid to be treated. The permeated water flux is assumed empirically, and a safety factor is multiplied by a larger value than usual to obtain a design value.

特開2001−327967号公報JP 2001-327967 A 高効率浄水技術開発研究(ACT21) 水道用膜濾過技術の新しい展開、(財)水道技術研究センター発行、2002年12月発行、200頁〜204頁、227頁〜230頁、257頁〜271頁、272頁〜274頁、277頁〜279頁Research and development of high-efficiency water purification technology (ACT21) New development of membrane filtration technology for water supply, issued by Water Technology Research Center, published in December 2002, pages 200-204, pages 227-230, pages 257-271 Pages 272-274, pages 277-279

本発明は、河川水、湖沼水、地下水、貯水、下水二次処理水、工場排水、下水等を原水として濾過膜で濾過する際、または有価物の分離、或いは濃縮のために濾過膜で濾過する際に、適切な濾過膜もしくは濾過膜の洗浄方法、あるいは被処理液に対する適切な前処理手段を選択することにより、効果的に洗浄を行い、高い透過水流束を維持することを目的とする。   The present invention is used when filtering river water, lake water, ground water, stored water, secondary sewage treatment water, factory effluent, sewage, etc. as raw water with a filter membrane, or filtering with a filter membrane for separation or concentration of valuable materials. The purpose is to effectively wash and maintain a high permeate flux by selecting an appropriate filtration membrane or a method for washing the filtration membrane, or an appropriate pretreatment means for the liquid to be treated. .

前記課題は以下に記載する本発明によって解決することができる。
(1)被処理液中に含有される各種有機および無機成分と濾過膜との間に発生する吸着エネルギーを測定し、これらの吸着エネルギーの和が最小となるような濾過膜を、前記被処理液を処理する膜濾過プラントの濾過膜として選択することを特徴とする濾過膜の選択方法。
(2)被処理液中に含有される各種有機および無機成分と濾過膜との間に発生する吸着エネルギーを測定し、これらの吸着エネルギーの中で最大値を示す成分を除去するために有効な洗浄方法を前記被処理液に適用する濾過膜の洗浄方法として選択することを特徴とする膜濾過プラントの洗浄方法の選択方法。
(3)被処理液中に含有される各種有機および無機成分と濾過膜との間に発生する吸着エネルギーを測定し、被処理液中に含有される各種有機および無機成分と濾過膜との間に発生する吸着エネルギーの中で最大値を示す成分を除去するために有効な処理手段を、被処理液を濾過膜プラントで処理する際の前処理手段として選択することを特徴とする濾過膜の前処理手段の選択方法。
The above problem can be solved by the present invention described below.
(1) The adsorption energy generated between various organic and inorganic components contained in the liquid to be treated and the filtration membrane is measured, and the filtration membrane in which the sum of these adsorption energies is minimized A method for selecting a filtration membrane, which is selected as a filtration membrane of a membrane filtration plant for treating a liquid.
(2) Effective for measuring the adsorption energy generated between various organic and inorganic components contained in the liquid to be treated and the filtration membrane, and removing the component showing the maximum value among these adsorption energies A method for selecting a cleaning method for a membrane filtration plant, wherein the cleaning method is selected as a method for cleaning a filtration membrane to be applied to the liquid to be treated.
(3) The adsorption energy generated between various organic and inorganic components contained in the liquid to be treated and the filtration membrane is measured, and between the various organic and inorganic components contained in the liquid to be treated and the filtration membrane. An effective treatment means for removing the component showing the maximum value among the adsorption energy generated in the filter membrane is selected as a pretreatment means when the liquid to be treated is treated in the filtration membrane plant. Selection method of pre-processing means.

膜濾過プラントの設計において、対象となる被処理液に対して適切な濾過膜、濾過膜の洗浄方法および被処理液に対する適切な前処理手段を選択することが可能となる。   In designing a membrane filtration plant, it is possible to select an appropriate filtration membrane, a filtration membrane cleaning method, and an appropriate pretreatment means for the treatment liquid for a target treatment liquid.

本発明の実施の形態例を説明する。
ここで、被処理液として河川水を想定する。発明者らは、これまでの経験から、河川水に含有される各種有機成分の中で膜汚染の主原因として3種類の成分、すなわち、フミン酸、糖、蛋白質を考えている。そこで、前述の3種類の成分と膜の相互作用を原子間力顕微鏡(AFM)を用いて測定する。ここで、測定を簡便にするために、前述の成分の代替物質として3種類の官能基、すなわち、フミン酸に対してはカルボキシル基、糖に対してはヒドロキシル基、蛋白質に対してはアミン基を用いる。前述の各官能基がグラフトされたコロイドをカンチレバーに取り付け、その後、測定試料である膜との相互作用、すなわち、吸着エネルギーを測定する。
An embodiment of the present invention will be described.
Here, river water is assumed as the liquid to be treated. The inventors have considered three types of components, namely humic acid, sugar, and protein, as main causes of membrane contamination among various organic components contained in river water based on past experience. Therefore, the interaction between the above three components and the film is measured using an atomic force microscope (AFM). Here, in order to simplify the measurement, three types of functional groups are substituted for the above-mentioned components: a carboxyl group for humic acid, a hydroxyl group for sugar, and an amine group for protein. Is used. The colloid grafted with each of the above-mentioned functional groups is attached to a cantilever, and then the interaction with the film as the measurement sample, that is, the adsorption energy is measured.

様々な濾過膜を用いて前述の測定を実施することにより、各種有機および無機成分と吸着エネルギーの和が最小となる濾過膜を選定することが可能となる。さらには、濾過膜を適用する被処理液中の各種有機および無機成分の中で最も膜汚染を発生させる物質を特定することが可能となり、もって、最適な濾過膜の洗浄方法や対象物質を除去するための適切な前処理手段を選択することが可能となる。
つまり、本発明を実施することにより、被処理液に適切な濾過膜、濾過膜の洗浄方法および適切な前処理手段が選択可能となり、これにより、従来、短くとも1カ月から1年程度の長期間の試験運転を必要とした膜濾過プラントの評価が、極めて容易かつ短時間で、しかも確度高く行えるようになった。
By performing the above-described measurement using various filtration membranes, it is possible to select a filtration membrane that minimizes the sum of various organic and inorganic components and adsorption energy. In addition, it is possible to identify the substances that cause the most membrane contamination among the various organic and inorganic components in the liquid to be treated to which the filtration membrane is applied. It is possible to select an appropriate pre-processing means for doing this.
In other words, by carrying out the present invention, it is possible to select an appropriate filtration membrane, a filtration membrane cleaning method and an appropriate pretreatment means for the liquid to be treated. Membrane filtration plants that require a period of test operation can be evaluated very easily, in a short time, and with high accuracy.

なお、前述の形態例は本発明を実施する際の一例にすぎず、被処理液の水質から判断して膜汚染を発生させると推定される各種有機および無機成分を選定し、測定試料である濾過膜との吸着エネルギーを測定する際に使用するコロイドとして、適宜、前述の成分の代替物質を選定することが好ましい。もしくは、前述の被処理液中の膜汚染を発生させると推定される各種有機成分および無機成分をそれぞれの特性に応じて選択される各種樹脂によって抽出し、コロイドへグラフト重合させ、測定試料である濾過膜との吸着エネルギーを測定する際に前記のコロイドを使用することがより好ましい   The above-described embodiment is merely an example when the present invention is carried out, and various organic and inorganic components that are estimated to cause film contamination as judged from the water quality of the liquid to be treated are selected and used as measurement samples. As a colloid used when measuring the adsorption energy with the filtration membrane, it is preferable to appropriately select an alternative substance for the above-mentioned components. Alternatively, various organic components and inorganic components presumed to cause film contamination in the liquid to be treated are extracted with various resins selected according to the respective characteristics, graft polymerized to a colloid, and used as a measurement sample. It is more preferable to use the colloid when measuring the adsorption energy with the filtration membrane.

以下、本発明で使用する吸着エネルギーの測定手順ついてさらに詳しく説明する。
<コロイドプローブの作製>
測定に使用するコロイドプローブを以下の手順で作製する。
(1)10-20μLのコロイドの液を1.5mLの遠心管に採取する。
(2)MQ水(蒸留後にイオン交換樹脂、活性炭カートリッジを通過させた水)で100倍希釈し、30分間超音波洗浄器に入れ、凝集したコロイドを分散させる。
(3)シャーレ内に引いたカバーガラスにコロイド溶液を垂らし、ブロアーで水滴を分散させる。
(4)シャーレを真空脱気装置に入れ、水滴を乾燥させる。
(5)カッターの刃で乾燥したコロイドをはぎ取り、Tiny−SEMに装着する。
Hereinafter, the procedure for measuring the adsorption energy used in the present invention will be described in more detail.
<Preparation of colloidal probe>
A colloid probe used for measurement is prepared by the following procedure.
(1) Collect 10-20 μL of colloid solution in a 1.5 mL centrifuge tube.
(2) Dilute 100 times with MQ water (water that has passed through an ion exchange resin and an activated carbon cartridge after distillation), and place in an ultrasonic cleaner for 30 minutes to disperse the agglomerated colloid.
(3) A colloidal solution is hung on a cover glass drawn in a petri dish, and water drops are dispersed with a blower.
(4) Place the petri dish in a vacuum deaerator and dry the water droplets.
(5) Peel off the dried colloid with a cutter blade and attach it to the Tiny-SEM.

<コロイドプローブの取り付け>
前述の手順で作成したコロイドプローブを以下の手順でカンチレバーに取り付ける。
(6)カンチレバーをボンドが付いた刃に移動する。
(7)カンチレバーの先鋭にボンドを少し付ける。
(8)カンチレバーをコロイドが付いた刃に移動する。
(9)ボンドが付いた先鋭にコロイドを付着させる、
<Attaching the colloid probe>
The colloidal probe prepared by the above procedure is attached to the cantilever by the following procedure.
(6) Move the cantilever to the blade with the bond.
(7) Slightly attach the bond to the cantilever.
(8) Move the cantilever to the blade with colloid.
(9) A colloid is attached sharply with a bond.

<吸着エネルギーの測定>
前述の手順で準備したコロイドプローブを以下の手順で原子間力顕微鏡(AFM)に取り付けて測定する。
(10)原子間力顕微鏡(AFM)に取り付ける。
(11)各プローブのバネ定数を測定する。
(12)10分ほどコロイドを緩衝液中に浸す。
(13)測定対象の膜が固定されたシャーレに2.5mLほどの緩衝液を入れ、AFMにセットする。
(14)トリガーポイントを50nmに設定し、Force curve modeにより測定する。
<Measurement of adsorption energy>
The colloid probe prepared by the above procedure is attached to an atomic force microscope (AFM) and measured by the following procedure.
(10) Attach to an atomic force microscope (AFM).
(11) The spring constant of each probe is measured.
(12) Immerse the colloid in the buffer for about 10 minutes.
(13) About 2.5 mL of buffer solution is put into a petri dish to which the membrane to be measured is fixed, and set in the AFM.
(14) Set the trigger point to 50 nm and measure with the Force curve mode.

以上の測定により、図1(b)のようなForce curveが得られる。斜線部の面積を計算し、その値にバネ定数をかけると、吸着エネルギーが得られる。
図1(b)において、縦軸はコロイドと膜との間に働く力による“カンチレバーの変位量(たわみ量)”を示し、横軸はコロイドと膜との距離を示す。また、図1(a)は、Force curveにおいて示した1〜6に対応するコロイドプローブの膜表面に対する位置、動きを示す図である。
By the above measurement, a Force curve as shown in FIG. 1B is obtained. By calculating the area of the shaded area and multiplying the value by the spring constant, the adsorption energy can be obtained.
In FIG. 1B, the vertical axis indicates the “cantilever displacement (deflection amount)” due to the force acting between the colloid and the film, and the horizontal axis indicates the distance between the colloid and the film. FIG. 1A is a diagram showing the position and movement of the colloid probe corresponding to 1 to 6 shown in the Force curve with respect to the film surface.

以下、実施例を示してより具体的に説明する。
膜濾過試験を実施するにあたって、試験に供する濾過膜とフミン酸、糖、蛋白質の吸着エネルギーについて事前に測定した。吸着エネルギーの測定は前述に示した手順で実施した。なお、原子間力顕微鏡としては、Asylum Research, MFP−3dを使用し、プローブとしては、Vecco製の窒化シリコン製プローブ(先鋭オキサイドセンサー)を用いた。また、4本カンチレバーの中で、一番バネ定数が小さいカンチレバーを使用し、緩衝液としては、0.1MのNaHCO(pH 7.3)を使用した。さらに、フミン酸、糖、蛋白質の代替物質として3種類の官能基をグラフトされたコロイドとして、Polysciences社製のPolybead(R)−carboxylate、−hydroxylate、−aminoを各々使用した。
また、膜濾過試験の原水としては、汚濁した河川水Aおよび清澄な河川水Bの2種類を使用した。表1に河川水AおよびBの水質を示す。
Hereinafter, an example is shown and it demonstrates more concretely.
In carrying out the membrane filtration test, the adsorption energy of the filtration membrane and humic acid, sugar and protein used in the test was measured in advance. The adsorption energy was measured according to the procedure described above. Note that Asylum Research, MFP-3d was used as the atomic force microscope, and a silicon nitride probe (sharp oxide sensor) manufactured by Vecco was used as the probe. The cantilever having the smallest spring constant among the four cantilevers was used, and 0.1 M NaHCO 3 (pH 7.3) was used as the buffer. Furthermore, Polybead (R) -carboxylate, -hydroxylate, and -amino manufactured by Polysciences were used as colloids grafted with three types of functional groups as substitutes for humic acid, sugar, and protein.
As raw water for the membrane filtration test, two types of polluted river water A and clear river water B were used. Table 1 shows the water quality of river water A and B.

[実施例1]
膜として、ポリエチレン(PE)製中空糸膜及びポリフッ化ビニリデン(PVDF)製中空糸膜をサンプルとして選び、両者についてカルボキシル基、ヒドロキシル基、アミン基が各々グラフトされたコロイドとの吸着エネルギーを測定した。測定結果を表2に示す。
表2に示すように、ポリエチレン製中空糸膜の吸着エネルギーの合計は約5180[pJ]であり、ポリフッ化ビニリデン製中空糸膜の吸着エネルギーの合計は約68143[pJ]であり、ポリエチレン製中空糸膜の方がより小さい吸着エネルギーを示した。
これらの中空糸膜を用いて河川水Aの膜濾過試験を、表3の条件で実施した。
その結果、ポリエチレン(PE)製中空糸膜については、約50日間連続運転実施後の膜差圧は20kPa程度であり、安定運転可能であった。
一方、ポリフッ化ビニリデン製中空糸膜については、約50日間連続運転実施後の膜差圧は150kPa程度であり、安定運転が不可能であった。
このことから、吸着エネルギーの低いポリエチレン製中空糸膜の方が河川水Aの処理に適していることが分かる。
[Example 1]
As the membrane, a hollow fiber membrane made of polyethylene (PE) and a hollow fiber membrane made of polyvinylidene fluoride (PVDF) were selected as samples, and the adsorption energy with a colloid grafted with a carboxyl group, a hydroxyl group, and an amine group was measured for both. . The measurement results are shown in Table 2.
As shown in Table 2, the total adsorption energy of the polyethylene hollow fiber membrane is about 5180 [pJ], and the total adsorption energy of the polyvinylidene fluoride hollow fiber membrane is about 68143 [pJ]. The yarn film showed smaller adsorption energy.
Using these hollow fiber membranes, a membrane filtration test of river water A was conducted under the conditions shown in Table 3.
As a result, the polyethylene (PE) hollow fiber membrane had a membrane differential pressure of about 20 kPa after continuous operation for about 50 days, and was capable of stable operation.
On the other hand, for the hollow fiber membrane made of polyvinylidene fluoride, the membrane differential pressure after continuous operation for about 50 days was about 150 kPa, and stable operation was impossible.
From this, it can be seen that the polyethylene hollow fiber membrane having lower adsorption energy is more suitable for the treatment of the river water A.

[実施例2]
前述の実施例1で使用したポリフッ化ビニリデン(PVDF)製中空糸膜は、カルボキシル基、ヒドロキシル基、アミン基が各々グラフトされたコロイドとの吸着エネルギーの測定結果より、糖に対する吸着エネルギーが極めて大きいことがわかる。そこで、この中空糸膜を用いて前述の河川水Bの膜濾過試験を、表4の条件下で、かつ、糖の洗浄に有効な次亜塩素酸ナトリウムを膜の洗浄手段の一つである逆洗水中へ有効塩素濃度として約3mg/Lに添加し、連続運転したところ、約340hr連続運転実施後の膜差圧は20kPa程度であり、安定運転が可能であった。
[Example 2]
The hollow fiber membrane made of polyvinylidene fluoride (PVDF) used in Example 1 described above has an extremely large adsorption energy for sugar from the measurement results of the adsorption energy with the colloid grafted with each of carboxyl group, hydroxyl group and amine group. I understand that. Therefore, the membrane filtration test of the above-mentioned river water B using this hollow fiber membrane is one of the means for washing sodium hypochlorite which is effective for washing sugar under the conditions of Table 4. When the effective chlorine concentration in the backwash water was added to about 3 mg / L and the continuous operation was performed, the membrane differential pressure after the continuous operation of about 340 hr was about 20 kPa, and a stable operation was possible.

[比較例1]
実施例2で使用したポリフッ化ビニリデン(PVDF)製中空糸膜を用いて、表6で示した条件下で、かつ、糖の洗浄に有効な次亜塩素酸ナトリウムを使用せずに連続運転したところ、約240hr連続運転経過後の膜差圧は約80kPaまで急激に上昇し、安定運転が不可能であった。
[Comparative Example 1]
Using the polyvinylidene fluoride (PVDF) hollow fiber membrane used in Example 2, it was continuously operated under the conditions shown in Table 6 and without using sodium hypochlorite effective for sugar washing. However, the membrane differential pressure after about 240 hours of continuous operation rapidly increased to about 80 kPa, and stable operation was impossible.

[実施例3]
前述の実施例1で使用したポリフッ化ビニリデン(PVDF)製中空糸膜は、カルボキシル基、ヒドロキシル基、アミン基が各々グラフトされたコロイドとの吸着エネルギーの測定結果より、糖に対する吸着エネルギーが極めて大きいことがわかる。そこで、この中空糸膜を用いて前述の河川水Aの膜濾過試験を、表5の条件下で、かつ、糖の洗浄に有効な次亜塩素酸ナトリウムを河川水Aに有効塩素濃度として約1〜2mg/Lを添加し、連続運転したところ、約200hr連続運転実施後の膜差圧は35kPa程度であり、安定運転が可能であった。
[Example 3]
The hollow fiber membrane made of polyvinylidene fluoride (PVDF) used in Example 1 described above has an extremely large adsorption energy for sugar from the measurement results of the adsorption energy with the colloid grafted with each of carboxyl group, hydroxyl group and amine group. I understand that. Therefore, the membrane filtration test of the river water A described above using this hollow fiber membrane was conducted under the conditions shown in Table 5 and sodium hypochlorite effective for washing sugar as an effective chlorine concentration in the river water A. When 1-2 mg / L was added for continuous operation, the membrane differential pressure after continuous operation for about 200 hr was about 35 kPa, and stable operation was possible.

[比較例2]
実施例3で使用したポリフッ化ビニリデン(PVDF)製中空糸膜を用いて、表5で示した条件下で、かつ、糖の洗浄に有効な次亜塩素酸ナトリウムを河川水Aに添加せずに連続運転したところ、約100hr連続運転経過後の膜差圧は約70kPaまで急激に上昇し、安定運転が不可能であった。
[Comparative Example 2]
Using the polyvinylidene fluoride (PVDF) hollow fiber membrane used in Example 3, sodium hypochlorite, which is effective for washing sugar under the conditions shown in Table 5, was not added to river water A. When the continuous operation was continued for about 100 hours, the membrane differential pressure increased rapidly to about 70 kPa, and stable operation was impossible.

河川水、湖沼水、地下水、貯水、下水二次処理水、工場排水、下水等を被処理水として濾過膜を適用する、または有価物の分離、或いは濃縮のために濾過膜を適用する分野で、適切な濾過膜もしくは濾過膜の洗浄方法あるいは被処理液に対する適切な前処理手段を選択する際に好適に利用できる。   In fields where river membranes, lake water, groundwater, stored water, secondary treated water from sewage, industrial effluent, sewage, etc. are used as treated water, or filter membranes are used for separation or concentration of valuable materials It can be suitably used for selecting an appropriate filtration membrane or a filtration membrane cleaning method or an appropriate pretreatment means for the liquid to be treated.

図1(b)は原子間力顕微鏡で得られる一般的なForce curve結果例を示した図であり、図1(a)はコロイドプローブの膜表面に対する位置、動きを示す図である。FIG. 1B is a diagram showing an example of a general Force curve result obtained by an atomic force microscope, and FIG. 1A is a diagram showing the position and movement of the colloid probe with respect to the film surface.

Claims (3)

被処理液中に含有される各種有機および無機成分と濾過膜との間に発生する吸着エネルギーを測定し、これらの吸着エネルギーの和が最小となるような濾過膜を、前記被処理液を処理する膜濾過プラントの濾過膜として選択することを特徴とする濾過膜の選択方法。   The adsorption energy generated between the filter membrane and various organic and inorganic components contained in the liquid to be treated is measured, and the liquid to be treated is treated with a filtration membrane that minimizes the sum of these adsorption energies. A filtration membrane selection method, wherein the filtration membrane is selected as a filtration membrane of a membrane filtration plant. 被処理液中に含有される各種有機および無機成分と濾過膜との間に発生する吸着エネルギーを測定し、これらの吸着エネルギーの中で最大値を示す成分を除去するために有効な洗浄方法を前記被処理液に適用する濾過膜の洗浄方法として選択することを特徴とする膜濾過プラントの洗浄方法の選択方法。   An effective cleaning method for measuring the adsorption energy generated between various organic and inorganic components contained in the liquid to be treated and the filtration membrane and removing the component showing the maximum value among these adsorption energies. A method for selecting a cleaning method for a membrane filtration plant, wherein the method is selected as a method for cleaning a filtration membrane to be applied to the liquid to be treated. 被処理液中に含有される各種有機および無機成分と濾過膜との間に発生する吸着エネルギーを測定し、被処理液中に含有される各種有機および無機成分と濾過膜との間に発生する吸着エネルギーの中で最大値を示す成分を除去するために有効な処理手段を、被処理液を濾過膜プラントで処理する際の前処理手段として選択することを特徴とする濾過膜の前処理手段の選択方法。   The adsorption energy generated between the various organic and inorganic components contained in the liquid to be treated and the filtration membrane is measured, and generated between the various organic and inorganic components contained in the liquid to be treated and the filtration membrane. A filtration membrane pretreatment means characterized in that an effective treatment means for removing a component having a maximum value among adsorption energies is selected as a pretreatment means for treating a liquid to be treated in a filtration membrane plant. How to choose.
JP2007232789A 2007-09-07 2007-09-07 Method for selecting filtration membrane, method for washing filtration membrane, and means for preprocessing Pending JP2009061416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007232789A JP2009061416A (en) 2007-09-07 2007-09-07 Method for selecting filtration membrane, method for washing filtration membrane, and means for preprocessing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232789A JP2009061416A (en) 2007-09-07 2007-09-07 Method for selecting filtration membrane, method for washing filtration membrane, and means for preprocessing

Publications (1)

Publication Number Publication Date
JP2009061416A true JP2009061416A (en) 2009-03-26

Family

ID=40556516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007232789A Pending JP2009061416A (en) 2007-09-07 2007-09-07 Method for selecting filtration membrane, method for washing filtration membrane, and means for preprocessing

Country Status (1)

Country Link
JP (1) JP2009061416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196590A (en) * 2011-03-18 2012-10-18 Asahi Kasei Chemicals Corp Filtration membrane, cleaning means of filtration membrane, and selection method of pretreat means

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150403A (en) * 1980-04-23 1981-11-20 Teijin Ltd Improved osmotic treatment process
JPH09141068A (en) * 1995-11-27 1997-06-03 Matsushita Electric Works Ltd Cleaning method of hollow fiber membrane
JP2003275760A (en) * 2002-03-19 2003-09-30 Kurita Water Ind Ltd Method and apparatus for treating water and method for analyzing contaminant of reverse osmosis membrane
JP2007014878A (en) * 2005-07-07 2007-01-25 Kurita Water Ind Ltd Diagnostic method of contamination conditions of membrane separation apparatus, diagnostic apparatus and washing method of membrane separation apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56150403A (en) * 1980-04-23 1981-11-20 Teijin Ltd Improved osmotic treatment process
JPH09141068A (en) * 1995-11-27 1997-06-03 Matsushita Electric Works Ltd Cleaning method of hollow fiber membrane
JP2003275760A (en) * 2002-03-19 2003-09-30 Kurita Water Ind Ltd Method and apparatus for treating water and method for analyzing contaminant of reverse osmosis membrane
JP2007014878A (en) * 2005-07-07 2007-01-25 Kurita Water Ind Ltd Diagnostic method of contamination conditions of membrane separation apparatus, diagnostic apparatus and washing method of membrane separation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012196590A (en) * 2011-03-18 2012-10-18 Asahi Kasei Chemicals Corp Filtration membrane, cleaning means of filtration membrane, and selection method of pretreat means

Similar Documents

Publication Publication Date Title
Chang et al. Hydraulic backwashing for low-pressure membranes in drinking water treatment: A review
Yamamura et al. Affinity of functional groups for membrane surfaces: implications for physically irreversible fouling
Song et al. The performance of polyamide nanofiltration membrane for long-term operation in an integrated membrane seawater pretreatment system
Nataraj et al. Cellulose acetate-coated α-alumina ceramic composite tubular membranes for wastewater treatment
Yamamura et al. Transition in fouling mechanism in microfiltration of a surface water
Chae et al. Fouling characteristics of pressurized and submerged PVDF (polyvinylidene fluoride) microfiltration membranes in a pilot-scale drinking water treatment system under low and high turbidity conditions
Cornelis et al. Nanofiltration of nonionic surfactants: effect of the molecular weight cutoff and contact angle on flux behavior
JP4666600B2 (en) Water evaluation method
Yamamura et al. Tracking inorganic foulants irreversibly accumulated on low-pressure membranes for treating surface water
US20220274064A1 (en) Filtration membrane and method of production thereof
JP4135267B2 (en) Method of operating a total filtration type membrane separation apparatus and total filtration type membrane separation apparatus
AU2005310624A1 (en) Method of estimating stable state membrane filtration flux
Seo et al. The fouling characterization and control in the high concentration PAC membrane bioreactor HCPAC-MBR
JP2009061416A (en) Method for selecting filtration membrane, method for washing filtration membrane, and means for preprocessing
Damayanti et al. The performance operation of zeolite as membrane with using laundry waste water
JP6441712B2 (en) Method for evaluating membrane clogging of treated water
JP2018008192A (en) Foulant quantification method
JP6052866B2 (en) Water treatment method
JP4385704B2 (en) Reverse osmosis membrane feed water evaluation method and water treatment device operation management method
JP6530996B2 (en) Method of evaluating membrane blockage of treated water and method of operating membrane processing apparatus
Park et al. Foulants analyses for NF membranes with different feed waters: coagulation/sedimentation and sand filtration treated waters
Nuengjamnong et al. Influence of extracellular polymeric substances on membrane fouling and cleaning in a submerged membrane bioreactor
Choi et al. Large-pore membrane filtration with coagulation as an MF/UF pretreatment process
Prabhakar et al. Outside skin tubular ultrafiltration membranes for separation of proteins and polysaccharides and removal of turbidity from seawater
JP5908185B2 (en) Organic film modification method, modified organic film, and reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120131