JP2006231181A - Membrane filtration method of clean water - Google Patents

Membrane filtration method of clean water Download PDF

Info

Publication number
JP2006231181A
JP2006231181A JP2005048268A JP2005048268A JP2006231181A JP 2006231181 A JP2006231181 A JP 2006231181A JP 2005048268 A JP2005048268 A JP 2005048268A JP 2005048268 A JP2005048268 A JP 2005048268A JP 2006231181 A JP2006231181 A JP 2006231181A
Authority
JP
Japan
Prior art keywords
membrane
filtration
raw water
particles
homogeneous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005048268A
Other languages
Japanese (ja)
Inventor
Junichi Hirota
淳一 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2005048268A priority Critical patent/JP2006231181A/en
Publication of JP2006231181A publication Critical patent/JP2006231181A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane filtration method of clean water preventing membrane blocking due to substances with strong affinity with a membrane material, such as organic matter like humin contained in raw water or soluble silica. <P>SOLUTION: In this membrane filtration method, a material constituting a filtration membrane 3 and homogeneous particles are added to clean raw water to form a homogeneous particle layer 5 on the surface of the filtration membrane; and substances with strong affinity with the membrane material, such as organic matter like humin contained in raw water or soluble silica are adsorbed on the homogeneous particle layer 5 to perform membrane filtration. Adsorption of these substances to the membrane surface is greatly reduced, and the homogeneous particle layer 5 is easily peeled off from the membrane surface by a normal back-washing operation, thus reducing the frequency of chemical washing. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地下水、伏流水、井戸水、湧水などの比較的清浄な原水から浄水を得るための、清澄水の膜ろ過方法に関するものである。   The present invention relates to a clarified water membrane filtration method for obtaining purified water from relatively clean raw water such as groundwater, underground water, well water, spring water, and the like.

従来、上下水道、医薬品、食品関係などの多くの施設で用いられる浄水を得る方法として、膜ろ過方法が広く利用されている。膜ろ過方法は、ろ過膜により原水中の懸濁物質を除去することができる固液分離技術であるが、原水中に懸濁物質が多い場合には、前処理としてPAC(ポリ塩化アルミニウム)や塩化第二鉄などの凝集剤を添加して懸濁物質の粒径を大きくし、膜ろ過及び逆洗を容易にする方法が採用されている。   Conventionally, a membrane filtration method has been widely used as a method for obtaining purified water used in many facilities such as water and sewage, pharmaceuticals, and food. The membrane filtration method is a solid-liquid separation technology that can remove suspended substances in raw water using a filtration membrane. However, if there are many suspended substances in raw water, PAC (polyaluminum chloride) or A method has been adopted in which a flocculant such as ferric chloride is added to increase the particle size of the suspended substance to facilitate membrane filtration and backwashing.

一方、原水が地下水、伏流水、井戸水、湧水などの比較的清浄な清澄水である場合には、凝集剤を用いない無凝集での膜ろ過処理が望まれている。しかしながら、清澄水を無凝集で膜ろ過した場合には、膜閉塞により安定運転が困難となることがある。そのような場合には、通常の逆洗操作では膜差圧が回復できないためにろ過膜の薬品洗浄頻度が増加して維持管理が煩雑になり、膜ろ過コストが増加するおそれがあった。   On the other hand, when the raw water is relatively clean clear water such as groundwater, underground water, well water, spring water, etc., membrane filtration treatment without agglomeration without using a flocculant is desired. However, when clarified water is subjected to membrane filtration without agglomeration, stable operation may be difficult due to membrane clogging. In such a case, since the membrane differential pressure cannot be recovered by a normal back washing operation, the frequency of chemical cleaning of the filtration membrane is increased, the maintenance management becomes complicated, and the membrane filtration cost may increase.

これは、地下水などは天然のろ過処理が既になされているために原水中の懸濁物質の粒径が小さく、膜表面の細孔を閉塞し易いこと、及びフミン質等の有機物や溶解性シリカ等の膜材質と非常に親和性の強い原水中の物質が膜面に吸着し、通常の逆洗では容易に剥離しないことが原因であると考えられる。   This is because groundwater and the like have already been subjected to natural filtration treatment, and the particle size of suspended substances in the raw water is small, and the pores on the membrane surface are likely to be clogged, and organic substances such as humic substances and soluble silica This is considered to be due to the fact that the material in the raw water, which has a strong affinity with the membrane material such as, adsorbs to the membrane surface and does not easily peel off by normal backwashing.

なお特許文献1には、水ろ過用の膜モジュールを用いた全量ろ過方式の水処理方法において、ろ過膜表面にろ過膜に対して剥離性のよい無機物粒子によるコーティング層を形成しておき、ファウリング物質をコーティング層とともに逆洗により除去する方法が開示されている。しかし、膜材質と非常に親和性の強い原水中の物質はコーティング層を透過してろ過膜に吸着されるため、この方法によって上記した膜閉塞を十分に防止することはできなかった。
特開2004−130197号公報
In Patent Document 1, in a water treatment method of a total amount filtration method using a membrane module for water filtration, a coating layer made of inorganic particles having good detachability with respect to the filtration membrane is formed on the surface of the filtration membrane. A method for removing the ring material together with the coating layer by backwashing is disclosed. However, since the substance in the raw water having a strong affinity with the membrane material permeates the coating layer and is adsorbed on the filtration membrane, this method cannot sufficiently prevent the membrane clogging described above.
JP 2004-130197 A

本発明は上記した従来の問題点を解決して、原水中に含まれるフミン質等の有機物や溶解性シリカ等の膜材質と非常に親和性の強い物質による膜閉塞を防止し、薬品洗浄の回数を低減するとともに維持管理を容易にし、運転コストの低減を図ることができる清澄水の膜ろ過方法を提供するためになされたものである。   The present invention solves the above-mentioned conventional problems, prevents clogging of the membrane by substances having a strong affinity with organic materials such as humic substances and soluble silica contained in raw water, and for chemical cleaning. This is to provide a clarified water membrane filtration method capable of reducing the number of times and facilitating maintenance and reducing the operation cost.

上記の課題を解決するためになされた本発明の清澄水の膜ろ過方法は、ろ過膜を構成する材料と同質の粒子を清澄な原水に添加してろ過膜表面に同質粒子層を形成し、原水に含まれる膜面材質との親和性の高い物質をこの同質粒子層に吸着させながら膜ろ過を行うことを特徴とするものである。なお、同質粒子の粒径を、ろ過膜の膜細孔径の2倍以上とすることが好ましい。また、同質粒子を原水に一定量添加しながらろ過する方法、もしくは逆洗毎にあらかじめろ過膜表面に同質粒子層を形成した後、ろ過を開始する方法を取ることができる。   The membrane filtration method of the clear water of the present invention made in order to solve the above problems is to add particles of the same quality as the material constituting the filtration membrane to the clear raw water to form a homogeneous particle layer on the surface of the filtration membrane, Membrane filtration is performed while adsorbing a substance having a high affinity with the membrane surface material contained in the raw water to the homogeneous particle layer. In addition, it is preferable that the particle diameter of homogeneous particle | grains shall be 2 times or more of the membrane pore diameter of a filtration membrane. Further, a method of filtering while adding a certain amount of homogeneous particles to raw water, or a method of starting filtration after forming a homogeneous particle layer on the filtration membrane surface in advance every backwashing can be taken.

本発明の清澄水の膜ろ過方法においては、ろ過膜表面にろ過膜を構成する材料と同質の粒子の層を形成し、原水に含まれる膜面材質との親和性の高い物質をこの同質粒子層に吸着させながら膜ろ過を行うので、同物質の膜面への吸着は大幅に低減される。またこの同質粒子層は通常の逆洗操作により容易に膜面から剥離させることができるので、薬品洗浄の回数を低減するとともに維持管理を容易にし、運転コストの低減を図ることができる。   In the clarified water membrane filtration method of the present invention, a layer of particles having the same quality as the material constituting the filtration membrane is formed on the surface of the filtration membrane, and a substance having a high affinity with the membrane surface material contained in the raw water is used as the homogeneous particles. Since membrane filtration is performed while adsorbing to the layer, adsorption of the same substance to the membrane surface is greatly reduced. Further, since this homogeneous particle layer can be easily peeled off from the film surface by a normal back washing operation, it is possible to reduce the number of times of chemical washing, facilitate maintenance, and reduce operating costs.

以下に本発明の好ましい実施形態を説明する。
図1は本発明を実施するための原水処理設備を説明するブロック図であって、1は地下水、伏流水、井戸水、湧水などの比較的清浄な清澄水である原水が貯留される原水槽、2は原水を膜ろ過するための膜モジュールである。ろ過膜3の材質としては、特に限定されずアルミナ、チタニア、ムライト、ジルコニア、シリカ、スピネル或いはこれらの混合物などのセラミック膜、あるいはPVDF(ポリビニルデンフルオライド)、CA(酢酸セルロース)などの高分子膜が用いられる。膜構造は平膜、モノリス膜、中空糸膜などの各種のものを用いることができる。
Hereinafter, preferred embodiments of the present invention will be described.
FIG. 1 is a block diagram illustrating a raw water treatment facility for carrying out the present invention, wherein 1 is a raw water tank in which raw water which is relatively clean clear water such as groundwater, underground water, well water, spring water, etc. is stored. Reference numeral 2 denotes a membrane module for subjecting raw water to membrane filtration. The material of the filtration membrane 3 is not particularly limited, and is a ceramic membrane such as alumina, titania, mullite, zirconia, silica, spinel or a mixture thereof, or a polymer such as PVDF (polyvinyldenfluoride) or CA (cellulose acetate). A membrane is used. Various membrane structures such as a flat membrane, a monolith membrane, and a hollow fiber membrane can be used.

原水はポンプ4によって膜モジュール2に打ち込まれ、この実施形態ではデッドエンドろ過が行われる。本発明では清澄水を原水とするため凝集剤は使用しないが、ろ過膜3を構成する材料と同質の粒子(同質粒子)を原水に添加し、ろ過膜3の表面に同質粒子層5を形成する。なお添加位置は図1中に破線で示すように、膜モジュール2の前段であればどの位置でもよい。   The raw water is driven into the membrane module 2 by the pump 4, and dead-end filtration is performed in this embodiment. In the present invention, the clarified water is used as raw water, but a flocculant is not used, but particles having the same quality as the material constituting the filtration membrane 3 (homogeneous particles) are added to the raw water to form a homogeneous particle layer 5 on the surface of the filtration membrane 3. To do. The addition position may be any position as long as it is a previous stage of the membrane module 2 as indicated by a broken line in FIG.

ろ過膜3の材質がアルミナのセラミック膜である場合には、同質粒子としてアルミナ粒子が添加され、ろ過膜3がチタニアのセラミック膜である場合には、チタニア粒子が添加される。同様に、ろ過膜3がPVDFの高分子膜である場合には、PVDF粒子が添加される。しかし、本発明者は、ろ過膜3の材質がアルミナ、チタニア、ムライト、ジルコニア、シリカ、スピネル或いはこれらの混合物などのセラミック膜である場合には、各材質間の親和性が高分子材質よりも高い為、添加される同質粒子は、ろ過膜3の材質と完全に同一である必要がない事を見出している。例えば、ろ過膜3の材質がチタニアからなる場合、同質粒子としてチタニアは勿論、アルミナ、ムライト、ジルコニア、シリカ、スピネルあるいはこれらの混合物等のセラミック粒子も用いることができる。   When the material of the filter membrane 3 is an alumina ceramic membrane, alumina particles are added as homogeneous particles, and when the filter membrane 3 is a titania ceramic membrane, titania particles are added. Similarly, when the filtration membrane 3 is a PVDF polymer membrane, PVDF particles are added. However, when the material of the filtration membrane 3 is a ceramic membrane such as alumina, titania, mullite, zirconia, silica, spinel or a mixture thereof, the inventor has a higher affinity between the materials than the polymer material. It has been found that the homogeneous particles to be added need not be completely the same as the material of the filtration membrane 3 because of the high price. For example, when the material of the filtration membrane 3 is titania, ceramic particles such as alumina, mullite, zirconia, silica, spinel, or a mixture thereof can be used as homogeneous particles as well as titania.

原水に添加される同質粒子の粒径は、ろ過膜3の膜細孔径の2倍以上とすることが好ましい。これは逆洗操作により膜面からの剥離が容易に行えるようにするためである。同質粒子の粒径がろ過膜3の膜細孔径と同等以下になると、同質粒子がろ過膜3の細孔内に進入して膜閉塞の原因となるので好ましくない。また、同質粒子を原水に一定量添加しながらろ過する、もしくは逆洗毎にあらかじめ同質粒子層を形成した後、ろ過を開始しても良い。   The particle size of the homogeneous particles added to the raw water is preferably at least twice the membrane pore size of the filtration membrane 3. This is to facilitate peeling from the film surface by backwashing operation. If the particle size of the homogeneous particles is equal to or less than the membrane pore diameter of the filtration membrane 3, the homogeneous particles enter the pores of the filtration membrane 3 and cause membrane clogging. Further, the filtration may be started after adding a certain amount of homogeneous particles to the raw water, or after forming a homogeneous particle layer in advance for each backwash.

このように、同質粒子を原水に添加してろ過膜3の表面に同質粒子層5を形成すれば、原水に含まれる膜面材質との親和性の高いフミン質等の有機物や溶解性シリカ等は同質粒子層5に吸着され、ろ過膜3の表面への吸着量が減少する。このため従来よりも膜面にファウリング物質が形成されにくくなり、また膜差圧が上昇した場合にも、図1に示すように逆洗ポンプ7により膜モジュール2にろ過水を打込んで逆洗を行えば、同質粒子層5を容易にろ過膜3の表面から剥離させることができ、優れた逆洗効果を得ることができる。また、逆洗は特に逆洗ポンプ7を使用する必要があるわけではなく、例えば、図2に示すように加圧逆洗により加圧水や加圧空気を膜モジュール2に打ち込んでもよい。   Thus, if homogeneous particles are added to raw water to form the homogeneous particle layer 5 on the surface of the filtration membrane 3, organic substances such as humic substances having high affinity with the membrane surface material contained in the raw water, soluble silica, etc. Is adsorbed by the homogeneous particle layer 5 and the amount of adsorption to the surface of the filtration membrane 3 decreases. For this reason, fouling substances are less likely to be formed on the membrane surface than in the prior art, and even when the membrane differential pressure rises, as shown in FIG. If washing is performed, the homogeneous particle layer 5 can be easily peeled off from the surface of the filtration membrane 3, and an excellent backwashing effect can be obtained. Further, the backwashing does not necessarily require the use of the backwashing pump 7. For example, as shown in FIG. 2, pressurized water or pressurized air may be driven into the membrane module 2 by pressurized backwashing.

なお、加圧逆洗の手順は例えば次の通りである。
水逆洗の場合
(1)V3を閉じてV4を開とし、逆洗水槽8にろ過水を貯める。あるいはV6を開き、処理水槽6からポンプ8により逆洗水槽8にろ過水を貯める。
(2)次にV7を開いて圧縮空気により逆洗水槽8内を加圧する。
(3)V2を開き逆洗する。
空気逆洗の場合
(1)V8を開き圧縮空気で膜モジュール2の二次側を加圧する。
(2)V2を開き逆洗する。
上記した逆洗方法自体は従来と同様であり、本発明は、形成する同一粒子層の剥離が可能な逆洗方法であれば、特に逆洗方法によって限定されるものではない。また、逆洗頻度も従来と同様であり、例えば一定時間毎に行っても、膜差圧が所定値に達するごとに行ってもよい。
In addition, the procedure of pressure backwashing is as follows, for example.
In the case of backwashing with water (1) V3 is closed and V4 is opened, and filtered water is stored in the backwashing water tank 8. Or V6 is opened and filtered water is stored in the backwash water tank 8 from the treated water tank 6 by the pump 8.
(2) Next, V7 is opened and the inside of the backwash water tank 8 is pressurized with compressed air.
(3) Open V2 and backwash.
In the case of air backwashing (1) V8 is opened and the secondary side of the membrane module 2 is pressurized with compressed air.
(2) Open V2 and backwash.
The above-described backwashing method itself is the same as before, and the present invention is not particularly limited by the backwashing method as long as it is a backwashing method capable of peeling the same particle layer to be formed. Further, the frequency of backwashing is the same as in the prior art. For example, it may be performed every predetermined time or every time the membrane differential pressure reaches a predetermined value.

伏流水を原水とし、ろ過膜の材質がそれぞれアルミナ、チタニア、ジルコニアであるセラミック膜3種類と、ろ過膜がPVDFである高分子膜を用いて膜ろ過実験を行った。使用したセラミック膜は出願人会社製のモノリス膜であり、高分子膜は一般に市販されている中空糸膜を用いた。
膜面積は、全て0.4m2であり、孔径は0.1μmである。ただし、ろ過膜の材質がアルミナ及びPVDFの膜のみ、孔径1μmの膜も実験した。
原水に、表1に示す条件で各種の粒子を添加し、運転流束8m3/(m2・日)で、3時間ごとに逆洗を繰り返しながら、膜差圧の変化を1週間観察した。なお、1日あたりの差圧上昇速度を表1に付記した。
Membrane filtration experiments were conducted using three types of ceramic membranes with the underground water as raw water and the membrane materials of alumina, titania and zirconia, respectively, and polymer membranes with PVDF as PVDF. The ceramic membrane used was a monolith membrane manufactured by the applicant company, and the polymer membrane used was a commercially available hollow fiber membrane.
The membrane area is all 0.4 m 2 and the pore diameter is 0.1 μm. However, only membranes made of alumina and PVDF were used as the membrane material, and membranes having a pore diameter of 1 μm were also tested.
Various kinds of particles were added to the raw water under the conditions shown in Table 1, and changes in membrane pressure difference were observed for 1 week while repeating backwashing every 3 hours at an operating flux of 8 m 3 / (m 2 · day). . The differential pressure increase rate per day is shown in Table 1.

Figure 2006231181
Figure 2006231181

以下、表1に付記した差圧上昇速度の試験結果を用いて本発明を具体的に説明する。実験1〜6は、粒子を添加しない従来のろ過条件であり、これを比較例とした。
実験7〜実験14は、原水にろ過膜材質と全く同材質の粒子を一定量添加しながらろ過した条件である。このうち、実験7〜12は、膜差圧上昇速度が実験1〜6と比較して減少しており、本発明の効果である目詰まり抑制効果があった。しかし、実験13、14では逆に目詰まりが進行した。これは、実験7〜12では、添加した粒子の粒径が、膜細孔径の2倍〜5倍であり、実験13、14では、1.5倍であることから、添加する粒子の粒径が小さく、粒子自体が細孔に目詰まりした為と考えられる。したがって、添加する同質粒子の粒径としては、少なくとも膜細孔径の1.5倍以上、望ましくは2倍以上が必要である。
Hereinafter, the present invention will be described in detail with reference to the test results of the differential pressure increase rate attached to Table 1. Experiments 1 to 6 are conventional filtration conditions in which particles are not added, and this was used as a comparative example.
Experiments 7 to 14 are conditions under which raw water is filtered while adding a certain amount of particles of the same material as the filter membrane material. Among these, in Experiments 7 to 12, the increase rate of the membrane differential pressure was reduced as compared with Experiments 1 to 6, and there was a clogging suppression effect that is an effect of the present invention. However, in Experiments 13 and 14, clogging progressed. This is because, in Experiments 7 to 12, the particle diameter of the added particles is 2 to 5 times the membrane pore diameter, and in Experiments 13 and 14, it is 1.5 times the particle diameter of the added particles. This is probably because the particles themselves were clogged in the pores. Therefore, the particle size of the homogeneous particles to be added needs to be at least 1.5 times the membrane pore size, desirably 2 times or more.

実験15〜18は、ろ過膜材質がアルミナのセラミック膜を用いて、セラミック粒子としてチタニア、ムライト、ジルコニア、高分子の粒子としてCAを原水に一定量添加しながらろ過した条件である。なお、実験18のみ膜細孔径1.0μmの膜を用いた。このうち、実験15、16、18は、膜細孔径の違いにかかわらず膜差圧上昇速度が実験1〜6と比較して減少しており、本発明の効果である目詰まり抑制効果があった。しかし、実験17では、効果が見られなかった。これは、実験15、16、18では、添加した粒子の材質がセラミックであり、材質間の親和性が高分子に比べ高い為、アルミナのろ過膜を閉塞させてしまう地下水中のファウリング物質を、例えばチタニア等の他のセラミック材質の粒子層で吸着することができる為である。一方、実験17では、CAの粒子では、アルミナのろ過膜を閉塞させてしまう地下水中のファウリング物質を吸着することができなかった為、効果が見られなかったと推定される。   Experiments 15 to 18 are conditions in which a filter membrane material is an alumina ceramic membrane and filtered while adding a certain amount of titania, mullite, and zirconia as ceramic particles and CA as polymer particles to raw water. In Experiment 18, a membrane having a membrane pore size of 1.0 μm was used. Among these, Experiments 15, 16, and 18 show that the increase speed of the membrane differential pressure is reduced compared with Experiments 1 to 6 regardless of the difference in the membrane pore diameter, and there is an effect of suppressing clogging that is an effect of the present invention. It was. However, in Experiment 17, no effect was seen. This is because, in Experiments 15, 16, and 18, the material of the added particles is ceramic, and the affinity between the materials is higher than that of the polymer, so that the fouling substance in the groundwater that clogs the alumina filter membrane is removed. This is because it can be adsorbed by a particle layer of another ceramic material such as titania. On the other hand, in Experiment 17, it was presumed that the CA particles were unable to adsorb the fouling substance in the groundwater that would block the alumina filtration membrane, and thus it was estimated that no effect was seen.

実験19〜22は、ろ過膜材質がチタニア及びジルコニアのセラミック膜を用いて、アルミナ、ジルコニア、スピネル、及びチタニアとアルミナを重量基準で50%混合したセラミック粒子を原水に一定量添加しながらろ過した条件である。実験19〜22では、膜差圧上昇速度が実験1〜6と比較して減少しており、本発明の効果である目詰まり抑制効果があった。実験15、16、18でも示したように、ろ過膜の材質がアルミナ、チタニア、ムライト、ジルコニア、シリカ、スピネル或いはこれらの混合物などのセラミック膜である場合には、各材質間の親和性が高分子材質よりも高い為、添加される同質粒子は、ろ過膜の材質と完全に同一である必要がない事が判明した。   Experiments 19 to 22 were conducted by using ceramic membranes with titania and zirconia as the filter membrane material, and adding alumina, zirconia, spinel, and ceramic particles in which 50% of titania and alumina were mixed on a weight basis to the raw water for filtration. It is a condition. In Experiments 19 to 22, the rate of increase in the membrane differential pressure was reduced as compared with Experiments 1 to 6, and there was a clogging suppression effect that is an effect of the present invention. As shown in Experiments 15, 16, and 18, when the material of the filtration membrane is a ceramic membrane such as alumina, titania, mullite, zirconia, silica, spinel, or a mixture thereof, the affinity between the materials is high. It was found that the homogenous particles added need not be exactly the same as the material of the filtration membrane because it is higher than the molecular material.

実験23〜25は、ろ過膜材質がPVDFの高分子膜を用いて、アルミナ、及びCAの粒子を原水に一定量添加しながらろ過した条件である。実験23〜25では、膜差圧上昇速度が実験1〜6と比較して増加しており、ろ過膜の材質が高分子である場合には、セラミック膜と違い、全くの同材質の粒子を添加する必要があることが判明した。   Experiments 23 to 25 are conditions in which a filtration membrane material is a PVDF polymer membrane and filtered while adding a certain amount of alumina and CA particles to raw water. In Experiments 23 to 25, the rate of increase in the membrane differential pressure was increased as compared with Experiments 1 to 6. It turns out that it needs to be added.

井戸水を原水とし、ろ過膜の材質がそれぞれアルミナ、チタニア、シリカであるセラミック膜3種類と、ろ過膜がCAである高分子膜を用いて膜ろ過実験を行った。使用したセラミック膜は出願人会社製のモノリス膜であり、高分子膜は一般に市販されている中空糸膜を用いた。
膜面積は、全て0.4m2であり、孔径は0.1μmである。ただし、ろ過膜の材質がチタニア及びCAの膜のみ、孔径1μmの膜も実験した。
Membrane filtration experiments were carried out using well water as raw water and three types of ceramic membranes, each of which is made of alumina, titania and silica, and a polymer membrane whose filtration membrane is CA. The ceramic membrane used was a monolith membrane manufactured by the applicant company, and the polymer membrane used was a commercially available hollow fiber membrane.
The membrane area is all 0.4 m 2 and the pore diameter is 0.1 μm. However, a membrane having a pore diameter of 1 μm was also tested only for membranes made of titania and CA.

実施例2では、表2に示した粒子層厚さになるように、逆洗毎にあらかじめ各材質の粒子層を形成した後、実運転(ろ過)を開始するようにした。具体的には、逆洗毎に、高濃度の粒子を含む溶液(原水に添加)を所定の層厚さになるまで高流束でろ過する事により、同一粒子層を形成した。運転流束8m3/(m2・日)で、3時間ごとに逆洗を繰り返しながら、膜差圧の変化を1週間観察した。なお、1日あたりの差圧上昇速度を表2に付記した。 In Example 2, a particle layer of each material was formed in advance for each backwash so that the particle layer thickness shown in Table 2 was obtained, and then actual operation (filtration) was started. Specifically, the same particle layer was formed by filtering a solution containing high-concentration particles (added to the raw water) with a high flux until a predetermined layer thickness was obtained for each backwash. A change in membrane differential pressure was observed for 1 week while repeating backwashing every 3 hours at an operating flux of 8 m 3 / (m 2 · day). The differential pressure increase rate per day is shown in Table 2.

Figure 2006231181
Figure 2006231181

以下、表2に付記した差圧上昇速度の試験結果を用いて本発明を具体的に説明する。実験1〜6は、粒子を添加しない従来のろ過条件であり、これを比較例とした。
実験7〜9は、ろ過膜の材質がアルミナ、チタニア、シリカであるセラミック膜に、逆洗毎に同材質の粒子層を5μm〜50μm形成してからろ過を開始する条件で実施した実験である。これから、粒子層厚さの違いにかかわらず全て膜差圧上昇の抑制効果が見られた。しかし、膜差圧上昇の抑制効果には影響ないが、現実的には、あまり厚い粒子層を形成してしまうと圧力損失が大きくなり、押し込み圧力が必要となるとコスト増加につながる為、300μmを超える過剰の粒子層を形成することは望ましくない。
Hereinafter, the present invention will be described in detail with reference to the test results of the differential pressure increase rate added in Table 2. Experiments 1 to 6 are conventional filtration conditions in which particles are not added, and this was used as a comparative example.
Experiments 7 to 9 are experiments carried out under the condition that filtration is started after a particle layer of the same material is formed 5 μm to 50 μm at each backwashing on a ceramic membrane whose material of the filtration membrane is alumina, titania or silica. . From this, the effect of suppressing the increase in the film differential pressure was observed regardless of the difference in the particle layer thickness. However, although it does not affect the effect of suppressing the increase in the differential pressure of the membrane, in reality, if a too thick particle layer is formed, the pressure loss increases, and if an indentation pressure is required, the cost increases. It is not desirable to form an excess particle layer that exceeds.

実験10、11は、ろ過膜の材質がチタニアであるセラミック膜に、逆洗毎にCAとアルミナの粒子層を形成してからろ過を開始する条件で実施した実験である。実験10では、膜差圧上昇の抑制効果は見られなかったが、実験11では、膜差圧上昇の抑制効果が見られた。これから、実施例1でも示したようにセラミック膜の場合では、各材質間の親和性が高分子材質よりも高い為、添加される同質粒子は、ろ過膜の材質と完全に同一である必要がないと判断された。   Experiments 10 and 11 are experiments carried out under the conditions in which filtration is started after a CA and alumina particle layer is formed for each backwashing on a ceramic membrane made of titania. In Experiment 10, the effect of suppressing the increase in the membrane differential pressure was not observed, but in Experiment 11, the effect of suppressing the increase in the differential pressure was observed. From this, in the case of the ceramic membrane as shown in Example 1, since the affinity between the materials is higher than that of the polymer material, the added homogeneous particles need to be completely the same as the material of the filtration membrane. It was judged that it was not.

実験12、13は、孔径が1.0μmの膜を用いて実験したものである。これから、膜細孔径が大きくなっても、同質粒子層を形成すると膜差圧上昇の抑制効果が見られることが明らかである。   Experiments 12 and 13 were conducted using a membrane having a pore diameter of 1.0 μm. From this, it is clear that even if the membrane pore diameter is increased, the effect of suppressing the increase in the membrane differential pressure is observed when the homogeneous particle layer is formed.

上記した実施例のデータに示されるように、ろ過膜を構成する材料と同質粒子を原水に添加してろ過膜表面に同質粒子層を形成した状態で膜ろ過を行う本発明の方法によれば、逆洗により膜差圧の上昇を防止することができ、長期間にわたる連続使用が可能となる。従って本発明によれば、薬品洗浄の回数を低減するとともに維持管理を容易にし、運転コストの低減を図ることができる利点がある。   As shown in the data of the above-described examples, according to the method of the present invention, membrane filtration is performed in a state where a homogeneous particle layer is formed on the surface of the filtration membrane by adding the same quality particles as the material constituting the filtration membrane to the raw water. Backwashing can prevent an increase in membrane differential pressure, and continuous use over a long period of time is possible. Therefore, according to the present invention, there is an advantage that the number of times of chemical cleaning can be reduced, maintenance can be facilitated, and operation cost can be reduced.

本発明の実施形態を示す説明図である。It is explanatory drawing which shows embodiment of this invention. 本発明の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of this invention.

符号の説明Explanation of symbols

1 原水槽
2 膜モジュール
3 ろ過膜
4 ポンプ
5 同質粒子層
6 処理水槽
7 逆洗ポンプ
8 逆洗水槽
1 Raw Water Tank 2 Membrane Module 3 Filtration Membrane 4 Pump 5 Homogeneous Particle Layer 6 Treated Water Tank 7 Backwash Pump 8 Backwash Water Tank

Claims (4)

ろ過膜を構成する材料と同質の粒子を清澄な原水に添加してろ過膜表面に同質粒子層を形成し、原水に含まれる膜面材質との親和性の高い物質をこの同質粒子層に吸着させながら膜ろ過を行うことを特徴とする清澄水の膜ろ過方法。   Particles of the same quality as the material constituting the filtration membrane are added to clear raw water to form a homogeneous particle layer on the surface of the filtration membrane, and substances having high affinity with the membrane surface material contained in the raw water are adsorbed to this homogeneous particle layer. A membrane filtration method for clarified water, characterized in that membrane filtration is performed. 同質粒子の粒径を、ろ過膜の膜細孔径の2倍以上としたことを特徴とする請求項1に記載の清澄水の膜ろ過方法。   The membrane filtration method for clarified water according to claim 1, wherein the particle size of the homogeneous particles is at least twice the membrane pore size of the filtration membrane. 同質粒子を原水に一定量添加しながらろ過することを特徴とする請求項1に記載の清澄水の膜ろ過方法。   2. The membrane filtration method for clarified water according to claim 1, wherein filtration is performed while adding a certain amount of homogeneous particles to raw water. 逆洗毎にあらかじめろ過膜表面に同質粒子層を形成した後、ろ過を開始することを特徴とする請求項1に記載の清澄水の膜ろ過方法。

The method for filtering membranes of clarified water according to claim 1, wherein filtration is started after forming a homogeneous particle layer on the surface of the filtration membrane in advance for each backwashing.

JP2005048268A 2005-02-24 2005-02-24 Membrane filtration method of clean water Pending JP2006231181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048268A JP2006231181A (en) 2005-02-24 2005-02-24 Membrane filtration method of clean water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048268A JP2006231181A (en) 2005-02-24 2005-02-24 Membrane filtration method of clean water

Publications (1)

Publication Number Publication Date
JP2006231181A true JP2006231181A (en) 2006-09-07

Family

ID=37039410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048268A Pending JP2006231181A (en) 2005-02-24 2005-02-24 Membrane filtration method of clean water

Country Status (1)

Country Link
JP (1) JP2006231181A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017968A (en) * 1999-07-09 2001-01-23 Japan Organo Co Ltd Equipment and process for treating high temperature water
JP2003275760A (en) * 2002-03-19 2003-09-30 Kurita Water Ind Ltd Method and apparatus for treating water and method for analyzing contaminant of reverse osmosis membrane
JP2004081942A (en) * 2002-08-26 2004-03-18 Kubota Corp Filtering method using ceramic membrane module
JP2004130197A (en) * 2002-10-09 2004-04-30 Fuji Electric Systems Co Ltd Water treatment method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017968A (en) * 1999-07-09 2001-01-23 Japan Organo Co Ltd Equipment and process for treating high temperature water
JP2003275760A (en) * 2002-03-19 2003-09-30 Kurita Water Ind Ltd Method and apparatus for treating water and method for analyzing contaminant of reverse osmosis membrane
JP2004081942A (en) * 2002-08-26 2004-03-18 Kubota Corp Filtering method using ceramic membrane module
JP2004130197A (en) * 2002-10-09 2004-04-30 Fuji Electric Systems Co Ltd Water treatment method

Similar Documents

Publication Publication Date Title
JP2009526639A (en) Waste liquid purification method
CA2629709A1 (en) Reduced backwash volume process
WO2012056666A1 (en) Adsorption structure, adsorption module, and method for producing same
US10583401B2 (en) Integrated ultrafiltration and reverse osmosis desalination systems
TWI581858B (en) Reverse osmosis membrane device manipulation method and reverse osmosis membrane device
EP1935479B1 (en) Hybrid process for saltwater desalination
JP2007245003A (en) Seawater desalination method
Ramirez et al. Application of cross-flow microfiltration with rapid backpulsing to wastewater treatment
JP2011131191A (en) Membrane filtration system
CN101861200B (en) Method and device for reducing biofouling on the membranes of pressure-driven membrane separation processes
WO2008014201A3 (en) Method for removal and recovery of water from polymer manufacturing
Clark et al. Ultrafiltration of lake water for potable water production
JP5581669B2 (en) Water treatment method, water treatment member and water treatment facility
Lee et al. Development of an integrated iron oxide adsorption/membrane separation system for water treatment
JP2006231181A (en) Membrane filtration method of clean water
JP2008302333A (en) Method and apparatus for production of fresh water
JPS61185372A (en) Apparatus for treating excretion sewage
JP2005238152A (en) Organic material-containing water treatment method
JP2006297179A (en) Filtration membrane for membrane filtration of clarified water
JP6196035B2 (en) Method for treating water containing water-insoluble substances
WO2017168721A1 (en) Filtration layer cleaning method, biological membrane filtration apparatus, and desalination plant
JP2005103510A (en) Method for cleaning liquid chemical
JP2005279496A (en) Washing method of membrane separation apparatus, membrane separation method, and membrane separation apparatus
JP2007222740A (en) Cleaning method of vertical separation membrane module
JP2004188387A (en) Evaluation method of feed water to reverse osmosis membrane and operation control method of water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080516

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201