JP3864511B2 - Combine - Google Patents

Combine Download PDF

Info

Publication number
JP3864511B2
JP3864511B2 JP23850197A JP23850197A JP3864511B2 JP 3864511 B2 JP3864511 B2 JP 3864511B2 JP 23850197 A JP23850197 A JP 23850197A JP 23850197 A JP23850197 A JP 23850197A JP 3864511 B2 JP3864511 B2 JP 3864511B2
Authority
JP
Japan
Prior art keywords
inclination
vehicle speed
cutting
soil surface
airframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23850197A
Other languages
Japanese (ja)
Other versions
JPH1175466A (en
Inventor
治光 十亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP23850197A priority Critical patent/JP3864511B2/en
Publication of JPH1175466A publication Critical patent/JPH1175466A/en
Application granted granted Critical
Publication of JP3864511B2 publication Critical patent/JP3864511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Harvester Elements (AREA)
  • Feedback Control In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、農業機械であるコンバインに関する。
【0002】
【従来の技術、及び発明が解決しようとする課題】
従来、コンバインにより収穫作業を行うとき、作業速度や圃場条件(土壌面の軟弱度合や凹凸度合等)により機体が傾斜するため、この機体の傾斜状態に応じて刈高検出手段により、刈取装置を適正な刈高さ位置に昇降調節する形態のものが一般的であるが、このような刈高さの調節制御時に、機体の傾斜量の大小又は傾斜速度の緩急等によって、刈取装置の昇降量に過不足を生じたり又は昇降速度が遅れたりして、刈高さが安定せずに刈取性能に支障を来し、最悪の場合には刈取装置が土壌面に突っ込んで損傷する等の不具合が生じていた。
【0003】
そこでこの発明は、機体が傾斜すると刈高さを適正位置に調節制御する。そして、刈高さを適正位置に調節制御する際の刈取装置の昇降速度を機体の傾斜度合いから算出して、刈取装置を速やかに昇降させようとするものである。
【0004】
【課題を解決するための手段】
この発明は、土壌面に対して機体(1)の前後の傾斜状態を検出可能な前後傾斜検出手段(2)と、刈取装置(3)による刈高さを検出可能な刈高検出手段(4)と、この両検出手段(2),(4)の検出値により刈取装置(3)を昇降して自動的に刈高さを調節制御可能なコントローラ(5)とを有するコンバインにおいて、前記前後傾斜検出手段(2)が機体(1)の前後傾斜を検出すると、刈取装置(3)を昇降シリンダ(16a)の作動により所定の適正位置まで刈高センサ(4)の検出により昇降させる構成とし、刈取装置(3)を所定の適正位置まで昇降させて調節制御するにあたり、前記前後傾斜検出手段(2)による機体(1)の前後傾斜状態の検出値から算出した傾斜変化率により、刈取装置(3)を昇降させる速度を算出し、この算出された昇降速度で前記刈取装置(3)を適正な位置へ調節制御する構成とし、さらに、刈取装置(3)を昇降自在に支持する刈取支軸(16)に設けた回動角度センサ(56)によって機体(1)に対する刈取装置(3)の回動角度(θ)を検出し、この回動角度(θ)の検出値から機体(1)の沈下量(α)を求め、該刈取装置(3)の回動角度(θ)と機体(1)の沈下量(α)との関係から土壌面の軟弱度合を算出する構成とすると共に、算出した土壌面の軟弱度合に対する適正車速を予め設定する構成とし、車速センサ(28)によって検出したコンバインの車速が、前記土壌面の軟弱度合に対する適正車速となるようにコンバインの車速制御を行なうように構成したことを特徴とするコンバインの構成とする。
【0005】
【作用】
上記の構成により、コンバインにより収穫作業を行うとき、走行速度や土壌面の軟弱度合及び凹凸度合等の圃場条件に応じて機体1の傾斜する前後傾斜量が大小に変化する。このように、機体1が前後傾斜すると刈取装置3も一緒に前後傾斜してしまうので、適正な刈高さから外れてしまう。即ち、刈取装置3の対地面に対する位置関係が適正位置でなくなる。そこで、コントローラ5が機体1の前後傾斜を検出すると、刈取装置3を昇降シリンダ16aの作動により所定の適正位置まで刈高センサ4の検出により昇降させる。この場合、機体1の前後傾斜量を、例えば静電容量等により検出する前後傾斜検出手段2によって検出すると、前後傾斜検出手段2の検出値から算出した傾斜変化率(例えば傾斜状態の微分係数等)を求め、この傾斜変化率から刈取装置3を昇降させる昇降速度を算出して、刈取装置3を速やかに適正位置へ調節する。
また、機体1に対する刈取装置3の回動角度θを検出し、この回動角度θの検出値から機体1の沈下量αを求める。そして、刈取装置3の回動角度θと機体1の沈下量αとの関係から土壌面の軟弱度合を算出し、算出した土壌面の軟弱度合に対する適正車速を予め設定する。車速センサ28によって検出したコンバインの車速が、土壌面の軟弱度合に対する適正車速となるようにコンバインの車速制御を行なう。
【0006】
【発明の効果】
上記作用の如く、コンバインの収穫作業において、走行速度や圃場条件に応じて変化する機体1の前後傾斜量を検出し、この検出値から刈取装置3を適正な刈高さ位置に調節する。この場合、算出した傾斜変化率によって、刈取装置3の昇降速度を算出し、この算出した昇降速度で刈取装置3の位置を適正な位置に制御する。このため、機体1の前後傾斜に応じて一緒に刈取装置3が対地面に対して位置関係が変化しようとしても、速やかに刈取装置3の対地面に対する位置関係が修正できるようになるので、刈取作業に支障をきたすのを防止できるようになる。また、機体1の前後傾斜状態に応じて素早く調整可能となるので、機体の前後傾斜量の大小又は傾斜速度の緩急等によって、刈取装置の昇降速度が遅れたりして、刈高さが安定せずに刈取性能に支障を来し、最悪の場合には刈取装置が土壌面に突っ込んで損傷する等の不具合を防止して、刈高さを所定の適正位置にオペレータを煩わすことなく自動的に的確且つ敏速に調節制御しうるものである。
また、土壌面の軟弱度合に対する適正車速となるように、コンバインの車速を制御するようにしているので、走行土壌面が荒らされたり、過負荷によりエンジンが停止するような不具合を防止できるようになる。そして、安定した走行により効率的な作業の継続が可能となる。
【0007】
【実施例】
以下に、この発明の実施例を図面に基づき説明する。
図1はコンバインの全体構成を示すもので、コンバインの走行フレーム6の下部側に土壌面を走行する左右一対の走行クロ−ラ7を張設した走行装置8を配設すると共に、該走行フレーム6上にフィ−ドチェン9に挟持搬送して供給される刈取り穀稈を脱穀し、この脱穀された穀粒を選別回収して一時貯留するグレンタンク10と、この貯留した穀粒を機外へ排出する排穀オーガ10aとを備えた脱穀装置11を載置構成している。
【0008】
該脱穀装置11の前方に、その前端側から植立穀稈を分草する分草体12と、分草された穀稈を引き起こす引起部13と、引き起こされた穀稈を刈り取る刈刃部14と、この刈り取られた穀稈を後方側へ搬送しながら横倒れ姿勢に変更して該フィ−ドチェン9へ受渡しする穀稈搬送部15等を有する刈取装置3を、刈取支軸16を回動中心として油圧駆動による昇降シリンダ16aにより土壌面に対し昇降自在に作用するよう構成している。
【0009】
該分草体12の後部側に、超音波を発射しその反射波を受けて刈取り穀稈の刈高さを検出する刈高検出手段としての刈高センサ4を土壌面に向け装着すると共に、この刈高センサ4の検出により、刈取装置3の刈高さを所定の適正位置に調節制御させる刈高制御スイッチ17を設けて構成している。
該刈取装置3の一側にコンバインの操作制御を行う操作装置18と、この操作のための操作席19とを設け、この操作席19の下方側にはエンジン20を搭載し、後方側には前記グレンタンク10を配置すると共に、操作装置18と操作席19とを覆うキャビン21を設けて構成している。これらの走行装置8,脱穀装置11,刈取装置3,操作装置18,エンジン20等によってコンバインの機体1を構成させている。
【0010】
前記走行フレーム6の中央側左右位置に縦方向に固着した左右の縦フレ−ム22と、この左右の縦フレーム22の外側下方に略並行に左右の転輪フレーム23を接合配設し、この左右の転輪フレーム23の後端部上側に、各々左右の後部転輪24を回動可能に軸支する後部転輪受24aを前後調節可能に後方に向け支持すると共に、該左右の転輪フレーム23の外側面下部側に各々所定の間隔をおいて複数個の接地転輪25を遊転自在に軸支して構成する。
【0011】
これらの左右の後部転輪24及び複数個の接地転輪25と、走行フレーム6の前端部に装架した走行用ミッションケ−ス26から動力を伝達する駆動輪27とに、前記左右の走行クロ−ラ7を各々巻掛け張設した構成とする。25aは補助転輪を示す。
該機体1の前後傾斜状態を検出する、静電容量形式による傾斜検出手段としての前後傾斜センサ2を該走行フレーム6の適宜位置に配設すると共に、車速を検出する車速センサ28を該ミッションケース26の伝動経路に配設する。
【0012】
図2に示す如く、CPUを主体として自動回路の演算制御を行うと共に、機体1の傾斜状態の検出値により刈取装置3の刈高さの調節内容を演算するコントローラ5を設け、このコントローラ5の入力側へ、該前後傾斜センサ2,車速センサ28と前記刈高センサ4,刈高制御スイッチ17とを各々接続すると共に、その出力側へ、前記昇降シリンダ16を作動させる刈取昇降電磁弁29を接続して構成させる。
【0013】
コンバインにおける収穫作業時に、圃場又は圃場内の場所の違い等により土壌面の軟弱度合や凹凸度合等が異なることと、更に走行速度の変速等によって機体1の前後方向の傾斜量が大小に変化するため、このような状態において刈高制御スイッチ17をONして刈取作業を行うときに、図3のフローチャートに示す如く、まず前後傾斜センサ2により機体1の前後傾斜量を検出し、この前又は後傾斜量によって、図4の線図に示す如く傾斜変化率としての微分係数を求める。
【0014】
この微分係数から、図5の線図に示す如く刈取装置3の昇降量又は昇降速度を算出し、傾斜変化率が中立状態のときはリターンさせ、変化率が(+)側のときは機体1が前傾斜していることになるから、刈取装置3を昇降シリンダ16aの作動により所定の適正位置まで刈高センサ4の検出により上昇させると共に、変化率が(−)側のときは機体1が後傾斜していることになるから、刈取装置3を前記の処理に準じて下降させる。
【0015】
このように、刈取作業において機体1が前後方向に傾斜するときは、この傾斜を前後傾斜センサ2の検出値から求めた傾斜変化率と、刈高センサ4による刈高さの検出値とをコントローラ5に送って演算制御を行い、この処理により刈取装置3を昇降させる昇降量又は昇降速度を傾斜状態に応じて素早く追従調整することが可能であるから、刈高さを所定の適正位置にオペレータを煩わすことなく自動的に的確且つ敏速に調節制御することができる。
【0016】
また、上記と異なる実施例として、前記の図1に示す如きコンバインにおける走行装置8を、ローリング制御とピッチング制御を可能とする構成に変更するもので、その構成内容を下記に説明する。(同一作用のものは同一符号を付す)
図6及び図7に示す如く、前記走行フレーム6の左右の縦フレーム22の前端下部に設けた支持枠30に各々ローリングメタル31を固定すると共に、この左右のローリングメタル31に回動可能に軸支した前部ローリング軸32に、各々上部アーム33aと下部アーム33bとを側面視く字状に軸止して前部ローリングアーム33を形成し、この左右の前部ローリングアーム33の下部アーム33bの下端部位置と、左右の縦フレ−ム22の外側下方に各々位置する前記左右の転輪フレーム23の前部側位置とを回動可能にピン34により連結構成する。
【0017】
該左右の縦フレ−ム22の後側下部に各々固定したピッチングメタル35にピッチング軸36を回動可能に軸支し、このピッチング軸36の左右側に各々左右のピッチングアーム37の一端部を軸止すると共に、その他端部と平面視H字状の連結アーム38の左右側一端部とを回動可能にピン39により連結構成する。
左右の後部ローリング軸40に、各々上部アーム41aと下部アーム41bとを側面視く字状に軸止して後部ローリングアーム41を形成すると共に、該左右の後部ローリング軸40の上部アーム41aと下部アーム41bの間に挟んで該連結アーム38の左右側他端部を各々回動可能に軸支する。該左右の後部ローリングアーム41の下部アーム41bの下端部位置と、該左右の転輪フレーム23の後部側位置とを回動可能にピン42により連結構成する。
【0018】
該右のピッチングアーム37の他端部側を上方へ延長し、その上端部と、油圧等によって伸縮作用するピッチングシリンダ43の可動側ピストン43aの先端部とをピン連結すると共に、このピッチングシリンダ43の固定側を右の縦フレ−ム22の上側突起部に回動可能にピン連結する。該左右の前部ローリングアーム33の上部アーム33aの上端部と、該左右の後部ローリングアーム41の上部アーム41aの中間部とを各々4点平行リンクを形成可能に左右の連結杆44によって回動可能にピン連結して構成する。
該左右の後部ローリングアーム41の上部アーム41aを、連結杆44の連結位置より更に上方側へ延長し、その上端部と、油圧等によって伸縮作用する左右のローリングシリンダ45の可動側ピストン45aの先端部とをピン連結すると共に、この左右のローリングシリンダ45の固定側と、左右のピッチングアーム37の他端部から突出させた突起部とを、帯状の保持板46により各々両側より挾む状態で回動可能にピン連結し、この連結部をリンク46aを介して揺動可能に該左右の縦フレーム22に各々連結構成する。
【0019】
該ピッチングシリンダ43の伸縮ストロークを検出する前後ストロークセンサ47を該シリンダ43に隣接して設け、このセンサ47の作用アームとピッチングアーム37の上端部近傍とをロット47aにより連結すると共に、該左右のローリングシリンダ45の伸縮ストロークを検出する左右ストロークセンサ48を該左右のシリンダ45上に設け、このセンサ48の作用アームと後部ローリングアーム41の上端連結部とをロット48aにより各々連結して構成する。
【0020】
このように、該左右の前部及び後部ローリングアーム33,41と、左右のローリングシリンダ45等の作用により、機体1を昇降又は左右傾斜させるローリング制御を行わせる左右水平機構と、該ピッチングアーム37とピッチングシリンダ43等の作用により、機体1を前後傾斜させるピッチング制御を行わせる前後水平機構とを構成させる。
【0021】
前記左右の転輪フレーム23の後端上部側に、各々左右の後部転輪24を回動可能に軸支する後部転輪受24aを、前後調節可能に後方に向けて支持すると共に、左右の転輪フレーム23の外側面下部側に、各々所定の間隔をおいて複数個の接地転輪25を遊転自在に軸支する。これら左右の後部転輪24及び複数個の接地転輪25と、走行フレーム6の前端部に装架した前記走行用ミッションケ−ス26から動力を伝達する駆動輪27とに、前記左右の走行クロ−ラ7を各々巻掛け張設して構成する。25aは補助転輪を示す。
【0022】
機体1の前後傾斜を検出する前記前後傾斜センサ2と、左右傾斜を検出する左右傾斜センサ49とを前記走行フレーム6の適宜位置に配置すると共に、前後及び左右傾斜センサ2,49による傾斜状態の検出により機体1の前後水平制御と左右水平制御を自動的に行わせる前後制御スイッチ50及び左右制御スイッチ51とを配置して構成している。
【0023】
CPUを主体的に配して自動回路の演算制御を行うコントローラ52を設け、図8に示す如くこのコントローラ52の入力側へ、前記前後傾斜センサ2,刈高センサ4,車速センサ28,刈高制御スイッチ17と、該左右傾斜センサ49,前後ストロークセンサ47,両左右ストロークセンサ48,前後制御スイッチ50,左右制御スイッチ51等を各々接続すると共に、出力側へ、前記刈取昇降電磁弁29と、該ピッチングシリンダ43を作動させるピッチング電磁弁53,左右のローリングシリンダ45を作動させる左右のローリング電磁弁54,アンロード弁55等を各々接続して構成する。
【0024】
該コントローラ52によるピッチング制御では、ピッチングシリンダ43を作動して、ピッチングアーム37の上下回動作用により、連結アーム38を介した右の後部ローリングアーム41の昇降により、左右の転輪フレーム23の後部側を前部ローリング軸32を支点として上下動させて相対的に機体1を水平状態に調整すると共に、コントローラ52によるローリング制御では、左又は右のローリングシリンダ45を作動して、前部及び後部ローリングアーム33,41と連結杆44の作用により、左又は右の転輪フレーム23を上下動させて相対的に機体1を水平状態に調整することができる。
【0025】
図9のフローチャートに示す如く、機体1が前後又は左右側に傾斜するとき、該前後制御スイッチ50及び左右制御スイッチ51のONによる前後傾斜センサ2と左右傾斜センサ49の傾斜検出により、ピッチング制御とローリング制御によって機体1の水平制御を行うと共に、刈高制御スイッチ17のONによる刈高センサ4の検出により、刈取装置3を昇降して刈高さを所定の適正位置に調節制御する。
【0026】
この刈高さの調節制御時に機体1の沈下による刈取装置3の上昇量から、前記刈取支軸16に設けたポテンショメータ等による回動角度センサ56により機体1に対する刈取装置3の回動角度θを検出し、図10に示す如く、この回動角度θの違い(沈下無し:θ1,沈下時:θ2)から機体1の沈下量αを求める。
この回動角度θと沈下量αとの関係から、図11の線図に示す如く、土壌面の軟弱度合を算出することによって、図12の線図に示す如く、予め設定された土壌面の軟弱度合と車速との関係により最高車速を算出すると共に、前記車速センサ28によって車速を検出し、この検出した車速が適正なときはリターンさせ、速過ぎるときは減速制御し、遅過ぎるときは増速制御させる。なお、必ずしも車速の制御を行わずとも報知のみ行わせるようにしてもよい。
【0027】
このように、機体1の水平制御を行うものでは、該刈取支軸16の回動角度θと機体1の沈下量αとの間には一定の関係が生じるため、機体1の水平制御と刈高さ制御を行うときに、機体1の沈下量αから土壌面の軟弱度合を算出して適正な車速に変速制御することにより、走行土壌面が荒らされたり、過負荷によりエンジン20が停止するような不具合等がなく、安定した走行により効率的な作業の継続が可能となる。
【0028】
なお、制御自体が従来と基本的に変わらないためシンプルな制御を低コストで実施可能であると共に、負荷制御を行うものでは機体1の沈下量αに応じて基準となるエンジン回転数を変更制御するようにしてもよく、機体1の沈下量αに応じて負荷制御の感度を変更するようにしてもよい。
また、図13のフローチャートに示す如く、機体1の水平制御と刈取装置3の刈高さ制御とを行うものにおいて、前記の如く、刈取支軸16の回動角度θの検出により機体1の沈下量αを求め、この機体1の沈下量αから土壌面の軟弱度合を算出する段階までは、図9のフローチャートに示す手順と同じであるが、この土壌面の軟弱度合の算出により、パワステレバー57の操作時間の長さ等により操向旋回か否かの判定を行い、機体1の旋回が確認されたときは、土壌面の軟弱度合に応じ最適旋回を可能とする前記左右の走行クローラ7における回転差を算出し、この回転差となるよう左右の走行クローラ7の回転数を調節制御する。
【0029】
このように、前記の如く該刈取支軸16の回動角度θと機体1の沈下量αとの間には一定の関係が生じるため、機体1の水平制御と刈高さ制御を行うときに、機体1の沈下量αから土壌面の軟弱度合を算出して旋回時の左右の走行クローラ7の回転数を調節制御することにより、常に土壌面の軟弱度合に適した旋回が可能となって、走行土壌面が荒されることによる作業効率の低下を防止することができる。
【図面の簡単な説明】
【図1】コンバインの全体構成を示す側面図。
【図2】機体の前後傾斜に応じた刈高さ制御の自動回路を示すブロック図。
【図3】機体の前後傾斜に応じた刈高さ制御の手順を示すフローチャート。
【図4】機体の前後傾斜状態における傾斜変化率(微分係数等)を示す線図。
【図5】傾斜変化率による刈取装置の昇降量又は昇降速度を示す線図。
【図6】機体の水平制御における走行クロ−ラの昇降機構を示す平面図。
【図7】機体の水平制御における走行クロ−ラの昇降機構を示す側面図。
【図8】機体の水平制御時における刈高さ制御の自動回路を示すブロック図。
【図9】機体の水平制御と刈高さ制御時に土壌面の軟弱度合を検出して車速を変速制御する手順を示すフローチャート。
【図10】刈取装置の回動角度と機体の沈下量との関係を示す側面作用図。
【図11】図10に示す如き関係から土壌面の軟弱度合の状態を示す線図。
【図12】土壌面の軟弱度合と車速との関係を示す線図。
【図13】機体の水平制御と刈高さ制御時に土壌面の軟弱度合を検出して左右のクローラの回転数を調節制御する手順を示すフローチャート。
【符号の説明】
1. 機体
2. 前後傾斜検出手段
3. 刈取装置
4. 刈高検出手段
5. コントローラ
16a. 昇降シリンダ
28. 車速センサ
56. 回動角度センサ
θ. 回動角度
α. 沈下量
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combine that is an agricultural machine.
[0002]
[Background Art and Problems to be Solved by the Invention]
Conventionally, when harvesting is performed with a combine, the machine tilts depending on the work speed and the field conditions (such as the degree of soil softness and unevenness). In general, the height of the cutting device is adjusted to the appropriate cutting height position. When adjusting the cutting height, the amount of lifting of the cutting device can be adjusted by adjusting the inclination of the fuselage or the speed of the inclination. In the worst case, there is a problem that the harvesting device is pushed into the soil surface and damaged. It was happening.
[0003]
Therefore, the present invention adjusts and controls the cutting height to an appropriate position when the fuselage is inclined. And the raising / lowering speed of the cutting device at the time of adjusting and controlling the cutting height to an appropriate position is calculated from the degree of inclination of the airframe, and the cutting device is moved up and down quickly.
[0004]
[Means for Solving the Problems]
The present invention includes a front / rear inclination detection means (2) capable of detecting the front / rear inclination state of the airframe (1) relative to the soil surface, and a cutting height detection means (4) capable of detecting the cutting height by the cutting device (3). ) And a controller (5) capable of automatically adjusting and controlling the cutting height by raising and lowering the cutting device (3) according to the detection values of both detection means (2) and (4). When the inclination detecting means (2) detects the front / rear inclination of the airframe (1), the cutting device (3) is moved up and down to a predetermined proper position by the operation of the lifting cylinder (16a) by detection of the cutting height sensor (4). In the adjustment control by raising and lowering the reaping device (3) to a predetermined appropriate position, the reaping device is calculated based on the inclination change rate calculated from the detected value of the longitudinal inclination state of the body (1) by the longitudinal inclination detecting means (2). Calculate the speed to raise and lower (3) Then, the reaping device (3) is adjusted and controlled to an appropriate position at the calculated ascending / descending speed, and the rotator provided on the reaping support shaft (16) that supports the reaping device (3) so as to be movable up and down. The angle sensor (56) detects the rotation angle (θ) of the mowing device (3) relative to the airframe (1), and the amount of subsidence (α) of the airframe (1) is obtained from the detected value of the rotation angle (θ). The soil surface softness degree is calculated from the relationship between the rotation angle (θ) of the reaping device (3) and the subsidence amount (α) of the airframe (1), and the calculated softness degree of the soil surface is determined. The vehicle speed of the combine is controlled so that the vehicle speed of the combine detected by the vehicle speed sensor (28) becomes an appropriate vehicle speed for the degree of softness of the soil surface. The combine structure is adopted.
[0005]
[Action]
With the above configuration, when the harvesting operation is performed by the combine, the amount of forward and backward tilting of the body 1 varies depending on the field conditions such as the traveling speed, the degree of softness of the soil surface, and the degree of unevenness. Thus, when the body 1 tilts back and forth, the reaping device 3 also tilts back and forth together, so that it deviates from the proper cutting height. That is, the positional relationship of the reaping device 3 with respect to the ground is not an appropriate position. Therefore, when the controller 5 detects the forward / backward inclination of the machine body 1, the cutting device 3 is moved up and down by detection of the cutting height sensor 4 to a predetermined proper position by the operation of the lifting cylinder 16 a. In this case, if the front / rear inclination amount of the airframe 1 is detected by, for example, the front / rear inclination detection means 2 that detects the capacitance, etc., the inclination change rate calculated from the detection value of the front / rear inclination detection means 2 (for example, the differential coefficient of the inclination state, etc.) ) Is calculated, and an ascending / descending speed for raising / lowering the reaping device 3 is calculated from the inclination change rate, and the reaping device 3 is quickly adjusted to an appropriate position.
Further, the rotation angle θ of the reaping device 3 with respect to the body 1 is detected, and the settlement amount α of the body 1 is obtained from the detected value of the rotation angle θ. Then, the degree of softness of the soil surface is calculated from the relationship between the rotation angle θ of the cutting device 3 and the amount of settlement α of the airframe 1, and an appropriate vehicle speed for the calculated degree of softness of the soil surface is set in advance. The vehicle speed of the combine is detected so that the vehicle speed of the combine detected by the vehicle speed sensor 28 becomes an appropriate vehicle speed for the degree of softness of the soil surface.
[0006]
【The invention's effect】
As described above, in the harvesting operation of the combine, the front / rear inclination amount of the machine body 1 that changes according to the traveling speed and the field conditions is detected, and the reaping device 3 is adjusted to an appropriate cutting height position from this detected value. In this case, the raising / lowering speed of the reaping device 3 is calculated based on the calculated inclination change rate, and the position of the reaping device 3 is controlled to an appropriate position by the calculated raising / lowering speed. For this reason, since the positional relationship of the cutting device 3 with respect to the ground can be quickly corrected even if the cutting device 3 tries to change the positional relationship with respect to the ground together in accordance with the longitudinal inclination of the machine body 1, It will be possible to prevent the work from being hindered. In addition, since the aircraft 1 can be quickly adjusted according to the front / rear tilt state, the height of the front / rear tilt of the airframe 1 or the speed of the inclination of the mowing device is delayed due to the speed of the tilting, etc., and the cutting height is stabilized. This prevents the cutting performance from being damaged and, in the worst case, prevents the cutting device from being damaged by being pushed into the soil surface. It can be adjusted and controlled accurately and quickly.
In addition, the vehicle speed of the combine is controlled so that the vehicle speed is appropriate for the degree of softness of the soil surface, so that it is possible to prevent problems such as roughening the traveling soil surface or stopping the engine due to overload. Become. In addition, efficient work can be continued by stable running.
[0007]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows the overall structure of a combine. A traveling device 8 is provided on a lower side of a traveling frame 6 of the combine. The traveling device 8 has a pair of left and right traveling rollers 7 traveling on the soil surface. The grain tank 10 which threshs the harvested cereal meal which is nipped and conveyed by the feed chain 9 on the top 6 and is supplied, and selectively collects and recovers the threshed grain, and the stored grain to the outside. A threshing device 11 having a threshing auger 10a to be discharged is placed.
[0008]
In front of the threshing device 11, a weeding body 12 for weeding the planted culm from its front end side, a pulling part 13 for causing the weeded culm, and a cutting blade part 14 for cutting the induced culm The reaping device 3 having the culm transporting portion 15 or the like that changes the posture to the side of the feed chain 9 while transporting the harvested culm to the rear side, and the center of rotation about the mowing support shaft 16 is provided. As described above, it is configured so as to be able to move up and down freely with respect to the soil surface by a hydraulic drive lift cylinder 16a.
[0009]
On the rear side of the weed body 12, a cutting height sensor 4 serving as a cutting height detection unit that emits ultrasonic waves and receives the reflected waves to detect the cutting height of the cutting cereal grain is attached to the soil surface. A cutting height control switch 17 that adjusts and controls the cutting height of the cutting device 3 to a predetermined appropriate position based on detection by the cutting height sensor 4 is provided.
An operating device 18 for controlling the operation of the combine and an operating seat 19 for this operation are provided on one side of the mowing device 3, and an engine 20 is mounted on the lower side of the operating seat 19 and on the rear side. The Glen tank 10 is disposed, and a cabin 21 that covers the operation device 18 and the operation seat 19 is provided. The traveling device 8, the threshing device 11, the reaping device 3, the operating device 18, the engine 20, and the like constitute the combine body 1.
[0010]
The left and right vertical frames 22 fixed in the vertical direction at the left and right positions on the center side of the traveling frame 6 and the left and right wheel frames 23 are joined and arranged substantially in parallel below the left and right vertical frames 22. On the upper rear ends of the left and right wheel frames 23, rear wheel supports 24a for pivotally supporting the left and right rear wheel 24 are supported rearwardly so as to be adjustable in the front-rear direction. A plurality of ground rolling wheels 25 are rotatably supported on the lower side of the outer surface of the frame 23 at predetermined intervals.
[0011]
The left and right rear wheels 24 and the plurality of ground wheels 25 and the left and right traveling wheels are connected to the driving wheels 27 that transmit power from the traveling mission case 26 mounted on the front end of the traveling frame 6. Each of the crawlers 7 is wound and stretched. Reference numeral 25a denotes an auxiliary wheel.
A forward / backward inclination sensor 2 as an inclination detecting means of an electrostatic capacity type for detecting the forward / backward inclination state of the airframe 1 is disposed at an appropriate position of the traveling frame 6 and a vehicle speed sensor 28 for detecting a vehicle speed is provided in the transmission case. It arrange | positions in 26 transmission paths.
[0012]
As shown in FIG. 2, a CPU 5 is used as a main body to control the automatic circuit, and a controller 5 is provided for calculating the adjustment contents of the cutting height of the cutting device 3 based on the detected value of the inclination state of the machine body 1. The forward / backward tilt sensor 2, the vehicle speed sensor 28, the cutting height sensor 4, and the cutting height control switch 17 are connected to the input side, and the cutting lift electromagnetic valve 29 for operating the lifting cylinder 16 is connected to the output side. Connect and configure.
[0013]
At the time of harvesting in the combine, the degree of inclination in the front-rear direction of the airframe 1 varies depending on the degree of softness or unevenness of the soil surface due to differences in the field or the location in the field, and further by shifting the traveling speed, etc. Therefore, when the cutting height control switch 17 is turned on in such a state and the cutting operation is performed, as shown in the flowchart of FIG. Based on the amount of rear inclination, a differential coefficient as an inclination change rate is obtained as shown in the diagram of FIG.
[0014]
From this differential coefficient, ascending / descending amount or ascending / descending speed of the reaping device 3 is calculated as shown in the diagram of FIG. 5, and when the rate of change in inclination is in a neutral state, the process is returned. Therefore, when the rate of change is on the (−) side, the machine body 1 is lifted up by raising the reaping device 3 to a predetermined appropriate position by the operation of the lifting cylinder 16a. Since it is tilted rearward, the mowing device 3 is lowered according to the above processing.
[0015]
As described above, when the machine body 1 tilts in the front-rear direction in the cutting operation, the inclination change rate obtained from the detected value of the front-back tilt sensor 2 and the detected value of the cutting height by the cutting height sensor 4 are used as a controller. 5 is used to perform arithmetic control, and by this process, the lifting amount or lifting speed for raising and lowering the reaping device 3 can be quickly adjusted according to the inclination state, so that the cutting height can be adjusted to a predetermined appropriate position. It is possible to adjust and control automatically and accurately without bothering.
[0016]
Further, as an embodiment different from the above, the traveling device 8 in the combine as shown in FIG. 1 is changed to a configuration that enables rolling control and pitching control, and the configuration content will be described below. (Those with the same action are given the same reference.)
As shown in FIGS. 6 and 7, a rolling metal 31 is fixed to a support frame 30 provided at the lower part of the front end of the left and right vertical frames 22 of the traveling frame 6. An upper arm 33a and a lower arm 33b are pivotally fixed to the supported front rolling shaft 32 in a side view to form a front rolling arm 33. The lower arms 33b of the left and right front rolling arms 33 are formed. The lower end portion position of the right and left vertical frames 22 and the front portion side position of the left and right wheel frame 23 located respectively below the left and right vertical frames 22 are connected by a pin 34 so as to be rotatable.
[0017]
Pitching shafts 36 are pivotally supported on pitching metals 35 fixed to the lower rear portions of the left and right vertical frames 22, and one end portions of left and right pitching arms 37 are respectively attached to the left and right sides of the pitching shafts 36. The shaft is fixed, and the other end portion and the left and right end portions of the connecting arm 38 having an H shape in plan view are connected by a pin 39 so as to be rotatable.
The upper arm 41a and the lower arm 41b are respectively pivotally fixed to the left and right rear rolling shafts 40 in a side view to form the rear rolling arm 41, and the upper and lower arms 41a and lower portions of the left and right rear rolling shafts 40 are formed. The other end portions on the left and right sides of the connecting arm 38 are pivotally supported so as to be sandwiched between the arms 41b. The lower end position of the lower arm 41b of the left and right rear rolling arm 41 and the rear side position of the left and right wheel frame 23 are connected by a pin 42 so as to be rotatable.
[0018]
The other end side of the right pitching arm 37 is extended upward, and the upper end of the right pitching arm 37 is pin-connected to the tip of the movable piston 43a of the pitching cylinder 43 that expands and contracts by hydraulic pressure or the like. Is fixed to the upper projection of the right vertical frame 22 so as to be pivotable. The upper end portion of the upper arm 33a of the left and right front rolling arms 33 and the middle portion of the upper arm 41a of the left and right rear rolling arms 41 are respectively rotated by left and right connecting rods 44 so as to form a four-point parallel link. It is configured by connecting pins as possible.
The upper arms 41a of the left and right rear rolling arms 41 are extended further upward than the connecting position of the connecting rod 44, and the upper ends thereof and the tips of the movable side pistons 45a of the left and right rolling cylinders 45 that extend and contract by hydraulic pressure or the like. In the state where the fixed side of the left and right rolling cylinders 45 and the protrusions protruding from the other ends of the left and right pitching arms 37 are pinched from both sides by the belt-shaped holding plates 46, respectively. The pins are pivotably connected, and the connecting portions are connected to the left and right vertical frames 22 so as to be swingable via links 46a.
[0019]
A front / rear stroke sensor 47 for detecting the expansion / contraction stroke of the pitching cylinder 43 is provided adjacent to the cylinder 43, and the working arm of the sensor 47 and the vicinity of the upper end of the pitching arm 37 are connected by a lot 47a. A left / right stroke sensor 48 for detecting an expansion / contraction stroke of the rolling cylinder 45 is provided on the left and right cylinders 45, and an operating arm of the sensor 48 and an upper end connecting portion of the rear rolling arm 41 are connected by a lot 48a.
[0020]
As described above, the left and right front and rear rolling arms 33 and 41, the left and right horizontal mechanisms for performing the rolling control for moving the body 1 up and down or left and right by the actions of the left and right rolling cylinders 45, and the pitching arm 37. By the action of the pitching cylinder 43 and the like, a front-rear horizontal mechanism that performs pitching control for tilting the body 1 forward and backward is configured.
[0021]
On the upper rear side of the left and right wheel frames 23, rear wheel bearings 24a for pivotally supporting the left and right rear wheel 24 are supported rearwardly so that they can be adjusted in the front-rear direction. A plurality of grounded wheels 25 are pivotally supported on the lower side of the outer surface of the wheel frame 23 at predetermined intervals. The left and right rear wheels 24 and a plurality of ground wheels 25 and the left and right traveling wheels are connected to the driving wheels 27 that transmit power from the traveling mission case 26 mounted on the front end of the traveling frame 6. Each of the crawlers 7 is wound and stretched. Reference numeral 25a denotes an auxiliary wheel.
[0022]
The front / rear inclination sensor 2 for detecting the front / rear inclination of the airframe 1 and the left / right inclination sensor 49 for detecting the right / left inclination are arranged at appropriate positions on the traveling frame 6, and the state of inclination by the front / rear and left / right inclination sensors 2, 49 is set. A front / rear control switch 50 and a left / right control switch 51 for automatically performing front / rear horizontal control and left / right horizontal control of the body 1 by detection are arranged.
[0023]
A controller 52 for controlling the operation of the automatic circuit by providing a CPU is provided. As shown in FIG. 8, the front / rear tilt sensor 2, cutting height sensor 4, vehicle speed sensor 28, cutting height are connected to the input side of the controller 52. The control switch 17 is connected to the left / right tilt sensor 49, the front / rear stroke sensor 47, both the left / right stroke sensors 48, the front / rear control switch 50, the left / right control switch 51, and the like. A pitching electromagnetic valve 53 for operating the pitching cylinder 43, left and right rolling electromagnetic valves 54 for operating the left and right rolling cylinders 45, an unloading valve 55, and the like are connected to each other.
[0024]
In the pitching control by the controller 52, the pitching cylinder 43 is operated, the pitching arm 37 is turned up and down, and the right rear rolling arm 41 is moved up and down via the connecting arm 38, so that the rear parts of the left and right wheel frames 23 are moved. The side is moved up and down with the front rolling shaft 32 as a fulcrum to relatively adjust the airframe 1 to a horizontal state, and in the rolling control by the controller 52, the left or right rolling cylinder 45 is operated to move the front and rear parts By the action of the rolling arms 33 and 41 and the connecting rod 44, the left or right wheel frame 23 can be moved up and down to relatively adjust the body 1 to a horizontal state.
[0025]
As shown in the flowchart of FIG. 9, when the aircraft 1 is tilted back and forth or left and right, the pitching control is performed by detecting the tilt of the front and rear tilt sensor 2 and the left and right tilt sensor 49 when the front and rear control switch 50 and the left and right control switch 51 are turned on. The horizontal control of the machine body 1 is performed by rolling control, and the cutting height sensor 4 is detected when the cutting height control switch 17 is turned on, and the cutting device 3 is moved up and down to adjust the cutting height to a predetermined appropriate position.
[0026]
The rotational angle θ of the reaping device 3 with respect to the body 1 is determined by the rotational angle sensor 56 using a potentiometer or the like provided on the reaping support shaft 16 from the amount of rise of the reaping device 3 due to the sinking of the body 1 during the adjustment control of the cutting height. Then, as shown in FIG. 10, the subsidence amount α of the airframe 1 is obtained from the difference in the rotation angle θ (no subsidence: θ1, at the time of subsidence: θ2).
From the relationship between the rotation angle θ and the subsidence amount α, as shown in the diagram of FIG. 11, by calculating the degree of softness of the soil surface, as shown in the diagram of FIG. The maximum vehicle speed is calculated based on the relationship between the degree of softness and the vehicle speed, and the vehicle speed is detected by the vehicle speed sensor 28. When the detected vehicle speed is appropriate, the vehicle is returned. When the vehicle speed is too high, deceleration control is performed. Let the speed control. Note that only notification may be performed without necessarily controlling the vehicle speed.
[0027]
As described above, in the case of performing the horizontal control of the machine body 1, there is a certain relationship between the rotation angle θ of the cutting support shaft 16 and the sinking amount α of the machine body 1. When the height control is performed, the degree of soil surface softness is calculated from the subsidence amount α of the airframe 1 and shift control is performed to an appropriate vehicle speed, so that the traveling soil surface is roughened or the engine 20 is stopped due to overload. There is no such trouble, and efficient work can be continued by stable running.
[0028]
In addition, since the control itself is basically the same as the conventional one, simple control can be performed at low cost, and in the case of performing load control, the reference engine speed is changed and controlled according to the sinking amount α of the fuselage 1. Alternatively, the sensitivity of the load control may be changed according to the sinking amount α of the body 1.
Further, as shown in the flowchart of FIG. 13, in the case where the horizontal control of the machine body 1 and the cutting height control of the cutting device 3 are performed, the sinking of the machine body 1 is detected by detecting the rotation angle θ of the cutting support shaft 16 as described above. The procedure up to the step of obtaining the amount α and calculating the degree of soil surface softness from the subsidence amount α of the airframe 1 is the same as the procedure shown in the flowchart of FIG. 9. The left and right traveling crawlers 7 that enable optimum turning according to the degree of softness of the soil surface when the turning of the airframe 1 is confirmed by determining whether or not the turning is based on the length of the operation time 57. Is calculated, and the rotational speeds of the left and right traveling crawlers 7 are adjusted and controlled so as to be the rotational difference.
[0029]
As described above, since there is a certain relationship between the rotation angle θ of the cutting support shaft 16 and the sinking amount α of the airframe 1, when performing horizontal control and cutting height control of the airframe 1. By calculating the degree of softness of the soil surface from the sinking amount α of the airframe 1 and adjusting and controlling the number of rotations of the left and right traveling crawlers 7 at the time of turning, it is possible to always make a turn suitable for the degree of softness of the soil surface. In addition, it is possible to prevent a decrease in work efficiency due to roughening of the traveling soil surface.
[Brief description of the drawings]
FIG. 1 is a side view showing the overall configuration of a combine.
FIG. 2 is a block diagram showing an automatic circuit for cutting height control according to the longitudinal tilt of the machine body.
FIG. 3 is a flowchart showing a procedure for cutting height control according to the longitudinal tilt of the machine body.
FIG. 4 is a diagram showing an inclination change rate (differential coefficient and the like) in a state where the aircraft is inclined forward and backward.
FIG. 5 is a diagram showing a lifting amount or a lifting speed of a reaping device according to an inclination change rate.
FIG. 6 is a plan view showing an elevating mechanism of a traveling crawler in horizontal control of the aircraft.
FIG. 7 is a side view showing an elevating mechanism of a traveling crawler in horizontal control of the aircraft.
FIG. 8 is a block diagram showing an automatic circuit for cutting height control during horizontal control of the aircraft.
FIG. 9 is a flowchart showing a procedure for shifting the vehicle speed by detecting the degree of softness of the soil surface during horizontal control and cutting height control of the aircraft.
FIG. 10 is a side action diagram showing the relationship between the rotation angle of the reaping device and the amount of settlement of the airframe.
FIG. 11 is a diagram showing the state of softness of the soil surface from the relationship shown in FIG.
FIG. 12 is a diagram showing the relationship between the soil surface softness and the vehicle speed.
FIG. 13 is a flowchart showing a procedure for adjusting and controlling the number of rotations of the left and right crawlers by detecting the degree of softness of the soil surface during horizontal control and cutting height control of the aircraft.
[Explanation of symbols]
1. Aircraft 2. 2. Front / back inclination detection means 3. Mowing device Cutting height detection means 5. Controller 16a. Elevating cylinder 28. Vehicle speed sensor 56. Rotation angle sensor θ. Rotation angle α. Settlement

Claims (1)

土壌面に対して機体(1)の前後の傾斜状態を検出可能な前後傾斜検出手段(2)と、刈取装置(3)による刈高さを検出可能な刈高検出手段(4)と、この両検出手段(2),(4)の検出値により刈取装置(3)を昇降して自動的に刈高さを調節制御可能なコントローラ(5)とを有するコンバインにおいて、前記前後傾斜検出手段(2)が機体(1)の前後傾斜を検出すると、刈取装置(3)を昇降シリンダ(16a)の作動により所定の適正位置まで刈高センサ(4)の検出により昇降させる構成とし、刈取装置(3)を所定の適正位置まで昇降させて調節制御するにあたり、前記前後傾斜検出手段(2)による機体(1)の前後傾斜状態の検出値から算出した傾斜変化率により、刈取装置(3)を昇降させる速度を算出し、この算出された昇降速度で前記刈取装置(3)を適正な位置へ調節制御する構成とし、さらに、刈取装置(3)を昇降自在に支持する刈取支軸(16)に設けた回動角度センサ(56)によって機体(1)に対する刈取装置(3)の回動角度(θ)を検出し、この回動角度(θ)の検出値から機体(1)の沈下量(α)を求め、該刈取装置(3)の回動角度(θ)と機体(1)の沈下量(α)との関係から土壌面の軟弱度合を算出する構成とすると共に、算出した土壌面の軟弱度合に対する適正車速を予め設定する構成とし、車速センサ(28)によって検出したコンバインの車速が、前記土壌面の軟弱度合に対する適正車速となるようにコンバインの車速制御を行なうように構成したことを特徴とするコンバイン。A front / rear inclination detecting means (2) capable of detecting the front / rear inclination state of the airframe (1) with respect to the soil surface, a cutting height detecting means (4) capable of detecting a cutting height by the cutting device (3), and In the combine having the controller (5) capable of automatically adjusting and controlling the cutting height by raising and lowering the cutting device (3) according to the detection values of both detection means (2) and (4), the forward / backward inclination detecting means ( When 2) detects the forward / backward inclination of the airframe (1), the reaping device (3) is moved up and down by the operation of the elevating cylinder (16a) to the predetermined appropriate position by detection of the cutting height sensor (4). In adjusting and controlling 3) by raising and lowering to a predetermined appropriate position, the reaping device (3) is controlled by the inclination change rate calculated from the detected value of the front and rear inclination state of the airframe (1) by the front and rear inclination detection means (2). Calculate the lifting speed and calculate The reaping device (3) is adjusted and controlled to an appropriate position at an ascending / descending speed, and a rotation angle sensor (56) provided on a reaping support shaft (16) that supports the reaping device (3) so as to be movable up and down. ) To detect the rotation angle (θ) of the cutting device (3) relative to the machine body (1), and obtain the subsidence amount (α) of the machine body (1) from the detected value of the rotation angle (θ). The configuration is such that the degree of softness of the soil surface is calculated from the relationship between the rotation angle (θ) of (3) and the amount of settlement (α) of the airframe (1), and the appropriate vehicle speed for the calculated degree of softness of the soil surface is set in advance. The combine is configured to perform the vehicle speed control of the combine so that the vehicle speed of the combine detected by the vehicle speed sensor (28) becomes an appropriate vehicle speed for the degree of softness of the soil surface.
JP23850197A 1997-09-03 1997-09-03 Combine Expired - Fee Related JP3864511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23850197A JP3864511B2 (en) 1997-09-03 1997-09-03 Combine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23850197A JP3864511B2 (en) 1997-09-03 1997-09-03 Combine

Publications (2)

Publication Number Publication Date
JPH1175466A JPH1175466A (en) 1999-03-23
JP3864511B2 true JP3864511B2 (en) 2007-01-10

Family

ID=17031193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23850197A Expired - Fee Related JP3864511B2 (en) 1997-09-03 1997-09-03 Combine

Country Status (1)

Country Link
JP (1) JP3864511B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4586225B2 (en) * 2000-01-21 2010-11-24 井関農機株式会社 Combine with tilt control
JP5001037B2 (en) * 2007-03-16 2012-08-15 ヤンマー株式会社 Combine
JP6364677B2 (en) * 2014-11-13 2018-08-01 ヤンマー株式会社 Field condition measurement method
WO2016076320A1 (en) * 2014-11-13 2016-05-19 ヤンマー株式会社 Field state detection system
JP6545498B2 (en) * 2015-03-26 2019-07-17 住友建機株式会社 Shovel

Also Published As

Publication number Publication date
JPH1175466A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP3864511B2 (en) Combine
JP3319047B2 (en) Combine horizontal control body
JPH11155345A (en) Moving device of working vehicle
JP2004113211A (en) Reaping machine-moving unit of combine
JP2890540B2 (en) Traveling equipment such as combine
JP3641891B2 (en) Combine traveling device
JP2861141B2 (en) Combine traveling control device
JP4586225B2 (en) Combine with tilt control
JP3854728B2 (en) Combine height control device
JP3780736B2 (en) Combine body level controller
JP3657355B2 (en) Combine
JP3419111B2 (en) Combine horizontal control system
JP3663785B2 (en) Farm vehicle traveling equipment
JP2001148928A (en) Horizontal controller for vehicle body such as combine harvester
JP2000159157A (en) Travelling device for traveller
JP3652262B2 (en) Attitude control device for mowing harvester
JP3699204B2 (en) Combine attitude control device
JP3066832B2 (en) Control device for mobile farm machine
JP2841744B2 (en) Automatic control device for combine traveling equipment
JP2536191B2 (en) Traveling equipment such as combine
JP2001238529A (en) Combine harvester
JP3890677B2 (en) Working vehicle traveling device
JP2000060271A (en) Controlling device for judging reaping mode of farming vehicle
JP3552261B2 (en) Combine lift control system
JPH08228563A (en) Combine harvester

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151013

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees