WO2016076320A1 - Field state detection system - Google Patents

Field state detection system Download PDF

Info

Publication number
WO2016076320A1
WO2016076320A1 PCT/JP2015/081630 JP2015081630W WO2016076320A1 WO 2016076320 A1 WO2016076320 A1 WO 2016076320A1 JP 2015081630 W JP2015081630 W JP 2015081630W WO 2016076320 A1 WO2016076320 A1 WO 2016076320A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
field
control device
work vehicle
camera
Prior art date
Application number
PCT/JP2015/081630
Other languages
French (fr)
Japanese (ja)
Inventor
敏史 平松
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014231128A external-priority patent/JP2016095660A/en
Priority claimed from JP2014231130A external-priority patent/JP6364677B2/en
Priority claimed from JP2014231129A external-priority patent/JP2016095661A/en
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020177015637A priority Critical patent/KR102121646B1/en
Priority to AU2015347785A priority patent/AU2015347785B9/en
Publication of WO2016076320A1 publication Critical patent/WO2016076320A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions

Definitions

  • the present invention relates to a system for detecting field hardness and work finish as a field state, and in particular, a camera is mounted on a work vehicle, the work vehicle and a field scene are photographed by the camera, and the field hardness is determined from the amount of settlement.
  • the present invention relates to a technique for measuring and simultaneously detecting an abnormality of a work machine from a change in a farm scene.
  • a cone-shaped sensing part whose penetration depth changes according to the hardness of the soil surface, a shaft fixed to the upper part of the sensing part and extending upward, and this shaft is fixed at all times during measurement. It is equipped with a holding part that opens and a display part that displays the amount of movement of the shaft, and the shaft is fixed by the holding part so as to be in contact with the soil surface to be measured, and then the fixing of the shaft is released.
  • a technique is known in which the sensing unit is allowed to fall naturally and penetrate into the soil, and the hardness of the soil surface is measured by the penetration depth at this time (see, for example, Patent Document 1).
  • the hardness can be roughly determined by measuring only a few locations in a narrow field.
  • the fields where rice, wheat, potatoes, etc. are cultivated are large, and when it is desired to know the distribution of the overall hardness, it is necessary to measure several tens or more points in order.
  • the sensing part had to penetrate the soil once, and the labor and time required for the measurement were considerably increased.
  • the present invention has been made in view of the above situation, and is intended to continuously detect the state of the field and to easily obtain the hardness and working state of the entire field.
  • the present invention is provided with a camera that is attached to a work vehicle and photographs a predetermined position of the work vehicle and a farm scene below the work vehicle, calculates the height of the work vehicle at a predetermined position relative to the farm scene, and returns to the farm field.
  • the hardness of the field is measured from the amount of settlement.
  • the present invention includes a camera that is attached to an accompanying traveling work vehicle that performs work in parallel with an autonomous traveling work vehicle, and that captures a predetermined position of the autonomous traveling work vehicle and a farm scene below the work vehicle.
  • the height of the predetermined position is calculated, and the hardness of the field is measured from the amount of settlement to the field.
  • the measured hardness is continuously written in a field map and stored in a storage device as hardness distribution data.
  • a camera for photographing a state after work is mounted on the work vehicle and connected to a control device, and the control device performs image processing on a video photographed by the camera during work, This is a comparison with the stored normal work image.
  • the control device is connected to a stopping means for stopping running and work, and when different image data is obtained for a post-work video and a normal work video shot by the camera, it is determined as abnormal, Stops running and work.
  • the control device can communicate with a management server via a communication line, and stores the hardness distribution data, the normal work video, and the abnormal work video in a database of the management server.
  • the control device is capable of communicating with a remote control device via a communication device. When the control device determines that the abnormality has occurred, the control device notifies the remote control device.
  • the hardness can be continuously measured while the work vehicle is traveling, and the labor and time required for the hardness measurement can be significantly reduced. Also, there is almost no operation for measurement, and handling becomes easy.
  • Control block diagram The figure which shows the state at the time of the work by an autonomous running work vehicle. The figure which shows the reference
  • the control block diagram The figure which shows the normal working image of a working state. The figure which shows the work image in which abnormality occurred in the work state.
  • the steering wheel 4 is rotated to rotate the front wheels 9 and 9 through the steering device.
  • the steering direction of the autonomous traveling work vehicle 1 is detected by the steering sensor 20.
  • the steering sensor 20 is composed of an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9.
  • the detection configuration of the steering sensor 20 is not limited as long as the steering direction is recognized, and the rotation of the steering handle 4 may be detected or the operation amount of the power steering may be detected.
  • the detection value obtained by the steering sensor 20 is input to the control device 30.
  • the control device 30 includes a CPU (central processing unit), a storage device 30m such as a RAM and a ROM, an interface, and the like, and the storage device 30m stores a program, data, and the like for operating the autonomous traveling work vehicle 1.
  • a driver's seat 5 is disposed behind the steering handle 4 and a mission case 6 is disposed below the driver's seat 5.
  • Rear axle cases 8 and 8 are connected to the left and right sides of the transmission case 6, and rear wheels 10 and 10 are supported on the rear axle cases 8 and 8 via axles.
  • the power from the engine 3 is shifted by a transmission (a main transmission or an auxiliary transmission) in the mission case 6 so that the rear wheels 10 and 10 can be driven.
  • the transmission is constituted by, for example, a hydraulic continuously variable transmission, and the movable swash plate of a variable displacement hydraulic pump is operated by a transmission means 44 such as a motor so that the transmission can be changed.
  • the speed change means 44 is connected to the control device 30.
  • the rotational speed of the rear wheel 10 is detected by the vehicle speed sensor 27 and is input to the control device 30 as the traveling speed.
  • the vehicle speed detection method and the arrangement position of the vehicle speed sensor 27 are not limited.
  • the transmission case 6 houses a PTO clutch and a PTO transmission.
  • the PTO clutch is turned on and off by a PTO on / off means 45.
  • the PTO on / off means 45 is connected to the control device 30 to connect and disconnect the power to the PTO shaft. It can be controlled.
  • a front axle case 7 is supported on a front frame 13 that supports the engine 3, front wheels 9 and 9 are supported on both sides of the front axle case 7, and power from the transmission case 6 can be transmitted to the front wheels 9 and 9. It is configured.
  • the front wheels 9, 9 are steered wheels, which can be turned by turning the steering handle 4, and the front wheels 9, 9 are driven by a steering actuator 40 comprising a power steering cylinder as drive means for the steering device. Left and right steering rotation is possible.
  • the steering actuator 40 is connected to the control device 30 and is controlled and driven by automatic traveling means.
  • the controller 30 is connected to an engine controller 60 serving as an engine rotation control means, and the engine controller 60 is connected to an engine speed sensor 61, a water temperature sensor, a hydraulic pressure sensor, and the like so that the state of the engine can be detected.
  • the engine controller 60 detects the load from the set rotational speed and the actual rotational speed, and controls so as not to overload.
  • the fuel tank 15 disposed in the vicinity of the step 81 is provided with a level sensor 29 for detecting the liquid level of the fuel and is connected to the control device 30.
  • the display means 49 provided on the dashboard of the autonomous traveling work vehicle 1 includes fuel.
  • a fuel gauge for displaying the remaining amount is provided and connected to the control device 30.
  • display means 49 for displaying an engine tachometer, a fuel gauge, a hydraulic pressure, etc., an abnormal monitor, a set value, and the like are arranged.
  • a rotary tiller 24 is installed on the rear side of the tractor body as a work machine via a work machine mounting device 23 so as to be movable up and down.
  • An elevating cylinder 26 is provided on the transmission case 6, and the elevating arm 26 constituting the work implement mounting device 23 is rotated by moving the elevating cylinder 26 to extend and lower the rotary tiller 24.
  • the lift cylinder 26 is expanded and contracted by the operation of the lift actuator 25, and the lift actuator 25 is connected to the control device 30.
  • a mobile communication device 33 constituting a satellite positioning system is connected to the control device 30.
  • a mobile GPS antenna 34 and a data receiving antenna 38 are connected to the mobile communication device 33, and the mobile GPS antenna 34 and the data receiving antenna 38 are provided on the cabin 11.
  • the mobile communicator 33 is provided with a position calculating means for transmitting latitude and longitude to the control device 30 so that the current position can be grasped.
  • GPS United States
  • high-precision positioning can be performed by using a satellite positioning system (GNSS) such as a quasi-zenith satellite (Japan) or a Glonus satellite (Russia). In this embodiment, GPS is used. explain.
  • the autonomous traveling work vehicle 1 includes a gyro sensor 31 for obtaining attitude change information of the airframe, and an orientation sensor 32 for detecting a traveling direction, and is connected to the control device 30.
  • the traveling direction can be calculated from the GPS position measurement, the direction sensor 32 can be omitted.
  • the gyro sensor 31 detects an angular velocity of a tilt (pitch) in the longitudinal direction of the autonomous traveling work vehicle 1, an angular velocity of a tilt (roll) in the lateral direction of the aircraft, and an angular velocity of turning (yaw).
  • the gyro sensor 31 By integrating and calculating the three angular velocities, it is possible to obtain the tilt angle in the front-rear direction and the left-right direction and the turning angle of the body of the autonomous traveling work vehicle 1.
  • Specific examples of the gyro sensor 31 include a mechanical gyro sensor, an optical gyro sensor, a fluid gyro sensor, and a vibration gyro sensor.
  • the gyro sensor 31 is connected to the control device 30 and inputs information relating to the three angular velocities to the control device 30.
  • the direction sensor 32 detects the direction (traveling direction) of the autonomous traveling work vehicle 1.
  • a specific example of the direction sensor 32 includes a magnetic direction sensor.
  • the direction sensor 32 is connected to the control device 30 and inputs information related to the orientation of the aircraft to the control device 30.
  • control device 30 calculates the signals acquired from the gyro sensor 31 and the azimuth sensor 32 by the attitude / azimuth calculation means, and the attitude of the autonomous traveling work vehicle 1 (orientation, forward / backward direction of the body, left / right direction of the body, turning direction). )
  • GPS global positioning system
  • GPS was originally developed as a navigation support system for aircraft, ships, etc., and is composed of 24 GPS satellites (four on six orbital planes) orbiting about 20,000 kilometers above the sky. It consists of a control station that performs tracking and control, and a user communication device that performs positioning.
  • Various positioning methods using GPS include single positioning, relative positioning, DGPS (differential GPS) positioning, RTK-GPS (real-time kinematics-GPS) positioning, and any of these methods can be used.
  • DGPS differential GPS
  • RTK-GPS real-time kinematics-GPS
  • RTK-GPS real-time kinematics-GPS positioning is performed by simultaneously performing GPS observations on a reference station whose position is known and a mobile station whose position is to be obtained. Is transmitted in real time, and the position of the mobile station is obtained in real time based on the position result of the reference station.
  • a mobile communication device 33 serving as a mobile station, a mobile GPS antenna 34, and a data receiving antenna 38 are arranged in the autonomous traveling work vehicle 1, and a fixed communication device 35 serving as a reference station, a fixed GPS antenna 36, and a data transmission antenna. 39 is disposed at a predetermined position that does not interfere with the work in the field.
  • the phase is measured (relative positioning) at both the reference station and the mobile station, and the data measured by the fixed communication device 35 of the reference station is transmitted from the data transmission antenna 39. Transmit to the data receiving antenna 38.
  • the mobile GPS antenna 34 disposed in the autonomous traveling work vehicle 1 receives signals from GPS satellites 37, 37. This signal is transmitted to the mobile communication device 33 for positioning. At the same time, signals from GPS satellites 37, 37... Are received by a fixed GPS antenna 36 serving as a reference station, measured by a fixed communication device 35, transmitted to the mobile communication device 33, and the observed data is analyzed and moved. Determine the station location. The position information obtained in this way is transmitted to the control device 30.
  • the control device 30 in the autonomous traveling work vehicle 1 includes automatic traveling means for automatically traveling.
  • the automatic traveling means receives radio waves transmitted from the GPS satellites 37, 37.
  • the position information of the aircraft is obtained at time intervals, the displacement information and the orientation information of the aircraft are obtained from the gyro sensor 31 and the orientation sensor 32, and along the set route R preset by the aircraft based on the position information, the displacement information, and the orientation information.
  • the steering actuator 40, the speed change means 44, the lifting / lowering actuator 25, the PTO on / off means 45, the engine controller 60, etc. are controlled so as to automatically run and work automatically.
  • the positional information on the outer periphery of the field H which becomes a work range is also set in advance by a known method and stored in the storage device 30m.
  • the obstacle sensor 41 is arranged in the autonomous traveling work vehicle 1 and connected to the control device 30 so as not to come into contact with the obstacle.
  • the obstacle sensor 41 is composed of a laser sensor or an ultrasonic sensor, and is arranged at the front, side, or rear of the aircraft and connected to the control device 30, and there are obstacles at the front, side, or rear of the aircraft. Whether or not an obstacle approaches within a set distance is controlled to stop traveling.
  • the autonomous traveling work vehicle 1 is mounted with a camera 42F that captures the front, a work implement behind the camera 42R, and a camera 42R that captures the state of the field after work, and is connected to the control device 30.
  • the cameras 42F and 42R are arranged on the front part and the rear part of the roof of the cabin 11.
  • the arrangement positions are not limited, and one camera is arranged on the front part and the rear part in the cabin 11.
  • the camera 42 may be arranged at the center of the aircraft and rotated around the vertical axis to photograph the surroundings, or the camera 42 may be arranged at the four corners of the aircraft to photograph the surroundings of the aircraft. Images captured by the cameras 42F and 42R are displayed on the display device 113 of the remote operation device 112 provided in the accompanying traveling work vehicle 100.
  • the travel route R and work process of the autonomous traveling work vehicle 1 can be set by the remote operation device 112.
  • the remote control device 112 can remotely control the autonomous traveling work vehicle 1, monitor the traveling state of the autonomous traveling work vehicle 1 and the operating state of the work implement, and store work data.
  • the remote control device 112 is configured to be detachable from an operation unit such as a dashboard of the autonomous traveling work vehicle 1.
  • the remote control device 112 can be taken out of the autonomous traveling work vehicle 1 and carried and operated.
  • the remote operation device 112 can be configured by, for example, a notebook or tablet personal computer. In this embodiment, a tablet computer is used.
  • the remote operation device 112 and the autonomous traveling work vehicle 1 are configured to be able to communicate with each other wirelessly, and the autonomous traveling work vehicle 1 and the remote operation device 112 are provided with communication devices 110 and 111 for communication, respectively. ing.
  • the communication device 111 is integrated with the remote control device 112.
  • the communication means is configured to be able to communicate with each other via a wireless LAN such as WiFi.
  • the remote operation device 112 is provided with a display device 113 as a touch panel type operation screen that can be operated by touching the screen on the surface of the housing, and a communication device 111, a CPU, a storage device, a battery, and the like are housed in the housing.
  • the set travel route R is preset in the field H as shown in FIG. 3 and stored in the storage device 30m, and the autonomous traveling work vehicle 1 follows the set travel route R in the automatic travel start control mode. Can be run.
  • map data information
  • map data is referred to in order to determine the position of the field H, to travel using a satellite positioning system, and to set a travel route R.
  • Public map data, map data distributed by map makers, etc., car navigation map data, and the like are used.
  • the work in this embodiment is a plowing work by the rotary plowing device 24, the set travel route R is a reciprocating plowing, and a parallel running work with the accompanying traveling work vehicle 100 is performed.
  • the work is performed by moving to the strip, but in the independent work by the autonomous traveling work vehicle 1, the headland is turned and then the work is performed by moving to the adjacent strip. Note that the headland is twice as long as the left-right width W1 of the work implement in the case of a tilling work by the rotary tiller 24.
  • the mounting position and the reference length of the GPS antenna 34 are input in advance in the storage device 30a of the control device 30.
  • the mounting position of the GPS antenna 34 can be mounted above the center of gravity of the tractor or above the center of the rear axle, and is not limited. In this embodiment, it arrange
  • the size (reference length) of the autonomous traveling work vehicle (tractor) 1 and the work implement (rotary tilling device 24) is set so as to protrude from the field H or avoid obstacles when automatically traveling. Necessary and stored in the storage device 30a before the work. As shown in FIG.
  • the reference length is the total length L0 and the total width W0 of the tractor, the distance L1 from the GPS antenna 34 to the front end of the aircraft, with the work implement (rotary tiller 24) mounted on the tractor, GPS The distance L2 from the antenna 34 to the rear end of the work implement, the distance L3 from the GPS antenna 34 to the working position of the work implement, the left and right width W1 of the work implement (when the work implement is wider than the width of the tractor), work overlap The amount (overlapping width) W2, the amount of eccentricity S1 (not shown) from the center of the left and right when the work implement is arranged eccentrically, etc., which are obtained from the specifications of the tractor and work implement, respectively, and stored in the control device 30 Save in device 30a.
  • the distance L1 from the GPS antenna 34 to the front end of the machine body is used when calculating the distance from the field edge such as a front fence or an obstacle appearing in front, and the distance from the GPS antenna 34 to the rear end of the work machine.
  • the distance L2 is used, for example, when calculating the distance to the straw or the field when moving backward, and the distance L3 from the GPS antenna 34 to the working position of the work implement recognizes the work start position and work end position on the headland. It is necessary for.
  • the distance from the front edge or rear edge of the machine body to the field edge or obstacle can be displayed by the display means 49 or the display device 113.
  • the operating position of the working machine is determined by the working machine, and in the case of the rotary tiller 24, it is below the tilling claw shaft and slightly deviates from the center of the rotary tiller 24 in plan view. Further, the working position of the boom sprayer is below the spray tub, and is different from the center of the boom sprayer (the entire spraying device) in the plan view. As described above, the working position of the work implement is not limited to the center in the plan view, and is different for each work implement, and thus needs to be set for each work implement.
  • the method of inputting the reference length to the storage device 30a is input from the remote operation device 112, but may be input from the display means 49 configured with a touch panel.
  • a value corresponding to the type and model of the work machine is stored in the storage device 30m in advance, so that the work machine is called and selected every time the work machine is replaced. It is also possible to set the length.
  • a storage unit 271 that previously reads the reference length is provided in the work machine, and when the work machine is attached to the autonomous traveling work vehicle 1, the reference length is set by the reading device 64 provided in the autonomous traveling work vehicle 1. It is also possible to set the reference length to the control device 30 by reading it, or by connecting the storage means 271 and the control device 30 via a cable to read the reference length.
  • the storage means 271 may be an IC chip, a magnetic storage medium, a barcode, a two-dimensional code, or the like, and is not limited.
  • the autonomous traveling work vehicle 1 when working with the autonomous traveling work vehicle 1, the autonomous traveling work vehicle 1 is positioned at the headland work start position, and the start switch is operated to start the work.
  • the control device 30 of the autonomous traveling work vehicle 1 controls the steering actuator 40 serving as a steering device along the set traveling route R, reaches the farm field end, and the working position of the work machine is the work start / end position E (FIG. 3).
  • the PTO on / off means 45 is turned off to stop the rotation of the rotary and stop the work implement.
  • the elevating actuator 25 is operated to extend the elevating cylinder 26 and raise the rotary tiller 24.
  • the PTO on / off means 45 is turned on to rotate the rotary and simultaneously drive the work implement.
  • the elevating actuator 25 is actuated to reduce the elevating cylinder 26 and the rotary tiller 24 is lowered to start the work.
  • the autonomous traveling work vehicle including the position calculating means for positioning the position of the aircraft using the satellite positioning system and the control device 30 that automatically travels and works along the set traveling route R.
  • the control device 30 controls the steering device so that the center of the machine body is along the set travel route, and drives the work machine when the work center of the work machine is located at the work start position E, so that the work center of the work machine is operated. Since the work implement is controlled to stop when it is located at the work end position E, the headland is neatly aligned and the work of the headland can be cleaned. In addition, there is less duplication in the spraying work, and there is no need for correction in the planting work.
  • the working position of the work implement is configured to be settable by the remote operation device 112, it can be easily set even at a position away from the autonomous traveling work vehicle 1.
  • the working machine is provided with working position storage means of the working machine, and the working position storage means is configured to be connectable to a working machine information reading device provided in the machine.
  • the reference length can be easily set in the control device 30 only by connecting the action position storage means and the work implement information reading device when the vehicle 1 is mounted on the main unit.
  • the autonomous traveling work vehicle 1 includes a camera 42 that captures a predetermined position of the farm scene G and the autonomous traveling work vehicle 1.
  • the camera 32 is installed so as to photograph the center of the rear wheel 10 as the farm scene G and a predetermined position.
  • the center of the rear wheel 10 and the farm scene G are simultaneously photographed and input to the control device 30 to perform image processing.
  • the control device 30 calculates the distance between the center of the rear wheel 10 of the work vehicle and the farm scene G.
  • the height L1 is obtained.
  • the height of the center of the rear wheel 10 is measured in advance in a state where the airframe is not sunk, and is set as the standard height L0. Then, the difference L2 between the standard height L0 and the measured height L1 is calculated to determine the amount of subsidence L2 on the field, and the hardness of the field is measured. However, since the relationship between the amount of settlement and the hardness of the field has a relationship that sinks deeper as it is softer, the relationship is stored in advance in the storage device 30m as a map or the like.
  • the predetermined position is the center of the rear wheel 10 in the present embodiment, but is not limited, and may be the lower end of the step 81 that is positioned approximately in the center of the front and rear as shown in FIG. The part which can measure the height with the farm scene G may be sufficient, and the center of the front, back, left and right of the body is most preferable.
  • the camera 42 captures a predetermined position of the farm scene G and the autonomous traveling work vehicle 1, obtains the height, measures the subsidence amount L2, and works according to the subsidence amount L2.
  • the height of the rotary tiller 24 is controlled. That is, when the farm scene is soft and the subsidence amount L2 is large, the elevating actuator 25 is actuated to extend the elevating cylinder 26 and the rotary tiller 24 is raised according to the subsidence amount L2.
  • the rotary tiller 24 is lowered in the reverse manner. Accordingly, the tilling depth can be controlled more accurately, and the tilling depth can be made constant.
  • the sowing depth can be kept constant in the sowing work, the fertilization depth in the fertilization work, and the planting depth in the transplanting work, and the work performance can be improved.
  • the amount of settlement L2 is measured at every predetermined distance while traveling (working), and the measured value or the hardness calculated from the measured value is continuously written in the measurement position on the map of the field H (field map). Create a hardness distribution.
  • This writing may be a number, a dot or a color, and is not limited.
  • control device 30 can communicate with the management server 400 via the communication line 401, and the measurement is made to the management server 400 via the communication line 401 after the work (measurement) is completed (or simultaneously with the work).
  • the hardness distribution obtained by the operation is transmitted and stored as hardness distribution data in the field.
  • the management server 400 stores the hardness distribution data in the database as field data so that it can be used for future work and the like.
  • the field data includes address, tilling date, planting date and harvest date of crop, type and amount of pest control and fertilization, spraying date, and the like.
  • the subsidence amount is photographed by attaching a camera 42 to an accompanying traveling work vehicle 100 that performs work while traveling along with the autonomous traveling work vehicle 1.
  • the step 81 (or the center of the rear wheel 10) as the predetermined position of the work vehicle 1 and the farm scene G are photographed, and the height of the autonomous traveling work vehicle 1 with respect to the farm scene G is measured. It is also possible to do.
  • the predetermined position may be the rear wheel 10, the fuselage frame, or the like as described above.
  • the step 81 of the autonomous traveling work vehicle 1 and the image of the farm scene G are transmitted to the control device 130 of the accompanying traveling work vehicle 100, and in the control device 130, the subsidence amount L2 is the distance between the farm scene G and step 81, The difference in height in step 81 from the road surface that does not sink is calculated to obtain the sinking amount L2, and the hardness is calculated.
  • This subsidence amount L2 is transmitted to the control device 30 of the autonomous traveling work vehicle 1 via the communication devices 133 and 110, and is used for plowing depth control of the rotary tiller 24. Moreover, it transmits also to the remote control apparatus 112, and hardness is written in the agricultural field map according to the traveling position of the autonomous traveling work vehicle 1. Further, as described above, the hardness is transmitted and written to the management server 400 via the communication line 401 and stored as hardness distribution data.
  • the camera 42 that is attached to the autonomous traveling work vehicle 1 and photographs a predetermined position such as the step 81 of the body of the autonomous traveling work vehicle 1 or the center of the rear wheel 10 and the farm scene G below the predetermined position. Equipped with the step 81 of the autonomous traveling work vehicle 1 with respect to the farm scene G or while calculating the height of the rear wheel 10 to measure the hardness of the farm field from the amount of subsidence of the aircraft with respect to the farm scene G at an arbitrary position. Hardness can be continuously measured while the autonomous traveling work vehicle 1 is traveling, and labor and time required for the hardness measurement can be significantly reduced. Also, there is almost no operation for measurement, and handling becomes easy. Moreover, work accuracy can be made high by applying the hardness of the field obtained by the measurement to plowing depth control etc.
  • the accompanying traveling work vehicle 100 which works in parallel with the autonomous traveling working vehicle 1, and the field scene G below the step 81 or the center of the rear wheel 10 as a predetermined position of the autonomous traveling working vehicle 1 and the like. And calculating the height of step 81 of the autonomous traveling work vehicle 1 or the center of the rear wheel 10 with respect to the farm scene G at an arbitrary position, and calculating the hardness of the farm field from the amount of settlement on the farm field. Since it measures, it will measure from the side position away from the autonomous running work vehicle 1, an error becomes small, and the height of a predetermined position can be measured correctly.
  • the measured hardness is continuously written in the field map and stored in the storage device 30m of the control device 30 as hardness distribution data, it becomes possible to follow the height control of the work implement, Accuracy can be improved.
  • the hardness distribution of the field can be easily understood.
  • a field condition detection device a field scene after work is photographed using the camera 42R, and the state is compared with the state of the field scene after normal work. It can also be judged that
  • the work in this embodiment is a flat work forming work by the rotary tiller 24, and the set travel route R is a reciprocating work that moves to an adjacent strip on a headland.
  • the working state is photographed by the camera 42R, and when an abnormality occurs, the running and work are stopped by the stopping means, and an alarm is issued to notify the operator.
  • the camera 42R is attached to the upper rear end of the cabin 11 and connected to the control device 30.
  • the camera 42R takes a picture of a state where the rotary tiller 24 has successfully formed flat culverts, and the control device 30 is in a field state. Enter as.
  • the shooting of the field state may be performed by the camera 42R attached to the accompanying traveling work vehicle 100 that performs work while traveling along the autonomous traveling work vehicle 1.
  • the image data obtained by the photographing is subjected to image processing and stored in advance in the storage device 30m as a normal work image (normal work video).
  • This normal work image is stored as a normal work image when the image taken when the work is first performed in the field where the work is performed, and is compared with the image at the time of the work on the basis of the normal work image. To determine if it is abnormal. However, the previous normal work image may be stored as the normal work image.
  • the image data photographed by the camera 42R is compared with the normal work image, and when the tilling claw is broken or dropped, as shown in FIG. A different part J results.
  • the stopping means may stop the engine by the engine controller 60.
  • an alarm is generated by sounding a buzzer or a horn, blinking a direction indicator, etc., and it is recognized by the surroundings that an abnormality has occurred. Report what happened and report it. An alarm may be issued from the speaker of the remote operation device 112.
  • control device 30 can communicate with the management server 400 via the communication line 401, transmits that an abnormality has occurred in the management server 400 via the communication line 401, and stores it as abnormality data.
  • the management server 400 it is stored in a database as a maintenance record so that it can be used for future occurrence of abnormality.
  • the captured video can be displayed on the display means 49 on the dashboard 14 or the display device 113 of the remote operation device 112.
  • the remote operation device 112 is provided with a restart button 118 as a work restart operation means, and the determination of the abnormality is canceled by operating the restart button 118 so that traveling and work can be restarted.
  • a malfunction may occur in which grass and cocoons and the like are mixed and are judged to be different from the surrounding normal parts and stop. In this way, when there is no abnormality, it stops and the operator can easily determine that it is normal, and canceling the abnormality determination by operating the restart button 118 without checking the entire work machine or system So that work can be resumed promptly.
  • the form of work is not limited to flat work forming work by the rotary tiller 24 but can be applied to other work.
  • seedlings are planted on the ridges at a predetermined interval. Therefore, seedlings are planted at a predetermined interval on a predetermined strip, and green seedlings appear in a row in a photographed normal image.
  • the rows are interrupted, and it can be easily determined by image processing that a stock loss has occurred.
  • the traveling is stopped in the same manner as described above, and the work is stopped. At the same time, an alarm is issued and a notification is made. It is also possible to use a rice transplanter as the transplanter.
  • the autonomous traveling work vehicle including the position calculating means for positioning the position of the aircraft using the satellite positioning system and the control device 30 that automatically travels and works along the set traveling route R.
  • the autonomous traveling work vehicle 1 is equipped with a camera 42 ⁇ / b> R that captures a working state and is connected to the control device 30, and is connected to a stop unit that stops traveling and work, and is connected to the control device 30.
  • the video taken by the camera 42R is subjected to image processing and compared with the normal work video stored in advance, and when different image data is obtained, it is determined as abnormal and the running and work are stopped.
  • the autonomous traveling work vehicle 1 when the autonomous traveling work vehicle 1 is automatically driven, when an abnormality occurs in the work state, the work is immediately stopped and the work machine may be damaged. The prevented, and minimize the state of the working poor, it is possible prevent rework. Also, the cause of the abnormality can be easily investigated by viewing the video.
  • control device 30 can communicate with the remote operation device 112 via the communication device 110, and if it is determined that the abnormality has occurred, the control device 30 notifies the remote operation device 112, so that the operator can recognize that an abnormality has occurred. Can respond promptly.
  • the remote operation device 112 is provided with a restart button 118 serving as a work restart operation means, and the operation of the restart button 118 cancels the determination of the abnormality and restarts running and work.
  • the operation can be easily resumed only by the operation of the resume button 118, such as when the operation stops without any trouble, or when the abnormality is resolved by simple operation or simple repair.
  • control device 30 can communicate with the management server 400 via the communication line 401 and stores it in the database of the management server 400 when it is determined as abnormal, the data when the abnormality occurs is It will be stored in the database as a maintenance record, which can be used for dealing with future abnormalities.
  • the present invention can be used for a construction machine, an agricultural work vehicle, or the like in which a plurality of work vehicles perform work on a predetermined field or the like using a satellite positioning system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Guiding Agricultural Machines (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A camera 42 for imaging a prescribed location such as a machine body step 81 or a rear wheel 10 of an autonomous work vehicle 1 and a field surface G thereunder is attached to a prescribed location on the autonomous work vehicle 1. Field hardness is measured from the amount of sinkage of the machine body with respect to the field at random locations by calculating the height of the step 81 or the rear wheel 10 of the autonomous work vehicle 1 with respect to the field surface G from images that are imaged while traveling. The hardness of the field is detected continuously while traveling and recorded in a storage device. Thereby, the distribution of hardness in the field as a whole can be easily obtained.

Description

圃場状態検知システムField condition detection system
 本発明は、圃場状態として、圃場硬さや作業仕上がりを検知するシステムに関し、特に、作業車両にカメラを搭載し、該カメラにより作業車両と圃場面とを撮影して、沈下量から圃場硬さを測定し、同時に圃場面の変化から作業機の異常を検知する技術に関する。 The present invention relates to a system for detecting field hardness and work finish as a field state, and in particular, a camera is mounted on a work vehicle, the work vehicle and a field scene are photographed by the camera, and the field hardness is determined from the amount of settlement. The present invention relates to a technique for measuring and simultaneously detecting an abnormality of a work machine from a change in a farm scene.
 従来、フレームに、土壌表面の硬さに応じて貫入深さが変わる円錐状の感知部と、この感知部の上部に固設されて上方に延びるシャフトと、このシャフトを常時は固定し測定時には開放する挟持部と、該シャフトの移動量を表示する表示部とを備え、測定しようとする土壌表面に接する高さになるように挟持部によりシャフトを固定し、その後シャフトの固定を開放して前記感知部を自然落下させて土壌中に貫入させ、この時の貫入深さにより土壌表面の硬度を測定するようにした技術が公知となっている(例えば、特許文献1参照)。 Conventionally, a cone-shaped sensing part whose penetration depth changes according to the hardness of the soil surface, a shaft fixed to the upper part of the sensing part and extending upward, and this shaft is fixed at all times during measurement. It is equipped with a holding part that opens and a display part that displays the amount of movement of the shaft, and the shaft is fixed by the holding part so as to be in contact with the soil surface to be measured, and then the fixing of the shaft is released. A technique is known in which the sensing unit is allowed to fall naturally and penetrate into the soil, and the hardness of the soil surface is measured by the penetration depth at this time (see, for example, Patent Document 1).
特開平11-94723号公報Japanese Patent Laid-Open No. 11-94723
 前記技術を用いて硬度を測定する場合、狭い圃場であれば数箇所を測定するだけで、大体の硬度は分かる。しかし、稲や麦やイモ類等を栽培する圃場は大きく、全体の硬度の分布を知りたい場合には、数十か所以上の地点を順番に測定しなければならず、前記測定装置を用いて硬度を測定するには、一回一回感知部を土壌中に貫入させなければならず、測定にかかる手間や時間は相当多くなっていた。 When measuring the hardness using the above-mentioned technique, the hardness can be roughly determined by measuring only a few locations in a narrow field. However, the fields where rice, wheat, potatoes, etc. are cultivated are large, and when it is desired to know the distribution of the overall hardness, it is necessary to measure several tens or more points in order. In order to measure the hardness, the sensing part had to penetrate the soil once, and the labor and time required for the measurement were considerably increased.
 本発明は以上の如き状況に鑑みてなされたものであり、連続的に圃場の状態を検知でき、圃場全体の硬さや作業状態を容易に得られるようにしようとする。 The present invention has been made in view of the above situation, and is intended to continuously detect the state of the field and to easily obtain the hardness and working state of the entire field.
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段を説明する。
 即ち、本発明は、作業車両に取り付けられ、該作業車両の所定位置とその下方の圃場面とを撮影するカメラを備え、圃場面に対する作業車両の所定位置の高さを演算して、圃場への沈下量から圃場の硬さを測定するものである。
The problem to be solved by the present invention is as described above. Next, means for solving the problem will be described.
That is, the present invention is provided with a camera that is attached to a work vehicle and photographs a predetermined position of the work vehicle and a farm scene below the work vehicle, calculates the height of the work vehicle at a predetermined position relative to the farm scene, and returns to the farm field. The hardness of the field is measured from the amount of settlement.
 本発明は、自律走行作業車両に併走して作業を行う随伴走行作業車両に取り付けられ、前記自律走行作業車両の所定位置とその下方の圃場面とを撮影するカメラを備え、圃場面に対する作業車両の所定位置の高さを演算して、圃場への沈下量から圃場の硬さを測定するものである。
 本発明は、前記測定された硬さは圃場マップに連続的に書き込まれて硬さ分布データとして記憶装置に保存されるものである。
The present invention includes a camera that is attached to an accompanying traveling work vehicle that performs work in parallel with an autonomous traveling work vehicle, and that captures a predetermined position of the autonomous traveling work vehicle and a farm scene below the work vehicle. The height of the predetermined position is calculated, and the hardness of the field is measured from the amount of settlement to the field.
In the present invention, the measured hardness is continuously written in a field map and stored in a storage device as hardness distribution data.
 本発明は、前記作業車両には作業後の状態を撮影するカメラが搭載されて制御装置と接続され、該制御装置は、作業時において、前記カメラで撮影された映像を画像処理して、予め記憶させた正常作業映像と比較するものである。
 本発明は、前記制御装置が、走行及び作業を停止させる停止手段と接続され、前記カメラで撮影された作業後の映像と正常作業映像とに異なる画像データが得られると、異常と判断し、走行及び作業を停止するものである。
 本発明は、前記制御装置が、通信回線を介して管理サーバと通信可能とされ、前記硬さ分布データ及び前記正常作業映像と異常作業映像を、前記管理サーバのデータベースに記憶するものである。
 本発明は、前記制御装置が、通信装置を介して遠隔操作装置と通信可能とされ、前記異常と判断すると、遠隔操作装置に通報するものである。
In the present invention, a camera for photographing a state after work is mounted on the work vehicle and connected to a control device, and the control device performs image processing on a video photographed by the camera during work, This is a comparison with the stored normal work image.
In the present invention, the control device is connected to a stopping means for stopping running and work, and when different image data is obtained for a post-work video and a normal work video shot by the camera, it is determined as abnormal, Stops running and work.
In the present invention, the control device can communicate with a management server via a communication line, and stores the hardness distribution data, the normal work video, and the abnormal work video in a database of the management server.
In the present invention, the control device is capable of communicating with a remote control device via a communication device. When the control device determines that the abnormality has occurred, the control device notifies the remote control device.
 以上のような手段を用いることにより、作業車両を走行させながら連続的に硬さを測定できるようになり、硬さ測定にかかる手間及び時間を格段に削減できるようになる。また、測定するための操作が殆どなく、取扱いが簡単となる。 By using the means as described above, the hardness can be continuously measured while the work vehicle is traveling, and the labor and time required for the hardness measurement can be significantly reduced. Also, there is almost no operation for measurement, and handling becomes easy.
自律走行作業車両に硬さを測定するカメラを設けた概略側面図。The schematic side view which provided the camera which measures hardness on an autonomous running work vehicle. 制御ブロック図。Control block diagram. 自律走行作業車両による作業時の状態を示す図。The figure which shows the state at the time of the work by an autonomous running work vehicle. 自律走行作業車両の基準長さを示す図。The figure which shows the reference | standard length of an autonomous running work vehicle. 随伴走行作業車両に硬さを測定するカメラを設け、自律走行作業車両の沈下を測定する概略側面図。The schematic side view which provides the camera which measures hardness to an accompanying traveling work vehicle, and measures the subsidence of an autonomous traveling work vehicle. 同じく制御ブロック図。The control block diagram. 作業状態の正常な作業画像を示す図。The figure which shows the normal working image of a working state. 作業状態に異常が生じた作業画像を示す図。The figure which shows the work image in which abnormality occurred in the work state.
 無人で自動走行可能な自律走行作業車両1をトラクタとし、自律走行作業車両1に装着される作業機としてロータリ耕耘装置24が装着された実施形態について説明する。なお、F方向を前方として説明する。 An embodiment will be described in which an autonomous traveling work vehicle 1 capable of unmanned and automatic traveling is used as a tractor, and a rotary tiller 24 is mounted as a working machine mounted on the autonomous traveling work vehicle 1. Note that the F direction is assumed to be the front.
 図1、図2において、自律走行作業車両1となるトラクタの全体構成について説明する。ボンネット2内にエンジン3が内設され、該ボンネット2の後部のキャビン11内にダッシュボード14が設けられ、ダッシュボード14上に操向操作手段となるステアリングハンドル4が設けられている。該ステアリングハンドル4の回動により操向装置を介して前輪9・9の向きが回動される。自律走行作業車両1の操向方向は操向センサ20により検知される。操向センサ20はロータリエンコーダ等の角度センサからなり、前輪9の回動基部に配置される。但し、操向センサ20の検知構成は限定するものではなく操舵方向が認識されるものであればよく、ステアリングハンドル4の回動を検知したり、パワーステアリングの作動量を検知してもよい。操向センサ20により得られた検出値は制御装置30に入力される。制御装置30はCPU(中央演算処理装置)やRAMやROM等の記憶装置30mやインターフェース等を備え、記憶装置30mには自律走行作業車両1を動作させるためのプログラムやデータ等が記憶される。 1 and 2, the overall configuration of the tractor serving as the autonomous traveling work vehicle 1 will be described. An engine 3 is installed in the hood 2, a dashboard 14 is provided in a cabin 11 at the rear of the hood 2, and a steering handle 4 serving as a steering operation means is provided on the dashboard 14. The steering wheel 4 is rotated to rotate the front wheels 9 and 9 through the steering device. The steering direction of the autonomous traveling work vehicle 1 is detected by the steering sensor 20. The steering sensor 20 is composed of an angle sensor such as a rotary encoder, and is disposed at the rotation base of the front wheel 9. However, the detection configuration of the steering sensor 20 is not limited as long as the steering direction is recognized, and the rotation of the steering handle 4 may be detected or the operation amount of the power steering may be detected. The detection value obtained by the steering sensor 20 is input to the control device 30. The control device 30 includes a CPU (central processing unit), a storage device 30m such as a RAM and a ROM, an interface, and the like, and the storage device 30m stores a program, data, and the like for operating the autonomous traveling work vehicle 1.
 前記ステアリングハンドル4の後方に運転席5が配設され、運転席5下方にミッションケース6が配置される。ミッションケース6の左右両側にリアアクスルケース8・8が連設され、該リアアクスルケース8・8には車軸を介して後輪10・10が支承される。エンジン3からの動力はミッションケース6内の変速装置(主変速装置や副変速装置)により変速されて、後輪10・10を駆動可能としている。変速装置は例えば油圧式無段変速装置で構成して、可変容量型の油圧ポンプの可動斜板をモータ等の変速手段44により作動させて変速可能としている。変速手段44は制御装置30と接続されている。後輪10の回転数は車速センサ27により検知され、走行速度として制御装置30に入力される。但し、車速の検知方法や車速センサ27の配置位置は限定するものではない。 A driver's seat 5 is disposed behind the steering handle 4 and a mission case 6 is disposed below the driver's seat 5. Rear axle cases 8 and 8 are connected to the left and right sides of the transmission case 6, and rear wheels 10 and 10 are supported on the rear axle cases 8 and 8 via axles. The power from the engine 3 is shifted by a transmission (a main transmission or an auxiliary transmission) in the mission case 6 so that the rear wheels 10 and 10 can be driven. The transmission is constituted by, for example, a hydraulic continuously variable transmission, and the movable swash plate of a variable displacement hydraulic pump is operated by a transmission means 44 such as a motor so that the transmission can be changed. The speed change means 44 is connected to the control device 30. The rotational speed of the rear wheel 10 is detected by the vehicle speed sensor 27 and is input to the control device 30 as the traveling speed. However, the vehicle speed detection method and the arrangement position of the vehicle speed sensor 27 are not limited.
 ミッションケース6内にはPTOクラッチやPTO変速装置が収納され、PTOクラッチはPTO入切手段45により入り切りされ、PTO入切手段45は制御装置30と接続され、PTO軸への動力の断接を制御可能としている。 The transmission case 6 houses a PTO clutch and a PTO transmission. The PTO clutch is turned on and off by a PTO on / off means 45. The PTO on / off means 45 is connected to the control device 30 to connect and disconnect the power to the PTO shaft. It can be controlled.
 前記エンジン3を支持するフロントフレーム13にはフロントアクスルケース7が支持され、該フロントアクスルケース7の両側に前輪9・9が支承され、前記ミッションケース6からの動力が前輪9・9に伝達可能に構成している。前記前輪9・9は操向輪となっており、ステアリングハンドル4の回動操作により回動可能とするとともに、操向装置の駆動手段となるパワステシリンダからなる操舵アクチュエータ40により前輪9・9が左右操向回動可能となっている。操舵アクチュエータ40は制御装置30と接続され、自動走行手段により制御されて駆動される。 A front axle case 7 is supported on a front frame 13 that supports the engine 3, front wheels 9 and 9 are supported on both sides of the front axle case 7, and power from the transmission case 6 can be transmitted to the front wheels 9 and 9. It is configured. The front wheels 9, 9 are steered wheels, which can be turned by turning the steering handle 4, and the front wheels 9, 9 are driven by a steering actuator 40 comprising a power steering cylinder as drive means for the steering device. Left and right steering rotation is possible. The steering actuator 40 is connected to the control device 30 and is controlled and driven by automatic traveling means.
 制御装置30にはエンジン回転制御手段となるエンジンコントローラ60が接続され、エンジンコントローラ60にはエンジン回転数センサ61や水温センサや油圧センサ等が接続され、エンジンの状態を検知できるようにしている。エンジンコントローラ60では設定回転数と実回転数から負荷を検出し、過負荷とならないように制御する。 The controller 30 is connected to an engine controller 60 serving as an engine rotation control means, and the engine controller 60 is connected to an engine speed sensor 61, a water temperature sensor, a hydraulic pressure sensor, and the like so that the state of the engine can be detected. The engine controller 60 detects the load from the set rotational speed and the actual rotational speed, and controls so as not to overload.
 また、ステップ81近傍に配置した燃料タンク15には燃料の液面を検知するレベルセンサ29が配置されて制御装置30と接続され、自律走行作業車両1のダッシュボードに設ける表示手段49には燃料の残量を表示する燃料計が設けられ制御装置30と接続されている。前記ダッシュボード14上にはエンジンの回転計や燃料計や油圧等や異常を示すモニタや設定値等を表示する表示手段49が配置されている。 The fuel tank 15 disposed in the vicinity of the step 81 is provided with a level sensor 29 for detecting the liquid level of the fuel and is connected to the control device 30. The display means 49 provided on the dashboard of the autonomous traveling work vehicle 1 includes fuel. A fuel gauge for displaying the remaining amount is provided and connected to the control device 30. On the dashboard 14, display means 49 for displaying an engine tachometer, a fuel gauge, a hydraulic pressure, etc., an abnormal monitor, a set value, and the like are arranged.
 また、トラクタ機体後方に作業機装着装置23を介して作業機としてロータリ耕耘装置24が昇降自在に装設させている。前記ミッションケース6上に昇降シリンダ26が設けられ、該昇降シリンダ26を伸縮させることにより、作業機装着装置23を構成する昇降アームを回動させてロータリ耕耘装置24を昇降できるようにしている。昇降シリンダ26は昇降アクチュエータ25の作動により伸縮され、昇降アクチュエータ25は制御装置30と接続されている。 Also, a rotary tiller 24 is installed on the rear side of the tractor body as a work machine via a work machine mounting device 23 so as to be movable up and down. An elevating cylinder 26 is provided on the transmission case 6, and the elevating arm 26 constituting the work implement mounting device 23 is rotated by moving the elevating cylinder 26 to extend and lower the rotary tiller 24. The lift cylinder 26 is expanded and contracted by the operation of the lift actuator 25, and the lift actuator 25 is connected to the control device 30.
 制御装置30には衛星測位システムを構成する移動通信機33が接続されている。移動通信機33には移動GPSアンテナ34とデータ受信アンテナ38が接続され、移動GPSアンテナ34とデータ受信アンテナ38は前記キャビン11上に設けられる。該移動通信機33には、位置算出手段を備えて緯度と経度を制御装置30に送信し、現在位置を把握できるようにしている。なお、GPS(米国)に加えて準天頂衛星(日本)やグロナス衛星(ロシア)等の衛星測位システム(GNSS)を利用することで精度の高い測位ができるが、本実施形態ではGPSを用いて説明する。 A mobile communication device 33 constituting a satellite positioning system is connected to the control device 30. A mobile GPS antenna 34 and a data receiving antenna 38 are connected to the mobile communication device 33, and the mobile GPS antenna 34 and the data receiving antenna 38 are provided on the cabin 11. The mobile communicator 33 is provided with a position calculating means for transmitting latitude and longitude to the control device 30 so that the current position can be grasped. In addition to GPS (United States), high-precision positioning can be performed by using a satellite positioning system (GNSS) such as a quasi-zenith satellite (Japan) or a Glonus satellite (Russia). In this embodiment, GPS is used. explain.
 自律走行作業車両1は、機体の姿勢変化情報を得るためにジャイロセンサ31、および進行方向を検知するために方位センサ32を具備し制御装置30と接続されている。但し、GPSの位置計測から進行方向を算出できるので、方位センサ32を省くことができる。
 ジャイロセンサ31は自律走行作業車両1の機体前後方向の傾斜(ピッチ)の角速度、機体左右方向の傾斜(ロール)の角速度、および旋回(ヨー)の角速度、を検出するものである。該三つの角速度を積分計算することにより、自律走行作業車両1の機体の前後方向および左右方向への傾斜角度、および旋回角度を求めることが可能である。ジャイロセンサ31の具体例としては、機械式ジャイロセンサ、光学式ジャイロセンサ、流体式ジャイロセンサ、振動式ジャイロセンサ等が挙げられる。ジャイロセンサ31は制御装置30に接続され、当該三つの角速度に係る情報を制御装置30に入力する。
The autonomous traveling work vehicle 1 includes a gyro sensor 31 for obtaining attitude change information of the airframe, and an orientation sensor 32 for detecting a traveling direction, and is connected to the control device 30. However, since the traveling direction can be calculated from the GPS position measurement, the direction sensor 32 can be omitted.
The gyro sensor 31 detects an angular velocity of a tilt (pitch) in the longitudinal direction of the autonomous traveling work vehicle 1, an angular velocity of a tilt (roll) in the lateral direction of the aircraft, and an angular velocity of turning (yaw). By integrating and calculating the three angular velocities, it is possible to obtain the tilt angle in the front-rear direction and the left-right direction and the turning angle of the body of the autonomous traveling work vehicle 1. Specific examples of the gyro sensor 31 include a mechanical gyro sensor, an optical gyro sensor, a fluid gyro sensor, and a vibration gyro sensor. The gyro sensor 31 is connected to the control device 30 and inputs information relating to the three angular velocities to the control device 30.
 方位センサ32は自律走行作業車両1の向き(進行方向)を検出するものである。方位センサ32の具体例としては磁気方位センサ等が挙げられる。方位センサ32は制御装置30に接続され、機体の向きに係る情報を制御装置30に入力する。 The direction sensor 32 detects the direction (traveling direction) of the autonomous traveling work vehicle 1. A specific example of the direction sensor 32 includes a magnetic direction sensor. The direction sensor 32 is connected to the control device 30 and inputs information related to the orientation of the aircraft to the control device 30.
 こうして制御装置30は、上記ジャイロセンサ31、方位センサ32から取得した信号を姿勢・方位演算手段により演算し、自律走行作業車両1の姿勢(向き、機体前後方向及び機体左右方向の傾斜、旋回方向)を求める。 In this way, the control device 30 calculates the signals acquired from the gyro sensor 31 and the azimuth sensor 32 by the attitude / azimuth calculation means, and the attitude of the autonomous traveling work vehicle 1 (orientation, forward / backward direction of the body, left / right direction of the body, turning direction). )
 次に、自律走行作業車両1の位置情報をGPS(グローバル・ポジショニング・システム)を用いて取得する方法について説明する。
 GPSは、元来航空機・船舶等の航法支援用として開発されたシステムであって、上空約二万キロメートルを周回する二十四個のGPS衛星(六軌道面に四個ずつ配置)、GPS衛星の追跡と管制を行う管制局、測位を行うための利用者の通信機で構成される。
 GPSを用いた測位方法としては、単独測位、相対測位、DGPS(ディファレンシャルGPS)測位、RTK-GPS(リアルタイムキネマティック-GPS)測位など種々の方法が挙げられ、これらいずれの方法を用いることも可能であるが、本実施形態では測定精度の高いRTK-GPS測位方式を採用し、この方法について図1、図2より説明する。
Next, a method for acquiring the position information of the autonomous traveling work vehicle 1 using the GPS (global positioning system) will be described.
GPS was originally developed as a navigation support system for aircraft, ships, etc., and is composed of 24 GPS satellites (four on six orbital planes) orbiting about 20,000 kilometers above the sky. It consists of a control station that performs tracking and control, and a user communication device that performs positioning.
Various positioning methods using GPS include single positioning, relative positioning, DGPS (differential GPS) positioning, RTK-GPS (real-time kinematics-GPS) positioning, and any of these methods can be used. However, in this embodiment, an RTK-GPS positioning system with high measurement accuracy is adopted, and this method will be described with reference to FIGS.
 RTK-GPS(リアルタイムキネマティック-GPS)測位は、位置が判っている基準局と、位置を求めようとする移動局とで同時にGPS観測を行い、基準局で観測したデータを無線等の方法で移動局にリアルタイムで送信し、基準局の位置成果に基づいて移動局の位置をリアルタイムに求める方法である。 RTK-GPS (real-time kinematics-GPS) positioning is performed by simultaneously performing GPS observations on a reference station whose position is known and a mobile station whose position is to be obtained. Is transmitted in real time, and the position of the mobile station is obtained in real time based on the position result of the reference station.
 本実施形態においては、自律走行作業車両1に移動局となる移動通信機33と移動GPSアンテナ34とデータ受信アンテナ38が配置され、基準局となる固定通信機35と固定GPSアンテナ36とデータ送信アンテナ39が圃場の作業の邪魔にならない所定位置に配設される。本実施形態のRTK-GPS(リアルタイムキネマティック-GPS)測位は、基準局および移動局の両方で位相の測定(相対測位)を行い、基準局の固定通信機35で測位したデータをデータ送信アンテナ39からデータ受信アンテナ38に送信する。 In the present embodiment, a mobile communication device 33 serving as a mobile station, a mobile GPS antenna 34, and a data receiving antenna 38 are arranged in the autonomous traveling work vehicle 1, and a fixed communication device 35 serving as a reference station, a fixed GPS antenna 36, and a data transmission antenna. 39 is disposed at a predetermined position that does not interfere with the work in the field. In the RTK-GPS (real-time kinematic-GPS) positioning of the present embodiment, the phase is measured (relative positioning) at both the reference station and the mobile station, and the data measured by the fixed communication device 35 of the reference station is transmitted from the data transmission antenna 39. Transmit to the data receiving antenna 38.
 自律走行作業車両1に配置された移動GPSアンテナ34はGPS衛星37・37・・・からの信号を受信する。この信号は移動通信機33に送信され測位される。そして、同時に基準局となる固定GPSアンテナ36でGPS衛星37・37・・・からの信号を受信し、固定通信機35で測位し移動通信機33に送信し、観測されたデータを解析して移動局の位置を決定する。こうして得られた位置情報は制御装置30に送信される。 The mobile GPS antenna 34 disposed in the autonomous traveling work vehicle 1 receives signals from GPS satellites 37, 37. This signal is transmitted to the mobile communication device 33 for positioning. At the same time, signals from GPS satellites 37, 37... Are received by a fixed GPS antenna 36 serving as a reference station, measured by a fixed communication device 35, transmitted to the mobile communication device 33, and the observed data is analyzed and moved. Determine the station location. The position information obtained in this way is transmitted to the control device 30.
 こうして、この自律走行作業車両1における制御装置30は自動走行させる自動走行手段を備えて、自動走行手段はGPS衛星37・37・・・から送信される電波を受信して移動通信機33において設定時間間隔で機体の位置情報を求め、ジャイロセンサ31及び方位センサ32から機体の変位情報および方位情報を求め、これら位置情報と変位情報と方位情報に基づいて機体が予め設定した設定経路Rに沿って走行するように、操舵アクチュエータ40、変速手段44、昇降アクチュエータ25、PTO入切手段45、エンジンコントローラ60等を制御して自動走行し自動で作業できるようにしている。なお、作業範囲となる圃場Hの外周の位置情報も周知の方法によって予め設定され、記憶装置30mに記憶されている。 Thus, the control device 30 in the autonomous traveling work vehicle 1 includes automatic traveling means for automatically traveling. The automatic traveling means receives radio waves transmitted from the GPS satellites 37, 37. The position information of the aircraft is obtained at time intervals, the displacement information and the orientation information of the aircraft are obtained from the gyro sensor 31 and the orientation sensor 32, and along the set route R preset by the aircraft based on the position information, the displacement information, and the orientation information. The steering actuator 40, the speed change means 44, the lifting / lowering actuator 25, the PTO on / off means 45, the engine controller 60, etc. are controlled so as to automatically run and work automatically. In addition, the positional information on the outer periphery of the field H which becomes a work range is also set in advance by a known method and stored in the storage device 30m.
 また、自律走行作業車両1には障害物センサ41が配置されて制御装置30と接続され、障害物に当接しないようにしている。例えば、障害物センサ41はレーザセンサや超音波センサで構成して機体の前部や側部や後部に配置して制御装置30と接続し、機体の前方や側方や後方に障害物があるかどうかを検出し、障害物が設定距離以内に近づくと走行を停止させるように制御する。 Moreover, the obstacle sensor 41 is arranged in the autonomous traveling work vehicle 1 and connected to the control device 30 so as not to come into contact with the obstacle. For example, the obstacle sensor 41 is composed of a laser sensor or an ultrasonic sensor, and is arranged at the front, side, or rear of the aircraft and connected to the control device 30, and there are obstacles at the front, side, or rear of the aircraft. Whether or not an obstacle approaches within a set distance is controlled to stop traveling.
 また、自律走行作業車両1には前方を撮影するカメラ42Fや後方の作業機や作業後の圃場の状態を撮影するカメラ42Rが搭載され制御装置30と接続されている。カメラ42F・42Rは本実施形態ではキャビン11のルーフの前部上と後部上に配置しているが、配置位置は限定するものではなく、キャビン11内の前部上と後部上や一つのカメラ42を機体中心に配置して鉛直軸を中心に回転させて周囲を撮影しても、複数のカメラ42を機体の四隅に配置して機体周囲を撮影する構成であってもよい。カメラ42F・42Rで撮影された映像は随伴走行作業車両100に備えられた遠隔操作装置112の表示装置113に表示される。 Also, the autonomous traveling work vehicle 1 is mounted with a camera 42F that captures the front, a work implement behind the camera 42R, and a camera 42R that captures the state of the field after work, and is connected to the control device 30. In this embodiment, the cameras 42F and 42R are arranged on the front part and the rear part of the roof of the cabin 11. However, the arrangement positions are not limited, and one camera is arranged on the front part and the rear part in the cabin 11. The camera 42 may be arranged at the center of the aircraft and rotated around the vertical axis to photograph the surroundings, or the camera 42 may be arranged at the four corners of the aircraft to photograph the surroundings of the aircraft. Images captured by the cameras 42F and 42R are displayed on the display device 113 of the remote operation device 112 provided in the accompanying traveling work vehicle 100.
 前記自律走行作業車両1の走行経路Rや作業工程は遠隔操作装置112により設定可能としている。また、遠隔操作装置112は自律走行作業車両1を遠隔操作したり、自律走行作業車両1の走行状態や作業機の作動状態を監視したり、作業データを記憶したりすることができ、制御装置(CPUやメモリ)119や通信装置111や表示装置113等を備える。 The travel route R and work process of the autonomous traveling work vehicle 1 can be set by the remote operation device 112. The remote control device 112 can remotely control the autonomous traveling work vehicle 1, monitor the traveling state of the autonomous traveling work vehicle 1 and the operating state of the work implement, and store work data. (CPU and memory) 119, communication device 111, display device 113, and the like.
 遠隔操作装置112は、自律走行作業車両1のダッシュボード等の操作部に着脱可能に構成されている。遠隔操作装置112は自律走行作業車両1の外に持ち出して携帯して操作することも可能としている。遠隔操作装置112は例えばノート型やタブレット型のパーソナルコンピュータで構成することができる。本実施形態ではタブレット型のコンピュータで構成している。 The remote control device 112 is configured to be detachable from an operation unit such as a dashboard of the autonomous traveling work vehicle 1. The remote control device 112 can be taken out of the autonomous traveling work vehicle 1 and carried and operated. The remote operation device 112 can be configured by, for example, a notebook or tablet personal computer. In this embodiment, a tablet computer is used.
 さらに、遠隔操作装置112と自律走行作業車両1は無線で相互に通信可能に構成しており、自律走行作業車両1と遠隔操作装置112には通信するための通信装置110・111がそれぞれ設けられている。前記通信装置111は遠隔操作装置112に一体的に構成されている。通信手段は例えばWiFi等の無線LANで相互に通信可能に構成されている。遠隔操作装置112は画面に触れることで操作可能なタッチパネル式の操作画面とした表示装置113を筐体表面に設け、筐体内に通信装置111やCPUや記憶装置やバッテリ等を収納している。 Further, the remote operation device 112 and the autonomous traveling work vehicle 1 are configured to be able to communicate with each other wirelessly, and the autonomous traveling work vehicle 1 and the remote operation device 112 are provided with communication devices 110 and 111 for communication, respectively. ing. The communication device 111 is integrated with the remote control device 112. The communication means is configured to be able to communicate with each other via a wireless LAN such as WiFi. The remote operation device 112 is provided with a display device 113 as a touch panel type operation screen that can be operated by touching the screen on the surface of the housing, and a communication device 111, a CPU, a storage device, a battery, and the like are housed in the housing.
 このような構成において、図3に示すような圃場Hに設定走行経路Rを予め設定して記憶装置30mに記憶し、自動走行開始制御モードのとき自律走行作業車両1が設定走行経路Rに沿って走行させることができる。なお、前記圃場Hの位置を定めたり、衛星測位システムを利用して走行したり、走行経路Rを設定したりするために地図データ(情報)が参照されるが、この地図データは、インターネットに公開されている地図データや地図メーカ等が配信している地図データやカーナビ地図データ等が用いられる。 In such a configuration, the set travel route R is preset in the field H as shown in FIG. 3 and stored in the storage device 30m, and the autonomous traveling work vehicle 1 follows the set travel route R in the automatic travel start control mode. Can be run. Note that map data (information) is referred to in order to determine the position of the field H, to travel using a satellite positioning system, and to set a travel route R. Public map data, map data distributed by map makers, etc., car navigation map data, and the like are used.
 本実施形態での作業はロータリ耕耘装置24による耕耘作業とし、設定走行経路Rは往復耕耘とし、随伴走行作業車両100と共に併走作業を行うため、枕地で旋回したときに1列飛ばして次の条に移動して作業を行うが、自律走行作業車両1による単独作業では、枕地旋回した後隣接の条に移動して作業を行う。なお、枕地はロータリ耕耘装置24による耕耘作業の場合、作業機の左右幅W1の二倍の長さとする。 The work in this embodiment is a plowing work by the rotary plowing device 24, the set travel route R is a reciprocating plowing, and a parallel running work with the accompanying traveling work vehicle 100 is performed. The work is performed by moving to the strip, but in the independent work by the autonomous traveling work vehicle 1, the headland is turned and then the work is performed by moving to the adjacent strip. Note that the headland is twice as long as the left-right width W1 of the work implement in the case of a tilling work by the rotary tiller 24.
 そして、設定走行経路Rに沿って耕耘作業するために、GPSアンテナ34の取付位置と基準長さが制御装置30の記憶装置30aに予め入力されている。GPSアンテナ34の取付位置は、トラクタの重心上方や旋回の中央となる後車軸の左右中央上方等に取り付け可能であり限定するものではない。本実施形態では本機(トラクタ)の平面視における中央に配置している。 And, in order to perform the tilling work along the set travel route R, the mounting position and the reference length of the GPS antenna 34 are input in advance in the storage device 30a of the control device 30. The mounting position of the GPS antenna 34 can be mounted above the center of gravity of the tractor or above the center of the rear axle, and is not limited. In this embodiment, it arrange | positions in the center in planar view of this machine (tractor).
 また、自律走行作業車両(トラクタ)1と作業機(ロータリ耕耘装置24)の大きさ(基準長さ)は、自動走行させるときに圃場Hからはみ出したり障害物を避けたりするため等のために必要であり、作業前に予め記憶装置30aに記憶させている。基準長さとしては、図4に示すように、トラクタの全長L0と全幅W0と、トラクタに作業機(ロータリ耕耘装置24)を装着した状態において、GPSアンテナ34から機体前端までの距離L1、GPSアンテナ34から作業機の後端までの距離L2、GPSアンテナ34から作業機の作用位置までの距離L3、作業機の左右幅W1(作業機に幅がトラクタの幅より広い場合)、作業オーバーラップ量(重複幅)W2、作業機が偏心して配置される場合は左右中心からの偏心量S1(図示せず)等であり、それぞれトラクタ及び作業機の諸元表から得て制御装置30の記憶装置30aに保存する。 Further, the size (reference length) of the autonomous traveling work vehicle (tractor) 1 and the work implement (rotary tilling device 24) is set so as to protrude from the field H or avoid obstacles when automatically traveling. Necessary and stored in the storage device 30a before the work. As shown in FIG. 4, the reference length is the total length L0 and the total width W0 of the tractor, the distance L1 from the GPS antenna 34 to the front end of the aircraft, with the work implement (rotary tiller 24) mounted on the tractor, GPS The distance L2 from the antenna 34 to the rear end of the work implement, the distance L3 from the GPS antenna 34 to the working position of the work implement, the left and right width W1 of the work implement (when the work implement is wider than the width of the tractor), work overlap The amount (overlapping width) W2, the amount of eccentricity S1 (not shown) from the center of the left and right when the work implement is arranged eccentrically, etc., which are obtained from the specifications of the tractor and work implement, respectively, and stored in the control device 30 Save in device 30a.
 前記GPSアンテナ34から機体前端までの距離L1は、前方の畦等の圃場端や前方に現れた障害物との距離を演算するとき等に使用し、GPSアンテナ34から作業機の後端までの距離L2は、後進した時に畦や圃場までの距離を演算するとき等に使用され、GPSアンテナ34から作業機の作用位置までの距離L3は、枕地における作業開始位置や作業終了位置を認識するために必要となる。前記機体の前端や後端から圃場端や障害物までの距離等は表示手段49や表示装置113により表示することができる。 The distance L1 from the GPS antenna 34 to the front end of the machine body is used when calculating the distance from the field edge such as a front fence or an obstacle appearing in front, and the distance from the GPS antenna 34 to the rear end of the work machine. The distance L2 is used, for example, when calculating the distance to the straw or the field when moving backward, and the distance L3 from the GPS antenna 34 to the working position of the work implement recognizes the work start position and work end position on the headland. It is necessary for. The distance from the front edge or rear edge of the machine body to the field edge or obstacle can be displayed by the display means 49 or the display device 113.
 前記作業機の作用位置は作業機によって決まり、ロータリ耕耘装置24の場合、耕耘爪軸の下方となり、ロータリ耕耘装置24の平面視における中央とは多少ずれる。また、ブームスプレーヤの作業作用位置は噴霧杆の下方となり、ブームスプレーヤ(散布装置全体)の平面視における中央と異なる位置となる。このように、作業機の作用位置は平面視の中央とは限らず、作業機毎に異なるため、作業機毎に設定する必要がある。 The operating position of the working machine is determined by the working machine, and in the case of the rotary tiller 24, it is below the tilling claw shaft and slightly deviates from the center of the rotary tiller 24 in plan view. Further, the working position of the boom sprayer is below the spray tub, and is different from the center of the boom sprayer (the entire spraying device) in the plan view. As described above, the working position of the work implement is not limited to the center in the plan view, and is different for each work implement, and thus needs to be set for each work implement.
 前記基準長さの記憶装置30aへの入力方法は、遠隔操作装置112から入力するようにしているが、タッチパネルで構成した表示手段49から入力してもよい。また、作業機毎に決まった値であるため、予め作業機の機種や型式に応じた値を記憶装置30mに記憶させておくことにより、作業機を交換する毎に呼び出して選択して前記基準長さを設定できるようにすることもできる。 The method of inputting the reference length to the storage device 30a is input from the remote operation device 112, but may be input from the display means 49 configured with a touch panel. In addition, since the value is determined for each work machine, a value corresponding to the type and model of the work machine is stored in the storage device 30m in advance, so that the work machine is called and selected every time the work machine is replaced. It is also possible to set the length.
 また、作業機に予め基準長さを読み込んだ記憶手段271を設けておき、作業機を自律走行作業車両1に装着したときに、自律走行作業車両1に設けた読み取り装置64により基準長さを読み込ませたり、ケーブルを介して前記記憶手段271と制御装置30を接続して基準長さを読み込ませたりして、制御装30置に基準長さを設定することも可能である。前記記憶手段271はICチップや磁気記憶媒体やバーコードや二次元コード等であってもよく限定するものではない。 In addition, a storage unit 271 that previously reads the reference length is provided in the work machine, and when the work machine is attached to the autonomous traveling work vehicle 1, the reference length is set by the reading device 64 provided in the autonomous traveling work vehicle 1. It is also possible to set the reference length to the control device 30 by reading it, or by connecting the storage means 271 and the control device 30 via a cable to read the reference length. The storage means 271 may be an IC chip, a magnetic storage medium, a barcode, a two-dimensional code, or the like, and is not limited.
 こうして、自律走行作業車両1により作業を行う場合、枕地の作業開始位置に自律走行作業車両1を位置させ、始動スイッチを操作して作業を開始する。自律走行作業車両1の制御装置30は設定走行経路Rに沿うように操向装置となる操舵アクチュエータ40を制御し、圃場端に至り作業機の作用位置が作業開始・終了位置E(図3)に到達すると、PTO入切手段45をオフとしてロータリの回転を停止して作業機を停止すると同時に昇降アクチュエータ25を作動させて昇降シリンダ26を伸長させロータリ耕耘装置24を上昇させる。
 そして、枕地旋回して逆方向を向いて進行し、作業機の作用位置が作業開始・終了位置Eに至ると、PTO入切手段45をオンとしてロータリを回転させて作業機を駆動すると同時に昇降アクチュエータ25を作動させて昇降シリンダ26縮小させてロータリ耕耘装置24を下降させ、作業を開始する。こうして、作業を繰り返すことで、圃場端の枕地において、作業開始・終了位置Eが揃い、きれいな仕上がりとすることができ、作業効率を向上することができる。
Thus, when working with the autonomous traveling work vehicle 1, the autonomous traveling work vehicle 1 is positioned at the headland work start position, and the start switch is operated to start the work. The control device 30 of the autonomous traveling work vehicle 1 controls the steering actuator 40 serving as a steering device along the set traveling route R, reaches the farm field end, and the working position of the work machine is the work start / end position E (FIG. 3). , The PTO on / off means 45 is turned off to stop the rotation of the rotary and stop the work implement. At the same time, the elevating actuator 25 is operated to extend the elevating cylinder 26 and raise the rotary tiller 24.
Then, when the headland turns and advances in the opposite direction and the working position of the work implement reaches the work start / end position E, the PTO on / off means 45 is turned on to rotate the rotary and simultaneously drive the work implement. The elevating actuator 25 is actuated to reduce the elevating cylinder 26 and the rotary tiller 24 is lowered to start the work. By repeating the work in this manner, the work start / end positions E are aligned on the headland at the end of the field, and a beautiful finish can be achieved, and work efficiency can be improved.
 以上のように、衛星測位システムを利用して機体の位置を測位する位置算出手段と、設定した走行経路Rに沿って自動的に走行及び作業をさせる制御装置30とを備えた自律走行作業車両1において、前記制御装置30は、機体中心が設定走行経路に沿うように操向装置を制御し、作業機の作用中心が作業開始位置Eに位置すると作業機を駆動し、作業機の作用中心が作業終了位置Eに位置すると作業機を停止するように制御するので、枕地がきれいに揃い、枕地の作業の仕上がりをきれいにできる。また、散布作業では重複が少なくなり、植付作業等では修正をする必要がなくなる。 As described above, the autonomous traveling work vehicle including the position calculating means for positioning the position of the aircraft using the satellite positioning system and the control device 30 that automatically travels and works along the set traveling route R. 1, the control device 30 controls the steering device so that the center of the machine body is along the set travel route, and drives the work machine when the work center of the work machine is located at the work start position E, so that the work center of the work machine is operated. Since the work implement is controlled to stop when it is located at the work end position E, the headland is neatly aligned and the work of the headland can be cleaned. In addition, there is less duplication in the spraying work, and there is no need for correction in the planting work.
 前記作業機の作用位置は、遠隔操作装置112により設定可能に構成されるので、自律走行作業車両1から離れた位置でも容易に設定することができる。
 また、前記作業機には、作業機の作用位置記憶手段が設けられ、該作用位置記憶手段は本機に設けた作業機情報読み取り装置と接続可能に構成されるので、作業機を自律走行作業車両1の本機に装着したときに、作用位置記憶手段と作業機情報読み取り装置とを接続するだけで、基準長さを容易に制御装置30に設定することができる。
Since the working position of the work implement is configured to be settable by the remote operation device 112, it can be easily set even at a position away from the autonomous traveling work vehicle 1.
The working machine is provided with working position storage means of the working machine, and the working position storage means is configured to be connectable to a working machine information reading device provided in the machine. The reference length can be easily set in the control device 30 only by connecting the action position storage means and the work implement information reading device when the vehicle 1 is mounted on the main unit.
 次に、圃場状態検知装置として、カメラ42により機体の沈下量を演算して圃場の硬さを検知する構成について説明する。図1に示すように、前記自律走行作業車両1には、圃場面Gと自律走行作業車両1の所定位置を撮影するカメラ42を備えている。圃場状態として硬さを検知する場合には、カメラ32は圃場面Gと所定位置として後輪10の中心を撮影するように設置される。この後輪10の中心と圃場面Gとを同時に撮影して制御装置30に入力して画像処理を行い、制御装置30は作業車両の後輪10の中心と圃場面Gの間の距離を演算して高さL1を得る。なお、予め機体が沈まない状態での後輪10の中心の高さが測定されて標準高さL0としている。そして、標準高さL0と測定高さL1との差L2を演算して、圃場への沈下量L2を求め、圃場の硬さを測定するようにしている。但し、沈下量と圃場の硬さの関係は、柔らかいほど深く沈む関係にあるため、予めマップ等としてその関係が記憶装置30mに記憶されている。また、所定位置としては、本実施形態では、後輪10の中心としているが、限定するものではなく、図5に示すように機体前後略中央に位置しているステップ81の下端であってもよく、圃場面Gとの高さを測定できる部分であればよく、機体の前後左右の中央が最も好ましい。 Next, a configuration for detecting the hardness of the field by calculating the amount of subsidence of the airframe by the camera 42 as the field state detection device will be described. As shown in FIG. 1, the autonomous traveling work vehicle 1 includes a camera 42 that captures a predetermined position of the farm scene G and the autonomous traveling work vehicle 1. When the hardness is detected as the farm field state, the camera 32 is installed so as to photograph the center of the rear wheel 10 as the farm scene G and a predetermined position. The center of the rear wheel 10 and the farm scene G are simultaneously photographed and input to the control device 30 to perform image processing. The control device 30 calculates the distance between the center of the rear wheel 10 of the work vehicle and the farm scene G. Thus, the height L1 is obtained. Note that the height of the center of the rear wheel 10 is measured in advance in a state where the airframe is not sunk, and is set as the standard height L0. Then, the difference L2 between the standard height L0 and the measured height L1 is calculated to determine the amount of subsidence L2 on the field, and the hardness of the field is measured. However, since the relationship between the amount of settlement and the hardness of the field has a relationship that sinks deeper as it is softer, the relationship is stored in advance in the storage device 30m as a map or the like. In addition, the predetermined position is the center of the rear wheel 10 in the present embodiment, but is not limited, and may be the lower end of the step 81 that is positioned approximately in the center of the front and rear as shown in FIG. The part which can measure the height with the farm scene G may be sufficient, and the center of the front, back, left and right of the body is most preferable.
 こうして、走行(作業)しながらカメラ42により圃場面Gと自律走行作業車両1の所定位置を撮影して、高さを求めて、沈下量L2を測定し、この沈下量L2に応じて作業機となるロータリ耕耘装置24の高さを制御する。即ち、圃場面が柔らかく沈下量L2が大きいと、昇降アクチュエータ25を作動させて昇降シリンダ26を伸長させてロータリ耕耘装置24を沈下量L2に合わせて上昇させる。圃場面が硬く沈下量L2が小さい場合には前記と逆にロータリ耕耘装置24を下降させるのである。よって、耕深制御がさらに正確に行えるようになり、耕深を一定にすることができる。また例えば、播種作業では播種深さ、施肥作業では施肥深さ、移植作業では植付深さを一定に保つことができ、作業性能を高めることができるようになる。 Thus, while traveling (working), the camera 42 captures a predetermined position of the farm scene G and the autonomous traveling work vehicle 1, obtains the height, measures the subsidence amount L2, and works according to the subsidence amount L2. The height of the rotary tiller 24 is controlled. That is, when the farm scene is soft and the subsidence amount L2 is large, the elevating actuator 25 is actuated to extend the elevating cylinder 26 and the rotary tiller 24 is raised according to the subsidence amount L2. When the farm scene is hard and the subsidence amount L2 is small, the rotary tiller 24 is lowered in the reverse manner. Accordingly, the tilling depth can be controlled more accurately, and the tilling depth can be made constant. In addition, for example, the sowing depth can be kept constant in the sowing work, the fertilization depth in the fertilization work, and the planting depth in the transplanting work, and the work performance can be improved.
 また、走行(作業)しながら所定距離毎に沈下量L2を測定し、その測定値、または、測定値から演算した硬さを圃場Hの地図(圃場マップ)上の測定位置に連続的に書き込んで硬さ分布を作成していく。この書き込みは、数字であっても、点や着色等であってもよく限定するものではない。こうして、表示手段49または遠隔操作装置112の表示装置113に圃場マップを表示させ、硬さ分布を重ねることで、圃場Hのどの位置が硬いか柔らかいかが容易に認識できるようになり、雨の後の作業などでは、柔らかい位置が容易に判るので、その場所を避けたり浅く作業したりして負荷がかからないようにしてスタックすることを未然に防止することが可能となる。 Further, the amount of settlement L2 is measured at every predetermined distance while traveling (working), and the measured value or the hardness calculated from the measured value is continuously written in the measurement position on the map of the field H (field map). Create a hardness distribution. This writing may be a number, a dot or a color, and is not limited. Thus, by displaying the field map on the display means 49 or the display device 113 of the remote control device 112 and overlapping the hardness distribution, it becomes possible to easily recognize which position of the field H is hard or soft, and after rain. In the above work, the soft position can be easily identified, so that it is possible to prevent stacking by avoiding the load by avoiding that place or working shallow.
 さらに、前記制御装置30には、通信回線401を介して管理サーバ400と通信可能とされ、通信回線401を介して管理サーバ400に作業(測定)終了後(または作業と同時)に前記の測定操作により得られた硬さ分布を送信し、圃場における硬さ分布データとして記憶する。管理サーバ400では、前記硬さ分布データを圃場データとしてとしてデータベースに保存し、今後の作業等に役立てられるようにする。なお、圃場データには、住所、耕耘日、農作物の植付日や収穫日、防除や施肥の種類や量や散布日等も含まれる。 Further, the control device 30 can communicate with the management server 400 via the communication line 401, and the measurement is made to the management server 400 via the communication line 401 after the work (measurement) is completed (or simultaneously with the work). The hardness distribution obtained by the operation is transmitted and stored as hardness distribution data in the field. The management server 400 stores the hardness distribution data in the database as field data so that it can be used for future work and the like. The field data includes address, tilling date, planting date and harvest date of crop, type and amount of pest control and fertilization, spraying date, and the like.
 また、図5、図6に示すように、前記沈下量の撮影は、自律走行作業車両1に併走して作業を行う随伴走行作業車両100にカメラ42を取り付けて、該カメラ42は前記自律走行作業車両1の所定位置としてのステップ81(または後輪10の中心)と圃場面Gとを撮影するようにし、自律走行作業車両1のステップ81の圃場面Gに対する高さを測定するように構成することも可能である。ただし、所定位置は前記同様に後輪10や機体フレーム等であってもよい。 In addition, as shown in FIGS. 5 and 6, the subsidence amount is photographed by attaching a camera 42 to an accompanying traveling work vehicle 100 that performs work while traveling along with the autonomous traveling work vehicle 1. The step 81 (or the center of the rear wheel 10) as the predetermined position of the work vehicle 1 and the farm scene G are photographed, and the height of the autonomous traveling work vehicle 1 with respect to the farm scene G is measured. It is also possible to do. However, the predetermined position may be the rear wheel 10, the fuselage frame, or the like as described above.
 そして、自律走行作業車両1のステップ81と圃場面Gの映像は随伴走行作業車両100の制御装置130に送信されて、制御装置130において、沈下量L2は圃場面Gとステップ81の距離と、沈下しない路面からのステップ81の高さの差を演算して沈下量L2として求め、硬さを演算する。この沈下量L2は通信装置133・110を介して自律走行作業車両1の制御装置30に送信されて、ロータリ耕耘装置24の耕深制御に利用される。
 また、遠隔操作装置112にも送信して、圃場マップに自律走行作業車両1の走行位置に合わせて硬さが書き込まれるようにしている。更に、前記同様に硬さは通信回線401を介して管理サーバ400に送信されて書きこまれ、硬さ分布データとして保存される。
Then, the step 81 of the autonomous traveling work vehicle 1 and the image of the farm scene G are transmitted to the control device 130 of the accompanying traveling work vehicle 100, and in the control device 130, the subsidence amount L2 is the distance between the farm scene G and step 81, The difference in height in step 81 from the road surface that does not sink is calculated to obtain the sinking amount L2, and the hardness is calculated. This subsidence amount L2 is transmitted to the control device 30 of the autonomous traveling work vehicle 1 via the communication devices 133 and 110, and is used for plowing depth control of the rotary tiller 24.
Moreover, it transmits also to the remote control apparatus 112, and hardness is written in the agricultural field map according to the traveling position of the autonomous traveling work vehicle 1. Further, as described above, the hardness is transmitted and written to the management server 400 via the communication line 401 and stored as hardness distribution data.
 以上のように、自律走行作業車両1に取り付けられ、該自律走行作業車両1の機体のステップ81または後輪10の中心等の所定位置と、その下方の圃場面Gとを撮影するカメラ42を備え、圃場面Gに対する自律走行作業車両1のステップ81または後輪10の高さを走行しながら演算して、任意位置の圃場面Gに対する機体の沈下量から圃場の硬さを測定するので、自律走行作業車両1を走行させながら連続的に硬さを測定できるようになり、硬さ測定にかかる手間及び時間を格段に削減できるようになる。また、測定するための操作が殆どなく、取扱いが簡単となる。また、測定して得られた圃場の硬さを耕深制御等に適用することで、作業精度を高くすることができる。 As described above, the camera 42 that is attached to the autonomous traveling work vehicle 1 and photographs a predetermined position such as the step 81 of the body of the autonomous traveling work vehicle 1 or the center of the rear wheel 10 and the farm scene G below the predetermined position. Equipped with the step 81 of the autonomous traveling work vehicle 1 with respect to the farm scene G or while calculating the height of the rear wheel 10 to measure the hardness of the farm field from the amount of subsidence of the aircraft with respect to the farm scene G at an arbitrary position. Hardness can be continuously measured while the autonomous traveling work vehicle 1 is traveling, and labor and time required for the hardness measurement can be significantly reduced. Also, there is almost no operation for measurement, and handling becomes easy. Moreover, work accuracy can be made high by applying the hardness of the field obtained by the measurement to plowing depth control etc.
 また、自律走行作業車両1に併走して作業を行う随伴走行作業車両100に取り付けられ、前記自律走行作業車両1の所定位置としてのステップ81または後輪10の中心等とその下方の圃場面Gとを撮影するカメラ42を備え、任意位置の圃場面Gに対する自律走行作業車両1のステップ81または後輪10の中心等の高さを演算して、圃場への沈下量から圃場の硬さを測定するので、自律走行作業車両1から離れた側方位置から測定することになり、誤差が小さくなり、所定位置の高さを正確に測定することができる。 Moreover, it attaches to the accompanying traveling work vehicle 100 which works in parallel with the autonomous traveling working vehicle 1, and the field scene G below the step 81 or the center of the rear wheel 10 as a predetermined position of the autonomous traveling working vehicle 1 and the like. And calculating the height of step 81 of the autonomous traveling work vehicle 1 or the center of the rear wheel 10 with respect to the farm scene G at an arbitrary position, and calculating the hardness of the farm field from the amount of settlement on the farm field. Since it measures, it will measure from the side position away from the autonomous running work vehicle 1, an error becomes small, and the height of a predetermined position can be measured correctly.
 また、前記測定された硬さは圃場マップに連続的に書き込まれて硬さ分布データとして制御装置30の記憶装置30mに保存されるので、作業機の高さ制御が追随して可能となり、作業精度を向上することができる。また、圃場の硬さ分布が容易に分かるようになる。 Further, since the measured hardness is continuously written in the field map and stored in the storage device 30m of the control device 30 as hardness distribution data, it becomes possible to follow the height control of the work implement, Accuracy can be improved. In addition, the hardness distribution of the field can be easily understood.
 また、圃場状態検知装置として、カメラ42Rを用いて作業後の圃場面を撮影し、その状態と通常の作業後の圃場面の状態と比較し、違いがあると作業機に異常が発生していると判断することもできる。本実施形態での作業はロータリ耕耘装置24による平畝成形作業とし、設定走行経路Rは枕地で隣接条へ移る往復作業とする。この作業状態を前記カメラ42Rにより撮影し、異常が発生すると、走行及び作業を停止手段により停止し、警報を発して作業者に通報するようにしている。 In addition, as a field condition detection device, a field scene after work is photographed using the camera 42R, and the state is compared with the state of the field scene after normal work. It can also be judged that The work in this embodiment is a flat work forming work by the rotary tiller 24, and the set travel route R is a reciprocating work that moves to an adjacent strip on a headland. The working state is photographed by the camera 42R, and when an abnormality occurs, the running and work are stopped by the stopping means, and an alarm is issued to notify the operator.
 すなわち、前記カメラ42Rはキャビン11の上部後端に取り付けられて制御装置30と接続され、ロータリ耕耘装置24により正常に平畝成形を行った状態をカメラ42Rにより撮影し、制御装置30に圃場状態として入力する。ただし、前記圃場状態の撮影は、自律走行作業車両1に併走して作業を行う随伴走行作業車両100に取り付けるカメラ42Rとしてもよい。この場合、自律走行作業車両1の後方より撮影するため、作業機によっては撮影位置が作業機に隠れることがなく、確実に作業状態を検知できる。
 前記撮影により得られた画像データは画像処理が行われ正常作業画像(正常作業映像)として予め記憶装置30mに記憶しておく。この正常作業画像は作業を行う圃場において、最初に作業を行ったときに撮影した映像が正常であると、これを正常作業画像として記憶し、この正常作業画像を基準として作業時の映像と比較して異常であるか判断するようにする。但し、従前の正常作業画像を正常作業画像として記憶させてもかまわない。
That is, the camera 42R is attached to the upper rear end of the cabin 11 and connected to the control device 30. The camera 42R takes a picture of a state where the rotary tiller 24 has successfully formed flat culverts, and the control device 30 is in a field state. Enter as. However, the shooting of the field state may be performed by the camera 42R attached to the accompanying traveling work vehicle 100 that performs work while traveling along the autonomous traveling work vehicle 1. In this case, since photographing is performed from behind the autonomous traveling work vehicle 1, the photographing position is not hidden behind the working machine depending on the working machine, and the working state can be reliably detected.
The image data obtained by the photographing is subjected to image processing and stored in advance in the storage device 30m as a normal work image (normal work video). This normal work image is stored as a normal work image when the image taken when the work is first performed in the field where the work is performed, and is compared with the image at the time of the work on the basis of the normal work image. To determine if it is abnormal. However, the previous normal work image may be stored as the normal work image.
 例えば、図7に示すように、耕耘作業直後の色をC、未耕耘の場所の色をD、既耕耘の場所の色をKとすると、耕耘を行った場所と未耕耘の場所は明らかに色が異なる画像が得られる。正常の作業時にはこの画像データが得られることになる。なお、作業地と枕地は走行経路Rのどの位置に位置しているかを、測位装置により認識しているので、枕地では異常の判断は行われず、作業地のみ判断する。但し、最後の外周を回る作業では枕地も作業地となる。 For example, as shown in FIG. 7, if the color immediately after the tillage operation is C, the color of the uncultivated place is D, and the color of the already-cultivated place is K, the place where the tillage is performed and the place of the uncultivated are clearly shown Images with different colors are obtained. This image data is obtained during normal operation. In addition, since the positioning device recognizes where the work place and the headland are located on the travel route R, the abnormality is not determined in the headland and only the work place is determined. However, the headland is also used as the work place in the last round of work.
 そして、作業時において、カメラ42Rにより撮影した画像データと前記正常作業画像とを比較し、耕耘爪が破損したり脱落したりすると、図8に示すように、Cの領域に筋状の色が異なる部分Jが生じる。この場合、例えば、正常部分と異なる画素が設定値以上の生じると、異常と判断する。この異なる部分Jが設定値以上現れると、走行を停止する停止手段として変速手段44をニュートラルとして走行を停止するとともに、作業を停止する手段としてPTO入切手段45を「切」として作業を停止する。但し、停止手段はエンジンコントローラ60によりエンジンを停止させてもよい。
 そして同時に、ブザーまたはホーンを鳴らしたり、方向指示器を点滅させる等して警報を発し、異常が発生したことを周囲に認識させ、作業者が携帯する遠隔操作装置112の表示装置113に異常が発生したことを表示して通報する。遠隔操作装置112のスピーカから警報を発してもよい。
Then, when working, the image data photographed by the camera 42R is compared with the normal work image, and when the tilling claw is broken or dropped, as shown in FIG. A different part J results. In this case, for example, when a pixel different from the normal portion is greater than or equal to the set value, it is determined that there is an abnormality. If this different portion J exceeds the set value, the travel is stopped with the speed change means 44 being neutral as a stop means for stopping travel, and the work is stopped with the PTO on / off means 45 being “off” as means for stopping the work. . However, the stopping means may stop the engine by the engine controller 60.
At the same time, an alarm is generated by sounding a buzzer or a horn, blinking a direction indicator, etc., and it is recognized by the surroundings that an abnormality has occurred. Report what happened and report it. An alarm may be issued from the speaker of the remote operation device 112.
 また、前記制御装置30は、通信回線401を介して管理サーバ400と通信可能とされ、通信回線401を介して管理サーバ400に異常が生じたことを送信し、異常データとして記憶する。管理サーバ400では、メンテナンス記録としてデータベースに保存し、今後の異常発生等に役立てられるようにする。なお、撮影した映像はダッシュボード14上の表示手段49や遠隔操作装置112の表示装置113において表示可能としている。 Further, the control device 30 can communicate with the management server 400 via the communication line 401, transmits that an abnormality has occurred in the management server 400 via the communication line 401, and stores it as abnormality data. In the management server 400, it is stored in a database as a maintenance record so that it can be used for future occurrence of abnormality. The captured video can be displayed on the display means 49 on the dashboard 14 or the display device 113 of the remote operation device 112.
 前記遠隔操作装置112には、作業再開操作手段としての再開ボタン118が設けられ、該再開ボタン118の操作により前記異常の判断を解除し、走行及び作業を再開可能としている。つまり、映像の比較では、実際は正常な作業状態であっても草や藁等が混じり周囲の正常な部分と異なる部分と判断して停止するような誤作動が発生することがある。このように異常が生じていないのに停止し、作業者により容易に正常であると判断できるような場合、作業機全体やシステム等をチェックすることなく再開ボタン118の操作により異常の判断を解除し、速やかに作業を再開できるようにしている。 The remote operation device 112 is provided with a restart button 118 as a work restart operation means, and the determination of the abnormality is canceled by operating the restart button 118 so that traveling and work can be restarted. In other words, in the comparison of images, even if the work is actually in a normal state, a malfunction may occur in which grass and cocoons and the like are mixed and are judged to be different from the surrounding normal parts and stop. In this way, when there is no abnormality, it stops and the operator can easily determine that it is normal, and canceling the abnormality determination by operating the restart button 118 without checking the entire work machine or system So that work can be resumed promptly.
 また、作業の形態は、ロータリ耕耘装置24による平畝成形作業に限定するものではなくその他の作業にも適用できる。例えば、移植作業に適用した場合、畝上に苗を所定間隔で植え付ける作業となるので、所定の条において所定間隔で苗が植え付けられ、撮影した正常な画像は緑の苗が列状に現れる。植付爪や供給する苗に異常が発生すると、列が途切れることになり、欠株が発生したことを画像処理で容易に判断できる。このような異常が発生すると、前記同様に走行を停止し、作業を停止する。そして同時に警報を発し通報する。なお、移植作業機として田植機とすることも可能である。 Moreover, the form of work is not limited to flat work forming work by the rotary tiller 24 but can be applied to other work. For example, when applied to a transplanting operation, seedlings are planted on the ridges at a predetermined interval. Therefore, seedlings are planted at a predetermined interval on a predetermined strip, and green seedlings appear in a row in a photographed normal image. When abnormalities occur in the planting nails and the seedlings to be supplied, the rows are interrupted, and it can be easily determined by image processing that a stock loss has occurred. When such an abnormality occurs, the traveling is stopped in the same manner as described above, and the work is stopped. At the same time, an alarm is issued and a notification is made. It is also possible to use a rice transplanter as the transplanter.
 また、刈取作業や収穫作業にも適用できる。例えば作業機としてモアを装着した場合、刈取前と刈取後において色が異なる。この刈取作業時において、刈刃が損傷したり、脱落して刈取後の領域に色の異なる部分が発生すると、前記同様に走行を停止し、作業が自動的に停止され、警報を発し通報する。 Also applicable to harvesting and harvesting operations. For example, when a mower is attached as a working machine, the color is different before and after cutting. During this cutting operation, if the cutting blade is damaged or falls off and a part with a different color is generated in the area after cutting, the driving is stopped in the same manner as described above, the operation is automatically stopped, an alarm is issued and a notification is given. .
 また、ライムソワーによる肥料散布や薬剤の散布作業等にも適用可能である。肥料散布作業では、圃場上面に散布された部分と散布されない部分では異なる色となるので、落下孔に詰まり等が発生したりして異常が発生すると、その列の色が途切れることになるので制御装置30は異常と判断して、前記同様に走行及び作業を停止し、警報を発して通報する。
 また、マルチ被覆作業に適用した場合では、被覆されたマルチが破れたり、皺がよるような異常が発生すると、その部分はマルチフィルムと色が異なり、制御装置30は異常と判断して、前記同様に走行及び作業を停止し、警報を発して通報する。
It can also be applied to fertilizer spraying and drug spraying operations using lime sower. In fertilizer application work, the color of the part sprayed on the top of the field and the part not sprayed are different colors, so if an abnormality occurs due to clogging or the like in the fall hole, the color of that row will be interrupted, so control The device 30 judges that the device is abnormal, stops running and work as described above, issues an alarm, and notifies the user.
In addition, when applied to the multi-coating operation, when the coated multi is torn or an abnormality such as wrinkling occurs, the color of the portion is different from that of the multi-film, and the control device 30 determines that the abnormality is present. Similarly, stop running and work, issue an alarm and report.
 以上のように、衛星測位システムを利用して機体の位置を測位する位置算出手段と、設定した走行経路Rに沿って自動的に走行及び作業をさせる制御装置30とを備えた自律走行作業車両1において、自律走行作業車両1には作業状態を撮影するカメラ42Rが搭載されて制御装置30と接続され、該制御装置30には、走行及び作業を停止させる停止手段と接続され、制御装置30は、作業時において、前記カメラ42Rで撮影された映像を画像処理して、予め記憶させた正常作業映像と比較し、異なる画像データが得られると、異常と判断し、走行及び作業を停止するように制御するので、自律走行作業車両1により自動運転させているときに、作業状態に異常が発生したときに速やかに作業を停止して、作業機の損傷が大きくなることを防止でき、作業不良の状態をできるだけ少なくして、やり直し作業を未然に防ぐことが可能となる。また、異常の原因も映像を見ることにより容易に追究することができる。 As described above, the autonomous traveling work vehicle including the position calculating means for positioning the position of the aircraft using the satellite positioning system and the control device 30 that automatically travels and works along the set traveling route R. 1, the autonomous traveling work vehicle 1 is equipped with a camera 42 </ b> R that captures a working state and is connected to the control device 30, and is connected to a stop unit that stops traveling and work, and is connected to the control device 30. During the work, the video taken by the camera 42R is subjected to image processing and compared with the normal work video stored in advance, and when different image data is obtained, it is determined as abnormal and the running and work are stopped. Therefore, when the autonomous traveling work vehicle 1 is automatically driven, when an abnormality occurs in the work state, the work is immediately stopped and the work machine may be damaged. The prevented, and minimize the state of the working poor, it is possible prevent rework. Also, the cause of the abnormality can be easily investigated by viewing the video.
 また、前記制御装置30は、通信装置110を介して遠隔操作装置112と通信可能とされ、前記異常と判断すると、遠隔操作装置112に通報するので、作業者は異常が発生したことを認識でき、速やかに対応できる。 In addition, the control device 30 can communicate with the remote operation device 112 via the communication device 110, and if it is determined that the abnormality has occurred, the control device 30 notifies the remote operation device 112, so that the operator can recognize that an abnormality has occurred. Can respond promptly.
 また、前記遠隔操作装置112には、作業再開操作手段となる再開ボタン118が設けられ、該再開ボタン118の操作により前記異常の判断を解除し、走行及び作業を再開させるので、実際には異常がなく停止した場合や、簡単な操作や簡単な修理で異常を解消した場合など、再開ボタン118の操作だけで容易に作業を再開できる。 Further, the remote operation device 112 is provided with a restart button 118 serving as a work restart operation means, and the operation of the restart button 118 cancels the determination of the abnormality and restarts running and work. The operation can be easily resumed only by the operation of the resume button 118, such as when the operation stops without any trouble, or when the abnormality is resolved by simple operation or simple repair.
 また、前記制御装置30は、通信回線401を介して管理サーバ400と通信可能とされ、前記異常と判断すると、前記管理サーバ400のデータベースに記憶するので、異常が発生したときのデータとが、メンテナンス記録としてデータベースに保存されることになり、今後の異常発生ときの対応に役立てることができる。 Further, since the control device 30 can communicate with the management server 400 via the communication line 401 and stores it in the database of the management server 400 when it is determined as abnormal, the data when the abnormality occurs is It will be stored in the database as a maintenance record, which can be used for dealing with future abnormalities.
 本発明は、衛星測位システムを利用して、複数の作業車両が、所定の圃場等で作業を行う、建設機械や農用作業車等に利用可能である。 The present invention can be used for a construction machine, an agricultural work vehicle, or the like in which a plurality of work vehicles perform work on a predetermined field or the like using a satellite positioning system.
 1   自律走行作業車両
 30  制御装置
 42  カメラ
 100 随伴走行作業車両
 112 遠隔操作装置
 130 制御装置
 
DESCRIPTION OF SYMBOLS 1 Autonomous traveling work vehicle 30 Control apparatus 42 Camera 100 Accompanying traveling work vehicle 112 Remote operation apparatus 130 Control apparatus

Claims (7)

  1.  作業車両に取り付けられ、該作業車両の所定位置とその下方の圃場面とを撮影するカメラを備え、圃場面に対する作業車両の所定位置の高さを演算して、圃場への沈下量から圃場の硬さを測定することを特徴とする圃場状態検知システム。 A camera is attached to the work vehicle, and is provided with a camera for photographing a predetermined position of the work vehicle and a farm scene below the work vehicle. A field condition detection system characterized by measuring hardness.
  2.  自律走行作業車両に併走して作業を行う随伴走行作業車両に取り付けられ、前記自律走行作業車両の所定位置とその下方の圃場面とを撮影するカメラを備え、圃場面に対する自律走行作業車両の所定位置の高さを演算して、圃場への沈下量から圃場の硬さを測定することを特徴とする請求項1に記載の圃場状態検知システム。 An autonomous traveling work vehicle that is attached to an accompanying traveling working vehicle that works in parallel with the autonomous traveling working vehicle and includes a camera that captures a predetermined position of the autonomous traveling working vehicle and a field scene below the predetermined position. 2. The field condition detection system according to claim 1, wherein the height of the position is calculated and the hardness of the field is measured from the amount of settlement to the field.
  3.  前記測定された硬さは圃場マップに連続的に書き込まれて硬さ分布データとして記憶装置に保存されることを特徴とする請求項1または請求項2に記載の圃場状態検知システム。 The field state detection system according to claim 1 or 2, wherein the measured hardness is continuously written in a field map and stored in a storage device as hardness distribution data.
  4.  前記作業車両には作業後の状態を撮影するカメラが搭載されて制御装置と接続され、該制御装置は、作業時において、前記カメラで撮影された映像を画像処理して、予め記憶させた正常作業映像と比較することを特徴とする請求項1に記載の圃場状態検知システム。 The work vehicle is equipped with a camera for photographing a state after work and is connected to a control device. The control device performs normal image processing on a video photographed by the camera and stores it in advance during work. The field state detection system according to claim 1, wherein the field state detection system is compared with a work image.
  5.  前記制御装置には、走行及び作業を停止させる停止手段と接続され、前記カメラで撮影された作業後の映像と正常作業映像とに異なる画像データが得られると、異常と判断し、走行及び作業を停止するように制御することを特徴とする請求項4に記載の圃場状態検知システム。 The control device is connected to stop means for stopping running and work, and when different image data is obtained for the post-work video and normal work video taken by the camera, it is determined as abnormal, and the running and work The field condition detection system according to claim 4, wherein control is performed so as to stop.
  6.  前記制御装置は、通信回線を介して管理サーバと通信可能とされ、前記硬さ分布データ及び前記正常作業映像と異常作業映像を、前記管理サーバのデータベースに記憶することを特徴とする請求項3または請求項4または請求項5に記載の圃場状態検知システム。 4. The control device is capable of communicating with a management server via a communication line, and stores the hardness distribution data, the normal work video, and the abnormal work video in a database of the management server. Or the agricultural field state detection system of Claim 4 or Claim 5.
  7.  前記制御装置は、通信装置を介して遠隔操作装置と通信可能とされ、前記異常と判断すると、遠隔操作装置に通報することを特徴とする請求項4に記載の圃場状態検知システム。 The field condition detection system according to claim 4, wherein the control device is capable of communicating with a remote operation device via a communication device, and notifies the remote operation device when the abnormality is determined.
PCT/JP2015/081630 2014-11-13 2015-11-10 Field state detection system WO2016076320A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177015637A KR102121646B1 (en) 2014-11-13 2015-11-10 Field state detection system
AU2015347785A AU2015347785B9 (en) 2014-11-13 2015-11-10 Field state detection system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014231128A JP2016095660A (en) 2014-11-13 2014-11-13 Unmanned operation system
JP2014-231128 2014-11-13
JP2014-231130 2014-11-13
JP2014-231129 2014-11-13
JP2014231130A JP6364677B2 (en) 2014-11-13 2014-11-13 Field condition measurement method
JP2014231129A JP2016095661A (en) 2014-11-13 2014-11-13 Unmanned operation system

Publications (1)

Publication Number Publication Date
WO2016076320A1 true WO2016076320A1 (en) 2016-05-19

Family

ID=55954403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081630 WO2016076320A1 (en) 2014-11-13 2015-11-10 Field state detection system

Country Status (3)

Country Link
KR (1) KR102121646B1 (en)
AU (1) AU2015347785B9 (en)
WO (1) WO2016076320A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083279A1 (en) * 2016-11-03 2018-05-11 Fleet (Line Markers) Limited Service vehicle and management system
WO2018135991A1 (en) 2017-01-19 2018-07-26 Scania Cv Ab Method and control unit for ground bearing capacity analysis
WO2020161035A1 (en) * 2019-02-05 2020-08-13 Zf Friedrichshafen Ag Device and method for safely operating an autonomously operable agricultural machine
CN112071387A (en) * 2020-09-04 2020-12-11 中山仰视科技有限公司 Automatic medical image electronic film and inspection report acquisition method and system
US11569569B2 (en) 2017-10-06 2023-01-31 Yanmar Co., Ltd. Antenna unit for work vehicle and work vehicle
US11747817B2 (en) 2017-11-08 2023-09-05 Kubota Corporation Autonomous traveling work vehicle and field management system
WO2023181294A1 (en) * 2022-03-24 2023-09-28 本田技研工業株式会社 Autonomous work machine, autonomous work machine control method, program, and storage medium

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11556132B2 (en) 2017-01-20 2023-01-17 Kubota Corporation Work vehicle
JP7013170B2 (en) * 2017-08-24 2022-01-31 株式会社クボタ Working machine
JP2022089308A (en) * 2020-12-04 2022-06-16 株式会社豊田自動織機 Autonomous travel system
DE102022129533A1 (en) 2021-12-01 2023-06-01 Wiedenmann Gmbh Device and method for lawn care with track detection

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175466A (en) * 1997-09-03 1999-03-23 Iseki & Co Ltd Cutting height controller for combine harvester
JP2001507843A (en) * 1997-10-08 2001-06-12 マースランド エヌ・ヴィ Vehicle combinations
JP2006121952A (en) * 2004-10-27 2006-05-18 Iseki & Co Ltd Combine harvester
JP2006201184A (en) * 1999-07-08 2006-08-03 Nokodai Tlo Kk Soil measurement assisting method, application amount control device and method, application amount determining device, farm working determination assisting system, and recorded medium
JP2007061042A (en) * 2005-09-01 2007-03-15 Kubota Corp Automatic control system of farm working machine
JP2012235712A (en) * 2011-05-10 2012-12-06 Original Soft:Kk Automatic mower with mowing situation monitoring function
JP2014178759A (en) * 2013-03-13 2014-09-25 Kubota Corp Work vehicle cooperation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3877389B2 (en) 1997-09-19 2007-02-07 独立行政法人農業・食品産業技術総合研究機構 Soil surface hardness measuring device and measuring method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1175466A (en) * 1997-09-03 1999-03-23 Iseki & Co Ltd Cutting height controller for combine harvester
JP2001507843A (en) * 1997-10-08 2001-06-12 マースランド エヌ・ヴィ Vehicle combinations
JP2006201184A (en) * 1999-07-08 2006-08-03 Nokodai Tlo Kk Soil measurement assisting method, application amount control device and method, application amount determining device, farm working determination assisting system, and recorded medium
JP2006121952A (en) * 2004-10-27 2006-05-18 Iseki & Co Ltd Combine harvester
JP2007061042A (en) * 2005-09-01 2007-03-15 Kubota Corp Automatic control system of farm working machine
JP2012235712A (en) * 2011-05-10 2012-12-06 Original Soft:Kk Automatic mower with mowing situation monitoring function
JP2014178759A (en) * 2013-03-13 2014-09-25 Kubota Corp Work vehicle cooperation system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083279A1 (en) * 2016-11-03 2018-05-11 Fleet (Line Markers) Limited Service vehicle and management system
US11369861B2 (en) 2016-11-03 2022-06-28 Fleet (Line Markers) Limited Service vehicle and management system
WO2018135991A1 (en) 2017-01-19 2018-07-26 Scania Cv Ab Method and control unit for ground bearing capacity analysis
CN110192085A (en) * 2017-01-19 2019-08-30 斯堪尼亚商用车有限公司 Method and control unit for ground loading capability analysis
KR20190105613A (en) * 2017-01-19 2019-09-17 스카니아 씨브이 악티에볼라그 Method and control unit for ground bearing analysis
KR102283467B1 (en) 2017-01-19 2021-07-30 스카니아 씨브이 악티에볼라그 Method and control unit for ground bearing capacity analysis
US11608606B2 (en) 2017-01-19 2023-03-21 Scania Cv Ab Method and control unit for ground bearing capacity analysis
US11569569B2 (en) 2017-10-06 2023-01-31 Yanmar Co., Ltd. Antenna unit for work vehicle and work vehicle
US11747817B2 (en) 2017-11-08 2023-09-05 Kubota Corporation Autonomous traveling work vehicle and field management system
WO2020161035A1 (en) * 2019-02-05 2020-08-13 Zf Friedrichshafen Ag Device and method for safely operating an autonomously operable agricultural machine
CN112071387A (en) * 2020-09-04 2020-12-11 中山仰视科技有限公司 Automatic medical image electronic film and inspection report acquisition method and system
WO2023181294A1 (en) * 2022-03-24 2023-09-28 本田技研工業株式会社 Autonomous work machine, autonomous work machine control method, program, and storage medium

Also Published As

Publication number Publication date
KR102121646B1 (en) 2020-06-26
AU2015347785B9 (en) 2019-10-31
AU2015347785A1 (en) 2017-06-22
AU2015347785B2 (en) 2019-06-13
KR20170081686A (en) 2017-07-12
AU2015347785A9 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
WO2016076320A1 (en) Field state detection system
JP6999221B2 (en) Automated work system
CN106132187B (en) Control device for work vehicle
JP6448152B2 (en) Parallel work system
KR102287412B1 (en) Parallel travel work system
JP2016095661A (en) Unmanned operation system
KR102140854B1 (en) Method for setting travel path of autonomous travel work vehicle
JP6550617B2 (en) Agricultural work vehicle
JP6339427B2 (en) Parallel work system
WO2015118731A1 (en) Control device for parallel travel work system
JP2016095660A (en) Unmanned operation system
WO2015118730A1 (en) Remote operation device for parallel travel work system
JP6296926B2 (en) Parallel work system
JP6364677B2 (en) Field condition measurement method
JP6618056B2 (en) Work system
WO2023127557A1 (en) Agricultural machine, sensing system used in agricultural machine, and sensing method
WO2023238827A1 (en) Agricultural management system
WO2023276340A1 (en) Management system for agricultural machines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15858192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177015637

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015347785

Country of ref document: AU

Date of ref document: 20151110

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15858192

Country of ref document: EP

Kind code of ref document: A1