JP3864214B2 - Surface treatment method of zinc oxide photocatalyst thin film - Google Patents

Surface treatment method of zinc oxide photocatalyst thin film Download PDF

Info

Publication number
JP3864214B2
JP3864214B2 JP2002044216A JP2002044216A JP3864214B2 JP 3864214 B2 JP3864214 B2 JP 3864214B2 JP 2002044216 A JP2002044216 A JP 2002044216A JP 2002044216 A JP2002044216 A JP 2002044216A JP 3864214 B2 JP3864214 B2 JP 3864214B2
Authority
JP
Japan
Prior art keywords
zinc oxide
thin film
nitrogen
oxide thin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002044216A
Other languages
Japanese (ja)
Other versions
JP2003236376A (en
Inventor
勲 坂口
迪 李
肇 羽田
俊一 菱田
直樹 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002044216A priority Critical patent/JP3864214B2/en
Publication of JP2003236376A publication Critical patent/JP2003236376A/en
Application granted granted Critical
Publication of JP3864214B2 publication Critical patent/JP3864214B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、酸化亜鉛薄膜の処理方法、特にその光触媒活性を向上させるための処理方法に関する。
【0002】
【従来の技術】
酸化亜鉛はガラスをはじめとした基板表面には容易に薄膜化可能である。MOCVD法でC−軸配向した酸化亜鉛薄膜を合成することができる。酸化亜鉛は光触媒として用いられるが、従来の酸化亜鉛光触媒は、材料形態が粉末であるものが多い。また、薄膜の形態の酸化亜鉛光触媒も知られており(例;特開平9−299791号公報)、酸化亜鉛光触媒に窒素を添加する試みもある(例;特開2001−205094号公報)。
【0003】
【発明が解決しようとする課題】
酸化亜鉛薄膜の配向の容易さは多くの文献で見られる。安価なガラスをはじめとした多くの基板で報告されている。薄膜に窒素を添加する試みも行われているが、酸化亜鉛薄膜中に窒素だけを成膜時に添加すると配向性や結晶性の低下を引き起こし、酸化亜鉛の透明性を維持しながら1at%以上の窒素を添加することは困難である。本発明は、環境浄化等のために使用する酸化亜鉛光触媒薄膜の光触媒活性を向上させる方法の提供を目的とする。
【0004】
【課題を解決するための手段】
本発明者らは、窒素添加ではなく酸化亜鉛表面のラジカル処理で、酸化亜鉛の透明性を維持しながら触媒活性を向上させることができることを見出した。
【0005】
すなわち、本発明は、基板表面にMOCVD法によってC−軸が基板表面に対して垂直に成長している酸化亜鉛薄膜成膜した後、さらに、MOCVD装置に搭載されているラジカル源で窒素ラジカルを酸化亜鉛 表面に基板の温度50℃から400℃の範囲で、照射すること で表面窒素濃度を高めることを特徴とする酸化亜鉛光触媒薄膜の表面処理方法である。
【0006】
酸化亜鉛を光触媒として応用する場合、その光触媒活性が低いことが問題になる。薄膜化し窒素ラジカル処理することで光触媒活性が向上する。酸化亜鉛は薄膜化かつ大面積化が容易であり、同様に窒素ラジカル処理も大面積化が容易である。また、窒素ラジカル処理は50℃から400℃、例えば150℃の低温で行うプロセスであるため、酸化亜鉛薄膜の基板の多様化にも使用可能なプロセスである。
【0007】
【作用】
本発明は、基板表面に成膜したC−軸が基板表面に対して垂直な高配向の酸化亜鉛薄膜に窒素ラジカル処理を施すことを特徴とする。この処理で酸化亜鉛表面を構成する酸素占有サイトの一部が窒素で置換される。この処理した酸化亜鉛の光触媒活性は処理無しに比較して3倍程度の向上が見られる。光触媒反応が表面反応であることを考えると、表面修飾により表面の酸素占有サイトを窒素で置換することにより、酸化亜鉛中に正孔が供給され、もともと酸化亜鉛に存在する電子との作用で、光触媒活性が向上する。
【0008】
【発明の実施の形態】
このような高配向の酸化亜鉛光触媒薄膜は基板表面にMOCVD法によって形成可能である。さらに、MOCVD装置に搭載されているラジカル源で窒素ラジカルを酸化亜鉛薄膜に照射できる。このような酸化亜鉛薄膜の表面に10×10−2から1×10−5Torrの範囲で窒素ラジカルを照射する。
窒素ラジカル照射を、酸化亜鉛基板の温度50℃から400℃の範囲でおこなうことにより 表面上の窒素が確認される。基板の温度がこの温度範囲外では窒素ラジカル処理による表面上での窒素が検出されない。また、照射時間に関しては、10分以上では表面で検出される窒素量に変化がない。
【0009】
【実施例】
比較例1
酸化亜鉛薄膜の合成はMOCVD法で行った。亜鉛ソースに安価な亜鉛アセチルアセトナートを用い85℃、アルゴン気流中で気化させ、真空チャンバー内のリングインジェクターから基板に噴射した。表1に示す酸化亜鉛合成条件で、酸素は基板上15cmに搭載されたラジカル源から基板にラジカルとして照射し、基板上で反応させ厚さ約500nmの酸化亜鉛薄膜を合成した。
【0010】
【表1】

Figure 0003864214
【0011】
その後、X−線回折法で酸化亜鉛薄膜の配向性を調べた。図5に示した通り、酸化亜鉛の強い(002)ピーク強度と弱い(004)ピークが検出され、酸化亜鉛が基板表面に対してC−軸が垂直に成長していることを確認した。また、MOCVD法で合成した酸化亜鉛薄膜表面をオージェ分光法で調べた。図6にオージェ分光法で得られたスペクトルを示す。この表面では酸化亜鉛表面に窒素のピークは検出されなかった。
【0012】
実施例1
比較例1と同じ条件で酸化亜鉛薄膜を合成した。その後、そのままMOCVD装置を用いて、窒素ラジカルを真空度4×10-4Torr、基板温度150℃で15分間照射した。その後、酸化亜鉛薄膜をオージェ分光法で調べ、窒素が酸化亜鉛薄膜上に存在することを確認した。図1にオージェ分光法で得られたスペクトルを示す。窒素の存在は窒素ラジカル処理の効果である。
【0013】
実施例1で得られた酸化亜鉛薄膜の表面をXPS法で酸化亜鉛表面における窒素の状態を調べた。図2にXPSで得られた窒素のスペクトルを示す。これによると、酸化亜鉛上の表面の窒素の状態はほとんど窒素分子であり、一部酸化亜鉛の酸素サイトを置換していることが分かった。この酸化亜鉛格子中の酸素サイトを置換した窒素が酸化亜鉛に正孔を供給している。
【0014】
実施例1で窒素ラジカル照射した酸化亜鉛薄膜の吸収スペクトルを波長340nmから900nmの範囲で測定した。可視光領域から紫外領域のバンド端まで85%以上の透過率があり、窒素照射が光吸収に与える影響は見られないことを確認した。
【0015】
実施例1および比較例1で得られた酸化亜鉛薄膜の光触媒の評価を行った。光触媒活性の評価は、酸化亜鉛薄膜を石英製の容器に入れ、1000ppmのアセトアルデヒドを含むガスを充填する。そこに紫外光を照射して、酸化亜鉛の光触媒反応で分解された二酸化炭素を各反応時間で測定した。図3に測定結果を示す。その結果、実施例1の窒素ラジカル照射処理をした酸化亜鉛薄膜から得られる、二酸化炭素の量は、処理なしの酸化亜鉛薄膜を用いた場合の生成量よりも3倍程度に達することが分かった。これは、窒素ラジカル照射により酸化亜鉛表面に窒素が吸着することの効果である。
【0016】
実施例2
窒素ラジカルの照射時間を30分とした以外は実施例1と同じ条件で窒素ラジカル処理をした。図4にオージェ分光法で得られたスペクトルを示す。窒素ラジカルを30分照射しても強度に変化がないことを確認した。
【0017】
比較例2
基板温度を500℃とした以外は実施例1と同じ条件で窒素ラジカル処理をした。図7にオージェ分光法で得られたスペクトルを示す。窒素の存在は確認できなかった。
【0018】
【発明の効果】
酸化亜鉛薄膜は基板によらずC−軸配向し易い物質である。本発明は、C−軸配向した酸化亜鉛薄膜へ基板温度が低い条件で、窒素ラジカルを短時間照射することを特徴としている。この処理条件のため、ラジカル処理が酸化亜鉛薄膜やその基板に与える影響が殆どないことが特徴である。このため、200℃程度の基板温度条件で合成された酸化亜鉛に対しても同様のラジカル処理を施せ、酸化亜鉛の応用の広がりが期待できる。
【図面の簡単な説明】
【図1】実施例1で窒素ラジカル処理した酸化亜鉛薄膜のオージェ分光法で得られたスペクトル図である。
【図2】実施例1で窒素ラジカル処理した酸化亜鉛薄膜表面のXPSで得られた窒素のスペクトル図である。
【図3】実施例1および比較例1で得られた酸化亜鉛薄膜の光触媒の評価結果を示すグラフである。
【図4】実施例2で合成した酸化亜鉛薄膜のオージェ分光法で得られたスペクトル図である。
【図5】比較例1で合成した酸化亜鉛薄膜のX−線回折パターン図である。
【図6】比較例1で合成した酸化亜鉛薄膜のオージェ分光法で得られたスペクトル図である。
【図7】比較例2で合成した酸化亜鉛薄膜のオージェ分光法で得られたスペクトル図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating a zinc oxide thin film, and more particularly to a treatment method for improving the photocatalytic activity thereof.
[0002]
[Prior art]
Zinc oxide can be easily thinned on the surface of a substrate such as glass. A C-axis oriented zinc oxide thin film can be synthesized by MOCVD. Zinc oxide is used as a photocatalyst, but many conventional zinc oxide photocatalysts are in powder form. In addition, a zinc oxide photocatalyst in the form of a thin film is also known (for example, JP-A-9-299791), and there is an attempt to add nitrogen to the zinc oxide photocatalyst (for example, JP-A-2001-205094).
[0003]
[Problems to be solved by the invention]
The ease of orientation of zinc oxide thin films can be found in many literatures. It has been reported on many substrates including inexpensive glass. Attempts have been made to add nitrogen to the thin film, but if only nitrogen is added to the zinc oxide thin film at the time of film formation, the orientation and crystallinity will be lowered, and the transparency of zinc oxide will be maintained while maintaining at least 1 at%. It is difficult to add nitrogen. An object of this invention is to provide the method of improving the photocatalytic activity of the zinc oxide photocatalyst thin film used for environmental purification etc.
[0004]
[Means for Solving the Problems]
The present inventors have found that catalytic activity can be improved while maintaining the transparency of zinc oxide by radical treatment on the surface of zinc oxide rather than addition of nitrogen.
[0005]
That is, according to the present invention, after a zinc oxide thin film having a C-axis growing perpendicularly to the substrate surface is formed on the substrate surface by the MOCVD method, a nitrogen radical is further formed by a radical source mounted on the MOCVD apparatus. Is a surface treatment method for a zinc oxide photocatalytic thin film characterized in that the surface nitrogen concentration is increased by irradiating the surface of the zinc oxide at a substrate temperature of 50 ° C. to 400 ° C.
[0006]
When zinc oxide is applied as a photocatalyst, its photocatalytic activity is low. The photocatalytic activity is improved by thinning and nitrogen radical treatment. Zinc oxide can be easily reduced in thickness and area, and similarly, nitrogen radical treatment can be easily increased in area. Further, since the nitrogen radical treatment is a process performed at a low temperature of 50 to 400 ° C., for example, 150 ° C., it can be used for diversification of the substrate of the zinc oxide thin film.
[0007]
[Action]
The present invention, C-axis was formed on the substrate surface is characterized by applying nitrogen radical treatment to the zinc oxide thin film of the height perpendicular orientation with respect to the substrate surface. This treatment replaces part of the oxygen-occupying sites constituting the zinc oxide surface with nitrogen. The photocatalytic activity of the treated zinc oxide is improved by about 3 times compared to the case without the treatment. Considering that the photocatalytic reaction is a surface reaction, by replacing the oxygen-occupied sites on the surface with nitrogen by surface modification, holes are supplied into the zinc oxide, and with the action of electrons originally present in the zinc oxide, The photocatalytic activity is improved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Such a highly oriented zinc oxide photocatalytic thin film can be formed on the substrate surface by MOCVD. Furthermore, the zinc oxide thin film can be irradiated with nitrogen radicals by a radical source mounted on the MOCVD apparatus. The surface of such a zinc oxide thin film is irradiated with nitrogen radicals in the range of 10 × 10 −2 to 1 × 10 −5 Torr.
Nitrogen radical irradiation is performed at a temperature of the zinc oxide substrate in the range of 50 ° C. to 400 ° C. to confirm nitrogen on the surface. When the temperature of the substrate is outside this temperature range, nitrogen on the surface by nitrogen radical treatment is not detected. Regarding the irradiation time, the amount of nitrogen detected on the surface does not change after 10 minutes or longer.
[0009]
【Example】
Comparative Example 1
The synthesis of the zinc oxide thin film was performed by the MOCVD method. Inexpensive zinc acetylacetonate was used as a zinc source, vaporized in an argon stream at 85 ° C., and sprayed from a ring injector in a vacuum chamber onto a substrate . Zinc oxide synthesis conditions shown in Table 1, the oxygen is irradiated as a radical from the radical source mounted on the substrate 15cm substrate was synthesized zinc oxide thin film having a thickness of about 500nm is reacted on the substrate.
[0010]
[Table 1]
Figure 0003864214
[0011]
Thereafter, the orientation of the zinc oxide thin film was examined by X-ray diffraction. As shown in FIG. 5, a strong (002) peak intensity and a weak (004) peak of zinc oxide were detected, confirming that the C-axis of zinc oxide grew perpendicular to the substrate surface . Further, the surface of the zinc oxide thin film synthesized by MOCVD method was examined by Auger spectroscopy. FIG. 6 shows a spectrum obtained by Auger spectroscopy. On this surface, no nitrogen peak was detected on the zinc oxide surface.
[0012]
Example 1
A zinc oxide thin film was synthesized under the same conditions as in Comparative Example 1. Thereafter, using a MOCVD apparatus as it is, nitrogen radicals were irradiated for 15 minutes at a vacuum degree of 4 × 10 −4 Torr and a substrate temperature of 150 ° C. Thereafter, the zinc oxide thin film was examined by Auger spectroscopy, and it was confirmed that nitrogen was present on the zinc oxide thin film. FIG. 1 shows a spectrum obtained by Auger spectroscopy. The presence of nitrogen is an effect of nitrogen radical treatment.
[0013]
The surface of the zinc oxide thin film obtained in Example 1 was examined for the state of nitrogen on the zinc oxide surface by the XPS method. FIG. 2 shows the spectrum of nitrogen obtained by XPS. According to this, it was found that the state of nitrogen on the surface of zinc oxide was almost nitrogen molecules, and partially substituted the oxygen sites of zinc oxide. Nitrogen replacing oxygen sites in the zinc oxide lattice supplies holes to the zinc oxide.
[0014]
The absorption spectrum of the zinc oxide thin film irradiated with nitrogen radicals in Example 1 was measured in the wavelength range of 340 nm to 900 nm. It was confirmed that there was a transmittance of 85% or more from the visible light region to the band edge in the ultraviolet region, and no effect of nitrogen irradiation on light absorption was observed.
[0015]
The photocatalyst of the zinc oxide thin film obtained in Example 1 and Comparative Example 1 was evaluated. For the evaluation of the photocatalytic activity, a zinc oxide thin film is placed in a quartz container and filled with a gas containing 1000 ppm of acetaldehyde. This was irradiated with ultraviolet light, and carbon dioxide decomposed by the photocatalytic reaction of zinc oxide was measured at each reaction time. FIG. 3 shows the measurement results. As a result, it was found that the amount of carbon dioxide obtained from the zinc oxide thin film subjected to the nitrogen radical irradiation treatment in Example 1 reached about three times the amount produced when the untreated zinc oxide thin film was used. . This is an effect of adsorption of nitrogen on the surface of zinc oxide by nitrogen radical irradiation.
[0016]
Example 2
The nitrogen radical treatment was performed under the same conditions as in Example 1 except that the irradiation time of nitrogen radicals was 30 minutes. FIG. 4 shows a spectrum obtained by Auger spectroscopy. It was confirmed that there was no change in intensity even after irradiation with nitrogen radicals for 30 minutes.
[0017]
Comparative Example 2
The nitrogen radical treatment was performed under the same conditions as in Example 1 except that the substrate temperature was 500 ° C. FIG. 7 shows a spectrum obtained by Auger spectroscopy. The presence of nitrogen could not be confirmed.
[0018]
【The invention's effect】
The zinc oxide thin film is a substance that is easily C-axis oriented regardless of the substrate . The present invention is characterized by irradiating a C-axis oriented zinc oxide thin film with nitrogen radicals for a short time under a low substrate temperature. Due to these treatment conditions, the radical treatment is characterized by almost no influence on the zinc oxide thin film and its substrate . For this reason, the same radical treatment can be applied to zinc oxide synthesized under a substrate temperature condition of about 200 ° C., and the application of zinc oxide can be expected to expand.
[Brief description of the drawings]
1 is a spectrum diagram obtained by Auger spectroscopy of a zinc oxide thin film treated with nitrogen radicals in Example 1. FIG.
2 is a spectrum diagram of nitrogen obtained by XPS on the surface of a zinc oxide thin film treated with nitrogen radicals in Example 1. FIG.
FIG. 3 is a graph showing the evaluation results of the photocatalyst of the zinc oxide thin film obtained in Example 1 and Comparative Example 1.
4 is a spectrum diagram obtained by Auger spectroscopy of the zinc oxide thin film synthesized in Example 2. FIG.
5 is an X-ray diffraction pattern diagram of the zinc oxide thin film synthesized in Comparative Example 1. FIG.
6 is a spectrum diagram obtained by Auger spectroscopy of the zinc oxide thin film synthesized in Comparative Example 1. FIG.
7 is a spectrum diagram obtained by Auger spectroscopy of the zinc oxide thin film synthesized in Comparative Example 2. FIG.

Claims (1)

基板表面にMOCVD法によってC−軸が基板表面に対して垂直に成長している酸化亜鉛薄膜を成膜した後、 さらに、MOCVD装置に搭載されているラジカル源で窒素ラジカルを酸化亜鉛表面に基板の温度50℃から400℃の範囲で照射することで表面窒素濃度を高めることを特徴とする酸化亜鉛光触媒薄膜の表面処理方法。After the C- axis is formed of zinc oxide thin films are grown perpendicular to the substrate surface by the MOCVD method on the substrate surface, further, the substrate nitrogen radicals zinc oxide surface with a radical source mounted on MOCVD apparatus A surface treatment method for a zinc oxide photocatalyst thin film characterized by increasing the surface nitrogen concentration by irradiating at a temperature of 50 ° C. to 400 ° C.
JP2002044216A 2002-02-21 2002-02-21 Surface treatment method of zinc oxide photocatalyst thin film Expired - Lifetime JP3864214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002044216A JP3864214B2 (en) 2002-02-21 2002-02-21 Surface treatment method of zinc oxide photocatalyst thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002044216A JP3864214B2 (en) 2002-02-21 2002-02-21 Surface treatment method of zinc oxide photocatalyst thin film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006186019A Division JP2006334590A (en) 2006-07-05 2006-07-05 Photocatalyst thin film

Publications (2)

Publication Number Publication Date
JP2003236376A JP2003236376A (en) 2003-08-26
JP3864214B2 true JP3864214B2 (en) 2006-12-27

Family

ID=27783685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002044216A Expired - Lifetime JP3864214B2 (en) 2002-02-21 2002-02-21 Surface treatment method of zinc oxide photocatalyst thin film

Country Status (1)

Country Link
JP (1) JP3864214B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565897B2 (en) 2004-06-14 2010-10-20 株式会社Adeka Thin film forming raw material and thin film manufacturing method
JP5063074B2 (en) * 2006-10-03 2012-10-31 株式会社Adeka Thin film forming raw material, thin film manufacturing method, and zinc compound
CN102580716B (en) * 2012-01-18 2014-02-26 黑龙江大学 Method for synthesizing zinc oxide/graphene composite by solvothermal method
US20230142848A1 (en) 2020-04-01 2023-05-11 Adeka Corporation Zinc compound, thin-film forming raw material, thin-film, and method of producing thin-film

Also Published As

Publication number Publication date
JP2003236376A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
US6306343B1 (en) Photocatalyst having visible light activity and uses thereof
JP3252136B2 (en) Visible light type photocatalyst and method for producing the same
EP1125636A1 (en) Visible radiation type photocatalyst and production method thereof
US4702936A (en) Gas-phase growth process
US7521133B2 (en) Titanium oxide photocatalyst, process for producing the same and application
JPH0987857A (en) Carbide coating method by plasma cvd
Ahmadipour et al. Influence of annealing temperature on morphological and photocatalytic activity of sputter-coated CaCu3Ti4O12 thin film under ultraviolet light irradiation
JP3589177B2 (en) Method for producing inorganic oxynitride
JP2008504957A (en) Catalyst material and method for producing the same
Kantcheva et al. An IR spectroscopy study of the state and localization of vanadium-oxo species adsorbed on TiO2 (anatase)
US20010056037A1 (en) Titanium hydroxide, photocatalyst produced from the same and photocatalytic coating agent
JP3864214B2 (en) Surface treatment method of zinc oxide photocatalyst thin film
EP2000208A9 (en) Visible light response-type titanium oxide photocatalyst, method for manufacturing the visible light response-type titanium oxide photocatalyst, and use of the visible light response-type titanium oxide photocatalyst
Zhou et al. Photocatalytic decomposition of formic acid under visible light irradiation over V-ion-implanted TiO 2 thin film photocatalysts prepared on quartz substrate by ionized cluster beam (ICB) deposition method
US6280700B1 (en) Film of titanium dioxide containing silicon dioxide and a method of forming the same
KR100852496B1 (en) Method of preparation for titania photo-catalyst by oxygen plasma and rapid thermal annealing
JP4592846B2 (en) Photocatalytic coating for removing nitrogen oxides in air and article having this coating
JP3949143B2 (en) Titanium dioxide nanophotocatalyst powder, production method and apparatus thereof
JP2001354422A (en) Method for manufacturing titanium oxide
KR101154379B1 (en) Oxide titanium nano structure with ultrahydrophilic surface modification by oxygen plasma and preparation method thereof
JP2006334590A (en) Photocatalyst thin film
Rani et al. Structural, optical and photocatalytic study of Sr2+ doped TiO2 nanoparticles
JP3887510B2 (en) Photocatalyst film and method for producing the same
Barsukov et al. Effect of surface hydration on the photocatalytic activity of oxide catalysts in the CO oxidation
KR20200086981A (en) Fabrication of photocatalytic concretes having photodecomposition of pollutants and method of increasing its recyclability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Ref document number: 3864214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term