JP3863755B2 - Refrigerant pipe connection structure and heat exchanger, compressor and accumulator using the same - Google Patents

Refrigerant pipe connection structure and heat exchanger, compressor and accumulator using the same Download PDF

Info

Publication number
JP3863755B2
JP3863755B2 JP2001333106A JP2001333106A JP3863755B2 JP 3863755 B2 JP3863755 B2 JP 3863755B2 JP 2001333106 A JP2001333106 A JP 2001333106A JP 2001333106 A JP2001333106 A JP 2001333106A JP 3863755 B2 JP3863755 B2 JP 3863755B2
Authority
JP
Japan
Prior art keywords
refrigerant pipe
aluminum
joined
pipe made
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001333106A
Other languages
Japanese (ja)
Other versions
JP2003139442A (en
Inventor
重男 机
清 小山
聡 星野
禎大 滝澤
茂弥 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001333106A priority Critical patent/JP3863755B2/en
Publication of JP2003139442A publication Critical patent/JP2003139442A/en
Application granted granted Critical
Publication of JP3863755B2 publication Critical patent/JP3863755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/022Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of two or more media in heat-exchange relationship being helically coiled, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アルミニウム製の冷媒管と銅製の冷媒管とを接続する冷媒管接続構造及びこれを用いた熱交換器、圧縮機並びにアキュームレータに関する。
【0002】
【従来の技術】
一般に、アキュームレータ、圧縮機、ガスクーラ、減圧装置および蒸発器を有する冷凍サイクルを備え、このガスクーラで加熱した水を貯湯タンクに貯えて、給湯可能に構成したヒートポンプ給湯機が知られている。この種のものでは、例えば、ガスクーラにおいて、冷媒を流すアルミニウム製の冷媒管を螺旋状に巻くと共に、水を流す銅製の水管を螺旋状に巻いて、これらを交互に重ね合わせて、全体として螺旋状に形成したものが提案されている。
【0003】
【発明が解決しようとする課題】
上記構成によると、冷凍サイクルを構成する冷媒管は、一般に、銅製の丸チューブの冷媒管であるため、この銅製の冷媒管と、ガスクーラを構成するアルミニウム製の冷媒管とを接続しなければならない。
【0004】
一方、熱交換器、圧縮機並びにアキュームレータ等にあっても、これらからアルミニウム製の冷媒管が延びている場合、このアルミニウム製の冷媒管に対し、銅製の冷媒管を接続しなければならない。
【0005】
しかし、従来、アルミニウム製の冷媒管と銅製の冷媒管とを簡単に、効果的に接続する接続構造は提案されていない。
【0006】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、アルミニウム製の冷媒管と、銅製の冷媒管とを簡単に、効果的に接続することができる、冷媒管接続構造及びこれを用いた熱交換器、圧縮機並びにアキュームレータを提供することにある。
【0007】
【課題を解決するための手段】
請求項1記載の発明は、アルミニウム製の第一冷媒管と銅製の第二冷媒管とを接続する冷媒管接続構造において、銅製の第二冷媒管にアルミニウム製の第三冷媒管を共晶結合によって接合し、アルミニウム製のジョイントの一端にアルミニウム製の第一冷媒管を嵌合させて接合すると共に、前記ジョイントの他端にアルミニウム製の第三冷媒管を嵌合させて接合したことを特徴とする。
【0008】
請求項2記載の発明は、請求項1記載のものにおいて、第三冷媒管の外周にアルミニウム製の第四冷媒管を備えたことを特徴とする。
【0009】
請求項3記載の発明は、請求項1または2記載のものにおいて、第一冷媒管が外形扁平のアルミニウム製の多穴冷媒管であることを特徴とする。
【0010】
請求項4記載の発明は、熱交換器から延びるアルミニウム製の第一冷媒管に銅製の第二冷媒管を接続してなる熱交換器において、銅製の第二冷媒管にアルミニウム製の第三冷媒管を共晶結合によって接合し、アルミニウム製のジョイントの一端にアルミニウム製の第一冷媒管を嵌合させて接合すると共に、ジョイントの他端にアルミニウム製の第三冷媒管を嵌合させて接合したことを特徴とする。
【0011】
請求項5記載の発明は、圧縮機から延びるアルミニウム製の第一冷媒管に銅製の第二冷媒管を接続してなる圧縮機において、銅製の第二冷媒管にアルミニウム製の第三冷媒管を共晶結合によって接合し、アルミニウム製のジョイントの一端にアルミニウム製の第一冷媒管を嵌合させて接合すると共に、前記ジョイントの他端にアルミニウム製の第三冷媒管を嵌合させて接合したことを特徴とする。
【0012】
請求項6記載の発明は、アキュームレータから延びるアルミニウム製の第一冷媒管に銅製の第二冷媒管を接続してなるアキュームレータにおいて、銅製の第二冷媒管にアルミニウム製の第三冷媒管を共晶結合によって接合し、アルミニウム製のジョイントの一端にアルミニウム製の第一冷媒管を嵌合させて接合すると共に、前記ジョイントの他端にアルミニウム製の第三冷媒管を嵌合させて接合したことを特徴とする。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態を、図面に基づいて説明する。
【0014】
図1は、二段圧縮型ロータリー式圧縮機を使用したヒートポンプ給湯機を示している。1は圧縮機を示し、この圧縮機1には、冷媒配管を介して、ガスクーラ(高圧側熱交換器)3、減圧装置(膨張弁)5、蒸発器(低圧側熱交換器)7が順に接続されて、冷凍サイクルが構成されている。11はアキュームレータである。この冷凍サイクルにはCO2冷媒が使用される。CO2冷媒はオゾン破壊係数が0で、地球温暖化係数が1であるため、環境への負荷が小さく、毒性、可燃性がなく安全で安価である。このCO2冷媒を使用した場合、冷凍サイクルの高圧側が超臨界となる遷臨界サイクル(Transcritical Cycle)になるため、ヒートポンプ式給湯装置における給湯のように、水の昇温幅が大きい加熱プロセスでは高い成績係数(COP)を期待することができる。
【0015】
しかし、その反面、冷媒を高圧に圧縮しなければならず、圧縮機1には、内部中間圧二段圧縮型の圧縮機が採用されている。
【0016】
この圧縮機1は、図示は省略したが、シェルケースの内部に電動機部と、この電動機部により駆動される圧縮部とを有している。この圧縮部は二段圧縮の構成を有し、一段目の圧縮部と、二段目の圧縮部とからなる。一段目の圧縮部の吸込みポートAから吸い込まれた冷媒は、この圧縮部で中間圧P1に圧縮された後、一旦、吐出ポートからシェルケース内に吐出され、このシェルケース内を経た後、二段目の圧縮部の吸込みポートに導かれ、この二段目の圧縮部で高圧P2に圧縮されて吐出ポートBから吐出される。
【0017】
上記ガスクーラ3は、CO2冷媒が流れる冷媒コイル9と、水が流れる水コイル10とからなり、この水コイル10は水配管を介して貯湯タンク15に接続されている。水配管には循環ポンプ17が接続され、この循環ポンプ17が駆動されて、貯湯タンク15の水がガスクーラ3を循環し、ここで加熱されて貯湯タンク15に貯湯される。
【0018】
この冷凍サイクルには、蒸発器7の除霜回路が設けられている。この除霜回路は、圧縮機1の吐出ポートBからの高圧P2冷媒を、ガスクーラ3および減圧装置5をバイパスして蒸発器7に導く、除霜用電磁弁31及びバイパス管32を有した除霜回路33と、圧縮機1の中間ポートCからの中間圧P1冷媒を、同じく蒸発器7に導く、除霜用電磁弁35及びバイパス管36を有した除霜回路37とを備えて構成される。
【0019】
この除霜運転では、除霜用電磁弁31或いは35が開かれると共に、膨張弁5がほぼ全開にされる。
【0020】
除霜運転が行われると、圧縮機1から吐出される高圧冷媒、或いは中間圧冷媒が、バイパス管32或いは36を介して、蒸発器7に直接送られ、この蒸発器7が加熱されて除霜される。
【0021】
図2は、ガスクーラ3を示している。
【0022】
このガスクーラ3は、冷媒を流すアルミニウム製の冷媒コイル(第一冷媒管)9を螺旋状に巻くと共に、水を流す銅製の水コイル10を螺旋状に巻いて、これらを軸線方向に交互に重ね合わせ、支持部材としての第1支持リング91、第2支持リング92を上下に備えて、全体として螺旋状に形成される。冷媒コイル9は、外形扁平のアルミニウム製の多穴冷媒管である。
【0023】
さて、図1を参照して、冷凍サイクルを構成する冷媒管は、一般に、銅製の丸チューブ(第二冷媒管)であるため、この銅製の丸チューブと、外形扁平のアルミニウム製の多穴冷媒管である冷媒コイル9とを接続する。
【0024】
本実施形態では、図3に示すように、アルミニウム製のジョイント41が準備される。このジョイント41には2つの連結穴41A,41Bが一体的に形成されている。43は銅製の丸チューブ(第二冷媒管)を示し、この丸チューブ43は冷凍サイクルの冷媒管を構成する。
【0025】
丸チューブ43と冷媒コイル9とを接続するに先だって、まず、銅製の丸チューブ43に対して異種金属のアルミニウム製の丸チューブ(第三冷媒管)45を共晶結合47によって接合する。
【0026】
ついで、アルミニウム製のジョイント41の一端の連結穴41Aにアルミニウム製の冷媒コイル(第一冷媒管)9を嵌合させてTIG溶接(或いはろう付け)51により接合すると共に、ジョイント41の他端の連結穴41Bにアルミニウム製の丸チューブ(第三冷媒管)45を嵌合させてTIG溶接(或いはろう付け)53により接合する。この場合、アルミニウム同士であるため、TIG溶接は容易である。ジョイント41の各連結穴41A,41Bの内側には、それぞれ位置決め用の段部が形成され、この段部に当接するまで各冷媒管を挿入して位置決めした後、TIG溶接(或いはろう付け)51,53により接合するため、堅固な接合が可能になる。
【0027】
必要に応じて、丸チューブ(第三冷媒管)45の外周にアルミニウム製の丸チューブ(第四冷媒管)49をかぶせ、丸チューブ45,49とジョイント41の他端41BとをTIG溶接53により接合する。この丸チューブ49は、丸チューブ45の耐圧を外側から補強する。
【0028】
本実施形態では、銅製の丸チューブ43に異種金属のアルミニウム製の丸チューブ45を共晶結合47によって接合し、アルミニウム製の丸チューブ45とアルミニウム製の多穴冷媒管である冷媒コイル9とをジョイント41を用いて接合するため、ジョイント41の部分ではアルミニウム同士の接合になり、容易に接合することができ、その結果、銅製の丸チューブ43とアルミニウム製の冷媒コイル9との接合が可能になる。
【0029】
また、アルミニウム製の丸チューブ45だけでは、冷媒耐圧力が不足するものの、丸チューブ49がその耐圧力を外側から補強するため、十分な冷媒耐圧力を維持することができる。
【0030】
熱交換器7、圧縮機1並びにアキュームレータ11等にあっても、これらからアルミニウム製の冷媒管が延びている場合、このアルミニウム製の冷媒管に対し、銅製の丸チューブ43を接続しなければならない。この場合、銅製の丸チューブ43に異種金属のアルミニウム製の丸チューブ45を共晶結合47によって接合して、上記構成によるジョイント41を用いれば、上記実施形態と同様に、ジョイント41の部分ではアルミニウム同士の接合になるため、容易に接合することができ、その結果、銅製の丸チューブ43とアルミニウム製の冷媒コイルとを接合することができる。
【0031】
以上、一実施形態に基づいて本発明を説明したが、本発明はこれに限定されるものでないことは明らかである。
【0032】
【発明の効果】
本発明では、銅製の第二冷媒管にアルミニウム製の第三冷媒管を共晶結合によって接合し、アルミニウム製のジョイントの一端にアルミニウム製の第一冷媒管を嵌合させて接合すると共に、ジョイントの他端にアルミニウム製の第三冷媒管を嵌合させて接合したため、銅製の冷媒管とアルミニウム製の冷媒管とを容易に接合することができる。
【図面の簡単な説明】
【図1】本発明によるヒートポンプ給湯機の一実施形態を示す回路図である。
【図2】ガスクーラを示す斜視図である。
【図3】ジョイントを示す断面図である。
【符号の説明】
1 圧縮機
3 ガスクーラ
5 減圧装置
7 蒸発器
9 冷媒コイル(第一冷媒管)
10 水コイル
41 ジョイント
43 銅製の丸チューブ(第二冷媒管)
45 アルミニウム製の丸チューブ(第三冷媒管)
47 共晶結合
49 アルミニウム製の丸チューブ(第四冷媒管)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerant pipe connection structure that connects an aluminum refrigerant pipe and a copper refrigerant pipe, and a heat exchanger, a compressor, and an accumulator using the refrigerant pipe connection structure.
[0002]
[Prior art]
In general, there is known a heat pump water heater that includes a refrigeration cycle having an accumulator, a compressor, a gas cooler, a decompression device, and an evaporator, stores water heated by the gas cooler in a hot water storage tank, and can supply hot water. In this type, for example, in a gas cooler, an aluminum refrigerant pipe for flowing refrigerant is spirally wound, and a copper water pipe for flowing water is spirally wound, and these are alternately overlapped to form a spiral as a whole. What was formed in the shape is proposed.
[0003]
[Problems to be solved by the invention]
According to the above configuration, since the refrigerant pipe constituting the refrigeration cycle is generally a copper round tube refrigerant pipe, the copper refrigerant pipe and the aluminum refrigerant pipe constituting the gas cooler must be connected. .
[0004]
On the other hand, even in a heat exchanger, a compressor, an accumulator, and the like, when an aluminum refrigerant pipe extends from these, a copper refrigerant pipe must be connected to the aluminum refrigerant pipe.
[0005]
However, a connection structure that simply and effectively connects an aluminum refrigerant pipe and a copper refrigerant pipe has not been proposed.
[0006]
Accordingly, an object of the present invention is to eliminate the problems of the conventional techniques described above, and to connect a refrigerant pipe made of aluminum and a refrigerant pipe made of copper easily and effectively, and a refrigerant pipe connection structure and The object is to provide a heat exchanger, a compressor and an accumulator using the same.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a refrigerant pipe connection structure for connecting a first refrigerant pipe made of aluminum and a second refrigerant pipe made of copper, and eutectic bonding of the third refrigerant pipe made of aluminum to the second refrigerant pipe made of copper. The first refrigerant pipe made of aluminum is fitted to one end of the aluminum joint and joined, and the third refrigerant pipe made of aluminum is fitted to the other end of the joint and joined. And
[0008]
According to a second aspect of the present invention, in the first aspect of the present invention, a fourth refrigerant pipe made of aluminum is provided on the outer periphery of the third refrigerant pipe.
[0009]
A third aspect of the invention is characterized in that, in the first or second aspect of the invention, the first refrigerant pipe is an aluminum flat multi-hole refrigerant pipe having a flat outer shape.
[0010]
The invention according to claim 4 is a heat exchanger in which a second refrigerant pipe made of copper is connected to a first refrigerant pipe made of aluminum extending from the heat exchanger, and a third refrigerant made of aluminum is connected to the second refrigerant pipe made of copper. The pipes are joined by eutectic bonding, and an aluminum first refrigerant pipe is fitted to one end of the aluminum joint and joined, and an aluminum third refrigerant pipe is fitted to the other end of the joint and joined. It is characterized by that.
[0011]
The invention according to claim 5 is a compressor in which a second refrigerant pipe made of copper is connected to a first refrigerant pipe made of aluminum extending from the compressor, and a third refrigerant pipe made of aluminum is connected to the second refrigerant pipe made of copper. Joined by eutectic bonding, and joined by fitting an aluminum first refrigerant pipe to one end of an aluminum joint, and joined by joining an aluminum third refrigerant pipe to the other end of the joint. It is characterized by that.
[0012]
According to a sixth aspect of the present invention, there is provided an accumulator in which a copper second refrigerant pipe is connected to an aluminum first refrigerant pipe extending from the accumulator, and an aluminum third refrigerant pipe is eutectic to the copper second refrigerant pipe. Joining by joining, and fitting and joining the aluminum first refrigerant pipe to one end of the aluminum joint, and fitting and joining the aluminum third refrigerant pipe to the other end of the joint Features.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 shows a heat pump water heater using a two-stage compression type rotary compressor. Reference numeral 1 denotes a compressor. A gas cooler (high-pressure side heat exchanger) 3, a decompression device (expansion valve) 5, and an evaporator (low-pressure side heat exchanger) 7 are sequentially connected to the compressor 1 through a refrigerant pipe. Connected to form a refrigeration cycle. Reference numeral 11 denotes an accumulator. A CO 2 refrigerant is used for this refrigeration cycle. Since the CO 2 refrigerant has an ozone depletion coefficient of 0 and a global warming coefficient of 1, the load on the environment is small, and it is safe and inexpensive without toxicity and flammability. When this CO 2 refrigerant is used, it becomes a transcritical cycle in which the high pressure side of the refrigeration cycle becomes supercritical, so it is high in a heating process with a large water temperature rise range, such as hot water in a heat pump hot water supply device. Coefficient of performance (COP) can be expected.
[0015]
However, on the other hand, the refrigerant must be compressed to a high pressure, and the compressor 1 employs an internal intermediate pressure two-stage compression type compressor.
[0016]
Although not shown, the compressor 1 has an electric motor part inside the shell case and a compression part driven by the electric motor part. The compression unit has a two-stage compression configuration, and includes a first-stage compression unit and a second-stage compression unit. The refrigerant sucked from the suction port A of the first-stage compression section is compressed to the intermediate pressure P1 by the compression section, and is then discharged from the discharge port into the shell case, and after passing through the shell case, It is guided to the suction port of the compression section at the stage, and is compressed to high pressure P2 at the compression section at the second stage and discharged from the discharge port B.
[0017]
The gas cooler 3 includes a refrigerant coil 9 through which CO 2 refrigerant flows and a water coil 10 through which water flows, and the water coil 10 is connected to a hot water storage tank 15 through a water pipe. A circulation pump 17 is connected to the water pipe, and the circulation pump 17 is driven to circulate the water in the hot water storage tank 15 through the gas cooler 3, where it is heated and stored in the hot water storage tank 15.
[0018]
This refrigeration cycle is provided with a defrosting circuit for the evaporator 7. This defrosting circuit has a defrosting solenoid valve 31 and a bypass pipe 32 that guide the high-pressure P2 refrigerant from the discharge port B of the compressor 1 to the evaporator 7 by bypassing the gas cooler 3 and the decompression device 5. A frost circuit 33 and a defrost circuit 37 having a defrosting electromagnetic valve 35 and a bypass pipe 36 that lead the intermediate pressure P1 refrigerant from the intermediate port C of the compressor 1 to the evaporator 7 are also configured. The
[0019]
In this defrosting operation, the defrosting electromagnetic valve 31 or 35 is opened and the expansion valve 5 is almost fully opened.
[0020]
When the defrosting operation is performed, the high-pressure refrigerant or intermediate-pressure refrigerant discharged from the compressor 1 is directly sent to the evaporator 7 via the bypass pipe 32 or 36, and the evaporator 7 is heated and removed. Frosted.
[0021]
FIG. 2 shows the gas cooler 3.
[0022]
The gas cooler 3 spirally winds an aluminum refrigerant coil (first refrigerant pipe) 9 for flowing a refrigerant, and spirally winds a copper water coil 10 for flowing water, and these are alternately stacked in the axial direction. In addition, a first support ring 91 and a second support ring 92 as support members are provided on the upper and lower sides, and are formed in a spiral shape as a whole. The refrigerant coil 9 is a multi-hole refrigerant tube made of aluminum having a flat outer shape.
[0023]
Now, referring to FIG. 1, since the refrigerant pipe constituting the refrigeration cycle is generally a copper round tube (second refrigerant pipe), the copper round tube and a flat multi-hole refrigerant made of aluminum having a flat outer shape are used. A refrigerant coil 9 which is a tube is connected.
[0024]
In this embodiment, as shown in FIG. 3, an aluminum joint 41 is prepared. Two joint holes 41A and 41B are integrally formed in the joint 41. 43 shows a copper round tube (second refrigerant pipe), and this round tube 43 constitutes the refrigerant pipe of the refrigeration cycle.
[0025]
Prior to connecting the round tube 43 and the refrigerant coil 9, first, an aluminum round tube (third refrigerant pipe) 45 of a dissimilar metal is joined to the copper round tube 43 by a eutectic bond 47.
[0026]
Next, an aluminum refrigerant coil (first refrigerant pipe) 9 is fitted into the connecting hole 41A at one end of the aluminum joint 41 and joined by TIG welding (or brazing) 51, and the other end of the joint 41 is joined. A round tube (third refrigerant tube) 45 made of aluminum is fitted into the connecting hole 41B and joined by TIG welding (or brazing) 53. In this case, since it is aluminum, TIG welding is easy. Positioning step portions are formed inside the connection holes 41A and 41B of the joint 41. After positioning the refrigerant pipes until they contact the step portions, TIG welding (or brazing) 51 is performed. , 53, it is possible to join firmly.
[0027]
If necessary, an aluminum round tube (fourth refrigerant pipe) 49 is placed on the outer periphery of the round tube (third refrigerant pipe) 45, and the round tubes 45, 49 and the other end 41 </ b> B of the joint 41 are joined by TIG welding 53. Join. The round tube 49 reinforces the pressure resistance of the round tube 45 from the outside.
[0028]
In this embodiment, an aluminum round tube 45 made of a dissimilar metal is joined to a copper round tube 43 by a eutectic bond 47, and the aluminum round tube 45 and the refrigerant coil 9 which is a multi-hole refrigerant tube made of aluminum are connected. Since it joins using the joint 41, it becomes joining of aluminum in the part of the joint 41, and it can join easily, As a result, joining of the copper round tube 43 and the aluminum refrigerant coil 9 is attained. Become.
[0029]
Further, the aluminum round tube 45 alone has insufficient refrigerant pressure resistance, but the round tube 49 reinforces the pressure resistance from the outside, so that sufficient refrigerant pressure resistance can be maintained.
[0030]
Even in the heat exchanger 7, the compressor 1, the accumulator 11, and the like, when an aluminum refrigerant pipe extends from these, a copper round tube 43 must be connected to the aluminum refrigerant pipe. . In this case, if a round tube 45 made of a dissimilar metal is joined to the copper round tube 43 by a eutectic bond 47 and the joint 41 having the above configuration is used, the joint 41 is made of aluminum in the same manner as in the above embodiment. Since it becomes joining between, it can join easily and, as a result, the copper round tube 43 and the refrigerant coil made from aluminum can be joined.
[0031]
As mentioned above, although this invention was demonstrated based on one Embodiment, it is clear that this invention is not limited to this.
[0032]
【The invention's effect】
In the present invention, an aluminum third refrigerant pipe is joined to the copper second refrigerant pipe by eutectic bonding, and the aluminum first refrigerant pipe is fitted and joined to one end of the aluminum joint. Since the third refrigerant pipe made of aluminum is fitted and joined to the other end, the copper refrigerant pipe and the aluminum refrigerant pipe can be easily joined.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of a heat pump water heater according to the present invention.
FIG. 2 is a perspective view showing a gas cooler.
FIG. 3 is a cross-sectional view showing a joint.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 3 Gas cooler 5 Pressure reducing device 7 Evaporator 9 Refrigerant coil (first refrigerant pipe)
10 Water coil 41 Joint 43 Copper round tube (second refrigerant tube)
45 Round tube made of aluminum (third refrigerant tube)
47 Eutectic bond 49 Aluminum round tube (fourth refrigerant tube)

Claims (6)

アルミニウム製の第一冷媒管と銅製の第二冷媒管とを接続する冷媒管接続構造において、
銅製の第二冷媒管にアルミニウム製の第三冷媒管を共晶結合によって接合し、アルミニウム製のジョイントの一端にアルミニウム製の第一冷媒管を嵌合させて接合すると共に、前記ジョイントの他端にアルミニウム製の第三冷媒管を嵌合させて接合したことを特徴とする冷媒管接続構造。
In the refrigerant pipe connection structure that connects the first refrigerant pipe made of aluminum and the second refrigerant pipe made of copper,
A third refrigerant pipe made of aluminum is joined to the second refrigerant pipe made of copper by eutectic bonding, and the first refrigerant pipe made of aluminum is fitted and joined to one end of the aluminum joint, and the other end of the joint is joined. A refrigerant pipe connection structure characterized in that a third refrigerant pipe made of aluminum is fitted and joined to each other.
第三冷媒管の外周にアルミニウム製の第四冷媒管を備えたことを特徴とする請求項1記載の冷媒管接続構造。The refrigerant pipe connection structure according to claim 1, wherein a fourth refrigerant pipe made of aluminum is provided on an outer periphery of the third refrigerant pipe. 第一冷媒管が外形扁平のアルミニウム製の多穴冷媒管であることを特徴とする請求項1または2記載の冷媒管接続構造。The refrigerant pipe connection structure according to claim 1 or 2, wherein the first refrigerant pipe is a flat multi-hole refrigerant pipe made of aluminum. 熱交換器から延びるアルミニウム製の第一冷媒管に銅製の第二冷媒管を接続してなる熱交換器において、
銅製の第二冷媒管にアルミニウム製の第三冷媒管を共晶結合によって接合し、アルミニウム製のジョイントの一端にアルミニウム製の第一冷媒管を嵌合させて接合すると共に、前記ジョイントの他端にアルミニウム製の第三冷媒管を嵌合させて接合したことを特徴とする熱交換器。
In the heat exchanger formed by connecting the second refrigerant pipe made of copper to the first refrigerant pipe made of aluminum extending from the heat exchanger,
A third refrigerant pipe made of aluminum is joined to the second refrigerant pipe made of copper by eutectic bonding, and the first refrigerant pipe made of aluminum is fitted and joined to one end of the aluminum joint, and the other end of the joint is joined. A heat exchanger characterized in that a third refrigerant pipe made of aluminum is fitted and joined to each other.
圧縮機から延びるアルミニウム製の第一冷媒管に銅製の第二冷媒管を接続してなる圧縮機において、
銅製の第二冷媒管にアルミニウム製の第三冷媒管を共晶結合によって接合し、アルミニウム製のジョイントの一端にアルミニウム製の第一冷媒管を嵌合させて接合すると共に、前記ジョイントの他端にアルミニウム製の第三冷媒管を嵌合させて接合したことを特徴とする圧縮機。
In the compressor formed by connecting the second refrigerant pipe made of copper to the first refrigerant pipe made of aluminum extending from the compressor,
A third refrigerant pipe made of aluminum is joined to the second refrigerant pipe made of copper by eutectic bonding, and the first refrigerant pipe made of aluminum is fitted and joined to one end of the aluminum joint, and the other end of the joint is joined. A compressor characterized in that a third refrigerant pipe made of aluminum is fitted and joined to the compressor.
アキュームレータから延びるアルミニウム製の第一冷媒管に銅製の第二冷媒管を接続してなるアキュームレータにおいて、
銅製の第二冷媒管にアルミニウム製の第三冷媒管を共晶結合によって接合し、アルミニウム製のジョイントの一端にアルミニウム製の第一冷媒管を嵌合させて接合すると共に、前記ジョイントの他端にアルミニウム製の第三冷媒管を嵌合させて接合したことを特徴とするアキュームレータ。
In the accumulator formed by connecting the second refrigerant pipe made of copper to the first refrigerant pipe made of aluminum extending from the accumulator,
A third refrigerant pipe made of aluminum is joined to the second refrigerant pipe made of copper by eutectic bonding, and the first refrigerant pipe made of aluminum is fitted and joined to one end of the aluminum joint, and the other end of the joint is joined. An accumulator characterized in that a third refrigerant pipe made of aluminum is fitted and joined to each other.
JP2001333106A 2001-10-30 2001-10-30 Refrigerant pipe connection structure and heat exchanger, compressor and accumulator using the same Expired - Fee Related JP3863755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333106A JP3863755B2 (en) 2001-10-30 2001-10-30 Refrigerant pipe connection structure and heat exchanger, compressor and accumulator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333106A JP3863755B2 (en) 2001-10-30 2001-10-30 Refrigerant pipe connection structure and heat exchanger, compressor and accumulator using the same

Publications (2)

Publication Number Publication Date
JP2003139442A JP2003139442A (en) 2003-05-14
JP3863755B2 true JP3863755B2 (en) 2006-12-27

Family

ID=19148428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333106A Expired - Fee Related JP3863755B2 (en) 2001-10-30 2001-10-30 Refrigerant pipe connection structure and heat exchanger, compressor and accumulator using the same

Country Status (1)

Country Link
JP (1) JP3863755B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749127B2 (en) * 2005-11-16 2011-08-17 三洋電機株式会社 Muffler
CN100445625C (en) 2006-09-20 2008-12-24 左铁军 Welded joint of thin wall copper aluminum pipe with no eutectic structure, and preparation method
JP5008508B2 (en) * 2007-09-24 2012-08-22 三菱電機株式会社 Bonded body of copper tube and aluminum tube, bonding method, bonding device, and fluid circuit device
KR101827577B1 (en) * 2011-11-18 2018-02-08 엘지전자 주식회사 An air conditioner

Also Published As

Publication number Publication date
JP2003139442A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
EP1512924A2 (en) Air conditioner comprising heat exchanger and means for switching cooling cycle
WO2010064427A1 (en) Refrigeration device
US20070180853A1 (en) Refrigerator
JP2007298196A (en) Piping with internal heat exchanger and refrigerating cycle device comprising the same
EP1961598A1 (en) Internal heat exchanger for automotive air conditioner
JPH11142007A (en) Refrigerating cycle
JP2007187413A (en) Heat exchanger
EP1726907A1 (en) Heat exchanger
JP3863755B2 (en) Refrigerant pipe connection structure and heat exchanger, compressor and accumulator using the same
JP2004239506A (en) Heat pump unit
JP3321192B2 (en) Refrigeration circuit
JP6088916B2 (en) Hermetic electric compressor
JP2014126284A (en) Refrigeration device
JP2021167676A (en) Joint
JP2004308955A (en) Heat pump device
JP7049310B2 (en) Refrigeration equipment
WO2021019881A1 (en) Refrigeration apparatus, and refrigerant piping of refrigeration apparatus
JP2004205060A (en) Heat exchanger
JP2002031438A (en) Air conditioner and manufacturing method therefor
JP3815611B2 (en) Heat pump water heater
JP3812507B2 (en) Heat exchange device and heat pump water heater using the same
JP6111655B2 (en) Refrigeration equipment
JP5163549B2 (en) Inter-refrigerant heat exchanger and refrigerant circuit using the same
KR20110045132A (en) Structure for joining of sustion pipe and capillary tube pipe
JPH10141798A (en) Heat pump apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees