JP3863604B2 - Method for producing lithium composite oxide - Google Patents

Method for producing lithium composite oxide Download PDF

Info

Publication number
JP3863604B2
JP3863604B2 JP26025096A JP26025096A JP3863604B2 JP 3863604 B2 JP3863604 B2 JP 3863604B2 JP 26025096 A JP26025096 A JP 26025096A JP 26025096 A JP26025096 A JP 26025096A JP 3863604 B2 JP3863604 B2 JP 3863604B2
Authority
JP
Japan
Prior art keywords
lithium
composite oxide
hydroxide
firing
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26025096A
Other languages
Japanese (ja)
Other versions
JPH1087331A (en
Inventor
信幸 山崎
重保 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP26025096A priority Critical patent/JP3863604B2/en
Publication of JPH1087331A publication Critical patent/JPH1087331A/en
Application granted granted Critical
Publication of JP3863604B2 publication Critical patent/JP3863604B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リチウム複合酸化物の製造方法に関するものである。
【0002】
【従来の技術】
近年、民生用電子機器のポータブル化、コードレス化が急速に進むに従い、小型電子機器の電源としてリチウム二次電池が実用化されている。このリチウム二次電池については、1980年に水島等によりコバルト酸リチウムがリチウム二次電池の正極活性物質として有用であるとの報告〔”マテリアル リサーチブレイン”vol115,P783-789(1980) 〕がなされて以来、リチウム(Li )系複合酸化物に関する研究開発が活発に勧められており、これまでに多くの提案がなされている。
それらは、例えばLi1-XNi O2 (但し0≦x≦1)(米国特許番号第4302518号明細書)、Li Ni2-Y2 (特開平2ー40861号公報)、Li Y Ni x Co1-x 2 (但し、0<x≦0.75,y≦1)(特開昭63ー299056号公報)などのリチウムと遷移金属を主体とする複合酸化物が代表的に挙げられる。
【0003】
【発明が解決しようとする課題】
上記化合物において、コバルト酸リチウムは合成が比較的容易で、かつ電気特性に優れているため、最も早くからリチウム二次電池用正極材として検討されてきたが、原料のコバルト(Co)が希産で高価なうえ、0.7電子以上充電すると結晶性の低下や電解液の分解が生じるため大容量化には適さないといった欠点がある。
一方、LiNiO2 はコバルトに比べて安価であるといった有利な点はあるが、電池の正極材として使用中に欠陥を生じやすく、そのため電池の安定性に欠けるなど容量特性はCo系に劣ると考えられていた。このため、できるだけ化学量論的比に近いLiNiO2 およびニッケル(Ni)の一部を他の遷移金属で置換したリチウム複合酸化物やその合成法が検討されている。
【0004】
しかしながら、未だリチウム二次電池の正極材として満足に適用できる特性のものは勿論、その工業的な製造方法が見い出されていないのが現状である。
【0005】
従って、本発明の目的は、初期放電容量および放電保持率に優れ高エネルギー密度を与えるリチウム二次電池用正極活物質の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
かかる実情において、本発明者らは化合物中の結晶欠陥を生じない正極材として安定性のあるリチウム複合酸化物およびその製造方法について鋭意研究を行ったところ、リチウム複合酸化物のX線回折による格子定数と理論格子定数との比が0.990超え1.010未満の範囲内、また、吸湿率の増加分が5%以下であるリチウム複合酸化物は、リチウム二次電池の正極活物質として使用した場合、初期放電容量および放電保持率に優れる高エネルギー密度を与えることを知見し本発明を完成するに至った。
【0007】
すなわち、本発明は、Ni 塩の結晶粒子又はNi とCoとの固溶及び/又は共沈で生成したNi −Co塩の結晶粒子と、粒子径350μm以下が80%以上である水酸化リチウムを混合し、次いで200〜400℃で焼成した後、更に750〜900℃で焼成する多段焼成を行うことを特徴とする下記一般式(1)
Li XNi1-yCoy 2 (1)
(式中、0<x<1.1、0≦y≦0.4を示す)で表されるリチウム複合酸化物の製造方法を提供するものである。
また、本発明は、N i 塩の結晶粒子又はN i とCoとの固溶及び/又は共沈で生成したN i −Co塩の結晶粒子と、粒子径150μm以下が90%以上である水酸化リチウムを混合し、次いで200〜400℃で焼成した後、更に750〜900℃で焼成する多段焼成を行うことを特徴とする下記一般式(1)
Li X i 1-y Co y 2 (1)
(式中、0<x<1.1、0≦y≦0.4を示す)で表されるリチウム複合酸化物の製造方法を提供するものである。
また、本発明は、N i 塩の結晶粒子又はN i とCoとの固溶及び/又は共沈で生成したN i −Co塩の結晶粒子と、粒子径50μm以下が70%以上である水酸化リチウムを混合し、次いで200〜400℃で焼成した後、更に750〜900℃で焼成する多段焼成を行うことを特徴とする下記一般式(1)
Li X i 1-y Co y 2 (1)
(式中、0<x<1.1、0≦y≦0.4を示す)で表されるリチウム複合酸化物の製造方法を提供するものである。
【0010】
【発明の実施の形態】
上記(2)式は、Vergard則(「粉末X線回折による材料分析」講談社サイエンテフィック、88〜90、1993年6月1日発行)と言われるもので、Ni イオンとCoイオンのイオンの半径の違いを利用して両イオンの固溶度(y)を格子定数から求めるものである。
すなわち、固溶体の固溶イオンのイオン半径はイオン間距離、すなわち格子定数に影響を与えるものであり、固溶体のNi イオンとCoイオンの両端の結晶イオンの格子定数をaNi 、aCoとすると、その中間組成の格子定数が上記(2)式となる。上記(2)式は、体積変化の直線性に基づいて、固溶体の格子定数は溶質イオン濃度に比例することを示すものである。
【0011】
この格子定数は、X線回折により測定して得られるものであるが、固溶体の両端成分の格子定数を用いて検量線を作成し、それとの比較により行うことができる。本発明のリチウム複合酸化物は上記格子定数の比d値が0.990を超え1.010未満の範囲であり、好ましくは0.999を超え1.005未満の範囲である。d値が上記範囲外である場合は、電池特性として好ましい結果を得ることができなくなる。また、かかる化合物の吸湿率の増加分は、乾燥重量基準に対して5%以下、好ましくは2%以下である。
【0012】
本発明において、リチウム複合酸化物の吸湿率を求めるには、まず、リチウム複合酸化物を真空乾燥機中、100℃で24時間放置し、これを秤量瓶に正確に秤量する。次いでこの試料を30℃、相対湿度80%に保った恒温恒湿機に入れ72時間放置し、吸湿後の試料重量を計り、吸湿率を求める。通常、ニッケル酸リチウムは吸湿性が高く、わずかな水分でリチウムの溶出が生じ、組成変化が生じるが、本発明においては、吸湿率の増加分が5%を超えると組成変化が大きくなり、電池特性として好ましくない結果となる。
【0013】
本発明におけるリチウム複合酸化物の組成的特徴は、一般式(1)で示されるが、その配合比としては、Li、NiおよびCoの原子比がそれぞれx (Li)、1-y (Ni)及びy (Co)(但し、0<x <1.1、 0≦y ≦0.4を示す)となるように選択すればよい。例えば、配合比をLi/(Ni単独又はNiとCoの含量)比として、1付近に設定することが好ましいが、原料性状や焼成条件により前記配合比1前後で多少の幅を持たせることができ、具体的には0.99〜1.10の範囲とするのが好ましい。
【0014】
更に、NiとCoとの原子比(Ni:Co)は1:0〜0.6:0.4の範囲とする。かかるLi −Ni −Co 系複合酸化物は、該金属の混合物ではなく、ニッケル酸リチウムの結晶構造中のニッケルの一部をコバルトで置換した固溶性化合物であり、該固溶性化合物は、リチウムイオンのインターカレーション、デインターカレーション反応をより円滑に、より高い電位範囲で行うことができ電池用正極材として実用性の高いものである。
【0015】
次に、本発明のリチウム複合化合物の製造方法について説明する。
本発明の製造方法の特徴は、Ni 塩又はNi −Co塩の固溶及び/又は共沈体と、リチウム塩とを混合し、次いで、焼成するものである。
【0016】
出発原料として使用するNi 塩又はNi −Co系塩は、Ni とCoの原子比(Ni /Co)が1:0〜0.6:0.4の範囲にあるものであるが、Ni −Co系塩の場合、単にNi とCoの塩が所定量混合されているものではなく、ニッケルイオンがコバルトイオンと一部置換している固溶状態のものやニッケル塩とコバルト塩が共沈または吸蔵しているものでなければならない。
【0017】
かかるNi 塩又はNi −Co系塩は、加熱すれば金属酸化物となる、いわゆる前駆体化合物であって、例えば、水酸化物、炭酸塩、酸化物、シュウ酸塩及び酢酸塩等の有機酸塩等が挙げられ、このうち、水酸化物が好ましい。
【0018】
また、他方の原料である水酸化リチウムは、粒子径350μm以下が80%以上であるか、粒子径150μm以下が90%以上であるか、又は粒子径50μm以下が70%以上であるような粒子径が小さく粒度分布がシャープな水酸化リチウムである。また、上記粒度範囲の水酸化リチウムを使用した場合、ミキサ−等の簡便な混合機での混合が可能となり、数分の混合時間で水酸化リチウムとNi塩又はNi −Co塩が均一かつ充分に混合される。粒度が上記範囲外の場合は均一混合ができず、焼成後に得られる生成物にLi 、Ni 又はCoの単独の酸化物が多く出来、このため、リチウム複合酸化物の純度が落ちてしまい、好ましくない。
【0019】
本発明のリチウム複合酸化物は、所定量のNi塩又は特定構造のNi−Co塩と水酸化リチウムを混合し、次いで焼成することにより得ることができる。焼成雰囲気としては、特に制限されず、大気中でも酸素雰囲気中でもよいが、酸素雰囲気中が好ましい。焼成速度は速いほうがよいが、通常1℃/min 以上であればよい。焼成は、原料中に含まれる水分が消失する約200〜400℃の範囲でゆっくり焼成した後、更に750〜900℃付近まで急速に昇温し焼成する多段焼成で行なう。
【0020】
焼成終了後の冷却方法としては、特に制限されず、炉内で徐々に冷却してもよいが、大気中で冷却するのが好ましい。
【0021】
上記の方法により製造されるリチウム複合酸化物は、粒子径が揃っており、リチウム二次電池の正極板作成時、シートに塗膜を均一に塗布できる。
【0022】
また、上記方法により得られた本発明のリチウム複合酸化物は、その優れた電子特性から、これを主成分として含有するリチウム二次電池用正極活物質として有用であり、且つリチウム二次電池用正極板を得ることができ、さらにその正極板を用いたリチウム二次電池を提供することができる。
【0023】
本発明におけるリチウム二次電池の構成としては、特に制限されないが、例えば、上記の方法により製造されたリチウム複合酸化物を主成分として、黒鉛粉末、ポリフッ化ビニリデンなどを混合加工して正極材(リチウム二次用電池正極活物質)とし、これを有機溶媒に分散させて混練ペーストを調製する。該混練ペーストをアルミ箔などの導電性基板に塗布した後、乾燥し、加圧して適宜の形状に切断して正極板を得る。
この正極板を用いて、リチウム二次電池を構成する各部材を積層してリチウム二次電池を製作すればよい。
【0024】
【実施例】
次に、実施例を挙げて、本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
実施例1
Ni とCoの原子比が7:3の固溶及び/又は共沈で得られたNi −Co水酸化物と、粒子径50μm以下が70%以上を占める水酸化リチウムをリチウムと遷移金属(Ni とCoの含量)の原子比が1となるように秤量し、均一に混合した。この混合物を350℃で仮焼した後、730℃まで4℃/min で昇温し、その後780℃まで1℃/min で昇温して7時間保持した。焼成終了後、炉内から取り出し、大気中で放冷して解砕してリチウム複合酸化物を得た。
【0025】
参考例1
150μm以下が90%を占める炭酸リチウムと硝酸リチウムを8:2のモル比で混合する。この混合物とNi とCoの原子比が7:3の固溶及び/又は共沈により得られた実質的に球状のNi −Co水酸化物をリチウムと遷移金属(NiとCoの含量)の原子比が1となるように秤量し、均一に混合した。この混合物を350℃で仮焼したのち730℃まで4℃/min で昇温し、その後780℃まで1℃/min で昇温して7時間保持した。焼成終了後、炉内から取り出し、大気中で放冷して解砕してリチウム複合酸化物を得た。
【0026】
実施例
Ni とCoの原子比が8:2の固溶及び/又は共沈により得られた実質的に球状のNi −Co水酸化物と、粒子径150μm以下が90%以上を占める水酸化リチウムをリチウムと遷移金属(Ni とCoの含量)の原子比が1となるように秤量し、均一に混合した。この混合物を350℃で仮焼したのち700℃まで4℃/min で昇温し、その後750℃まで1℃/min で昇温して7時間保持した。焼成終了後、炉内から取り出し、大気中で放冷して解砕してリチウム複合酸化物を得た。
【0027】
実施例
Ni とCoの原子比が6:4の固溶及び/ 又は共沈により得られた実質的に球状のNi−Co水酸化物と、粒子径150μm以下が90%以上を占める水酸化リチウムをリチウムと遷移金属(Ni とCoの含量)の原子比が1となるように秤量し、均一に混合した。この混合物を350℃で仮焼したのち750℃まで4℃/min で昇温し、その後800℃まで1℃/min で昇温して7時間保持した。焼成終了後、炉内から取り出し、大気中で放冷して解砕してリチウム複合酸化物を得た。
【0028】
実施例
Ni とCoの原子比が9:1の固溶及び/又は共沈により得られた実質的に球状のNi −Co水酸化物と、粒子径150μm以下が90%以上を占める水酸化リチウムをリチウムと遷移金属(Ni とCoの含量)の原子比が1となるように秤量し、均一に混合した。この混合物を加圧成形しペレット化した。このペレットを350℃で仮焼したのち700℃まで4℃/min で昇温し、その後750℃まで1℃/min で昇温して7時間保持した。焼成終了後、炉内から取り出し、大気中で放冷して解砕してリチウム複合酸化物を得た。
【0029】
実施例
Ni とCoの原子比が9:1の固溶及び/又は共沈により得られた実質的に球状のNi −Co水酸化物を250℃で3時間焼成し、Ni −Co酸化物とした。この酸化物と粒子径350μm以下が80%以上を占める水酸化リチウムをリチウムと遷移金属(Ni とCoの含量)の原子比が1となるように秤量し、均一に混合した。 この混合物を350℃で仮焼したのち700℃まで4℃/minで昇温し、その後750℃まで1℃/min で昇温して12時間保持した。焼成終了後、炉内から取り出し、大気中で放冷して解砕してリチウム複合酸化物を得た。
【0030】
比較例1
Ni とCoの原子比が7:3となるように水酸化ニッケルと水酸化コバルトを均一に混合し、これに水酸化リチウムをリチウムと遷移金属(Ni とCoの含量)の原子比が1となるように秤量し、乾式混合した。この混合物を780℃で7時間保持した。焼成終了後、炉内から取り出し、大気中で放冷して解砕してリチウム複合酸化物を得た。
【0031】
比較例2
Ni とCoの原子比が8:2となるように水酸化ニッケルと水酸化コバルトを均一に混合し、これに水酸化リチウムをリチウムと遷移金属(Ni とCoの含量)の原子比が1となるように秤量し、均一に混合した。この混合物を780℃まで昇温して7時間保持した。焼成終了後、炉内から取り出し、大気中で放冷して解砕してリチウム複合酸化物を得た。
【0032】
比較例3
Ni とCoの原子比が6:4となるように水酸化ニッケルと水酸化コバルトを均一に混合し、これに水酸化リチウムをリチウムと遷移金属(Ni とCoの含量)の原子比が1となるように秤量し、均一に混合した。この混合物を790℃まで昇温して7時間保持した。焼成終了後、炉内から取り出し、大気中で放冷して解砕してリチウム複合酸化物を得た。
【0033】
比較例4
Ni とCoの原子比が9:1となるように水酸化ニッケルと水酸化コバルトを均一に混合し、これに水酸化リチウムをリチウムと遷移金属(Ni とCoの含量)の原子比が1となるように秤量し、均一に混合した。この混合物を800℃まで4℃/min で昇温し、その後850℃まで1℃/min で昇温して12時間保持した。焼成終了後、炉内から取り出し、大気中で放冷して解砕してリチウム複合酸化物を得た。
【0034】
(I)吸湿率の測定
実施例1〜6及び比較例1〜4で得られたリチウム複合酸化物を前記方法で吸湿率を測定した。その結果を表1に示した。
(II)格子定数の算出方法
60μm以下が70%以上の水酸化リチウムと水酸化ニッケルをLi とNi の原子比が1となるように秤量し、均一に混合した。この化合物を350で2時間仮焼したのち酸素雰囲気下、700℃まで4℃/min で昇温し、その後750℃まで1℃/min で昇温し、7時間保持してLi Ni O2 を合成した。また、炭酸リチウムと酸化コバルトをLi とCoの原子比が1:1になるように秤量し、均一に混合した。この化合物を1000℃で3時間焼成してLiCoO2 を得た。得られたLi Ni O2 及びLiCoO2 の格子定数をX線回折法により測定し、aNi O=2.8783、aCoO=2.8152を得た。また、同様に上記方法で得られた実施例1〜6及び比較例1〜4の生成物の格子定数を測定した。その結果を表1に示した。
【0035】
(III)リチウム二次電池の作製;
リチウム複合酸化物85重量%、黒鉛粉末10重量%、ポリフッ化ビニリデン5重量%を混合して正極材とし、これを2ーメチルピロリドンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥し、2000kg/cm2 の圧力によりプレスして2cm角に打ち抜いて正極板を得た。
また、電解液に1M−Li ClO4 /EC+DECを使用し、負極にはLi 金属を用いて、図1に示すように各部材を積層してリチウム二次電池を作製した。
【0036】
(IV)電池の性能評価
作製したリチウム二次電池を作動させ、初期放電容量及び容量保持率を測定して電池性能を評価した。その結果を表1に示した。
(初期放電容量の測定)
初期放電容量は正極に対して0.5mA /cm2 で4.2Vまで充電した後、2.7Vまで放電させる充放電を繰り返すことにより測定した。
【0037】
(容量保持率)
容量保持率は前記の充放電を反復した結果から、次式により算出した。
【0038】
容積保持率(%)=(10サイクル目の放電容量)×100/(1サイクル目の放電容量)
【0039】
【表1】

Figure 0003863604
【0040】
【発明の効果】
本発明のリチウム複合酸化物をリチウム二次電池用正極活物質として正極板に用いることにより、初期放電容量および放電保持率に優れ、高エネルギー密度を与えるリチウム二次電池を得ることができる。
また、本発明のリチウム複合酸化物の製造方法は、簡易な方法であるため工業的にも有利である。[0001]
BACKGROUND OF THE INVENTION
The present invention, Ru der relates to a process for the preparation of a lithium composite oxide.
[0002]
[Prior art]
2. Description of the Related Art In recent years, lithium secondary batteries have been put into practical use as power sources for small electronic devices as consumer electronic devices have become increasingly portable and cordless. Regarding this lithium secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium secondary batteries ["Material Research Brain" vol 115, P783-789 (1980)]. Since then, research and development on lithium (Li) -based composite oxides has been actively encouraged, and many proposals have been made so far.
They are, for example, Li 1-X Ni O 2 (where 0 ≦ x ≦ 1) (US Pat. No. 4,302,518), Li Ni 2-Y O 2 (Japanese Patent Laid-Open No. 2-40861), Li Y Ni. x Co 1-x O 2 (where 0 <x ≦ 0.75, y ≦ 1) (Japanese Patent Laid-Open No. 63-299056) is a typical example of a composite oxide mainly composed of lithium and a transition metal. It is done.
[0003]
[Problems to be solved by the invention]
In the above compounds, lithium cobaltate is relatively easy to synthesize and has excellent electrical characteristics, so it has been studied as a positive electrode material for lithium secondary batteries from the earliest, but the raw material cobalt (Co) is rarely produced. In addition to being expensive, there is a drawback that charging of 0.7 electrons or more causes a decrease in crystallinity and decomposition of the electrolytic solution, which is not suitable for increasing the capacity.
On the other hand, LiNiO 2 has the advantage that it is cheaper than cobalt, but it is likely to cause defects during use as a positive electrode material of a battery, so that the capacity characteristics are inferior to that of Co, such as lack of battery stability. It was done. For this reason, lithium composite oxides in which a part of LiNiO 2 and nickel (Ni), which are as close to the stoichiometric ratio as possible, are substituted with other transition metals and their synthesis methods are being studied.
[0004]
However, the present invention has not yet found an industrial production method as well as a material that can be satisfactorily applied as a positive electrode material of a lithium secondary battery.
[0005]
Accordingly, an object of the present invention is to provide a manufacturing method of the initial discharge capacity and excellent discharge retention rate providing a high energy density lithium secondary battery positive electrode active substance.
[0006]
[Means for Solving the Problems]
Under such circumstances, the present inventors have conducted extensive research on a lithium composite oxide that is stable as a positive electrode material that does not cause crystal defects in the compound and a method for producing the same. The lithium composite oxide in which the ratio of the constant to the theoretical lattice constant is in the range of 0.990 and less than 1.010 and the increase in moisture absorption is 5% or less is used as the positive electrode active material of the lithium secondary battery In this case, the inventors have found that a high energy density excellent in initial discharge capacity and discharge retention is obtained, and have completed the present invention.
[0007]
That is, the present invention relates to Ni salt crystal particles or Ni—Co salt crystal particles formed by solid solution and / or coprecipitation of Ni and Co, and lithium hydroxide having a particle diameter of 350 μm or less of 80% or more. After mixing and then firing at 200 to 400 ° C., further performing multi-stage firing in which firing is further performed at 750 to 900 ° C. The following general formula (1)
Li x Ni 1-y Co y O 2 (1)
The present invention provides a method for producing a lithium composite oxide represented by the formula (where 0 <x <1.1 and 0 ≦ y ≦ 0.4).
Further, the present invention includes a crystal grain of N i N i -Co salt formed in a solid solution and / or co-precipitation of the crystal grains or N i and Co salts, water particle size not greater than 150μm is less than 90% Lithium oxide is mixed, then fired at 200 to 400 ° C., and then subjected to multi-stage firing in which firing is further performed at 750 to 900 ° C. The following general formula (1)
Li X N i 1-y Co y O 2 (1)
The present invention provides a method for producing a lithium composite oxide represented by the formula (where 0 <x <1.1 and 0 ≦ y ≦ 0.4).
Further, the present invention includes a crystal grain of N i N i -Co salt formed in a solid solution and / or co-precipitation of the crystal grains or N i and Co salts, water particle size not greater than 50μm is 70% or more Lithium oxide is mixed, then fired at 200 to 400 ° C., and then subjected to multi-stage firing in which firing is further performed at 750 to 900 ° C. The following general formula (1)
Li X N i 1-y Co y O 2 (1)
The present invention provides a method for producing a lithium composite oxide represented by the formula (where 0 <x <1.1 and 0 ≦ y ≦ 0.4).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The above equation (2) is said to be Vergard's law ("Material analysis by powder X-ray diffraction" Kodansha Scientific, 88-90, issued on June 1, 1993). Using the difference in radius, the solid solubility (y) of both ions is obtained from the lattice constant.
That is, the ion radius of the solid solution ions of the solid solution affects the inter-ion distance, that is, the lattice constant. If the lattice constants of the crystal ions at both ends of the solid solution Ni ion and Co ion are aNi and aCo, The lattice constant of the composition is the above equation (2). The above formula (2) indicates that the lattice constant of the solid solution is proportional to the solute ion concentration based on the linearity of the volume change.
[0011]
This lattice constant is obtained by measurement by X-ray diffraction, and can be carried out by preparing a calibration curve using the lattice constants of both end components of the solid solution and comparing it. The lithium composite oxide of the present invention has a lattice constant ratio d value in the range of more than 0.990 and less than 1.010, preferably in the range of more than 0.999 and less than 1.005. When the d value is out of the above range, a favorable result as battery characteristics cannot be obtained. Further, the increase in the moisture absorption rate of such a compound is 5% or less, preferably 2% or less, based on the dry weight standard.
[0012]
In the present invention, in order to determine the moisture absorption rate of the lithium composite oxide, first, the lithium composite oxide is left in a vacuum dryer at 100 ° C. for 24 hours, and this is accurately weighed in a weighing bottle. Next, the sample is placed in a thermo-hygrostat kept at 30 ° C. and a relative humidity of 80% and left for 72 hours, and the weight of the sample after moisture absorption is measured to determine the moisture absorption rate. Usually, lithium nickelate has high hygroscopicity, and elution of lithium occurs with a slight amount of water, resulting in a change in composition. However, in the present invention, when the increase in moisture absorption exceeds 5%, the composition change increases, and the battery The result is an undesirable result.
[0013]
The compositional feature of the lithium composite oxide in the present invention is represented by the general formula (1), and the compounding ratio is such that the atomic ratios of Li, Ni and Co are x (Li) and 1-y (Ni), respectively. And y (Co) (where 0 <x <1.1, 0 ≦ y ≦ 0.4 is shown). For example, the blending ratio is preferably set to around 1 as the Li / (Ni content alone or Ni and Co content) ratio, but it may have some width around the blending ratio of 1 depending on raw material properties and firing conditions. Specifically, it is preferably in the range of 0.99 to 1.10.
[0014]
Further, the atomic ratio of Ni and Co (Ni: Co) is 1: 0-0.6: shall be the range of 0.4. Such a Li—Ni—Co based composite oxide is not a mixture of the metals but a solid-soluble compound in which a part of nickel in the crystal structure of lithium nickelate is substituted with cobalt, and the solid-soluble compound contains lithium ions. The intercalation and deintercalation reactions can be carried out more smoothly and in a higher potential range, and is highly practical as a positive electrode material for batteries.
[0015]
Next, the manufacturing method of the lithium composite compound of this invention is demonstrated.
The production method of the present invention is characterized in that a Ni salt or Ni-Co salt solid solution and / or coprecipitate is mixed with a lithium salt and then calcined.
[0016]
The Ni salt or Ni-Co-based salt used as the starting material has a Ni / Co atomic ratio (Ni / Co) in the range of 1: 0 to 0.6: 0.4. In the case of a base salt, a predetermined amount of Ni and Co salts are not mixed, but a solid solution in which nickel ions are partially substituted with cobalt ions, or nickel salts and cobalt salts are coprecipitated or occluded. Must be what you are doing.
[0017]
Such Ni salt or Ni-Co-based salt is a so-called precursor compound that becomes a metal oxide when heated, and is, for example, an organic acid such as hydroxide, carbonate, oxide, oxalate, and acetate. Examples thereof include salts, and among these, hydroxides are preferable.
[0018]
The other raw material, lithium hydroxide, has a particle size of 350 μm or less of 80% or more, a particle size of 150 μm or less of 90% or more, or a particle size of 50 μm or less of 70% or more. Lithium hydroxide with a small diameter and a sharp particle size distribution . Also, when using a lithium hydroxide of the particle size range, mixer - mixing becomes possible by a simple mixer such as a few minutes lithium and Ni salt or Ni -Co salt hydroxide with a mixing time of uniform and Thoroughly mixed. When the particle size is outside the above range, uniform mixing is not possible, and the product obtained after firing can be made of a large amount of Li, Ni, or Co oxides, which reduces the purity of the lithium composite oxide. Absent.
[0019]
The lithium composite oxide of the present invention can be obtained by mixing a predetermined amount of Ni salt or Ni-Co salt having a specific structure and lithium hydroxide , and then firing the mixture. The firing atmosphere is not particularly limited and may be in the air or in an oxygen atmosphere, but is preferably in an oxygen atmosphere. The firing rate should be fast, but usually it should be 1 ° C./min or more . Baked formed, after slowly fired in the range of about 200 to 400 ° C. to moisture contained in the starting material disappeared, it row by multistage firing rapidly heated firing to around further 750 to 900 ° C..
[0020]
The cooling method after completion of firing is not particularly limited and may be gradually cooled in the furnace, but is preferably cooled in the atmosphere.
[0021]
The lithium composite oxide produced by the above method has a uniform particle diameter, and a coating film can be uniformly applied to the sheet when a positive electrode plate of a lithium secondary battery is produced.
[0022]
In addition, the lithium composite oxide of the present invention obtained by the above method is useful as a positive electrode active material for a lithium secondary battery containing this as a main component because of its excellent electronic properties, and for a lithium secondary battery. A positive electrode plate can be obtained, and a lithium secondary battery using the positive electrode plate can be provided.
[0023]
The configuration of the lithium secondary battery in the present invention is not particularly limited. For example, the lithium secondary oxide produced by the above method is a main component, and graphite powder, polyvinylidene fluoride, and the like are mixed and processed into a positive electrode material ( A lithium secondary battery positive electrode active material) is dispersed in an organic solvent to prepare a kneaded paste. The kneaded paste is applied to a conductive substrate such as an aluminum foil, dried, pressed and cut into an appropriate shape to obtain a positive electrode plate.
What is necessary is just to manufacture a lithium secondary battery by laminating | stacking each member which comprises a lithium secondary battery using this positive electrode plate.
[0024]
【Example】
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
Example 1
Ni—Co hydroxide obtained by solid solution and / or coprecipitation with an Ni / Co atomic ratio of 7: 3, lithium hydroxide with a particle size of 50 μm or less occupying 70% or more, lithium and a transition metal (Ni And Co content) were weighed so that the atomic ratio was 1, and mixed uniformly. This mixture was calcined at 350 ° C., then heated to 730 ° C. at 4 ° C./min, then heated to 780 ° C. at 1 ° C./min and held for 7 hours. After the completion of firing, the lithium composite oxide was obtained by taking it out from the furnace, allowing it to cool in the atmosphere and pulverizing.
[0025]
Reference example 1
Lithium carbonate and lithium nitrate, in which 150 μm or less occupies 90%, are mixed at a molar ratio of 8: 2. The substantially spherical Ni-Co hydroxide obtained by this solution and a solid solution and / or coprecipitation with a Ni: Co atomic ratio of 7: 3 is converted into atoms of lithium and transition metal (content of Ni and Co). They were weighed so that the ratio was 1 and mixed uniformly. The mixture was calcined at 350 ° C. and then heated to 730 ° C. at 4 ° C./min, then heated to 780 ° C. at 1 ° C./min and held for 7 hours. After the completion of firing, the lithium composite oxide was obtained by taking it out from the furnace, allowing it to cool in the atmosphere and pulverizing.
[0026]
Example 2
Lithium hydroxide is a substantially spherical Ni-Co hydroxide obtained by solid solution and / or coprecipitation with an atomic ratio of Ni and Co of 8: 2, and lithium hydroxide occupying 90% or more with a particle size of 150 μm or less. And transition metal (content of Ni and Co) were weighed so that the atomic ratio was 1, and mixed uniformly. This mixture was calcined at 350 ° C., then heated to 700 ° C. at 4 ° C./min, then heated to 750 ° C. at 1 ° C./min and held for 7 hours. After the completion of firing, the lithium composite oxide was obtained by taking it out from the furnace, allowing it to cool in the atmosphere and pulverizing.
[0027]
Example 3
Lithium hydroxide is a substantially spherical Ni—Co hydroxide obtained by solid solution and / or coprecipitation with an atomic ratio of Ni and Co of 6: 4, and lithium hydroxide occupying 90% or more with a particle size of 150 μm or less. And transition metal (content of Ni and Co) were weighed so that the atomic ratio was 1, and mixed uniformly. The mixture was calcined at 350 ° C. and then heated to 750 ° C. at 4 ° C./min, then heated to 800 ° C. at 1 ° C./min and held for 7 hours. After the completion of firing, the lithium composite oxide was obtained by taking it out from the furnace, allowing it to cool in the atmosphere and pulverizing.
[0028]
Example 4
Lithium hydroxide is a substantially spherical Ni-Co hydroxide obtained by solid solution and / or coprecipitation with an atomic ratio of Ni and Co of 9: 1 and lithium hydroxide with a particle size of 150 μm or less accounting for 90% or more. And transition metal (content of Ni and Co) were weighed so that the atomic ratio was 1, and mixed uniformly. This mixture was pressed and pelletized. The pellets were calcined at 350 ° C., heated to 700 ° C. at 4 ° C./min, then heated to 750 ° C. at 1 ° C./min and held for 7 hours. After the completion of firing, the lithium composite oxide was obtained by taking it out from the furnace, allowing it to cool in the atmosphere and pulverizing.
[0029]
Example 5
A substantially spherical Ni—Co hydroxide obtained by solid solution and / or coprecipitation with an atomic ratio of Ni and Co of 9: 1 was baked at 250 ° C. for 3 hours to obtain Ni—Co oxide. This oxide and lithium hydroxide in which the particle diameter was 350 μm or less accounted for 80% or more were weighed so that the atomic ratio of lithium and transition metal (Ni and Co content) was 1, and mixed uniformly. This mixture was calcined at 350 ° C., then heated to 700 ° C. at 4 ° C./min, then heated to 750 ° C. at 1 ° C./min and held for 12 hours. After the completion of firing, the lithium composite oxide was obtained by taking it out from the furnace, allowing it to cool in the atmosphere and pulverizing.
[0030]
Comparative Example 1
Nickel hydroxide and cobalt hydroxide are uniformly mixed so that the atomic ratio of Ni and Co is 7: 3. Lithium hydroxide is mixed with lithium hydroxide and the transition metal (Ni and Co content) atomic ratio is 1. It weighed so that it might become and dry-mixed. This mixture was held at 780 ° C. for 7 hours. After the completion of firing, the lithium composite oxide was obtained by taking it out from the furnace, allowing it to cool in the atmosphere and pulverizing.
[0031]
Comparative Example 2
Nickel hydroxide and cobalt hydroxide are uniformly mixed so that the atomic ratio of Ni and Co is 8: 2, and lithium hydroxide is mixed with lithium and transition metal (Ni and Co content) atomic ratio of 1. Were weighed and mixed uniformly. The mixture was heated to 780 ° C. and held for 7 hours. After the completion of firing, the lithium composite oxide was obtained by taking it out from the furnace, allowing it to cool in the atmosphere and pulverizing.
[0032]
Comparative Example 3
Nickel hydroxide and cobalt hydroxide are uniformly mixed so that the atomic ratio of Ni and Co is 6: 4, and lithium hydroxide is mixed with lithium and transition metal (Ni and Co content) atomic ratio of 1. Were weighed and mixed uniformly. The mixture was heated to 790 ° C. and held for 7 hours. After the completion of firing, the lithium composite oxide was obtained by taking it out from the furnace, allowing it to cool in the atmosphere and pulverizing.
[0033]
Comparative Example 4
Nickel hydroxide and cobalt hydroxide are uniformly mixed so that the atomic ratio of Ni and Co is 9: 1. Lithium hydroxide is mixed with lithium hydroxide and the transition metal (Ni and Co content) atomic ratio is 1. Were weighed and mixed uniformly. The mixture was heated to 800 ° C. at 4 ° C./min, then heated to 850 ° C. at 1 ° C./min and held for 12 hours. After the completion of firing, the lithium composite oxide was obtained by taking it out from the furnace, allowing it to cool in the atmosphere and pulverizing.
[0034]
(I) Measurement of moisture absorption The moisture absorption of the lithium composite oxides obtained in Examples 1 to 6 and Comparative Examples 1 to 4 was measured by the above method. The results are shown in Table 1.
(II) Method for calculating lattice constant Lithium hydroxide and nickel hydroxide having a lattice constant of 60 μm or less of 70% or more were weighed so that the atomic ratio of Li and Ni was 1, and mixed uniformly. After calcining this compound for 2 hours at 350, the temperature was raised to 700 ° C. at 4 ° C./min in an oxygen atmosphere, then to 750 ° C. at 1 ° C./min and maintained for 7 hours to obtain Li Ni O 2 . Synthesized. Further, lithium carbonate and cobalt oxide were weighed so that the atomic ratio of Li and Co was 1: 1 and mixed uniformly. This compound was calcined at 1000 ° C. for 3 hours to obtain LiCoO 2 . The resulting Li Ni O 2 and the lattice constant of LiCoO 2 was measured by X-ray diffractometry, aNi O = 2.8783, was obtained Acoo = 2.8152. Similarly, the lattice constants of the products of Examples 1 to 6 and Comparative Examples 1 to 4 obtained by the above method were measured. The results are shown in Table 1.
[0035]
(III) Preparation of lithium secondary battery;
85% by weight of lithium composite oxide, 10% by weight of graphite powder and 5% by weight of polyvinylidene fluoride were mixed to prepare a positive electrode material, which was dispersed in 2-methylpyrrolidone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed with a pressure of 2000 kg / cm 2 , and punched into a 2 cm square to obtain a positive electrode plate.
Further, 1M-Li ClO 4 / EC + DEC was used as the electrolyte, and Li metal was used as the negative electrode, and the respective members were stacked as shown in FIG. 1 to produce a lithium secondary battery.
[0036]
(IV) Battery performance evaluation The fabricated lithium secondary battery was operated, and the initial discharge capacity and capacity retention were measured to evaluate the battery performance. The results are shown in Table 1.
(Measurement of initial discharge capacity)
The initial discharge capacity was measured by charging / discharging the positive electrode to 4.2 V at 0.5 mA / cm 2 and then discharging to 2.7 V.
[0037]
(Capacity retention)
The capacity retention rate was calculated by the following equation from the result of repeating the above charge and discharge.
[0038]
Volume retention (%) = (discharge capacity at the 10th cycle) × 100 / (discharge capacity at the first cycle)
[0039]
[Table 1]
Figure 0003863604
[0040]
【The invention's effect】
By using the lithium composite oxide of the present invention for a positive electrode plate as a positive electrode active material for a lithium secondary battery, a lithium secondary battery excellent in initial discharge capacity and discharge retention and giving a high energy density can be obtained.
In addition, the method for producing a lithium composite oxide according to the present invention is a simple method and is industrially advantageous.

Claims (3)

Ni 塩の結晶粒子又はNi とCoとの固溶及び/又は共沈で生成したNi −Co塩の結晶粒子と、粒子径350μm以下が80%以上である水酸化リチウムを混合し、次いで200〜400℃で焼成した後、更に750〜900℃で焼成する多段焼成を行うことを特徴とする下記一般式(1)
Li XNi1-yCoy 2 (1)
(式中、0<x<1.1、0≦y≦0.4を示す)で表されるリチウム複合酸化物の製造方法。
Ni salt crystal particles or Ni-Co salt crystal particles formed by solid solution and / or coprecipitation of Ni and Co are mixed with lithium hydroxide having a particle size of 350 μm or less of 80% or more, and then 200 to 200- After firing at 400 ° C., the following general formula (1), characterized by performing multi-stage firing at 750 to 900 ° C.
Li x Ni 1-y Co y O 2 (1)
(Wherein 0 <x <1.1 and 0 ≦ y ≦ 0.4 are satisfied).
N i i 塩の結晶粒子又はNSalt crystal particles or N i i とCoとの固溶及び/又は共沈で生成したNN formed by solid solution and / or coprecipitation with Co i i −Co塩の結晶粒子と、粒子径150μm以下が90%以上である水酸化リチウムを混合し、次いで200〜400℃で焼成した後、更に750〜900℃で焼成する多段焼成を行うことを特徴とする下記一般式(1)-Co salt crystal particles and lithium hydroxide having a particle diameter of 150 μm or less of 90% or more are mixed, then fired at 200 to 400 ° C., and then further fired at 750 to 900 ° C. The following general formula (1)
LiLi X X N ii 1-y1-y CoCo y y O 2 2 (1)(1)
(式中、0<x<1.1、0≦y≦0.4を示す)で表されるリチウム複合酸化物の製造方法。(Wherein 0 <x <1.1 and 0 ≦ y ≦ 0.4 are satisfied).
N i i 塩の結晶粒子又はNSalt crystal particles or N i i とCoとの固溶及び/又は共沈で生成したNN formed by solid solution and / or coprecipitation with Co i i −Co塩の結晶粒子と、粒子径50μm以下が70%以上である水酸化リチウムを混合し、次いで200〜400℃で焼成した後、更に750〜900℃で焼成する多段焼成を行うことを特徴とする下記一般式(1)-Co salt crystal particles and lithium hydroxide having a particle size of 50 μm or less of 70% or more are mixed, then fired at 200 to 400 ° C., and then further fired at 750 to 900 ° C. The following general formula (1)
LiLi X X N ii 1-y1-y CoCo y y O 2 2 (1)(1)
(式中、0<x<1.1、0≦y≦0.4を示す)で表されるリチウム複合酸化物の製造方法。(Wherein 0 <x <1.1 and 0 ≦ y ≦ 0.4 are satisfied).
JP26025096A 1996-09-09 1996-09-09 Method for producing lithium composite oxide Expired - Fee Related JP3863604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26025096A JP3863604B2 (en) 1996-09-09 1996-09-09 Method for producing lithium composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26025096A JP3863604B2 (en) 1996-09-09 1996-09-09 Method for producing lithium composite oxide

Publications (2)

Publication Number Publication Date
JPH1087331A JPH1087331A (en) 1998-04-07
JP3863604B2 true JP3863604B2 (en) 2006-12-27

Family

ID=17345444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26025096A Expired - Fee Related JP3863604B2 (en) 1996-09-09 1996-09-09 Method for producing lithium composite oxide

Country Status (1)

Country Link
JP (1) JP3863604B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151707A (en) * 2004-11-25 2006-06-15 Mitsubishi Chemicals Corp Anhydride of lithium hydroxide for manufacturing lithium transition metal complex oxide and its manufacturing method, and method for manufacturing lithium transition metal complex oxide using it
JP5569034B2 (en) * 2010-02-26 2014-08-13 住友金属鉱山株式会社 Lithium hydroxide for producing lithium nickel composite oxide, method for producing the same, and method for producing lithium nickel composite oxide using the lithium hydroxide
CN109476506B (en) * 2016-07-28 2022-02-15 住友化学株式会社 Method for producing lithium-nickel composite oxide
CN115594231A (en) * 2022-10-19 2023-01-13 湖南长远锂科新能源有限公司(Cn) Method for preparing cathode material by using crude lithium source

Also Published As

Publication number Publication date
JPH1087331A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
US6071489A (en) Methods of preparing cathode active materials for lithium secondary battery
US6383235B1 (en) Cathode materials, process for the preparation thereof and secondary lithium ion battery using the cathode materials
TWI511360B (en) Positive electrode material for lithium secondary battery and method for producing the same and lithium secondary battery
EP0903796A1 (en) Anode active material, its producing process, and lithium ion secondary cell using the anode active material
US20160156020A1 (en) Method for manufacturing cathode electrode materials
JP2009120480A (en) Cobalt oxide particle powder and process for producing the same, cathode active material for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP2000306584A (en) Positive electrode active material for lithium secondary battery and its manufacture
JPH09175825A (en) Production of compound oxide using sol-gel method
CN110233250A (en) A kind of preparation method of single crystal grain tertiary cathode material
JP2001076724A (en) Positive electrode material for lithium battery and its manufacture
JP4540041B2 (en) Nonaqueous electrolyte secondary battery
JP2002216760A (en) Positive electrode active material for lithium secondary battery and method for manufacturing the same
CN108807928B (en) Synthesis of metal oxide and lithium ion battery
CN111115713A (en) LaMnO3Coated lithium-rich manganese-based positive electrode material and preparation method thereof
JP2024045104A (en) Lithium secondary battery positive electrode active material, manufacturing method thereof, and lithium secondary battery containing the same
JP4124522B2 (en) Lithium / manganese composite oxide, production method and use thereof
CN111009654A (en) Mo-doped LiNi0.6Co0.2Mn0.2O2Positive electrode material and preparation method thereof
US9269948B2 (en) Positive electrode active material, process for producing same, and lithium secondary battery using same
JPH1072219A (en) Multiple oxide of lithium, its production and active material of positive electrode for lithium secondary battery
JP2006093067A (en) Lithium secondary battery positive pole material and method for manufacturing it
CN110120503B (en) Composite cathode material and preparation method and application thereof
JP3575313B2 (en) Positive electrode active material, method for producing the same, and lithium ion secondary battery using the above positive electrode active material
JP3706718B2 (en) Lithium ion secondary battery positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP3863604B2 (en) Method for producing lithium composite oxide
JP6749884B2 (en) Positive electrode material for lithium secondary batteries

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees