JP3863195B2 - Phthalocyanine compounds - Google Patents

Phthalocyanine compounds Download PDF

Info

Publication number
JP3863195B2
JP3863195B2 JP10449894A JP10449894A JP3863195B2 JP 3863195 B2 JP3863195 B2 JP 3863195B2 JP 10449894 A JP10449894 A JP 10449894A JP 10449894 A JP10449894 A JP 10449894A JP 3863195 B2 JP3863195 B2 JP 3863195B2
Authority
JP
Japan
Prior art keywords
phthalocyanine
compound
atom
reaction
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10449894A
Other languages
Japanese (ja)
Other versions
JPH07286109A (en
Inventor
徹 八代
正俊 谷口
俊郎 成塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamada Chemical Co Ltd
Ricoh Co Ltd
Original Assignee
Yamada Chemical Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamada Chemical Co Ltd, Ricoh Co Ltd filed Critical Yamada Chemical Co Ltd
Priority to JP10449894A priority Critical patent/JP3863195B2/en
Publication of JPH07286109A publication Critical patent/JPH07286109A/en
Application granted granted Critical
Publication of JP3863195B2 publication Critical patent/JP3863195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/06Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide
    • C09B47/067Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile
    • C09B47/0675Preparation from carboxylic acids or derivatives thereof, e.g. anhydrides, amides, mononitriles, phthalimide, o-cyanobenzamide from phthalodinitriles naphthalenedinitriles, aromatic dinitriles prepared in situ, hydrogenated phthalodinitrile having oxygen or sulfur linked directly to the skeleton

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Filters (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、光記録用色素、カラーフィルター用色素、光電変換素子、電子写真感光体、有機半導体素子、触媒及びガスセンサー、カラーフィルター等に利用可能な新規なフタロシアニン化合物に関する。
【0002】
【従来の技術】
フタロシアニン化合物は従来から使用されてきた顔料としての用途の他に、光記録用色素、カラーフィルター用色素、光電変換素子、電子写真感光体、有機半導体素子、触媒及びガスセンサー等の材料として注目を集めている。しかしながら、無置換のフタロシアニン化合物は、ほとんどの溶剤に対して難溶若しくは不溶であり、著しく加工性に劣る。例えば、前述の用途に用いるためフタロシアニンを薄膜化する場合には、真空蒸着法か超微粒子分散法が用いられるが、いずれの場合も生産性が低く、これらの媒体や素子等を量産する場合に大きな障害になっている。特に、フタロシアニン化合物の真空蒸着膜を光ディスク用記録膜として用いる場合、蒸着膜を記録特性に合う結晶型に結晶転移することが必要となる。この結晶転移は蒸着した記録膜を熱又は有機溶媒の蒸気に長時間曝す処理によって行なわれ、生産性を著しく損なうため、この方法による光ディスクの生産は実用化されていない。
【0003】
また、光ディスクなかでもコンパクトディスク(CD)に関しては、近年特に追記型CDの開発が盛んであり、これまで追記型CDの材料となる有機色素としては、主としてシアニン色素が用いられてきた。この種の色素は、吸光係数が大きいという点では優れているが、耐光性が悪いという欠点があり、これを改善するため一重項酸素クエンチャーなどの光安定剤を添加する方法がとられることもあった。しかし、その効果はまだ十分なものではない。これに対しフタロシアニン色素は高い光安定性を有するが、前述のように有機溶剤への溶解度が低いという問題を有していた。
【0004】
上記の問題を解決するために、フタロシアニンに置換基を導入して有機溶媒に溶解し得るフタロシアニン化合物となした後、これを塗布することも行なわれている。特開平1−180865号、特開平2−265788号、特開平3−215466号各公報等に開示されているフタロシアニン化合物は、フタロシアニンのベンゼン環に長鎖のアルキル基又はアルコキシ基を導入して炭化水素系有機溶剤に対する溶解性を得たものである。これら以外にも、エステル基、ポリエーテル基、チオエーテル基等の官能基を介して長鎖のアルキル基を導入することが数多く行なわれている。
【0005】
【発明が解決しようとする課題】
ところが、これらのフタロシアニン化合物は、シアニン色素に比べて吸光係数が低く、特に成膜した場合はフタロシアニン分子間の会合のため長波長部の吸光係数が低下し、光吸収層として必要な屈折率を達成できないという難点があった。
【0006】
従って、本発明は、置換基により各種の有機溶媒に対する溶解性を向上させたフタロシアニン化合物において、光記録用色素等の用途においても高い性能を持つ化合物を提供することを、その目的とする。
【0007】
【課題を解決するための手段】
本発明によれば、下記の一般式(I)で示されるフタロシアニン化合物が提供される。
【化1】

Figure 0003863195
(式中、1〜16は周辺炭素原子位置を示すものであり、Mは2個の水素原子、2価の金属原子、金属酸化物又は金属塩化物を示す。また、Xは酸素原子又は硫黄原子を、Yはベンゾチアゾリル基、イソキノリル基、4−メチルチアゾリル基の中から選ばれる1種を、それぞれ示し、nは0、1、2又は3の整数を示す。なお、Xはそれぞれ1又は4、5又は8、9又は12、13又は16のいずれかの炭素原子に結合しているものとする。)
【0008】
本発明の新規なフタロシアニン化合物は、前記の一般式(I)で示される構造を有することから、各種の有機溶媒に対し優れた溶解性を有し、しかも光記録用色素等の用途においても高い性能を持つものとなる。
【0009】
前記一般式(I)の化合物において、Yの好ましい具体例としては、ベンゾチアゾリル基、イソキノリル基、4−メチルチアゾリル基などが挙げられる。また、Mの好ましい具体例としては、VO、TiO、Mn、Fe、Co、Ni、Cu、Zn、Pd、Cd、Mg、H2などが挙げられるが、光ディスク材料として用いる場合には、窒素原子との相互作用によって分子会合を防ぎ膜の吸光係数を高める機能を持つd5〜d7、d10、d0の2価金属イオンが好ましく、特に好ましいのはMn、Fe、Co、Zn、Cdである。また、フタロシアニン骨格上の置換基の位置については、α位置換体の方が分子会合を防ぐ効果が大きく、膜の吸光係数を高める点で好ましい。
【0010】
前記一般式(I)のフタロシアニン化合物は、対応するフタロニトリル(3又は4位の炭素にXYが結合したもの)を(必要により金属塩とともに)強有機塩基である1,8−ジアザビシクロ[5,4,0]−7−ウンデセン等の存在下、アルコール系溶媒中で反応させることにより合成することができる。
【0011】
本発明のフタロシアニン化合物は、アルコール系極性溶剤や炭化水素系溶剤、或いはそれらの混合物などに容易に溶けて青色ないし緑色を呈する。例えば、そのエチルセロソルブ溶液をポリカーボネート基板にスピンコートすると、均質な薄膜を形成することができる。
【0012】
このようにして得られた薄膜の吸収スペクトルは、通常のフタロシアニン誘導体を用いた薄膜で見られるような可視部における吸光係数の低下が見られず、可視部において高い吸光係数を持つので、光記録媒体等の用途に用いるのにも適している。吸収スペクトルにおけるこのような好ましい特性は、本発明のフタロシアニン化合物が電子供与性の置換基を持ち、これが中心金属に配位結合することによって、フタロシアニン骨格の分子会合を防ぐためと考えられる。
【0013】
【実施例】
以下、本発明を実施例により更に具体的に説明する。
実施例1
テトラα−〔2−(6−エトキシベンゾチアゾリル)チオ〕フタロシアニンの合成;
1)フタロニトリル誘導体の合成2−メルカプト−6−エトキシベンゾチアゾール6.3g、3−ニトロフタロニトリル5.2g、無水炭酸カリウム8.4g、ジメチルスルホキシド20mlを仕込み、70℃で7時間反応させた。反応物に水を加え、析出した結晶を凝集、乾燥して、6.6gのフタロニトリル誘導体を得た。このフタロニトリル誘導体の分析データは、下記の通りである。
IRスペクトル(KBr) :2320cm−1(νCN)
マススペクトル :337(M+)
融点 :156℃
【0014】
2)環化反応上記で得たフタロニトリル誘導体3.4gに、塩化亜鉛0.35gとDBU(1,8−ジアザビシクロ〔5,4,0〕−7−ウンデンセン)2.3g、1−ペンタノール30mlを加えて、窒素雰囲気下、100℃で10時間反応させた。反応物を濾過した後、メタノールで洗浄し、2.7gの粗製品を得た。この粗製品をカラムクロマトグラフィーを用いて精製し、1.1gの精製フタロシアニン(化合物1)を得た。
【0015】
実施例2
テトラα−〔5−(4−メチルチアゾリル)エトキシ〕亜鉛フタロシアニンの合成;
1)フタロニトリル誘導体の合成5−(2−ヒドロキシエチル)−4−メチルチアゾール5.1g、3−ニトロフタロニトリル5.2g、無水炭酸カリウム8.4g、ジメチルスルホキシド20mlを仕込み、70℃で5時間反応させた。反応物に水300mlを加え、析出した結晶を凝集、乾燥して、7.0gのフタロニトリル誘導体を得た。このフタロニトリル誘導体の分析データは、下記の通りである。
IRスペクトル(KBr) :2320cm−1(νCN)
マススペクトル :269(M+)
融点 :152℃
【0016】
2)環化反応上記で得たフタロニトリル誘導体3.5gに、塩化亜鉛0.59gとDBU3.5g、1−ペンタノール20mlを加えて、窒素雰囲気下、110℃で7時間反応させた。反応液にメタノール50ml、水50mlを加え、析出物を濾過した後、メタノールで洗浄し、2.1gの粗製品を得た。この粗製品をカラムクロマトグラフィーを用いて精製し、1.0gの精製フタロシアニン(化合物2)を得た。このフタロシアニン誘導体の元素分析値は、次のようであった。
C(%) H(%) N(%)
実測値 58.74 3.92 14.78
計算値 58.86 3.88 14.71(C564412Zn)
【0017】
実施例3
実施例1の1)の反応において、2−メルカプト−6−エトキシベンゾチアゾールに代えて2−メルカプト−6−n−ヘキシルオキシベンゾチアゾールを原料として用いたこと以外は、実施例1と同様にしてフタロシアニン誘導体(化合物3)を得た。
【0018】
参考例1
実施例1の1)の反応において、2−メルカプト−6−エトキシベンゾチアゾールに代えて2−メルカプトピリミジンを用いたこと以外は、実施例1と同様にしてフタロシアニン誘導体(化合物4)を得た。
【0019】
参考例2
実施例2の1)の反応において、3−ニトロフタロニトリルに代えて4−ニトロフタロニトリルを原料として用いたこと以外は、実施例2と同様にしてフタロシアニン誘導体(化合物5)を得た。
【0020】
実施例4
実施例2の2)の環化反応において、塩化亜鉛に代えて塩化コバルトを用いたこと以外は、実施例2と同様にしてフタロシアニン誘導体(化合物6)を得た。
【0021】
実施例5及び参考例3〜6
実施例1の1)の反応において、2−メルカプト−6−エトキシベンゾチアゾールに代えて表1に示した置換基Y−(CH2n−Xに対応した原料Y−(CH2n−XHを用い、且つ2)の反応においては、塩化亜鉛に代えて表1に示した金属Mの塩化物を用いたこと以外は、実施例1と同様にしてそれぞれ表1に示すα−置換フタロシアニン(化合物7〜11)を得た。
【0022】
参考例7〜8
参考例2の1)の反応において、5−(2−ヒドロキシエチル)−4−メチルチアゾールに代えて表1に示した置換基Y−(CH2n−Xに対応した原料Y−(CH2n−XHを用い、且つ2)の反応においては、塩化亜鉛に代えて表1に示した金属Mの塩化物を用いたこと以外は、参考例2と同様にしてそれぞれ表1に示すβ−置換フタロシアニンを得た。
【0023】
以上の各実施例及び各参考例で得られたフタロシアニン化合物の置換基〔−X−(CH2n−Y〕と置換位置、Mの種類及びクロロホルム溶液における吸収スペクトルの極大波長λmaxを、それぞれ表1に示す。このうち化合物2の1H−NMRスペクトル(DMF−d7)は、下記の通りである。
δ(ppm from TMS):2.2(8H,q),3.4(12H,s),4.8(8H,m),7.5(4H,m),7.8(4H,m),8.0(4H,s),8.7(4H,m)
【0024】
【表1】
Figure 0003863195
【0025】
表1に記載されたフタロシアニン化合物の一部にについて、有機溶剤への溶解度を調べた。その結果を表2に示す。
【0026】
【表2】
Figure 0003863195
【0027】
応用例直径120mm、厚さ1.2mmのポリカーボネイト基板の表面上に深さ約1,200Åの案内溝凸凹パターンを有する基板を用意し、前記No.2の化合物を2,2,3,3−テトラフロロプロパノールを塗布溶媒としてスピンコートすることにより、基板上に光吸収層を設けた。この光吸収層の膜厚は約1,500Åであった。次に、光吸収層の上にAuスパッタ法によりAuを約800Åの厚さに設け反射層とし、更にその上に紫外線硬化樹脂からなる保護層を約5μmの厚さに設けて追記型CDを作製した。このCDに波長785nm、N.A、0.5、線速1.4m/sの条件でEFM信号を記録し、再生を行なったところ、Itopは66%、C1エラーは220以下であり、CD規格を満足する値であった。
【0028】
応用比較例応用例において、前記No.2の化合物の代わりにα−2メチルフェニルチオZnフタロシアニンを用い、且つそれをアモルファスポリオレフィン基板上に1,2ジクロロエタンを用いてスピンコートしたこと以外は、応用例と同様にして追記型CDを作製し評価したところ、Itopは38%、C1エラーは220以上であり、CD規格を満足できなかった。
【0029】
【発明の効果】
本発明のフタロシアニン化合物は、前記一般式(I)で示される構造を有することから、種々の有機溶媒に室温で容易に溶解する。そのため、該化合物は膜形成などの加工性に優れたものとして利用が期待でき、特に光記録用材料に優れた特性を与えることができる。[0001]
[Industrial application fields]
The present invention relates to a novel phthalocyanine compound that can be used for optical recording dyes, color filter dyes, photoelectric conversion elements, electrophotographic photosensitive members, organic semiconductor elements, catalysts and gas sensors, color filters, and the like.
[0002]
[Prior art]
Phthalocyanine compounds are attracting attention as materials for pigments for optical recording, dyes for color filters, photoelectric conversion elements, electrophotographic photoreceptors, organic semiconductor elements, catalysts, gas sensors, etc., in addition to their conventional use as pigments. Collecting. However, unsubstituted phthalocyanine compounds are hardly soluble or insoluble in most solvents and are extremely inferior in processability. For example, when thinning phthalocyanine for use in the above-mentioned applications, vacuum deposition or ultrafine particle dispersion is used, but in either case, productivity is low, and these media and devices are mass-produced. It is a big obstacle. In particular, when a vacuum-deposited film of a phthalocyanine compound is used as a recording film for an optical disc, it is necessary to crystal-transform the deposited film into a crystal type that matches the recording characteristics. This crystal transition is performed by a process in which the deposited recording film is exposed to heat or vapor of an organic solvent for a long time, and the productivity is remarkably impaired. Therefore, production of an optical disk by this method has not been put to practical use.
[0003]
In addition, with regard to compact discs (CDs) among optical discs, write-once CDs have been especially developed in recent years, and cyanine dyes have been mainly used as organic dyes as materials for write-once CDs. This type of dye is superior in that it has a large extinction coefficient, but has the disadvantage of poor light resistance, and a method of adding a light stabilizer such as a singlet oxygen quencher is taken to improve this. There was also. However, the effect is not enough. In contrast, phthalocyanine dyes have high light stability, but have the problem of low solubility in organic solvents as described above.
[0004]
In order to solve the above problem, a phthalocyanine compound that can be dissolved in an organic solvent by introducing a substituent into phthalocyanine is then applied. The phthalocyanine compounds disclosed in JP-A-1-180865, JP-A-2-265788, JP-A-3-215466, etc. are carbonized by introducing a long-chain alkyl group or alkoxy group into the benzene ring of phthalocyanine. It has obtained solubility in a hydrogen-based organic solvent. In addition to these, many long-chain alkyl groups have been introduced through functional groups such as ester groups, polyether groups, and thioether groups.
[0005]
[Problems to be solved by the invention]
However, these phthalocyanine compounds have a lower extinction coefficient than cyanine dyes, and in particular when formed into a film, the extinction coefficient in the long wavelength portion is lowered due to the association between phthalocyanine molecules, and the refractive index necessary for the light absorption layer is reduced. There was a difficulty that could not be achieved.
[0006]
Accordingly, an object of the present invention is to provide a phthalocyanine compound whose solubility in various organic solvents is improved by a substituent, and a compound having high performance in applications such as optical recording dyes.
[0007]
[Means for Solving the Problems]
According to the present invention, a phthalocyanine compound represented by the following general formula (I) is provided.
[Chemical 1]
Figure 0003863195
(In the formula, 1 to 16 represent the positions of the surrounding carbon atoms, M represents two hydrogen atoms, a divalent metal atom, a metal oxide or a metal chloride. X represents an oxygen atom or sulfur. Y represents an atom selected from a benzothiazolyl group, an isoquinolyl group, and a 4-methylthiazolyl group, and n represents an integer of 0, 1, 2, or 3. X represents 1 or 4, respectively. (It shall be bonded to any carbon atom of 5 or 8, 9 or 12, 13 or 16.)
[0008]
Since the novel phthalocyanine compound of the present invention has the structure represented by the general formula (I), it has excellent solubility in various organic solvents and is also high in applications such as optical recording dyes. It will have performance.
[0009]
In the compound of the general formula (I), preferred specific examples of Y include benzothiazolyl group, isoquinolyl group, 4-methylthiazolyl group and the like. Preferable specific examples of M include VO, TiO, Mn, Fe, Co, Ni, Cu, Zn, Pd, Cd, Mg, H 2 and the like. Divalent metal ions d5 to d7, d10, and d0 having a function of preventing molecular association by the interaction with and increasing the absorption coefficient of the film are preferable, and Mn, Fe, Co, Zn, and Cd are particularly preferable. As for the position of the substituent on the phthalocyanine skeleton, the α-position substitution product is more effective in preventing molecular association and is preferable in terms of increasing the absorption coefficient of the film.
[0010]
The phthalocyanine compound represented by the general formula (I) includes 1,8-diazabicyclo [5, which is a strong organic base (corresponding to XY bonded to 3 or 4 position carbon) (along with a metal salt if necessary). It can be synthesized by reacting in an alcohol solvent in the presence of 4,0] -7-undecene or the like.
[0011]
The phthalocyanine compound of the present invention easily dissolves in an alcohol-based polar solvent, a hydrocarbon-based solvent, or a mixture thereof and exhibits a blue or green color. For example, when the ethyl cellosolve solution is spin-coated on a polycarbonate substrate, a homogeneous thin film can be formed.
[0012]
The absorption spectrum of the thin film thus obtained does not show a decrease in the extinction coefficient in the visible part as seen in a thin film using ordinary phthalocyanine derivatives, and has a high extinction coefficient in the visible part. It is also suitable for use as a medium. Such a preferable characteristic in the absorption spectrum is considered to prevent molecular association of the phthalocyanine skeleton by the phthalocyanine compound of the present invention having an electron-donating substituent, which is coordinated to the central metal.
[0013]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
Synthesis of tetra α- [2- (6-ethoxybenzothiazolyl) thio] phthalocyanine;
1) Synthesis of phthalonitrile derivative 6.3 g of 2-mercapto-6-ethoxybenzothiazole, 5.2 g of 3-nitrophthalonitrile, 8.4 g of anhydrous potassium carbonate, and 20 ml of dimethyl sulfoxide were charged and reacted at 70 ° C. for 7 hours. . Water was added to the reaction product, and the precipitated crystals were agglomerated and dried to obtain 6.6 g of a phthalonitrile derivative. Analysis data of this phthalonitrile derivative is as follows.
IR spectrum (KBr): 2320 cm −1 (νCN)
Mass spectrum: 337 (M +)
Melting point: 156 ° C
[0014]
2) Cyclization reaction To 3.4 g of the phthalonitrile derivative obtained above, 0.35 g of zinc chloride, 2.3 g of DBU (1,8-diazabicyclo [5,4,0] -7-undencene), 1-pentanol 30 ml was added and reacted at 100 ° C. for 10 hours under a nitrogen atmosphere. The reaction product was filtered and washed with methanol to obtain 2.7 g of a crude product. This crude product was purified using column chromatography to obtain 1.1 g of purified phthalocyanine (Compound 1).
[0015]
Example 2
Synthesis of tetra α- [5- (4-methylthiazolyl) ethoxy] zinc phthalocyanine;
1) Synthesis of phthalonitrile derivative 5.1 g of 5- (2-hydroxyethyl) -4-methylthiazole, 5.2 g of 3-nitrophthalonitrile, 8.4 g of anhydrous potassium carbonate, and 20 ml of dimethyl sulfoxide were charged at 70 ° C. Reacted for hours. 300 ml of water was added to the reaction product, and the precipitated crystals were aggregated and dried to obtain 7.0 g of a phthalonitrile derivative. Analysis data of this phthalonitrile derivative is as follows.
IR spectrum (KBr): 2320 cm −1 (νCN)
Mass spectrum: 269 (M +)
Melting point: 152 ° C
[0016]
2) Cyclization reaction To 3.5 g of the phthalonitrile derivative obtained above, 0.59 g of zinc chloride, 3.5 g of DBU, and 20 ml of 1-pentanol were added and reacted at 110 ° C. for 7 hours in a nitrogen atmosphere. 50 ml of methanol and 50 ml of water were added to the reaction solution, and the precipitate was filtered and washed with methanol to obtain 2.1 g of a crude product. This crude product was purified using column chromatography to obtain 1.0 g of purified phthalocyanine (Compound 2). The elemental analysis values of this phthalocyanine derivative were as follows.
C (%) H (%) N (%)
Actual value 58.74 3.92 14.78
Calculated 58.86 3.88 14.71 (C 56 H 44 N 12 O 4 S 4 Zn)
[0017]
Example 3
In the reaction of Example 1 1), except that 2-mercapto-6-n-hexyloxybenzothiazole was used as a raw material instead of 2-mercapto-6-ethoxybenzothiazole, the same procedure as in Example 1 was performed. A phthalocyanine derivative (Compound 3) was obtained.
[0018]
Reference example 1
A phthalocyanine derivative (Compound 4) was obtained in the same manner as in Example 1 except that 2-mercaptopyrimidine was used in place of 2-mercapto-6-ethoxybenzothiazole in the reaction of Example 1).
[0019]
Reference example 2
A phthalocyanine derivative (Compound 5) was obtained in the same manner as in Example 2 except that 4-nitrophthalonitrile was used as a raw material in place of 3-nitrophthalonitrile in the reaction of Example 2 1).
[0020]
Example 4
A phthalocyanine derivative (Compound 6) was obtained in the same manner as in Example 2 except that cobalt chloride was used in place of zinc chloride in the cyclization reaction of Example 2).
[0021]
Example 5 and Reference Examples 3-6
In the reaction 1) of Example 1, instead of 2-mercapto-6-ethoxybenzothiazole, the raw material Y- (CH 2 ) n — corresponding to the substituent Y— (CH 2 ) n —X shown in Table 1 Α-Substituted phthalocyanine shown in Table 1 in the same manner as in Example 1 except that XH was used and the metal M chloride shown in Table 1 was used instead of zinc chloride in the reaction of 2) (Compounds 7 to 11) were obtained.
[0022]
Reference Examples 7-8
In the reaction of 1) of Reference Example 2, instead of 5- (2-hydroxyethyl) -4-methylthiazole, the raw material Y- (CH corresponding to the substituent Y— (CH 2 ) n —X shown in Table 1 2 ) In the reaction of 2 ), n- XH was used, and in the same manner as in Reference Example 2, except that the metal M chloride shown in Table 1 was used instead of zinc chloride, Table 1 shows each. β-substituted phthalocyanine was obtained.
[0023]
The substituent [—X— (CH 2 ) n —Y] and substitution position of the phthalocyanine compound obtained in each of the above Examples and Reference Examples, the type of M, and the maximum wavelength λmax of the absorption spectrum in a chloroform solution, Table 1 shows. Among these, the 1 H-NMR spectrum (DMF-d7) of Compound 2 is as follows.
δ (ppm from TMS): 2.2 (8H, q), 3.4 (12H, s), 4.8 (8H, m), 7.5 (4H, m), 7.8 (4H, m ), 8.0 (4H, s), 8.7 (4H, m)
[0024]
[Table 1]
Figure 0003863195
[0025]
A part of the phthalocyanine compounds described in Table 1 was examined for solubility in organic solvents. The results are shown in Table 2.
[0026]
[Table 2]
Figure 0003863195
[0027]
Application Example A substrate having a guide groove uneven pattern having a depth of about 1,200 mm on the surface of a polycarbonate substrate having a diameter of 120 mm and a thickness of 1.2 mm is prepared. The compound 2 was spin-coated using 2,2,3,3-tetrafluoropropanol as a coating solvent to provide a light absorption layer on the substrate. The thickness of this light absorption layer was about 1,500 mm. Next, Au is deposited on the light absorption layer by Au sputtering to a thickness of about 800 mm to form a reflective layer, and a protective layer made of ultraviolet curable resin is further formed on the light-absorbing layer to a thickness of about 5 μm. Produced. This CD has a wavelength of 785 nm, N.I. When an EFM signal was recorded and reproduced under the conditions of A, 0.5, and a linear velocity of 1.4 m / s, Itop was 66% and C1 error was 220 or less, which was a value satisfying the CD standard. .
[0028]
Application Comparative Example In the application example, the above-mentioned No. A write-once CD was prepared in the same manner as in the application example except that α-2 methylphenylthio Zn phthalocyanine was used in place of compound 2 and spin coated with 1,2 dichloroethane on an amorphous polyolefin substrate. As a result, it was found that Itop was 38%, C1 error was 220 or more, and the CD standard could not be satisfied.
[0029]
【The invention's effect】
Since the phthalocyanine compound of the present invention has the structure represented by the general formula (I), it is easily dissolved in various organic solvents at room temperature. For this reason, the compound can be expected to be used as a material having excellent processability such as film formation, and can give particularly excellent characteristics to an optical recording material.

Claims (1)

下記の一般式(I)で示されるフタロシアニン化合物。
Figure 0003863195
(式中、1〜16は周辺炭素原子位置を示すものであり、Mは2個の水素原子、2価の金属原子、金属酸化物又は金属塩化物を示す。また、Xは酸素原子又は硫黄原子を、Yはベンゾチアゾリル基、イソキノリル基、4−メチルチアゾリル基の中から選ばれる1種を、それぞれ示し、nは0、1、2又は3の整数を示す。なお、Xはそれぞれ1又は4、5又は8、9又は12、13又は16のいずれかの炭素原子に結合しているものとする。)
A phthalocyanine compound represented by the following general formula (I).
Figure 0003863195
(In the formula, 1 to 16 represent the positions of the surrounding carbon atoms, M represents two hydrogen atoms, a divalent metal atom, a metal oxide or a metal chloride. X represents an oxygen atom or sulfur. Y represents an atom selected from a benzothiazolyl group, an isoquinolyl group, and a 4-methylthiazolyl group, and n represents an integer of 0, 1, 2, or 3. X represents 1 or 4, respectively. (It shall be bonded to any carbon atom of 5 or 8, 9 or 12, 13 or 16.)
JP10449894A 1994-04-20 1994-04-20 Phthalocyanine compounds Expired - Fee Related JP3863195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10449894A JP3863195B2 (en) 1994-04-20 1994-04-20 Phthalocyanine compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10449894A JP3863195B2 (en) 1994-04-20 1994-04-20 Phthalocyanine compounds

Publications (2)

Publication Number Publication Date
JPH07286109A JPH07286109A (en) 1995-10-31
JP3863195B2 true JP3863195B2 (en) 2006-12-27

Family

ID=14382191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10449894A Expired - Fee Related JP3863195B2 (en) 1994-04-20 1994-04-20 Phthalocyanine compounds

Country Status (1)

Country Link
JP (1) JP3863195B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935466B2 (en) * 2008-03-31 2011-05-03 Xerox Corporation Benzothiazole containing photogenerating layer

Also Published As

Publication number Publication date
JPH07286109A (en) 1995-10-31

Similar Documents

Publication Publication Date Title
EP0519395B1 (en) Sulfonamido or amido substituted phthalocyanines for optical recording
US4960538A (en) 1,2-naphthalocyanine near-infrared absorbent and recording/display materials using same
US6790593B2 (en) Metallocenyl-phthalocyanines
JP3860616B2 (en) Phthalocyanine compounds
US5820962A (en) Optical recording material and optical recording medium
EP0896033B1 (en) Phthalocyanine compounds
EP0823432B1 (en) Phthalocyanine compounds and their use as rewritable optical recording material
KR910007447B1 (en) Optical record carrier and process thereof
US5446142A (en) Phthalocyanine and naphthalocyanine light-absorbing compound and optical recording medium containing same
EP0378336B1 (en) Naphthalocyanine derivatives, production thereof, optical recording medium using the same, and production thereof
JP3863195B2 (en) Phthalocyanine compounds
JP2616035B2 (en) Naphthalocyanine derivative, method for producing the same, optical recording medium using the same, and method for producing the optical recording medium
JP3857327B2 (en) Phthalocyanine compounds
KR100957474B1 (en) Phthalocyanine compound, process for producing the same, and optical recording medium containing the same
JP4093807B2 (en) Optical recording material
JPH07286110A (en) Phthalocyanine compound
JP2698067B2 (en) Phthalocyanine compound and method for producing the same
JPH01178494A (en) Optical recording medium
JP3732528B2 (en) Light absorbing compound and optical recording medium containing the same
US5219706A (en) Naphthalocyanine derivative and production process thereof, as well as optical information recording media using the derivatives and production process thereof
JP4203239B2 (en) Phthalocyanine compound and optical recording medium using the same
JPH10182651A (en) Pyridophenoxazine-metal chelate compound
JPS63276592A (en) Optical information recording medium
JPH0776307B2 (en) Naphthalocyanine derivative, method for producing the same, optical information recording medium using the same, and method for producing the optical information recording medium
JPS63312888A (en) Optical recording medium

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees