JPS63312888A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPS63312888A
JPS63312888A JP62147971A JP14797187A JPS63312888A JP S63312888 A JPS63312888 A JP S63312888A JP 62147971 A JP62147971 A JP 62147971A JP 14797187 A JP14797187 A JP 14797187A JP S63312888 A JPS63312888 A JP S63312888A
Authority
JP
Japan
Prior art keywords
recording medium
optical recording
substrate
formula
phthalocyanine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62147971A
Other languages
Japanese (ja)
Inventor
Yuji Sugiura
杉浦 雄次
Kazuhiko Murata
和彦 村田
Shigehiro Nishimura
西村 繁廣
Sadanori Sano
佐野 禎則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP62147971A priority Critical patent/JPS63312888A/en
Publication of JPS63312888A publication Critical patent/JPS63312888A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2531Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising glass
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

PURPOSE:To reduce the manufacturing cost of an optical recording medium, by producing the optical recording medium through providing on a substrate a recording layer comprising a phthalocyanine compound of a specified formula for recording and reading by use of laser radiation. CONSTITUTION:A phthalocyanine compound of the formula, wherein one of X and Y linked directly to each of four benzene rings is SR (R is a 1-20C straight chain alkyl), while the other is H, and M is a metallic atom, is dissolved in an appropriate solvent to prepare a coating liquid. The coating liquid is applied to a substrate to provide a recording layer, thereby producing an optical recording medium. Writing and reproduction of information from the optical recording medium is preferably conducted from the substrate side. Therefore, the substrate is preferably made from a transparent material such as a glass, a poly(meth)acrylic resin and a polyester resin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーデ−を用いる追記型光記録媒体に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a write-once optical recording medium using a semiconductor radar.

(従来技術とその問題点) 従来よシ無機系記録媒体としてはテルル系化合物が用い
られていたが、記録層の形成が真空蒸着あるいはスパッ
タリングなどによっているため、生産性が低いことおよ
び有毒性への懸念という問題があった。これらの点で有
利と考えられる有機色素を記録媒体に用いる研究が多く
報告されている。このような有機色素としてはポリメチ
ン系色素、ナフトキノン系色素、ジチオール金属錯体、
フタロシアニン系色素などが知られている。しかし、こ
れらの有機色素においても、追記型光記録媒体としての
利用に際して、要求される以下のような特性を充分兼ね
備えてはおらず改良の余地を残している。
(Prior art and its problems) Conventionally, tellurium-based compounds have been used as inorganic recording media, but since the recording layer is formed by vacuum evaporation or sputtering, they suffer from low productivity and toxicity. There was a problem of concern. Many studies have been reported in which organic dyes, which are considered to be advantageous in these respects, are used in recording media. Such organic dyes include polymethine dyes, naphthoquinone dyes, dithiol metal complexes,
Phthalocyanine pigments are known. However, these organic dyes do not sufficiently have the following properties required for use as write-once optical recording media, and there is still room for improvement.

1、 レーザー光エネルギーを熱エネルギーに変換する
ため、近赤外域に充分な吸収強度を有すること 2、信号検出は反射率の変化によるため、半導体レーデ
−光に対し充分高い反射率を有すること3、書き込み時
のスレッシュホールドが明確かつ、読み出し光によるダ
メージを低くするため熱による変化すなわち熱分解挙動
が湿度変化に対してシャープであること 4、均一な記録層を生産性良く形成するためには、塗布
型が最良であシ、このためには、色素が溶剤に可溶であ
ること 5、再生くり返し、あるいは保存において充分な耐久性
(耐光性、耐湿性)を有すること。
1. In order to convert laser light energy into thermal energy, it must have sufficient absorption intensity in the near-infrared region. 2. Since signal detection is based on changes in reflectance, it must have a sufficiently high reflectance for semiconductor radar light. 3. , The writing threshold must be clear, and changes due to heat, that is, thermal decomposition behavior, must be sharp against humidity changes in order to reduce damage caused by reading light. 4. In order to form a uniform recording layer with high productivity, A coating type is best; for this purpose, the dye must be soluble in a solvent5 and have sufficient durability (light resistance, moisture resistance) for repeated reproduction or storage.

前記の有機色素のなかでもフタロシアニン色素は分子吸
光係数が非常に大きく耐久性にすぐれるため高性能の光
記録媒体となシ得る反面、有機溶剤に不溶であることや
、吸収波長を半導体レーデ−光に合わせるため特殊な処
理が必要であったりあるいは化学的な修飾がやや難しい
という問題があった。これらの欠点を改良するものとし
て、最近、置換基を導入した可溶型で近赤外域に吸収を
有する7タロシアニン(特開昭61−246091 )
やナフタロシアニン(特開昭61−163891.61
−268487 )を含有する光記録媒体が開示されて
いるが、これらの化合物はその合成が多段階にわたった
シ、収率が低いことによ〕、記録媒体としてのコストア
ップにつながるという欠点があっ九。
Among the organic dyes mentioned above, phthalocyanine dyes have extremely large molecular absorption coefficients and are highly durable, so they can be used as high-performance optical recording media. There were problems in that special treatment was required to match the light, and chemical modification was somewhat difficult. In order to improve these drawbacks, we have recently developed a soluble 7-talocyanine with a substituent that absorbs in the near-infrared region (Japanese Patent Laid-Open No. 61-246091).
and naphthalocyanine (JP-A-61-163891.61
-268487) has been disclosed, but these compounds have the disadvantage that their synthesis involves multiple steps and the yield is low, leading to an increase in the cost of the recording medium. Ah nine.

(問題点を解決するための手段および作用)本発明者ら
は、前項に述べたような有機色素を用いる光記録媒体の
問題点を考慮し、よシ容易に?1#られかつ、高い性能
を有する光記録媒体について種々検討した結果式(I)
で示される置換フタロシアニン色素を含む光記録媒体が
、前述の緒特性を満足することを見出し本発明を完成し
た。
(Means and Actions for Solving the Problems) The present inventors have taken into account the problems of optical recording media using organic dyes as described in the previous section, and have attempted to solve the problems easily. As a result of various studies on optical recording media with 1# and high performance, formula (I)
The present invention was completed by discovering that an optical recording medium containing a substituted phthalocyanine dye represented by the formula satisfies the above-mentioned characteristics.

(式(D中、4個のベンゼン環に直結するXおよびYは
、それぞれ一方のみが5R(Rは炭素数1〜20の直鎖
アル中ル基を示す。)であシ、他はHであシ、Mは金属
原子を表わす。尚、本発明においてrcnJは炭素数が
n個であることを意味するものとする。) 本発明に用いられる置換フタロシアニンは4−アルキル
チオフタロニトリルを金属塩もしくは金属酸化物などと
ともに加熱縮合後、適当な溶媒を用いて再結晶もしくは
カラム分離といった通常の精製法によシ得ることができ
る。なお、原料の4−アルキルチオフタロニトリルは、
4−ニトロフタロニトリルをアルキルチオールと適当な
触媒の存在下に反応させることによシ得られる。すなわ
ち、2段の反応により後述の参考例に示すように、かな
シの高収率で得られるため光記録媒体としてのコストダ
ウンにつながる利点がある。式(I)で示されるフタロ
シアニン化合物を用いて記録媒体を形成する際のおよび
記録媒体としてのすぐれた点を列挙すると以下のように
なる。
(In the formula (D), only one of X and Y directly connected to the four benzene rings is 5R (R represents a straight-chain alkyl group having 1 to 20 carbon atoms), and the other is H. M represents a metal atom. In the present invention, rcnJ means that the number of carbon atoms is n. It can be obtained by a normal purification method such as recrystallization or column separation using an appropriate solvent after heating condensation with a metal oxide etc.The raw material 4-alkylthiophthalonitrile is
It is obtained by reacting 4-nitrophthalonitrile with an alkylthiol in the presence of a suitable catalyst. That is, as shown in the reference examples described below, the two-stage reaction provides a high yield of kanashi, which has the advantage of leading to cost reduction as an optical recording medium. The advantages of forming a recording medium using the phthalocyanine compound represented by formula (I) and as a recording medium are listed below.

1、近赤外域での吸収に関して言うと、置換基効果によ
シ、概ね通常のフタロシアニン色素に比べ吸収極大は長
波長シフトするため中心金属としてはMg T Ti 
p V s Mn I F’s * Ru * Co 
+Nl e Cu p Zn p Atp Ga r 
In HSi * Go +Sn 、 Pbなどの一般
に知られている原子(三価以上の金属の場合には酸素原
子、ハロダン原子などの軸配位子を含む)であればいづ
れでも良いが特に’rto 、 vo = kLCL 
、InCt、5iCt2゜Ge 、 Sn 、 Pbで
あることが好ましい。また、アルキル基の鎖長が長くな
るにつれて、吸収率が低くなるため、その長さは01〜
C8が好ましく、なかでも特にC4〜C6であることが
好ましい。
1. Regarding absorption in the near-infrared region, due to substituent effects, the absorption maximum shifts to longer wavelengths compared to ordinary phthalocyanine dyes, so Mg T Ti is used as the central metal.
p V s Mn IF's * Ru * Co
+Nl e Cu p Zn p Atp Ga r
Any commonly known atoms such as In HSi * Go + Sn and Pb (including axial ligands such as oxygen atoms and halodane atoms in the case of trivalent or higher valent metals) may be used, but in particular 'rto, vo = kLCL
, InCt, 5iCt2°Ge, Sn, and Pb. In addition, as the chain length of the alkyl group becomes longer, the absorption rate decreases, so the length is 01~
C8 is preferred, and C4 to C6 are particularly preferred.

2、実質上フタロシアニン色素のみからなる記録層とし
たとき、近赤外域での反射率が高い。従って、本記録層
を用いる場合、記録層中に、さらに、いわゆる反射層を
設けずとも単独で基板をとおして、信号を記録再生する
ことが可能である。なかでも充分に高い反射率を得るた
めには、フタロシアニン色素の中心金属およびアルキル
基鎖長については前項に述べたものが好ましい。
2. When the recording layer is made of substantially only phthalocyanine dye, the reflectance in the near-infrared region is high. Therefore, when this recording layer is used, it is possible to record and reproduce signals through the substrate alone without further providing a so-called reflective layer in the recording layer. In particular, in order to obtain a sufficiently high reflectance, the central metal and alkyl group chain length of the phthalocyanine dye are preferably those described in the previous section.

3、熱分解挙動をTG −DTA Fitl線よシ判断
すると、いづれもシャープな熱分解挙動を示す。その程
度はアルキル基鎖長にはほとんど影響されず、中心金属
の種類に依存しておシ、吸収率および反射率の点で好ま
しいものとして挙げた中心金属の中では、TiO、VO
が特に好ましい。
3. Judging the thermal decomposition behavior from the TG-DTA Fitl line, all of them show sharp thermal decomposition behavior. The degree of this effect is almost unaffected by the alkyl group chain length and depends on the type of central metal.Among the central metals listed as preferable in terms of absorption and reflectance, TiO, VO
is particularly preferred.

4、7タロシアニン色素は元来堅牢である反面、溶解性
に乏しかったが、本発明のフタロシアニン色素は、アル
キルチオ基を有するためクロロホルム、ジクロロメタン
、ベンゼン、トルエン、テトラヒドロ7ランなどの浴剤
に可溶である。
4,7 Talocyanine dyes are inherently robust but have poor solubility; however, the phthalocyanine dye of the present invention has an alkylthio group and is therefore soluble in bath agents such as chloroform, dichloromethane, benzene, toluene, and tetrahydro-7rane. It is.

溶解度はアルキル基鎖長によシ影響されるが、溶解性が
約11tチ以上であるためには、アルキル基が02以上
であることが望ましい。また、タ アルキル基鎖長が長くなるに伴って、フタロシアニン色
素の融点が低くなるため、記録媒体としての強度が充分
であるためにはアルキル基鎖長が06以下であることが
より好ましい。
The solubility is affected by the chain length of the alkyl group, but in order for the solubility to be about 11t or more, it is desirable that the alkyl group has a length of 02 or more. Further, as the ta-alkyl group chain length increases, the melting point of the phthalocyanine dye decreases, so in order to have sufficient strength as a recording medium, it is more preferable that the alkyl group chain length is 0.6 or less.

以上述べてきたように、記録媒体としての利用に際して
重要な因子となる近赤外域における宣い吸収率および反
射率、シャープな熱分解挙動、溶解性および耐久性を充
分に満足するためには、式(I)で示される7タロシア
ニン色素の中でも中心金属がvOまたはTiOであシ、
−また、アルキル基が、C2〜C6でるるものが特に好
−ましいとぎえろ。
As mentioned above, in order to satisfactorily satisfy the critical absorption and reflectance in the near-infrared region, sharp thermal decomposition behavior, solubility, and durability, which are important factors when used as a recording medium, Among the 7 thalocyanine dyes represented by formula (I), the central metal is vO or TiO,
-Also, those in which the alkyl group is C2 to C6 are particularly preferred.

式(I)で示される7タロシアニンを含Wfる光記録媒
体の基本構成は基板上に7タロシアニン単独の薄膜を形
成したものである。書き込み、再生は基板側から行なう
ことが望ましいため、基板材質としてはガラス、Iす(
メタ)アクリル樹脂、ポリエステル樹脂、ポリカーブネ
ート樹脂、エポキシ系樹脂などの透明なものが挙げられ
、その形態としてはシート状、チーf廿などであれば良
く、かかる基板表面にはあらかじめ案内溝を設けておい
ても良い。基板上には、基板保護、接着性改良の目的の
ため無機物あるいは高分子層を下引層として設けること
もできる。また記録層上には、下引層と同様な材質より
なる保護層を設けることもできる。
The basic structure of the Wf-containing optical recording medium containing 7-thalocyanine represented by formula (I) is that a thin film of 7-thalocyanine alone is formed on a substrate. Since it is desirable to write and read from the board side, the board material is glass, I (
Transparent resins such as meth)acrylic resin, polyester resin, polycarnate resin, and epoxy resin can be used.The form of the resin may be a sheet, a sheet, etc., and guide grooves are formed in advance on the surface of the substrate. You can also set it up. An inorganic or polymer layer may be provided as an undercoat layer on the substrate for the purpose of protecting the substrate and improving adhesion. Further, a protective layer made of the same material as the undercoat layer may be provided on the recording layer.

前述のように、本発明の記録材は高い反射率を有するた
め反射層を設ける必要はない。しかし、一方において、
式(りの7タロシアニンを樹脂バインダーで希釈したも
のを記録層とすることKより、反射率が低くなるように
制御できるのでこの場合は、反射層を基板と記録層の間
に設ける2層構造をとることも可能である。いづれの構
造においても記録層を基材の片面のみに設けてもよく、
両面に設けてもよく、さらに片面に設けたもの←02つ
のエアーサンドイッチ構造としても良い。
As mentioned above, since the recording material of the present invention has a high reflectance, there is no need to provide a reflective layer. However, on the other hand,
Formula (7) Using talocyanine diluted with a resin binder as the recording layer Since the reflectance can be controlled to be low, in this case, a two-layer structure in which the reflective layer is provided between the substrate and the recording layer is used. In either structure, the recording layer may be provided only on one side of the base material.
It may be provided on both sides, or it may be provided on one side to form a two-air sandwich structure.

(実施例) 以下に実施例を示す。(Example) Examples are shown below.

参考例 参考例として式(I)で示されるフタロシアニン化ニト
リルの合成を行なった。参考例1〜3のアルキルチオフ
タロニトリルの合成条件、収率、融点は第1表に示した
Reference Example As a reference example, a phthalocyaninated nitrile represented by formula (I) was synthesized. The synthesis conditions, yields, and melting points of the alkylthiophthalonitriles of Reference Examples 1 to 3 are shown in Table 1.

(スキーム1) *1.8−ジアザビシクロ(5,4,0) −7−ウン
デセン十N、N−ジメチルホルムアミド 119 4−アルキルチオフタロニトリルの合成例チオ
金属フタロシアニンの合成を行なった。参考例4〜9の
テトラキスアルキルチオ金属フタロシアニンの合成条件
、収率、元素分析は第2表に示した。
(Scheme 1) *1.8-Diazabicyclo(5,4,0)-7-undecene-N,N-dimethylformamide 119 Synthesis example of 4-alkylthiophthalonitrile Thiometal phthalocyanine was synthesized. The synthesis conditions, yields, and elemental analyzes of the tetrakisalkylthiometal phthalocyanines of Reference Examples 4 to 9 are shown in Table 2.

(スキーム2) (式(I)中、4個のベンゼン環に直結するXおよびY
は、それぞれ一方のみが5R(Rは炭素数1〜20の直
鎖アルキル基を示す。)であシ、他はHであシ、Mは金
属原子を表わす。) 実施例4〜9で得られたいづれの7タロシアニン化合物
モクロロホルム、ジクロロメタン、ベンゼン、トルエン
、テトラヒドロフランなどに1〜10wtチ溶解した。
(Scheme 2) (In formula (I), X and Y directly connected to four benzene rings
In each of these, only one is 5R (R represents a straight-chain alkyl group having 1 to 20 carbon atoms), the other is H, and M represents a metal atom. 1 to 10 wt of each of the seven talocyanine compounds obtained in Examples 4 to 9 was dissolved in mochloroform, dichloromethane, benzene, toluene, tetrahydrofuran, or the like.

実施例1 (I)参考例の第2表に示した参考例4のテトラキスエ
チルチオバナジルフタロシアニンの1 wt%クロロホ
ルム均一溶液を用い、Iリアクリル酸メチル樹脂基板上
にスピンコーティング(4000rpm X 15秒)
によシ、80 nmの厚みのフタロシアニン色素のみか
らなる薄膜を得た。この薄膜は指でこすっても容易には
ノ・り離しない程度の強度であった。この薄膜の最大吸
収波長はλmax = 750(am )であシ、また
、800nmの光の吸収率は42チであった。一方、基
板入射の800nmの光の反射率は20チであった。
Example 1 (I) Spin coating (4000 rpm x 15 seconds) on a methyl lyacrylate resin substrate using a 1 wt% chloroform homogeneous solution of tetrakis ethylthiovanadyl phthalocyanine of Reference Example 4 shown in Table 2 of Reference Examples.
Finally, a thin film consisting only of phthalocyanine dye and having a thickness of 80 nm was obtained. This thin film was strong enough not to easily peel off even when rubbed with fingers. The maximum absorption wavelength of this thin film was λmax = 750 (am), and the absorption rate of light at 800 nm was 42 cm. On the other hand, the reflectance of 800 nm light incident on the substrate was 20 cm.

(2)  テトラキスエチルチオバナジルフタロシアニ
ンの空気中でのTG −DTA曲線を測定したところ、
分解開始温度(DTin)は305℃、分解終了温度(
DTf)は480℃であシ、TG曲線は2段よシなシ、
1段目のM量減少率16チはほぼ置換エチル基の脱離量
に相当する。DTA曲線に現れた1段目の分解に伴う最
大発熱温度は385℃、2段目の分解のそれは455℃
であった。TG −DTA曲線を第1図に示した。
(2) When the TG-DTA curve of tetrakis ethylthiovanadyl phthalocyanine was measured in air,
The decomposition start temperature (DTin) is 305℃, and the decomposition end temperature (DTin) is 305℃.
DTf) is 480℃, TG curve is 2 steps higher,
The M amount reduction rate of 16 degrees in the first stage approximately corresponds to the amount of eliminated substituted ethyl groups. The maximum exothermic temperature associated with the first stage decomposition that appeared on the DTA curve was 385°C, and that of the second stage decomposition was 455°C.
Met. The TG-DTA curve is shown in FIG.

(3)次に(I)K示した記録媒体に波長790nmの
半導体レーザー光を基板側より 600 rpmにて回
転させながら、集光出力6 mW、記録周波数I MH
zで情報を書き込み、次いでレーザー集光出力を1−と
して信号の再生を行なったところ、い比は58 dBで
あった。
(3) Next, a semiconductor laser beam with a wavelength of 790 nm was applied to the recording medium shown in (I)K from the substrate side while rotating at 600 rpm, with a focusing output of 6 mW and a recording frequency of I MH.
When information was written with z and then the signal was reproduced with the laser condensing output set to 1-, the ratio was 58 dB.

実施例2〜6 参考例の第2表に示した参考例4〜9の各フタロシアニ
ン化合物について実施例1と同様の測定を行なった結果
について、その膜厚、最大吸収波長、800nmの光の
吸収率および反射率、熱分解温度(DTin 、 DT
f)および、cfi比を実施例1の結果とともに第3表
に示した。
Examples 2 to 6 Regarding the results of the same measurements as in Example 1 for each of the phthalocyanine compounds of Reference Examples 4 to 9 shown in Table 2 of Reference Examples, the film thickness, maximum absorption wavelength, and absorption of light at 800 nm were determined. index and reflectance, thermal decomposition temperature (DTin, DT
f) and the cfi ratio are shown in Table 3 together with the results of Example 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2表中の参考例4のテトラキスエチルチオバ
ナジルフタロシアニンのTG −DTA m線である。
FIG. 1 is the TG-DTA m line of tetrakisethylthiovanadyl phthalocyanine of Reference Example 4 in Table 2.

Claims (1)

【特許請求の範囲】 1、レーザー光により記録、読み取りを行なう光記録方
式において、基板上に設けた記録媒体が、下記式( I
)で示されるフタロシアニン化合物を含むことを特徴と
する光記録媒体。 ▲数式、化学式、表等があります▼・・・( I ) (式( I )中、4個のベンゼン環に直結するXおよび
Yは、それぞれ一方のみがSR(Rは炭素数1〜20の
直鎖アルキル基を示す。)であり、他はHであり、Mは
金属原子を表わす。)
[Claims] 1. In an optical recording system in which recording and reading are performed using a laser beam, a recording medium provided on a substrate has the following formula (I
) An optical recording medium comprising a phthalocyanine compound represented by: ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) (In formula (I), only one of X and Y directly connected to the four benzene rings is SR (R is a carbon number of 1 to 20) (represents a straight-chain alkyl group), the others are H, and M represents a metal atom.)
JP62147971A 1987-06-16 1987-06-16 Optical recording medium Pending JPS63312888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147971A JPS63312888A (en) 1987-06-16 1987-06-16 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147971A JPS63312888A (en) 1987-06-16 1987-06-16 Optical recording medium

Publications (1)

Publication Number Publication Date
JPS63312888A true JPS63312888A (en) 1988-12-21

Family

ID=15442242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147971A Pending JPS63312888A (en) 1987-06-16 1987-06-16 Optical recording medium

Country Status (1)

Country Link
JP (1) JPS63312888A (en)

Similar Documents

Publication Publication Date Title
US5137798A (en) A pit-forming optical recording media and process for producing the same
US5820962A (en) Optical recording material and optical recording medium
EP0823432B1 (en) Phthalocyanine compounds and their use as rewritable optical recording material
JPS61197280A (en) Optical recording medium
JP3961385B2 (en) Indole styryl compound and high-density recording medium using the same
JPH02276866A (en) New tetraazaporphine, its production, optical recording medium using the same and production of the same recording medium
US5256794A (en) Squarylium compounds
EP0675489B1 (en) Optical recording medium
WO2005000972A2 (en) Optical recording materials having high storage density
EP0279426B1 (en) Optical recording member
JPS63312888A (en) Optical recording medium
JP3244661B2 (en) Optical recording medium
JPH08282103A (en) Optical recording material and optical recording medium using the same
JP3039030B2 (en) Phthalocyanine derivative and optical recording medium containing the derivative
JP3732528B2 (en) Light absorbing compound and optical recording medium containing the same
JPH0745259B2 (en) Optical information recording medium
JPH01176585A (en) Optical recording medium
JP3863195B2 (en) Phthalocyanine compounds
US5219706A (en) Naphthalocyanine derivative and production process thereof, as well as optical information recording media using the derivatives and production process thereof
JP2727826B2 (en) Environment-resistant naphthalocyanine composition and optical recording medium using the same
JP3596083B2 (en) Phthalocyanine derivative and optical recording medium using the derivative
JP2602519B2 (en) Optical information recording medium
JPH01178494A (en) Optical recording medium
JPS60161193A (en) Optical recording medium
JPH01304991A (en) Tetranaphthoporphyrazine derivative and optical recording medium containing the same derivative