JP3862217B2 - Hollow pipe for sand pile construction and rectangular sand pile construction method with angle - Google Patents

Hollow pipe for sand pile construction and rectangular sand pile construction method with angle Download PDF

Info

Publication number
JP3862217B2
JP3862217B2 JP2002063050A JP2002063050A JP3862217B2 JP 3862217 B2 JP3862217 B2 JP 3862217B2 JP 2002063050 A JP2002063050 A JP 2002063050A JP 2002063050 A JP2002063050 A JP 2002063050A JP 3862217 B2 JP3862217 B2 JP 3862217B2
Authority
JP
Japan
Prior art keywords
sand pile
ground
sand
construction method
hollow tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002063050A
Other languages
Japanese (ja)
Other versions
JP2003261933A (en
Inventor
修二 磯谷
誠 大塚
和昭 日置
Original Assignee
不動建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不動建設株式会社 filed Critical 不動建設株式会社
Priority to JP2002063050A priority Critical patent/JP3862217B2/en
Publication of JP2003261933A publication Critical patent/JP2003261933A/en
Application granted granted Critical
Publication of JP3862217B2 publication Critical patent/JP3862217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Sorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、特に汚染地盤区域の地盤中に角度付き矩形状断面の砂杭を隣接する他の砂杭の短辺と接辺又は一部を重複させて造成して、円形配置の連続透過性浄化壁を低騒音、低振動、且つ効率的に施工することができる砂杭造成用中空管及び矩形砂杭造成工法に関するものである。
【0002】
【従来の技術】
緩い砂質土地盤や高含水の粘性土地盤などの軟弱地盤中に砂杭を打設することにより、地盤を改良する地盤改良杭造成工法がある。この地盤改良杭造成工法としては、例えば、中空管を所定の深度まで貫入した後、中空管を適宜の長さ引き抜く工程と中空管を再貫入する工程とを順次、地表に至るまで繰り返して、軟弱地盤中に締固め砂杭を造成する締固め砂杭造成工法や、前記工法において、中空管の再貫入工程を省略して、中空管を引き抜きながら地中に砂を排出して軟弱地盤中に砂杭を造成する砂杭造成工法などがある。これらの工法には、軟弱地盤を全面的に改良するため、改良領域に砂杭を実質的に隙間なく密接して造成する砂杭の原地盤に対する置換率が100%の工法や、地中の一部にのみ連続壁状に砂杭を造成する工法がある。
【0003】
一方、半導体製造工場などの洗浄工程において多量に使用されるトリクロロエチレン等の揮発性有機化合物は、漏れなどにより土壌又は地下水を汚染する可能性があり、この場合、工場跡地の再利用の障害となったり、地下水の利用が制限されたりする問題がある。このような汚染土壌や汚染地下水を浄化する方法としては、地下連続の地下水浄化壁を利用した地下水浄化方法がある。この地下水浄化壁は、汚染源から発生した汚染地下水の流れが一方向で帯水層で形成されている場合において、例えば、汚染地下水の流れを遮断する方向でトレンチ掘削によって形成した溝孔に金属系還元材と砂類との混合物を設置してなるものである。そして、この地下連続の地下水浄化壁によれば、汚染地下水が地下水浄化壁中を通過する際に還元反応による無公害化処理がなされる。
【0004】
この地下水浄化方法は、地下水の自然な流れの中に地下水浄化壁を設置して浄化するものであるが、浄化効率が悪く、浄化期間が長期化するという問題がある。これを解決するものとして、汚染地盤区域に分散配設された注水井戸と、該汚染地盤区域の中央部に配設され汚染物質を含む地下水を汲み上げ、該汲み上げられた地下水を該注水井戸に戻す揚水設備と、を設け、該揚水設備と該注水井戸の間で且つ該揚水設備を円形状に囲むように透過性浄化壁を配設する強制浄化の方法も検討されている。
【0005】
【発明が解決しようとする課題】
しかしながら、円形状配置の透過性浄化壁は、従来の地盤改良杭造成工法において、円形断面又は矩形断面の砂杭を隣接する他の砂杭の短辺と一部を重複させて造成することになるが、図10の符号a及び図11の符号cで示される砂杭のように、隣接砂杭と重複する部分dが薄いと、均一な厚みを有する連続壁状砂杭を造成することができず、一方、図10の符号bで示される砂杭のように、隣接砂杭と重複する部分eが厚いと、砂杭の打設数が多くなり施工効率が悪くなるという問題がある。
【0006】
更に、矩形断面の砂杭を造成する方法は、中空管の先端部分に形成される矩形の角筒体に相応する断面形状の砂杭を造成する方法であるため、中空管に回転を与えることができず、中空管の貫入はバイブロハンマーを作動させて行われる。しかし、バイブロハンマーを使用して中空管を打設する際、振動や騒音が発生し、環境対策が必要となるなどの問題を発生させる。
【0007】
従って、本発明の目的は、例えば、汚染地盤区域の地盤中に角度付き矩形状断面の砂杭を隣接する他の砂杭の短辺と接辺又は一部を重複させて造成して、円形配置の連続透過性浄化壁を低騒音、低振動、且つ効率的に施工することができる砂杭造成用中空管及び矩形砂杭造成工法を提供することにある。
【0008】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、特定の先端形状を有する中空管を往復回動操作により施工すれば、振動や騒音を極力抑制することができると共に、角度付き略矩形断面の砂杭が造成でき、且つ高品質の円形配置の連続壁状砂杭や透過性浄化壁を効率よく造成することができることなどを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明(1)は、砂杭材料が投入される円筒状中空管と、該中空管の先端部の左右両側に付設される一対の突起部とを備え、該突起部の外周の断面形状が、略三角形状であり、該突起部の付設位置が、該一対の突起部間で形成される平面角度が100度以上、180度未満の角度であって、往復回動操作により、地中に角度付き矩形状断面の砂杭を造成する砂杭造成用中空管を提供するものである。また、本発明(2)は、前記砂杭造成用中空管を所定深度まで貫入した後、その所定深度位置での往復回動操作工程と、引き抜きによる砂杭材料の排出工程の二工程を地表まで順次繰り返して行い、地中に角度付き矩形状断面の砂杭を造成する砂杭造成工法を提供するものである。また、本発明(3)は、前記引き抜きによる砂杭材料の排出工程の後、再貫入工程を行う前記砂杭造成工法を提供するものである。また、本発明(4)は、前記砂杭造成用中空管を所定深度まで貫入した後、地表まで引き抜きながら往復回動操作と砂杭材料の排出を同時に行い、地中に角度付き矩形状断面の砂杭を造成する砂杭造成工法を提供するものである。また、本発明(5)は、前記砂杭造成用中空管を所定深度まで貫入した後、所定の高さまで引き抜きながら往復回動操作と砂杭材料の排出を同時に行う工程と、該所定の高さに到達後、砂杭材料の排出を停止し再貫入を行なう工程の二工程を地表まで順次繰り返して行い、地中に角度付き矩形状断面の砂杭を造成する砂杭造成を提供するものである。また、本発明(6)は、前記角度付き矩形状断面の砂杭の少なくとも短辺を、隣接する他の砂杭の短辺と接辺又は一部を重複させて円形配置の連続壁状砂杭を造成する前記砂杭造成工法を提供するものである。また、本発明(7)は、前記円形配置の連続壁状砂杭が、汚染地盤区域の地盤を浄化する透過性浄化壁である前記砂杭造成工法を提供するものである。
【0010】
【発明の実施の形態】
次に、本発明の実施の形態における砂杭造成用中空管及びこれを用いた砂杭造成工法を図1〜図9を参照して説明する。図1は本例の砂杭造成用中空管の平面図、図2は本例の砂杭造成用中空管の下方部の正面図、図3は中空管往復回動装置の平面図、図4は中空管往復回動装置の一部を破断して示す正面図、図5は本例の砂杭造成用中空管を装着した砂杭造成装置の概略図、図6は図1及び図2の中空管を用いて造成される砂杭の角度付き矩形断面形状を説明する図、図7は一対の突起部の設置角度を代えた中空管を用いて造成される砂杭の角度付き矩形断面形状を説明する図、図8は本例の円形配置の透過性浄化壁を利用した地中浄化構築物を模式的に示す平面図、図9は図8のA―A線に沿って見た浄化の定常状態における断面図をそれぞれ示す。
【0011】
図1および図2において、砂杭造成用中空管1は、砂杭材料が投入される円筒状中空管1aと、中空管1aの先端部の左右両側に付設される一対の突起部1bとを備える。突起部1bは円筒状中空管1aに所定のピッチpで形成されたボルト穴2にボルト4で固定される同じ曲率を持つ基板122と、基板122に固設される所定の高さHを有しその外周の断面形状が略三角形状であり、先端が丸められた突起部本体121とからなる。なお、突起部本体の上面と底面は、それぞれ天板123と底板124で封止されている。突起部1bは中空管1aへの付設位置が一対の突起部1b間で形成される平面角度、すなわち、一方の突起部1bの先端と中空管1の中心軸とを結ぶ線(長軸)と他方の突起部1bの先端と中空管1の中心軸とを結ぶ線(長軸)とで形成される狭い角度を形成する側の平面角度αが100度以上、180度未満の角度となる位置に配置される。本例では、約150度である(他側の角度で210度)。この角度αが180度であると、回動操作によって造成される砂杭の断面形状は略矩形状になってしまい、円形配置の均一な厚みの連続壁状の砂杭が造れないか、均一な厚みのものを造ろうとすると、施工効率が悪くなる。一方、角度αが小さ過ぎると、均一厚さの円形配置の連続壁状砂杭を造成しようとすると小さな円しか造れない。なお、図1で示される一対の突起部1bの配置角度は当該突起部1bが特定角度にあることが理解され易いように少し小さく採ってある。
【0012】
突起部1bの円筒状中空管1aへの取り付け方法は、上記の他、1対の突起部1bを共に円筒状円筒管1aへ溶接する方法、一対の突起部1bの一方がボルト締めで、他方が溶接による方法、平面視で円筒状中空管1aを囲むように外筒管を付設する方法などが適用できる。外筒管を付設する場合、外筒管の外周の断面形状を、菱形形状の短軸上の対向する角部をそれぞれ所定の長さで切り欠き、更に、長軸上の対向する角部が丸められた形態とすればよい。一対の突起部1b間の角度は、本例の場合、あるいは一対の突起部1bの一方がボルト締めで、他方が溶接による方法の場合、ボルト孔2を適宜選択することにより、所定の角度近傍で容易に設置できる点で好適である。また、突起部本体121の先端の丸み64はあっても無くてもよいが、丸みを設ける場合、丸みのアールは小さいほど長軸部分が長い矩形断面の砂杭が造成される点で好適である。また、突起部本体121の高さHは、引き抜きストローク分に相当する長さ、すなわち、1回の引き抜きによる砂杭長であり、地盤の土質、改良目的により適宜決定される。また、円筒状中空管1aの先端内周面の左右両側には、該先端部から下方に突出する掘削用ビット5を設置し、砂杭造成用中空管1の地中貫入を容易にしている。本例の砂杭造成用中空管1において、中空管1aの形状としては、上記円筒状に限定されず、四角形などの多角形状、楕円状、不定形状のものも使用できる。
【0013】
本例の砂杭造成用中空管1は、往復回動操作により、地中に角度付き矩形状断面の砂杭を造成するものである。砂杭造成用中空管往復回動装置としては、特に制限されず、電動機と歯車により行う機械式回動装置や、油圧式回動装置が挙げられる。油圧式回動装置としては、図3及び図4に示すものが例示される。すなわち、中空管往復回動装置10はリーダー12とは反対側から中空管1aを両側から挟むように付設される一対の油圧シリンダー15を用いて中空管1aを往復回動(図3中の矢印方向)させて地盤との摩擦を切りながら、貫入と引き抜きを行う装置である。
【0014】
中空管往復回動装置10は、リーダー12に沿って昇降するリーダーガイド部13と、リーダーガイド部13のリーダー12とは反対側に固定され、中空管1aの往復回動の動きに規制されない固定部16と、ピストンロッド52の先端部を中空管1aの両側面に付設されるピストンロッド軸支部17に取り付け、シリンダー部51を固定部16のシリンダー軸支部61に取り付け、中空管1aをリーダー12とは反対側から挟むように、且つリーダーガイド部13の鉛直方向における中央位置にくるように取り付けられる一対の油圧シリンダー15とを備える。
【0015】
固定部16は、リーダーガイド部13に固定される上下一対の中空状円盤部材18と、一対の中空状円盤部材18の該リーダー12とは反対側の端部111に固定され、シリンダー軸支部61を有する縦部材62とからなり、全体は側面視、略コ字状をなしている。中空状円盤部材18は縦部材62をリーダーガイド部13に一体的に固定するための中間部材である。このため、中空状円盤部材18の内径を中空管1aの外径より大きくし、ベアリング19を介在させて、中空状円盤部材の中空部を貫通する中空管1aの往復回動の動きに規制されないようにしている。縦部材6は略コ字状であり、縦部材本体部621の左右両側面の鉛直方向中央には、油圧シリンダーのシリンダー部51に固設される縦軸55を水平方向において回転自在に軸支するためのシリンダー軸支部61を設けている。
【0016】
油圧シリンダー15は、シリンダー部51とピストンロッド52とからなり、シリンダー部51には固定部のシリンダー軸支部61に水平方向において回動自在に取り付けられる。油圧シリンダー15は中空管1と固定部16に取り付けた状態において、油圧シリンダー15が水平位置を保つと共に、リーダーガイド部13の鉛直方向における中央位置にくるようにすると、外力のリーダー12への伝達が効率的に行われる点で好適である。
【0017】
また、図5に示すように、中空管往復回動装置10の上方に位置するホッパー22や強制昇降装置21は中空管往復回動装置10の固定部16と一体的に結合されている。このため、ホッパー22、強制昇降装置21及び中空管往復回動装置10は、強制昇降装置21の下降起動により同様に下降し、上昇起動により同様に上昇する。ホッパー22は中空管1に砂杭材料を投入し易くするためのもので公知のものが用いられる。また、強制昇降装置21は、貫入時と引き抜き時にリーダー12からの反力が得られるものである限り特に限定されず、例えば、ラックとピニオンによるもの、チェーンとスプロケットによるもの、ワイヤーロープの牽引によるもの、などが挙げられる。
【0018】
次に、本例の砂杭造成用中空管を用いて地中に角度付き矩形断面の砂杭を造成する方法を説明する。先ず、強制昇降装置21の下降起動と共に、中空管往復回動装置10が起動され、砂杭造成用中空管1は所定の回動範囲内を押し引きされ、往復回動しつつ所定深度まで貫入される。貫入工程において砂杭造成用中空管1を回動させることにより、貫入効率が向上する。砂杭造成用中空管1は所定深度まで打ち込まれると、その所定深度位置での往復回動操作工程に移る。回動範囲としては、前記貫入時での回動範囲と同様でよく、図6(B)に符号βで示される揺動角度の2倍の角度、本例では60度である。すなわち、A−B線上に長軸がくるような位置から矢印Y方向に回動させ、C−B線上に長軸がくるような位置で停止し、更に、矢印X方向に回動させ、A−B線上に長軸がくるような位置で停止し、これを必要により繰り返すことで、引き抜き後、図6(A)の斜線で示される角度付き矩形断面の引き抜き跡が得られる。回動範囲を適宜選定することで、引き抜き跡の断面形状が角度が付いた矩形に近くなり、円形配置の連続壁状に砂杭を無駄なく効率的に造成することができる。また、往復回動操作工程で回動を行わないと、引き抜き後、突起部を有する円筒状中空管の形状に相応する形状の抜け跡ができるのみであり、円形配置の連続壁状に砂杭を造成しても、均一な厚さの壁状にならないか、均一な厚さの壁状を得ようとすると砂杭の打数が多くなり施工効率が悪くなる。
【0019】
次いで、往復回動操作工程後、引き抜きによる砂杭材料の排出工程に移る。引き抜きのストロークは、砂杭造成用中空管1の突起部1bの高さH、又はそれ以下とする。高さHの長さを引き抜けば、当該引き抜き跡は確実に角度付き矩形断面を形成しており、砂杭材料排出後の形状も角度付き矩形断面6aを形成することになる。砂杭材料としては、特に制限されず、砂、砕石、砂利、その他砂類似粒状材料、及びこれらに金属系還元材を混入させたもの等が挙げられる。金属系還元材を含有する砂類は、例えば、有機揮発性化合物で汚染された地下水などの浄化を目的に構築される透過性浄化壁に適用される。引き抜きの場合、往復回動操作は特に不要である。引き抜きによる砂杭材料を排出した後、該引き抜き後の位置で、再度、往復回動操作工程と引き抜きによる砂杭材料の排出工程とを順次行い、以後同様の操作が地表まで順次繰り返される。また、他の例として、引き抜き跡に砂杭材料を排出した後、再貫入工程を実施し、締固めを行ってもよい。また、他の例として、砂杭造成用中空管を所定深度まで貫入した後、地表まで引き抜きながら往復回動操作と砂杭材料の排出を同時に行い、地中に角度付き矩形状断面の砂杭を造成してもよい。また、この際、砂杭造成用中空管を所定深度まで貫入した後、所定の高さまで引き抜きながら往復回動操作と砂杭材料の排出を同時に行う工程と、該所定の高さに到達後、砂杭材料の排出を停止し再貫入を行なう工程の二工程を地表まで順次繰り返して行うようにしてもよい。この再貫入の場合、砂杭造成用中空管1は前記同様の回動範囲で回動させることが、より角度付きの矩形断面6aに近い締固め砂杭が造成される点で好適である。
【0020】
また、本発明の矩形砂杭造成工法は、角度付き矩形断面6aの砂杭の少なくとも短辺61a(両側端)を、隣接する他の砂杭の短辺と接辺又は一部を重複させて円形配置の連続壁状砂杭または透過性浄化壁7aを造成する。本発明においては、角度付き矩形断面6aの両側端61aは丸みを帯びているから、その部分fを重複させて造成することが、均一な厚みの連続壁状砂杭が施工できる点で好適である。なお、図7は、一対の突起部1b間で形成される角度αを約120度にした場合を示すが、この場合、図6と比較すると、造成される円形配置(実際には6角形配置)の連続壁状砂杭7bの径が小さいことが判る。従って、大きな円形配置の壁状を造成する場合、角度αは180度に近い角度に設定すればよい。
【0021】
本例の砂杭造成用中空管1及びこれを用いた砂杭造成工法によれば、振動や騒音を極力抑制することができると共に、角度付き矩形断面6aの砂杭が造成でき、且つ高品質の円形配置の連続壁状砂杭7aを効率よく造成することができる。更に、従来の回転駆動手段を備える砂杭造成装置では、電動モーターなどの回転駆動装置やスイベル装置が付設されていた。これらの設備は機構が複雑であり、且つ大掛かりなものであるため、装置のコスト上昇の一因となっていた。しかし、本発明の砂杭造成用中空管を用いれば、回転駆動装置やスイベル装置は省略することができるため、該砂杭造成装置を簡略且つコストが低減されたものとすることができる。
【0022】
次に、本発明の砂杭造成工法で施工された円形配置の透過性浄化壁の利用例を図8及び図9を参照して説明する。すなわち、図8及び図9はこのような透過性浄化壁を利用した地中浄化工法を説明する図である。先ず、浄化の対象となる汚染地盤区域30を遮水壁20で包囲し、汚染地盤区域30を遮水する。次いで、揚水井戸などの揚水設備50を汚染地盤区域30の中央部に不透水層80まで到達する深さで配設する。注水井戸40は汚染部分100の外側且つ遮水壁20の内側で、揚水設備50から等距離且つ90度間隔の4等分の位置にこれも不透水層80まで到達する深さで配設される。次いで、透過性浄化壁60を揚水設備50と注水井戸40の間で且つ揚水設備50を囲む円形配置の連続壁状で不透水層80まで到達する深さで配設する。次いで、揚水設備50からの汚染地下水を注水井戸40に供給する地上配管510を付設する。このように各設備が配置された浄化前の地中浄化構築物200は図9に示されるような断面形態である。
【0023】
次に、揚水設備50を稼動させる。すなわち、揚水設備50により汚染地下水を汲み上げ、汲み上げられた汚染地下水を注水井戸40を介して地中に戻し、戻された地下水を透過性浄化壁60で処理し、該処理水を更に揚水設備50で吸込み、これを繰り返し行うことで、強制的な地下水の循環系を形成する。所定時間経過後は、図9に示すように、地下水位は揚水設備50の位置で汚染部分100の下方部まで低下し、揚水設備50から遠のくにつれ徐々に上昇する放物線状を呈する。この状態が浄化の定常状態である。この地下水位の低下過程およびその後の定常状態において、透過性浄化壁60を通過する汚染地下水に含まれる汚染物質が例えば、金属系還元材で分解あるいは吸着などの反応を受けて無害化される。このような汚染地下水の処理は、汚染地下水の浄化目標値を達成できるまで繰り返し行われる。このような地中浄化工法において、汚染地下水は円形配置の透過性浄化壁60を均等に通過するから、透過性浄化壁中の金属系還元材が有効に作用し、浄化効率が高まる。
【0024】
【発明の効果】
本発明の砂杭造成用中空管を用いた工法によれば、振動や騒音を極力抑制することができると共に、角度付き矩形断面の砂杭が造成でき、且つ高品質の円形配置の連続壁状砂杭または透過性浄化壁を効率よく造成することができる。また、砂杭造成用中空管は比較的簡易な構造であり、中空管往復回動装置を必要とするものの、当該装置よりも更に高価な回転駆動装置やスイベル装置を省略することができ、造成装置のコストを低減することができる。
【図面の簡単な説明】
【図1】本例の砂杭造成用中空管の平面図である。
【図2】本例の砂杭造成用中空管の下方部の正面図である。
【図3】中空管往復回動装置の平面図である。
【図4】中空管往復回動装置の一部を破断して示す正面図である。
【図5】本例の砂杭造成用中空管を装着した砂杭造成装置の概略図である。
【図6】図1及び図2の中空管を用いて造成される砂杭の角度付き矩形断面形状を説明する図である。
【図7】一対の突起部の設置角度を代えた中空管を用いて造成される砂杭の角度付き矩形断面形状を説明する図である。
【図8】本例の円形配置の透過性浄化壁を利用した地中浄化構築物を模式的に示す平面図である。
【図9】図8のA―A線に沿って見た浄化の定常状態における断面図をそれぞれ示す。
【図10】従来の砂杭造成工法で造成される円形配置の連続壁を説明する図である。
【図11】従来の他の砂杭造成工法で造成される円形配置の連続壁を説明する図である。
【符号の説明】
1 砂杭造成用中空管
1a 円筒状中空管
1b 突起部
5 掘削用ビット
6a 角度付き矩形断面
7a、7b 円形配置の連続壁状砂杭
10 中空管往復回動装置
12 リーダー
13 リーダーガイド部
15 油圧シリンダー
16 固定部
17 ピストンロッド軸支部
18 中空状円盤部材
20 遮水壁
21 強制昇降装置
22 ホッパー
30 汚染地盤区域
40 注水井戸
50 揚水設備
51 シリンダー部
52 ピストンロッド
60 透過性浄化壁
61 シリンダー軸支部
64 丸み
121 突起部本体
122 基板
200 地中浄化構築物
[0001]
BACKGROUND OF THE INVENTION
In particular, the present invention creates a sand pile having an angled rectangular cross section in the ground of a contaminated ground area by overlapping a short side and a tangent side or part of another adjacent sand pile, thereby providing continuous permeability in a circular arrangement. The present invention relates to a sand pile building hollow pipe and a rectangular sand pile building method capable of efficiently constructing a purification wall with low noise, low vibration, and efficiency.
[0002]
[Prior art]
There is a ground improvement pile construction method that improves the ground by placing sand piles in soft ground such as loose sandy ground and highly watery viscous ground. As this ground improvement pile construction method, for example, after penetrating the hollow tube to a predetermined depth, the process of pulling out the hollow tube to an appropriate length and the process of re-penetrating the hollow pipe are sequentially brought to the ground surface. Repeatedly, in the compacted sand pile construction method to create a compacted sand pile in soft ground, or in the above method, the hollow pipe re-penetration process is omitted and the sand is discharged into the ground while pulling out the hollow tube There is a sand pile construction method that creates sand piles in soft ground. In these construction methods, in order to improve the soft ground entirely, a construction method with a replacement rate of 100% for the original ground of the sand pile in which the sand pile is formed in close contact with the improved region substantially without gaps, There is a method of constructing sand piles in a continuous wall shape only in a part.
[0003]
On the other hand, volatile organic compounds such as trichlorethylene, which are used in large quantities in the cleaning process of semiconductor manufacturing factories and the like, may contaminate the soil or groundwater due to leakage, etc. In this case, it becomes an obstacle to reuse of the factory site. Or the use of groundwater is limited. As a method for purifying such contaminated soil or contaminated groundwater, there is a groundwater purification method using a continuous underground water purification wall. This groundwater purification wall is a metal system in a groove formed by trench excavation, for example, in the direction of blocking the flow of contaminated groundwater when the flow of contaminated groundwater generated from the pollution source is formed in one direction with an aquifer. A mixture of reducing material and sand is installed. And according to this underground continuous groundwater purification wall, when the contaminated groundwater passes through the groundwater purification wall, a pollution-free treatment by a reduction reaction is performed.
[0004]
This method for purifying groundwater is to purify by installing a groundwater purification wall in the natural flow of groundwater, but there is a problem that the purification efficiency is poor and the purification period is prolonged. As a solution to this, water injection wells distributed in the contaminated ground area and ground water containing pollutants disposed in the center of the contaminated ground area are pumped up, and the pumped ground water is returned to the water injection well. A forced purification method in which a permeable purification wall is provided between the pumping equipment and the water injection well and so as to surround the pumping equipment in a circular shape has been studied.
[0005]
[Problems to be solved by the invention]
However, in the conventional ground improvement pile construction method, the circularly arranged permeability purification wall is to create a sand pile having a circular cross section or a rectangular cross section by partially overlapping the short side of another adjacent sand pile. However, like the sand pile shown by the code | symbol a of FIG. 10 and the code | symbol c of FIG. 11, if the part d which overlaps with an adjacent sand pile is thin, it can produce the continuous wall-like sand pile which has uniform thickness. On the other hand, if the portion e overlapping with the adjacent sand pile is thick like the sand pile indicated by the symbol b in FIG. 10, there is a problem that the number of sand piles to be driven increases and the construction efficiency is deteriorated.
[0006]
Furthermore, the method of creating a sand pile having a rectangular cross section is a method of creating a sand pile having a cross sectional shape corresponding to a rectangular rectangular tube formed at the tip of the hollow tube. The hollow tube can be penetrated by operating a vibro hammer. However, when a hollow tube is driven using a vibro hammer, vibrations and noise are generated, which causes problems such as requiring environmental measures.
[0007]
Therefore, the object of the present invention is to form a circular pile with an angled rectangular cross section in the ground of a contaminated ground area, for example, by overlapping the short side and the adjacent side or part of another adjacent sand pile. An object of the present invention is to provide a sand pile building hollow pipe and a rectangular sand pile building method capable of efficiently constructing a continuous permeable purification wall with low noise, low vibration, and efficiency.
[0008]
[Means for Solving the Problems]
In such a situation, the present inventors have intensively studied. As a result, if a hollow tube having a specific tip shape is constructed by a reciprocating rotation operation, vibration and noise can be suppressed as much as possible, and an angled abbreviation can be obtained. The present inventors have found that a sand pile having a rectangular cross section can be formed, and that a high-quality circular arrangement of continuous wall-shaped sand piles and a permeable purification wall can be efficiently formed, and the present invention has been completed.
[0009]
That is, the present invention (1) includes a cylindrical hollow tube into which a sand pile material is charged, and a pair of protrusions attached to the left and right sides of the tip of the hollow tube, and the outer periphery of the protrusion The cross-sectional shape of the projection is substantially triangular, and the attachment position of the projection is an angle between the pair of projections of 100 degrees or more and less than 180 degrees. An object of the present invention is to provide a sand pile building hollow tube for building a sand pile having an angled rectangular cross section in the ground. In addition, the present invention (2) includes two steps of a reciprocating rotation operation step at the predetermined depth position and a sand pile material discharging step by drawing after the hollow pipe for sand pile formation to penetrate to a predetermined depth. A sand pile construction method is provided in which a sand pile having an angled rectangular cross section is created in the ground by sequentially repeating to the ground surface. Moreover, this invention (3) provides the said sand pile construction method which performs a re-penetration process after the discharge process of the sand pile material by the said extraction. In addition, the present invention (4), after penetrating the sand pile forming hollow tube to a predetermined depth, simultaneously performing reciprocating rotation operation and discharging sand pile material while pulling out to the ground surface, The present invention provides a sand pile construction method for creating a cross-sectional sand pile. Further, the present invention (5) includes a step of simultaneously performing a reciprocating rotation operation and discharging the sand pile material while pulling out to the predetermined height after penetrating the sand pile forming hollow pipe to a predetermined depth, After reaching the height, the sand pile material is created by repeating the two steps of stopping sand pile material discharge and re-penetrating to the surface of the ground to form a sand pile with an angled rectangular cross section in the ground. Is. Moreover, this invention (6) is the continuous wall-like sand of circular arrangement | positioning by overlapping the short side of the sand pile of the said rectangular cross section with an angle | corner, and the short side of another adjacent sand pile, or a part or part. The sand pile construction method for creating a pile is provided. Moreover, this invention (7) provides the said sand pile construction method whose continuous wall-like sand pile of the said circular arrangement | positioning is a permeable purification | cleaning wall which purifies the ground of a contaminated ground area.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, a sand pile building hollow pipe and a sand pile building method using the same in the embodiment of the present invention will be described with reference to FIGS. 1 is a plan view of a hollow pipe for sand pile formation of this example, FIG. 2 is a front view of a lower portion of the hollow pipe for sand pile formation of this example, and FIG. 3 is a plan view of a reciprocating rotation device of the hollow pipe FIG. 4 is a front view showing a part of the hollow tube reciprocating rotation device in a broken state, FIG. 5 is a schematic view of the sand pile forming device equipped with the sand pipe forming hollow tube of this example, and FIG. FIG. 7 is a view for explaining an angled rectangular cross-sectional shape of a sand pile formed using the hollow tube of FIG. 1 and FIG. 2, and FIG. 7 is sand formed using a hollow tube in which the installation angle of a pair of protrusions is changed. FIG. 8 is a plan view schematically showing an underground purification structure using a circular permeable purification wall of this example, and FIG. 9 is an AA line in FIG. Sectional drawing in the steady state of the purification | cleaning seen along is shown, respectively.
[0011]
1 and 2, a sand pile building hollow tube 1 includes a cylindrical hollow tube 1a into which a sand pile material is charged, and a pair of protrusions attached to the left and right sides of the tip of the hollow tube 1a. 1b. The protrusion 1b has a substrate 122 having the same curvature fixed to the bolt holes 2 formed in the cylindrical hollow tube 1a at a predetermined pitch p by the bolt 4, and a predetermined height H fixed to the substrate 122. The outer peripheral cross-sectional shape is a substantially triangular shape, and the protrusion main body 121 is rounded at the tip. The top and bottom surfaces of the protrusion main body are sealed with a top plate 123 and a bottom plate 124, respectively. The protrusion 1b has a plane angle where the attachment position to the hollow tube 1a is formed between the pair of protrusions 1b, that is, a line (long axis) connecting the tip of one protrusion 1b and the central axis of the hollow tube 1 ) And a line (long axis) connecting the tip of the other protrusion 1b and the central axis of the hollow tube 1 is a plane angle α on the side forming a narrow angle of 100 ° or more and less than 180 ° It is arranged at the position. In this example, it is about 150 degrees (the other side angle is 210 degrees). If this angle α is 180 degrees, the cross-sectional shape of the sand pile created by the turning operation becomes a substantially rectangular shape, and a continuous wall-like sand pile with a uniform thickness with a circular arrangement cannot be created or is uniform. If an attempt is made to make a thicker one, the construction efficiency will deteriorate. On the other hand, if the angle α is too small, only a small circle can be created when trying to create a continuous wall-shaped sand pile with a circular arrangement of uniform thickness. The arrangement angle of the pair of protrusions 1b shown in FIG. 1 is set a little small so that it can be easily understood that the protrusions 1b are at a specific angle.
[0012]
The method for attaching the protrusion 1b to the cylindrical hollow tube 1a includes the above-described method of welding a pair of protrusions 1b to the cylindrical tube 1a, and one of the pair of protrusions 1b is bolted. The other is a method by welding, a method of attaching an outer tube so as to surround the cylindrical hollow tube 1a in plan view, and the like. When the outer tube is attached, the cross-sectional shape of the outer periphery of the outer tube is cut off by a predetermined length on the opposite corners of the rhomboid short axis, and the opposite corners on the long axis A rounded form may be used. The angle between the pair of protrusions 1b is in the vicinity of a predetermined angle by appropriately selecting the bolt hole 2 in the case of this example or when one of the pair of protrusions 1b is bolt tightening and the other is welding. It is preferable in that it can be easily installed. Moreover, the roundness 64 at the tip of the protruding portion main body 121 may or may not be provided. However, when the roundness is provided, the smaller the rounded radius, the more preferable is that a long-axis-shaped sand pile is formed. is there. Further, the height H of the protrusion main body 121 is a length corresponding to the drawing stroke, that is, the length of the sand pile by one drawing, and is appropriately determined depending on the soil condition and the purpose of improvement. Further, on both the left and right sides of the inner peripheral surface of the tip of the cylindrical hollow tube 1a, excavation bits 5 projecting downward from the tip are installed to facilitate penetration of the sand pile forming hollow tube 1 into the ground. ing. In the sand pile forming hollow tube 1 of this example, the shape of the hollow tube 1a is not limited to the above-described cylindrical shape, and a polygonal shape such as a quadrangle, an elliptical shape, and an indefinite shape can also be used.
[0013]
The sand pile building hollow tube 1 of this example is for building a sand pile having an angled rectangular cross section in the ground by a reciprocating rotation operation. The hollow pipe reciprocating rotation device for sand pile formation is not particularly limited, and examples thereof include a mechanical rotation device that uses an electric motor and gears, and a hydraulic rotation device. Examples of the hydraulic rotating device include those shown in FIGS. 3 and 4. That is, the hollow tube reciprocating device 10 reciprocally rotates the hollow tube 1a using a pair of hydraulic cylinders 15 attached so as to sandwich the hollow tube 1a from both sides from the opposite side of the leader 12 (FIG. 3). It is a device that penetrates and pulls out while cutting the friction with the ground.
[0014]
The hollow tube reciprocating rotation device 10 is fixed to a side of the leader guide portion 13 opposite to the leader 12 of the leader guide portion 13 that moves up and down along the leader 12, and is restricted by the reciprocating movement of the hollow tube 1a. The fixed portion 16 and the tip of the piston rod 52 that are not attached are attached to the piston rod shaft support portions 17 attached to both side surfaces of the hollow tube 1a, and the cylinder portion 51 is attached to the cylinder shaft support portion 61 of the fixed portion 16 A pair of hydraulic cylinders 15 are provided so as to sandwich 1a from the side opposite to the leader 12 and to be positioned at the center position in the vertical direction of the leader guide portion 13.
[0015]
The fixed portion 16 is fixed to a pair of upper and lower hollow disk members 18 fixed to the leader guide portion 13 and an end portion 111 of the pair of hollow disk members 18 on the side opposite to the leader 12. The whole has a substantially U-shape in a side view. The hollow disk member 18 is an intermediate member for integrally fixing the vertical member 62 to the leader guide portion 13. For this reason, the hollow disk member 18 has an inner diameter larger than the outer diameter of the hollow tube 1a, and a bearing 19 is interposed between the hollow tube member 18a and the hollow tube member 1a. It is not regulated. The vertical member 6 is substantially U-shaped, and a vertical axis 55 fixed to the cylinder portion 51 of the hydraulic cylinder is pivotally supported in the horizontal direction at the center in the vertical direction of the left and right side surfaces of the vertical member main body 621. A cylinder shaft support 61 is provided.
[0016]
The hydraulic cylinder 15 includes a cylinder part 51 and a piston rod 52, and is attached to the cylinder part 51 so as to be rotatable in a horizontal direction on a cylinder shaft support part 61 as a fixed part. In the state where the hydraulic cylinder 15 is attached to the hollow tube 1 and the fixed portion 16, the hydraulic cylinder 15 maintains a horizontal position, and when the hydraulic cylinder 15 is positioned at the center position in the vertical direction of the leader guide portion 13, external force is applied to the leader 12. This is preferable in that transmission is performed efficiently.
[0017]
Further, as shown in FIG. 5, the hopper 22 and the forced elevating device 21 located above the hollow tube reciprocating device 10 are integrally coupled to the fixed portion 16 of the hollow tube reciprocating device 10. . For this reason, the hopper 22, the forced elevating / lowering device 21 and the hollow tube reciprocating / rotating device 10 are similarly lowered by the descending activation of the forced elevating device 21, and similarly raised by the ascending activation. The hopper 22 is for making it easy to throw sand pile material into the hollow tube 1 and a known one is used. Further, the forcible elevating device 21 is not particularly limited as long as the reaction force from the leader 12 can be obtained at the time of penetration and withdrawal, for example, by rack and pinion, by chain and sprocket, by towing a wire rope And so on.
[0018]
Next, a method for creating a sand pile having an angled rectangular cross section in the ground using the sand pile building hollow pipe of this example will be described. First, when the forced elevating device 21 is lowered, the hollow tube reciprocating rotation device 10 is activated, and the sand pile forming hollow tube 1 is pushed and pulled within a predetermined rotation range, and reciprocally rotates to a predetermined depth. Intruded until. Penetration efficiency is improved by rotating the sand pile building hollow tube 1 in the penetration step. When the sand pile building hollow tube 1 is driven to a predetermined depth, the process proceeds to a reciprocating rotation operation process at the predetermined depth position. The rotation range may be the same as the rotation range at the time of penetration, and is an angle twice as large as the swing angle indicated by β in FIG. That is, it is rotated in the direction of the arrow Y from the position where the long axis is on the line AB, is stopped at the position where the long axis is on the line CB, and is further rotated in the direction of the arrow X. By stopping at a position where the long axis is on line -B and repeating this as necessary, an extraction trace of an angled rectangular cross section indicated by the oblique lines in FIG. 6A is obtained after extraction. By appropriately selecting the rotation range, the cross-sectional shape of the extraction trace becomes close to an angled rectangle, and the sand pile can be efficiently created without waste in a circular arrangement of continuous walls. Moreover, if the reciprocating rotation operation is not performed, it is only possible to leave a trace of a shape corresponding to the shape of the cylindrical hollow tube having the protruding portion after the drawing, and the sand is formed into a continuous wall shape in a circular arrangement. Even if the pile is constructed, it does not become a wall with a uniform thickness, or if it tries to obtain a wall with a uniform thickness, the number of hits of the sand pile increases and the construction efficiency deteriorates.
[0019]
Then, after the reciprocating rotation operation process, the process proceeds to a sand pile material discharging process by drawing. The drawing stroke is the height H of the protrusion 1b of the sand pile building hollow tube 1 or less. If the length H is pulled out, the extracted trace surely forms an angled rectangular cross section, and the shape after the sand pile material is discharged also forms an angled rectangular cross section 6a. The sand pile material is not particularly limited, and examples thereof include sand, crushed stone, gravel, other sand-like granular materials, and those in which a metal-based reducing material is mixed. Sand containing a metal-based reducing material is applied to a permeable purification wall constructed for the purpose of purifying, for example, groundwater contaminated with organic volatile compounds. In the case of pulling out, the reciprocating rotation operation is not particularly necessary. After discharging the sand pile material by pulling out, the reciprocating rotation operation process and the sand pile material discharging process by pulling are sequentially performed again at the position after the pulling, and thereafter the same operation is sequentially repeated until the ground surface. As another example, after the sand pile material is discharged to the drawing trace, a re-penetration process may be performed and compaction may be performed. As another example, after the sand pile building hollow pipe has penetrated to a predetermined depth, the sand pile material is discharged while reciprocating while pulling out to the ground surface. A pile may be created. Further, at this time, after the hollow pipe for sand pile formation is penetrated to a predetermined depth, the reciprocating rotation operation and the discharging of the sand pile material are simultaneously performed while being pulled out to a predetermined height, and after reaching the predetermined height. The two steps of stopping the sand pile material discharge and re-penetrating may be sequentially repeated up to the ground surface. In the case of this re-penetration, it is preferable that the sand pile forming hollow tube 1 is rotated in the same rotation range in that a compacted sand pile closer to the rectangular section 6a with an angle is formed. .
[0020]
Moreover, the rectangular sand pile construction method of this invention makes the at least short side 61a (both ends) of the sand pile of the angled rectangular cross section 6a overlap the short side and the adjacent side or a part of the other adjacent sand pile. A circular walled continuous sand pile or a permeable purification wall 7a is created. In the present invention, since both side ends 61a of the rectangular rectangular cross section 6a are rounded, it is preferable that the portion f is overlapped in that a continuous wall-shaped sand pile having a uniform thickness can be constructed. is there. 7 shows a case where the angle α formed between the pair of protrusions 1b is about 120 degrees. In this case, compared with FIG. 6, a circular arrangement (actually a hexagonal arrangement) is formed. It can be seen that the diameter of the continuous wall-like sand pile 7b is small. Therefore, when creating a wall shape with a large circular arrangement, the angle α may be set to an angle close to 180 degrees.
[0021]
According to the sand pile forming hollow tube 1 of this example and the sand pile forming method using the same, vibration and noise can be suppressed as much as possible, and a sand pile having an angled rectangular cross section 6a can be formed. It is possible to efficiently produce a continuous wall-shaped sand pile 7a having a circular arrangement of quality. Furthermore, in the sand pile forming apparatus provided with the conventional rotation driving means, a rotation driving apparatus such as an electric motor or a swivel apparatus is attached. These facilities have a complicated mechanism and are large-scale, which contributes to an increase in the cost of the apparatus. However, if the hollow pipe for sand pile formation of this invention is used, since a rotational drive apparatus and a swivel apparatus can be abbreviate | omitted, this sand pile formation apparatus can be made simple and the cost reduced.
[0022]
Next, a utilization example of the circularly permeable purification wall constructed by the sand pile construction method of the present invention will be described with reference to FIGS. That is, FIG.8 and FIG.9 is a figure explaining the underground purification method using such a permeable purification wall. First, the contaminated ground area 30 to be purified is surrounded by the impermeable wall 20, and the contaminated ground area 30 is impermeable. Next, a pumping facility 50 such as a pumping well is disposed at a depth reaching the impervious layer 80 at the center of the contaminated ground area 30. The water injection well 40 is disposed outside the contaminated portion 100 and inside the impermeable wall 20 at a depth that reaches the water-impermeable layer 80 at the same distance from the pumping equipment 50 and at a position corresponding to four equal intervals of 90 degrees. The Next, the permeable purification wall 60 is disposed between the pumping equipment 50 and the water injection well 40 and at a depth reaching the water-impermeable layer 80 in a circular continuous wall shape surrounding the pumping equipment 50. Next, a ground pipe 510 for supplying the contaminated groundwater from the pumping facility 50 to the water injection well 40 is attached. The underground purification structure 200 before purification in which the respective facilities are arranged in this way has a cross-sectional form as shown in FIG.
[0023]
Next, the pumping equipment 50 is operated. That is, the contaminated groundwater is pumped up by the pumping equipment 50, the pumped-up contaminated groundwater is returned to the ground through the water injection well 40, the returned groundwater is treated by the permeable purification wall 60, and the treated water is further treated by the pumping equipment 50. Inhale and repeat this to form a forced groundwater circulation system. After the predetermined time has elapsed, as shown in FIG. 9, the groundwater level decreases to the lower part of the contaminated portion 100 at the position of the pumping facility 50, and exhibits a parabolic shape that gradually increases as the distance from the pumping facility 50 increases. This state is a steady state of purification. In the process of lowering the groundwater level and the subsequent steady state, the pollutant contained in the contaminated groundwater passing through the permeable purification wall 60 is rendered harmless by a reaction such as decomposition or adsorption with a metal-based reducing material. Such treatment of contaminated groundwater is repeatedly performed until the purification target value of the contaminated groundwater can be achieved. In such an underground purification method, the contaminated groundwater passes through the circular permeable purification wall 60 evenly, so that the metal-based reducing material in the permeable purification wall acts effectively and the purification efficiency is increased.
[0024]
【The invention's effect】
According to the construction method using the sand pile forming hollow tube of the present invention, vibration and noise can be suppressed as much as possible, and a sand pile having an angled rectangular cross section can be formed, and a continuous wall having a high quality circular arrangement. The sand pile or the permeable purification wall can be efficiently created. In addition, the sand pile building hollow tube has a relatively simple structure and requires a hollow tube reciprocating rotation device, but it is possible to omit a rotational drive device and a swivel device that are more expensive than the device. The cost of the creation device can be reduced.
[Brief description of the drawings]
FIG. 1 is a plan view of a hollow tube for sand pile formation according to the present example.
FIG. 2 is a front view of the lower part of the hollow pipe for sand pile formation of this example.
FIG. 3 is a plan view of a hollow tube reciprocating rotation device.
FIG. 4 is a front view of the hollow tube reciprocating device with a part thereof broken away.
FIG. 5 is a schematic view of a sand pile forming apparatus equipped with the sand pile forming hollow pipe of this example.
6 is a diagram for explaining an angled rectangular cross-sectional shape of a sand pile formed using the hollow tube of FIGS. 1 and 2. FIG.
FIG. 7 is a diagram for explaining an angled rectangular cross-sectional shape of a sand pile formed using a hollow tube with a different installation angle of a pair of protrusions.
FIG. 8 is a plan view schematically showing an underground purification structure using a circularly arranged permeable purification wall of this example.
9 is a sectional view in a steady state of purification as seen along line AA in FIG.
FIG. 10 is a diagram for explaining a circular continuous wall constructed by a conventional sand pile construction method.
FIG. 11 is a diagram for explaining a circular continuous wall constructed by another conventional sand pile construction method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sand pile formation hollow pipe 1a Cylindrical hollow pipe 1b Protrusion part 5 Excavation bit 6a Angled rectangular cross section 7a, 7b Circular wall continuous sand pile 10 Hollow pipe reciprocating rotation device 12 Leader 13 Leader guide Part 15 Hydraulic cylinder 16 Fixed part 17 Piston rod shaft part 18 Hollow disk member 20 Water shielding wall 21 Forced lifting device 22 Hopper 30 Contaminated ground area 40 Water injection well 50 Pumping equipment 51 Cylinder part 52 Piston rod 60 Permeability purification wall 61 Cylinder Shaft support 64 Roundness 121 Projection body 122 Substrate 200 Ground purification structure

Claims (7)

砂杭材料が投入される円筒状中空管と、該中空管の先端部の左右両側に付設される一対の突起部とを備え、該突起部の外周の断面形状が、略三角形状であり、該突起部の付設位置が、該一対の突起部間で形成される平面角度が100度以上、180度未満の角度であって、往復回動操作により、地中に角度付き矩形状断面の砂杭を造成することを特徴とする砂杭造成用中空管。A cylindrical hollow tube into which sand pile material is charged, and a pair of protrusions attached to the left and right sides of the tip of the hollow tube, and the cross-sectional shape of the outer periphery of the protrusion is substantially triangular. The projecting portion is provided at a position where a plane angle formed between the pair of projecting portions is an angle of 100 degrees or more and less than 180 degrees, and an angled rectangular cross section is formed in the ground by a reciprocating rotation operation. A hollow pipe for sand pile construction characterized by constructing a sand pile. 請求項1記載の砂杭造成用中空管を所定深度まで貫入した後、その所定深度位置での往復回動操作工程と、引き抜きによる砂杭材料の排出工程の二工程を地表まで順次繰り返して行い、地中に角度付き矩形状断面の砂杭を造成することを特徴とする砂杭造成工法。After penetrating the sand pile forming hollow pipe according to claim 1 to a predetermined depth, the two steps of the reciprocating rotation operation step at the predetermined depth position and the sand pile material discharging step by pulling are sequentially repeated to the ground surface. A sand pile construction method, characterized in that a sand pile having an angled rectangular cross section is created in the ground. 前記引き抜きによる砂杭材料の排出工程の後、再貫入工程を行うことを特徴とする請求項2記載の砂杭造成工法。The sand pile construction method according to claim 2, wherein a re-penetration step is performed after the step of discharging the sand pile material by the drawing. 請求項1記載の砂杭造成用中空管を所定深度まで貫入した後、地表まで引き抜きながら往復回動操作と砂杭材料の排出を同時に行い、地中に角度付き矩形状断面の砂杭を造成することを特徴とする砂杭造成工法。After penetrating the hollow pipe for sand pile formation according to claim 1 to a predetermined depth, a reciprocating rotation operation and discharging of the sand pile material are simultaneously performed while pulling out to the ground surface, and a sand pile having an angled rectangular cross section is formed in the ground. A sand pile construction method characterized by construction. 請求項1記載の砂杭造成用中空管を所定深度まで貫入した後、所定の高さまで引き抜きながら往復回動操作と砂杭材料の排出を同時に行う工程と、該所定の高さに到達後、砂杭材料の排出を停止し再貫入を行なう工程の二工程を地表まで順次繰り返して行い、地中に角度付き矩形状断面の砂杭を造成することを特徴とする砂杭造成工法。A step of simultaneously performing a reciprocating rotation operation and discharging sand pile material while pulling out to a predetermined height after penetrating the sand pile forming hollow pipe according to claim 1 to a predetermined depth, and after reaching the predetermined height The sand pile construction method is characterized in that the sand pile material discharge is stopped and the re-penetration process is sequentially repeated until the ground surface, and a sand pile having an angled rectangular cross section is created in the ground. 前記角度付き矩形状断面の砂杭の少なくとも短辺を、隣接する他の砂杭の短辺と接辺又は一部を重複させて円形配置の連続壁状砂杭を造成することを特徴とする請求項2〜5のいずれか1項記載の砂杭造成工法。A continuous wall-shaped sand pile having a circular arrangement is formed by overlapping at least a short side of a sand pile having an angled rectangular cross-section with a short side of another adjacent sand pile and a side or a part thereof. The sand pile construction method of any one of Claims 2-5. 前記円形配置の連続壁状砂杭が、汚染地盤区域の地盤を浄化する透過性浄化壁であることを特徴とする請求項6記載の砂杭造成工法。The sand pile construction method according to claim 6, wherein the continuous wall-shaped sand pile having a circular arrangement is a permeable purification wall for purifying the ground in a contaminated ground area.
JP2002063050A 2002-03-08 2002-03-08 Hollow pipe for sand pile construction and rectangular sand pile construction method with angle Expired - Fee Related JP3862217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002063050A JP3862217B2 (en) 2002-03-08 2002-03-08 Hollow pipe for sand pile construction and rectangular sand pile construction method with angle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002063050A JP3862217B2 (en) 2002-03-08 2002-03-08 Hollow pipe for sand pile construction and rectangular sand pile construction method with angle

Publications (2)

Publication Number Publication Date
JP2003261933A JP2003261933A (en) 2003-09-19
JP3862217B2 true JP3862217B2 (en) 2006-12-27

Family

ID=29196518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002063050A Expired - Fee Related JP3862217B2 (en) 2002-03-08 2002-03-08 Hollow pipe for sand pile construction and rectangular sand pile construction method with angle

Country Status (1)

Country Link
JP (1) JP3862217B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6095097B2 (en) * 2012-10-15 2017-03-15 株式会社不動テトラ Permeable groundwater purification wall and groundwater purification method using the permeable groundwater purification wall
JP6798845B2 (en) * 2016-10-03 2020-12-09 株式会社不動テトラ Displacement-reducing compaction sand pile construction hollow pipe and compaction sand pile construction method
JP7328738B2 (en) * 2020-10-28 2023-08-17 株式会社不動テトラ Compaction sand pile construction method

Also Published As

Publication number Publication date
JP2003261933A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
CN1090704C (en) Method and equipment for laying underground continuous walls
KR101641943B1 (en) An deep wing mixing vibratinal agitator for hardening ground and the deep wing mixing method thereof
JP3862217B2 (en) Hollow pipe for sand pile construction and rectangular sand pile construction method with angle
JP2017166294A (en) Underground structure construction method
KR101031447B1 (en) Protrusion forming machine for ground boring
JP5140543B2 (en) Barrier wall construction method and ground purification method using the same
JP4575877B2 (en) Excavator
JP3718153B2 (en) Hollow pipe for sand pile construction and rectangular sand pile construction method
JP5378066B2 (en) Mountain fastening method
JP3868254B2 (en) Circular sand pile construction method
JP3572567B2 (en) Pile construction method
JP4060721B2 (en) Ground improvement method for contaminated soil by high pressure jet.
CN207484468U (en) A kind of deep mixer
KR100953324B1 (en) Walking style pile driver using electric for underground etaining wall
JP2010095941A (en) Installation method for precast pile
JP3752345B2 (en) Casing construction method
JPH10245861A (en) Method of purifying contaminated ground
JP3634849B2 (en) Method and apparatus for treating contaminated soil with volatile organic compounds
JP3714855B2 (en) Purification method for contaminated ground combined with ground reinforcement
JP2011005383A (en) Contaminated soil cleaning method
JP4199152B2 (en) Impermeable wall
JP2005161124A (en) System and method for purifying contaminated ground water
JP4255872B2 (en) Groundwater purification method and groundwater purification structure
JP2702542B2 (en) Vertical liner plate construction method and press machine for liner plate construction
JPH10245842A (en) Ground contamination dispersion preventing wall

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees