JP3862075B2 - RESIN COMPOSITION, LAMINATE USING SAME, AUTOMOBILE PARTS AND METHOD FOR PRODUCING THEM - Google Patents

RESIN COMPOSITION, LAMINATE USING SAME, AUTOMOBILE PARTS AND METHOD FOR PRODUCING THEM Download PDF

Info

Publication number
JP3862075B2
JP3862075B2 JP2002188416A JP2002188416A JP3862075B2 JP 3862075 B2 JP3862075 B2 JP 3862075B2 JP 2002188416 A JP2002188416 A JP 2002188416A JP 2002188416 A JP2002188416 A JP 2002188416A JP 3862075 B2 JP3862075 B2 JP 3862075B2
Authority
JP
Japan
Prior art keywords
resin
resin composition
molded body
laminate
inorganic fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002188416A
Other languages
Japanese (ja)
Other versions
JP2003201405A (en
Inventor
彰一郎 矢野
孝志 澤口
正敏 近澤
孝 武井
俊 清野
正雄 中島
智啓 伊藤
康朗 甲斐
浩一 半田
信吉 鳥居
克彦 鈴木
憲治 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAMA-TLO, LTD.
Nihon University
Nissan Motor Co Ltd
Original Assignee
TAMA-TLO, LTD.
Nihon University
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAMA-TLO, LTD., Nihon University, Nissan Motor Co Ltd filed Critical TAMA-TLO, LTD.
Priority to JP2002188416A priority Critical patent/JP3862075B2/en
Priority to US10/284,179 priority patent/US20030108704A1/en
Publication of JP2003201405A publication Critical patent/JP2003201405A/en
Application granted granted Critical
Publication of JP3862075B2 publication Critical patent/JP3862075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Description

【0001】
【発明の属する技術分野】
本発明は、透明樹脂の光線透過率を低減することなく剛性向上、熱膨張率低減、表面硬度向上を実現しうる無機微粒子連結体を配合した樹脂組成物、それを用いた高剛性で表面硬度を向上し、かつ成形品のソリを抑え外観品質の向上を実現しうる積層体、およびそれらの製造方法に関し、自動車用の窓ガラス、内外装部品等に好適に用いうるものである。
【0002】
【従来の技術】
窓ガラスは自動車の外形面積の大部分を占め、運転上および外観上重要な部品である。各種折曲ガラスの出現によって形状自由度が大きくなり、使用面積が増加しており、窓ガラスの軽量化と安全性の向上が要求されている。そこで、無機ガラスに代わり樹脂製ウィンドウの検討が各種なされているが、無機ガラスに比べて弾性率が小さいため面積の大きな窓ガラス部品には適用が困難である。
【0003】
また、樹脂製ウィンドウに補強材としてガラス繊維を添加すると、剛性は向上するが、ガラス繊維の径が約10μm、長さも約200μmもあるため可視光線が透過しないで反射して不透明となる。このため安全上の視界確保に適さず使用が困難である。
【0004】
また、樹脂製ウィンドウは、無機ガラスに比べて表面硬度が小さいため、ワイパーで擦ると傷がつき車両用フロント窓部品には適用が困難である。これに対して有機シラン系薬剤で表面硬化処理を行なった例があるが、この処理でも表面硬度が不足し、長時間使用すると傷が付き、透明性が不足するので使用が困難であった。
【0005】
また、樹脂製ウィンドウの剛性向上と表面硬度確保のために無機ガラスを積層すると、夏に樹脂層と無機ガラス層との熱膨張差によって界面剥離を生じ視界確保が不十分となり使用が困難であった。
【0006】
また、最近の電子部品の樹脂製記憶デスクの表面硬化と剛性向上を目的にシリカのスパッタリングを行う例があるが、これは、樹脂基盤表面に真空中でシリカ原子を付けるものであり、大きな部品には適用できず、生産性が低い。
【0007】
また、樹脂製ウィンドウは強度、剛性が無機ガラスに比べ小さいため、大きな窓ガラスに使用するには、無機ガラスよりも厚さを増すことが必要となり、軽量化の効果が少なくなる。そのため、樹脂製ウィンドウの強度、剛性を向上させることが課題となる。
【0008】
これらの課題の解決手段として、特開平11−343349号公報には、透明樹脂に無機のシリカ微粒子を混合した例が記載されている。しかしこれらの樹脂材料を製品に適用する場合、無機材料に比べ軽量でかつ成形の自由度が大きいという利点はあるが、一方で弾性率が小さいため剛性が低く、高温時に成形時の残留応力が戻りソリが発生し外観品質が低下し、また硬度が低いため表面が傷つき易いという難点がある。このため、例えば透明な樹脂材料は、自動車ではヘッドランプやサンルーフなどの比較的低剛性でかつ表面処理のしやすい小物部品には採用されているものの、自動車外装のかなりの面積を占める窓ガラスについては所定の機能を満足するものがまだなく本格的な採用までには至っていない。
【0009】
また、窓ガラス以外の自動車外装樹脂部品、あるいは内装樹脂部品では、高温時の残留応力の戻りによるソリや隙間の狭小化等の外観品質の低下、衝撃に対する割れ等の耐衝撃性、燃費の面からの使用部品の軽量化など、高剛性、軽量化、耐衝撃性、高温時の変形といった物性向上やコストダウン要求が厳しさを増している。これら物性の向上に対する要求に対しては、従来は単一樹脂の改良で対応してきたが、年々要求項目が増してきており、これらを全て満足させることが困難となったため積層化による改良が検討されつつある。積層化することで目的に適合する機能を複数の樹脂の持つ特性を有効に組み合わせて達成し、さらに低コストで高付加価値の商品を生み出すことができるからである。また周辺部品との一体成形等で部品数を削減しコスト削減にも対応できる。
【0010】
このような積層体における物性向上として、例えば特開平6−316045号公報では、3種の透明樹脂を積層して耐衝撃性を向上しているが、透明性維持のために樹脂中に高温時の熱膨張を抑制する充填剤等が配合されておらず、夏期の高温にさらされる自動車の内外装部品に適用するには部品の伸長による凹凸あるいは膨張によるソリ等の外観品質が低下するといった問題がある。
【0011】
また、特開平11−343349号公報では透明樹脂に可視光線波長以下の径を有する微細なシリカを配合した樹脂ウィンドウが開示されているが、樹脂内に混合もしくは表層部に塗布し、強度や剛性を向上させているが、単層構造のため外部からの衝撃に対し耐衝撃性が不足し、熱歪みによる成形体のそり等の不具合が発生する。
【0012】
また、特開平6−71826号公報には、アクリル樹脂やポリカーボネート系樹脂等を積層した樹脂ウィンドウが開示されているが、特開平6−316045号公報と同様に樹脂の透明性を維持するために、熱膨張を抑制する充填剤の配合はなく、熱膨張を抑えるには限界がある。また透明性を保持するためガラス繊維等の剛性向上の充填剤の添加ができず、剛性を向上しようとすると板厚を増すため重量増加を招き軽量化が進まないといった問題点もある。
【0013】
【発明が解決しようとする課題】
本発明はこれら従来の問題点に鑑みてなされたものであり、一層の剛性向上、熱膨張率の低減を達成できる樹脂組成物を提供することを目的とする。
【0014】
また、有機樹脂は無機材料に比べて剛性が小さいため、例えば自動車の窓ガラス、ドアー、車体外板部等の大型部品に適用する場合は厚みを増す必要があるが、そのような対応では形状の自由度は確保できるものの樹脂化の大きな狙いである軽量化の効果が薄れる。このため、本発明の1つの課題は樹脂材料の厚さを増加せず剛性を向上させ軽量化を図ることである。
【0015】
また、樹脂材料は無機材料に比べて高温時に成形時の残留応力が開放され熱変形が大きいため、例えば透明樹脂材料で自動車の窓ガラスのような大型の部品に適用しようとする場合は、外周部の鋼材との熱ひずみを逃がす構造設計をする必要がある。熱変形による伸長を吸収する構造が充分でない時は、樹脂ガラス表面に波打ちが発生したり樹脂ガラスそのものが割れたりする問題が発生する。このため、本発明の2つ目の課題は、樹脂材料の熱変形を低減させることである。
【0016】
また、樹脂材料は鋼材に比べ硬さが低く、自動車の窓ガラス、外板あるいは人が触れる内装材また建材等で外部にさらされる部位に適用するには、異物接触による樹脂表面の擦傷性を向上させことが必要である。高剛性、低熱膨張、耐擦傷性の特性を有する樹脂材を設計仕様に合わせ自由に形状加工ができまた低コストで実現できる樹脂材料およびその製造方法を提供することが要望されている。
【0017】
【課題を解決するための手段】
上記目的に鑑みて鋭意検討した結果、無機微粒子連結体を樹脂中に均一に分散した複合樹脂組成物であって、該無機微粒子連結体は円柱状の無機微粒子がその長さ方向に複数個連結し、鎖状または網目状を成した形状を有していることを特徴とする樹脂組成物によって上記課題を解決するに至った。
【0018】
【発明の効果】
本発明に係る樹脂組成物およびその製造方法によれば、特定の微小なシリカ化合物を分散させることで、透明性や衝撃強度を犠牲にすることなく剛性の向上を実現し得る樹脂組成物を提供できる。本発明の樹脂組成物は車両用の外装部品や外板の用途、樹脂ウィンドウ用途として有用であり、その他にも建材や電子機器等の筐体にも利用できる。
【0019】
本発明は、疎水化処理した無機微粒子連結体を樹脂中に均一に分散した複合樹脂組成物であって、該無機微粒子連結体は円柱状の無機微粒子がその長さ方向に複数個連結し、鎖状または網目状の形状であることを特徴とする樹脂組成物であり、樹脂への均一分散が可能であり、配合によって樹脂に高剛性、低熱膨張、耐擦傷性の特性および透明性を付与し得る。
【0020】
本発明は、上記樹脂組成物(A)と熱可塑性樹脂(B)とを少なくとも1層づつ積層した熱可塑性樹脂積層体であって、該樹脂組成物(A)と該熱可塑性樹脂(B)とが交互に積層されていることを特徴とする熱可塑性樹脂積層体であり、上記樹脂組成物(A)を含む積層体とすることで、特に透明性に優れ、かつ高剛性、低熱膨張、耐擦傷性が向上し、高温時にもソリの発生が抑制された積層体となる。
【0021】
本発明は、上記熱可塑性樹脂積層体を用いた車両用内外装部品成形体、車両用外板または樹脂ウィンドウであり、透明性、剛性に優れ、高温時にソリなどが抑制された上記樹脂組成物(A)や上記積層体を使用することで、大型かつ剛性に対する要求性の強い車両用途に有効に使用でき、特に視野の確保に強い要求性のある樹脂ウィンドウとしても有効に使用できる。
【0022】
また本発明は、溶剤に分散させた疎水化処理した無機微粒子連結体と、溶剤に溶解させた樹脂とを混合することを特徴とする、請求項1〜9のいずれかに記載の樹脂組成物の製造方法であり、該方法によれば、特定の無機微粒子連結体が均一に分散した透明性、剛性に優れる樹脂組成物(A)を簡便に製造することができる。
【0023】
本発明は、樹脂のモノマーを重合させる過程中に、溶剤に分散させた疎水化処理した無機微粒子連結体を混合することを特徴とする、上記樹脂組成物の製造方法であり、該方法によっても、特定の無機微粒子連結体が均一に分散した透明性、剛性に優れる樹脂組成物(A)を簡便に製造することができる。
【0024】
また本発明は、加熱成形および/または加圧成形により積層することを特徴とする上記熱可塑性樹脂積層体の製造方法であり、加熱成形および/または加圧成形によって簡便に積層体を製造することができる。
【0025】
上記積層体を金型に挿入し、射出成形法または圧縮成形法で充填樹脂と該挿入積層体の外周部とを一体で成形すると、上記樹脂組成物や上記積層体は成形性に優れるため、金型に挿入し、射出成形法または圧縮成形法で充填樹脂と該挿入積層体の外周部とを一体で成形することができ、不要の工程を増加させることなく自動車用内外装部品成形体が製造できる。
【0026】
本発明の樹脂組成物によって樹脂製ワイパーシステム、樹脂製ドアミラーステイ、樹脂製ピラー、熱線付き樹脂製ウィンドウ、樹脂製ミラー、樹脂製ランプリフレクター、樹脂製エンジンルーム内カバーおよびケース、エンジンルーム内カバーおよびケース、樹脂製冷却装置部品を得ることができる。
【0027】
【発明の実施の形態】
本発明の第一は、疎水化処理した無機微粒子連結体を樹脂中に均一に分散した複合樹脂組成物であって、該無機微粒子連結体は円柱状の無機微粒子がその長さ方向に複数個連結し、鎖状または網目状の形状であることを特徴とする樹脂組成物である。樹脂製ウィンドウの強度、剛性を向上させるためには、樹脂を構成している高分子の分子構造から考えて高強度で、剛直な分子を使用することが必要であるが、これは結晶化し易く、結晶性が高くなると透明性が低下する。このため透明な樹脂の強度、剛性を改良するのに、透明性を確保しうる疎水化処理した無機微粒子連結体を樹脂中に均一に分散混合する手段を用いた。
【0028】
該疎水化化処理した無機微粒子連結体に使用する無機微粒子連結体とは、円柱状の無機微粒子がその長さ方向に複数個連結し鎖状または条件によっては網目状の形状となるものである。一般に繊維強化理論によれば、引張り強度、弾性率の向上は、繊維の長さと太さの比が一定値以上で効果が大きいとされ、この効果は応力方向に繊維長さが揃うときに大きいものである。さらに網目状の場合には、あらゆる応力方向に繊維が配列している場合と同等の効果が得られ、強度特性が等方性となる。
【0029】
本発明で使用する無機微粒子連結体は、透明性を確保するために可視光線波長である380nm以下の最大長さ有することが望ましく、さらには28〜350nmであるとよい。
【0030】
この連結体をなす無機微粒子は、円柱状であり強度および弾性率向上のために円柱の(長さ)/(太さ)が2.5〜350であることが好ましく、さらには太さ1〜20nmであること、また長さは7〜200nmであることが好ましい。本発明で使用する無機微粒子連結体としては、これらの無機微粒子が複数個長さ方向に化学結合したものが好適なものとなる。なお、ここで「太さ」とは連結体を成す円柱状の微粒子の直径を表わし、「長さ」とは該円柱状の微粒子の最も長い部分の寸法を表わす。
【0031】
本発明に用いる無機微粒子は、シリカ、チタニア、ジルコニア、アルミナ、チタン酸カリウム、ウイスカー、カーボンナノチューブ、合成マイカ等が好適に使用できるが、特にシリカすなわち酸化ケイ素が最も好適に使用できる。シリカは透明性を有し、低比重で、その表面の改質が容易で樹脂との相互作用を持たせることが可能だからである。このような無機微粒子連結体を製造するには、例えば、ケイ酸ナトリウム(Na2O・SiO2:水ガラス)を原料とし、イオン交換によってナトリウムを除去して、核ゾル(約5nm)を得て、これらの微小粒子を液中で単独で成長させ、10〜100nmの鎖状シリカとする。この際、該微粒子の成長過程で網目状シリカも得られる。この溶液を濃縮すれば、網目状または鎖状の無機微粒子連結体のコロイダルシリカが得られる。無機微粒子としては市販品を使用することもでき、例えは日産化学(株)のスノーテックス−UP、これをイオン交換でナトリウムを除去したスノーテックスOUPなどの鎖状シリカが好ましく使用できる。図1に鎖状シリカの200,000倍の電子顕微鏡写真を示す。
【0032】
本発明では、特に疎水化処理した無機微粒子連結体を使用するが、このような疎水化処理としては、特に限定されず、例えばトリメチルクロロシラン、t−ブチルジメチルクロロシランなどのシリコーン化合物で上記無機微粒子連結体をアルキル化する方法などがある。例えば、無機微粒子連結体がシリカからなる場合には、シリカの水酸基をトリメチルクロロシラン、t−ブチルジメチルクロロシランなどのシリル化剤で処理してアルキル基を導入する。シリル化剤によって脱塩酸が生じ、反応が進む。この際、アミンを添加すると塩酸を塩酸塩にして反応を促進することもできる。
【0033】
このように、疎水化処理によって表面にアルキル基を有する無機微粒子連結体を用いると、樹脂(例えばポリメチルメタクリレートなど)の官能基との相互作用が良好となり、無機微粒子連結体の分散性に優れ、得られた樹脂組成物は透明性、剛性等の特性を向上させることができる。該無機微粒子連結体は、使用する疎水化処理剤の種類を適宜選択することで、その表面に至適なアルキル基その他の疎水性基を導入することができる。
【0034】
本発明において、該疎水化処理した無機微粒子連結体を分散する樹脂としては、アクリル系樹脂、ポリカーボネート系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂などの透明な有機高分子のオリゴマー、及びポリマー樹脂および共重合樹脂であることが好ましい。これらは透明性が高く、例えば樹脂ウィンドウ用途に好適に用いることができるからである。
【0035】
本発明の樹脂組成物は、該樹脂に対する無機微粒子連結体の配合率が、1〜99質量%であるとよい。1質量%を下回ると該無機微粒子連結体配合の効果が少なく、その一方、99質量%を越えると無機微粒子連結体が凝集を起こし、得られる樹脂組成物を不透明にする場合がある。
【0036】
本発明の樹脂組成物の製造方法としては特に制限はないが、溶剤に分散させた疎水化処理した無機微粒子連結体と、溶剤に溶解させた樹脂とを混合することで製造することができる。すなわち、本発明の第二は、溶剤に分散させた疎水化処理した無機微粒子連結体と、溶剤に溶解させた樹脂とを混合することを特徴とする、前記記載の樹脂組成物の製造方法である。本発明の樹脂組成物を得る上で、該無機微粒子連結体を粉末のまま溶融した樹脂に混練すると凝集を生じ、得られる樹脂組成物が不透明となってしまう。このため、溶剤分散の該無機微粒子連結体と溶剤に溶解させた透明な樹脂とを混合して、凝固用溶剤等を添加して両者の混合組成物を得るのである。
【0037】
該無機微粒子連結体を分散する溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン等のパラフィン系炭化水素類;シクロブタン、シクロペンタン、シクロへキサンなどのシクロパラフィン系炭化水素;メチルエチルケトン、トルエン、キシレン、アセトン、ベンゼンなどの芳香族系炭化水素等がある。該無機微粒子連結体の溶解液中の濃度としては特に制限はないが、混合の均一性や操作性の点から10〜45質量%であることが好ましい。
【0038】
また、樹脂溶液は、樹脂の種類によって溶解する溶媒を適宜選択することができ、例えば、メチルメタクリレートなどを単量体主成分に含む(メタ)アクリル系高分子材料の場合には、アセトン、アニリン、キシレン、酢酸エチル、酢酸メチル、酢酸ブチル、トルエン、そしてメチルエチルケトンなどの芳香族系やケトン系の有機溶媒を好ましく使用することができる。本発明では、該樹脂溶液と該無機微粒子連結体とを混練後、溶媒を除去することで樹脂組成物を調製することができる。なお、凝固用溶剤としては、エタノール、メタノール、ブタノールなどのアルコール類がある。
【0039】
また別の好適な製造方法として、溶剤分散の該無機微粒子連結体を樹脂の重合過程で混合させ、凝固用溶剤で該無機微粒子連結体と樹脂の混合組成物を得る方法がある。すなわち、本発明の第三は、該樹脂のモノマーを重合させる過程中に、溶剤に分散させた疎水化処理した無機微粒子連結体を混合することを特徴とする、上記記載の樹脂組成物の製造方法である。具体的には、該無機微粒子連結体を樹脂の重合過程で混合させ、凝固用溶剤で該無機微粒子連結体と樹脂の混合組成物を得る。この製法によれば、無機微粒子連結体のアルキル基等の疎水化部分と樹脂(例えばポリメチルメタクリレートなど)の官能基とが相互作用し、無機微粒子連結体と樹脂とを溶剤中で溶解混合したものに比べて該無機微粒子連結体の分散性が良好となり、要求される諸特性もより良好となるからである。なお重合反応は、懸濁重合、溶液重合、乳化重合、塊状重合、および沈殿重合のいずれでもよい。ただし沈殿重合の場合は、溶媒は重合ポリマーを溶解しないものを選定することが必要である。例えば、上記各種製法に用いる溶剤は、該無機微粒子連結体を分散させ、かつアクリル系樹脂、ポリカーボート系樹脂、スチレン系樹脂、ポリオレフィン系樹脂などの合成原料モノマー、及び又は各ポリマーの溶剤とする。また、機微粒子連結体の表面がアルキル基を有する場合は、無機微粒子連結体を良好に分散し、モノマーおよび重合体を溶解する有機溶剤を使用すると、要求諸項目を満足する良好な樹脂組成物を得ることができる。
【0040】
本発明の樹脂組成物には、必要に応じて透明性を阻害しない様々な添加剤、例えば帯電防止剤、酸化防止剤、熱安定剤、紫外線吸収剤、酸化防止剤、エネルギー消剤、難燃剤、顔料、着色剤等を添加してもよい。
【0041】
本発明の第四は、上記記載の樹脂組成物(以下、樹脂組成物(A)とも称する。)と熱可塑性樹脂(B)とを少なくとも1層づつ積層した熱可塑性樹脂積層体であって、該樹脂組成物(A)と該熱可塑性樹脂(B)とが交互に積層されていることを特徴とする熱可塑性樹脂積層体である。各樹脂層が接着剤等で接合された場合には、単層の特性は接着層で緩衝または吸収されて隣接樹脂層への影響が低下し、単層の特性を積層体全体に波及させることができない。しかしながら、本発明の積層体は、各樹脂層を熱溶着するものであり、単層が有している剛性等の特性を活かし熱変形等単層が持つ短所をカバーし積層体の剛性向上させ、高温時における各層の残留応力によるソリ等を積層体全体で抑制することができる。
【0042】
このような積層体においては、樹脂組成物(A)の上記無機微粒子連結体の配合量を変えた層を組み合わせることで、該積層体に種々の特性を持たせることができる。例えば、該積層体の最表層に上記無機微粒子連結体の配合量が高い層を設けることで、耐擦傷性を高めることができる。また、最上層と最下層における上記無機微粒子連結体の配合量を多くすることで、剛性を高くし、かつ上層および下層の拘束力を持たせ高温時の残留応力による熱変形を抑えることもできる。更に、中間層に上記無機微粒子連結体の配合量を多くすることで、剛性を高くし、より熱変形抑止力を高めることもできる。加えて、上層における無機微粒子連結体の配合量を多くし、下層には無機微粒子連結体の配合量を少なくして該積層体に無機微粒子連結体の配合量の勾配を設けたことで、剛性分布を変えて熱変形によるソリの方向を制御することができ、また上層に無機微粒子連結体の配合量を少なくさせることも可能である。すなわち、上記樹脂組成物(A)と該熱可塑性樹脂(B)とを熱溶着して積層体を得ることで、各単層が有している特性を引き出し積層体の弾性率を高くし剛性向上を図ることができ、かつ最表層やそれに隣接する層の無機微粒子連結体配合量を増すことで耐擦傷性を高めることができ、拘束力を有する層を形成することで熱変形を抑制しソリや変形による表面の凹凸を解消し、外観品質を向上することができる。さらに、上記無機微粒子連結体を配合することで、各樹脂層の熱膨張を低く抑え、積層体自体の低熱膨張化を達成することができる。各樹脂層の熱溶着がなく接着剤等で接合されていると、単層の特性は、接着層で緩衝あるいは吸収され隣接樹脂層への影響が低下し単層の特性を積層体全体に波及させることができない。
【0043】
無機微粒子連結体の配合は、積層体各層に配合することも、また表層あるいは下層のみといった一部の樹脂層に配合することもできる。積層体の剛性を向上させる観点から各層に配合するのがより好ましい。用途に応じ上層から下層へ配合量の勾配を設けることもできる。いずれにしても、該樹脂組成物(A)と熱可塑性樹脂(B)とを少なくとも1層づつ積層した熱可塑性樹脂積層体であって、該樹脂組成物(A)と熱可塑性樹脂(B)とが交互に積層されていること場合には、高剛性、低熱膨張、耐擦傷性が向上し、高温時にもソリの発生が抑制された積層体となる。
【0044】
また、熱可塑性樹脂(B)としては、ポリカーボネート系樹脂、スチレン系樹脂、ポリ−4−メチルペンテン−1、熱可塑性ポリウレタン樹脂等を積層することができ、特にポリカーボネート系樹脂を使用することが好ましい。ここにポリカーボネート系樹脂は、ビスフェノールAに代表される二価のフェノール系化合物から誘導される重合体で、ホスゲン法、エステル交換法、あるいは固相重合法のいずれにより製造されたものでもよい。更に、従来からあるポリカーボネート系樹脂の他にエステル交換法で重合したポリカーボネート系樹脂でもよい。
【0045】
該積層体の厚さは、0.5〜10mm、より好ましくは1〜5mmである。0.5mm未満では無機微粒子連結体の配合量を増しても賦形後に形状維持が困難となる場合がある。また10mmを越すと中間層を拘束できず高温時のソリが発生し外観品質が劣る場合がある。なお、積層体の各樹脂層の厚さは、用途、要求性能により上記範囲内で好適な厚さを選択できる。
【0046】
本発明の積層体の製造方法としては特に制限はないが、加熱成形や加圧成形により積層体を製造することが好ましい。すなわち、本発明の第五は、加熱成形および/または加圧成形により積層することを特徴とする上記積層体の製造方法である。
【0047】
例えばこのような第1の方法として、樹脂組成物(A)や熱可塑性樹脂(B)などの種類に応じた押し出し機を用い、これらを加熱溶融した溶融樹脂を共押し出し、積層数に応じたスリットを設けたTダイでシート状に成形し、隣接する各樹脂層を熱溶着させる方法である。押し出し機とTダイの温度をほぼ同じ温度に維持し、各樹脂(B)または樹脂組成物(A)からなるシートが合流して積層体を形成する際には各シートの接合面は極く薄い固化膜を形成しているが、合流後に樹脂内部の熱で接合面が再溶融され、接合面に樹脂組成物(A)と樹脂(B)とが拡散した混合層が形成されることで各層が互いに強固に結合した積層体となる。
【0048】
第2の方法は、上記樹脂組成物(A)または上記樹脂(B)の単層シート状物または第1の方法で製造した積層体を、加熱板を有するプレス機を用いて加熱し、次いで圧縮成形して積層体を製造する方法である。該単層シート状物を複数枚積層してから圧縮成形することで、本発明の積層体を製造することができる。第2の方法では、接合面に相当する面に脱着可能なパネルヒーターを挿入し、接合面の表面温度を高め表面を溶融状態にした後、パネルヒーターを取り出し圧縮成形することが好ましい。
【0049】
第3の方法は、2色射出成形機で金型を前後に移動できキャビティ容積を可変できる金型を使用して、樹脂組成物(A)の単層シートを射出成形後、直ちに金型を後退し、後退で形成されたキャビティ空間に後退中あるいは後退直後に樹脂(B)を充填する。樹脂組成物(A)の表層にごく薄い固化膜が形成されるが、樹脂(B)をその上に充填することで、接合面の樹脂組成物(A)固化膜が充填した溶融樹脂(B)の熱で再溶融し、接合面に樹脂組成物(A)と樹脂(B)とが拡散混合した層を形成し、強固な接合面を形成する。この工程を繰り返して所定の積層構造の積層体を形成する。金型温度、射出する樹脂温度は、通常の射出成形より20〜50℃高く設定すると熱溶着された積層体を得ることができる。積層体のサイズ、積層数等から上記の製造方法から好適な方法を選択できる。
【0050】
なお、該積層体を構成する樹脂組成物(A)や樹脂(B)に必要に応じて透明性を阻害しない様々な添加剤、例えば帯電防止剤、酸化防止剤、熱安定剤、紫外線吸収剤、酸化防止剤、エネルギー消剤、難燃剤等を添加して、これらの特性を有する積層体とすることができ、また積層体の下層を顔料または着色剤を含有する着色層とし、これに透明層を積層させて着色層と透明層とを有する積層体にすることもできる。
【0051】
本発明の第六は、上記記載の樹脂組成物または熱可塑性樹脂積層体を用いた車両用内外装部品成形体、車両用外板および樹脂ウィンドウである。
【0052】
本発明の樹脂組成物または積層体は、透明性と剛性とに優れ、かつ高温にもソリなどが少ないために、車両用の外装部品や車両用外板の用途に好適である。例えば、図2で示すような、ドアモール1、ドアミラーのフレーム枠2、ホイールキャップ3、スポイラー4、バンパー5、ウィンカーレンズ6、ピラーガーニッシュ7、リアフィニッシャー8、ヘッドランプカバー(図示せず)等の車両用外装部品成形体、図3a、図3bで示すような、フロントフェンダー21、ドアパネル22、ルーフパネル23、フードパネル24、トランクリッド25、バックドアパネル(図示せず)等の車両用外板が挙げられる。例えば、図4で示すような、車両のフロントガラス(図示せず)、サイドガラス31、リアガラス32等に適用できる。
【0053】
上記したように本発明では、更に、顔料等の着色剤を樹脂組成物(A)に混練したり、上記積層体に着色層を挿入して所望の色調を有する部品を得ることも可能である。また、本発明の積層体は、着色剤を含まない透明な積層体、または透明層と着色層とからなる積層体であってもよい。このため、上記記載の自動車以外でも美観、平滑性、透明感等の外観品質が要求され、かつ高剛性や表面の耐擦傷性を求められる用途、例えば建造物の外装材、内装材、鉄道車両の内装材等にも使用できる。
【0054】
このような車両用部品や建築用内装材などを含む各種部材の製造方法としては、射出成形、真空圧空成形等を部品に合わせて適宜選択すればよい。一般的なガラス繊維強化樹脂は、せん断応力を繰り返し受けることによってガラス繊維が壊れるためにその物性が徐々に低下しリサイクル性も低いが、本発明の樹脂組成物(A)は上記無機微粒子連結体を用いているためせん断応力を受けにくく、物性の低下を抑えることができる。
【0055】
その他、本発明の積層体を用いて、真空成形法、真空圧空法、加熱圧縮法、ブロー成形法等の公知の樹脂成形法によって賦形し、樹脂ガラス、自動車用外板等の外装部品、あるいは自動車用内装部品を成形することもできる。また、上記積層体を金型に挿入し、射出成形法または圧縮成形法で充填樹脂と該挿入積層体の外周部とを一体で成形して自動車用内外装部品成形体を製造することもできる。一体成形によれば、複雑な工程を必要とせずに目的の部材をうる事ができる。
【0056】
本発明の第七は、上記樹脂組成物を含んで成ることを特徴とする樹脂製ワイパーシステム、樹脂製ドアミラーステイ、樹脂製ピラーである。本発明の樹脂組成物は、高剛性、高耐熱性であり、熱時/成形時の寸法安定性、透明性にも優れるため、例えばワイパーシステムやピラー等のような視界の向上が要求される部品の用途に好適である。
【0057】
従来のワイパーシステムは、黒色塗装仕上げの鋼鉄と黒色のゴムで構成され、低速作動時に視界が妨げられる場合があった。また、従来のドアミラーステイは、外板と同色もしくは黒色塗装仕上げの樹脂製であり、右左折時の視界が妨げられる場合があった。また、従来のピラーは鋼鉄製であり、フロントピラー、センターピラーは通常走行時や右左折時、リアピラーは後方移動時や後方確認時に視界が妨げられる場合があった。この場合、これらの部品に透明な樹脂材料を使用すれば視界は向上するが、高い剛性や耐熱性、熱時/成形時の寸法安定性を満たすことは困難で、従来の透明樹脂材料では上記問題の解決は難しかった。しかしながら本発明の樹脂組成物は、高剛性、低熱膨張率、低熱収縮率を有する透明材であり、該樹脂組成物を用いることで上記問題が解決された。しかも、部品の透明化は、視界向上だけでなく意匠性の向上にも寄与し得る。
【0058】
一例として図5にワイパーシステムの模式図を示す。ワイパーシステムはワイパーアーム(41)とワイパーブレード(42)から構成され、ワイパーアーム固定用ナット穴(45)を中心として半弧を描くように作動する。ワイパーブレード(42)は、一般に弾性を有する支持部分(43)と軟らかいゴム部分(44)とから構成され、本発明のワイパーシステムにおいては、ワイパーアーム、ワイパーブレード、ワイパーブレード支持部分の少なくとも1つに本発明の樹脂組成物を透明材として用いたものである。なお、本発明のワイパーシステムにおいては、該ゴム部分として耐久性が高く比較的透明性の高いシリコンゴム等を用いることが好ましい。また、ワイパーブレードの支持部分として、本発明の樹脂組成物に適量のアクリルゴム成分を加えた樹脂組成物を用いて調製してもよい。ワイパーブレードの支持部分に適度な弾性を与えることができるからである。このような樹脂組成物としては、例えば、本発明の樹脂組成物100質量部に対して、アクリルゴム(アクリル酸エチル、アクリル酸ブチルやその共重合体等で、例えば日本ゼオン社製NipolAR31がある。)を1〜30質量部添加したものがある。
【0059】
本発明のドアミラーステイや樹脂製ピラーとしては、本発明の樹脂組成物を透明材としてドアミラーステイやピラーに成形したものの他、本発明の樹脂組成物を他の樹脂と積層した多層積層体で構成してもよい。このような多層積層体は少なくとも本発明の樹脂組成物から成る層を一層以上含んでいればよく、好ましくは積層体の最表面層と最下層、更に好ましくは中間層にも該樹脂組成物層を設けたものである。多層積層体とすることで、本発明の樹脂組成物以外の他の付加機能を付加することができる。多層積層体を用いる場合の各層の厚さは、最終的な成形品の厚さと積層数から至適な厚さを選択することができる。このような多層積層体とする場合の他の樹脂としては、ポリカーボネート、ポリスチレン、スチレン/メチルメタアクリレート共重合体がある。なお、該多層積層体として、前記本発明の熱可塑性樹脂積層体を使用することもできる。本発明の樹脂組成物や上記多層積層体を用いてドアミラーステイや樹脂製ピラーを製造する方法は特に限定されない。また、ドアミラーステイやピラーを単独の部品としても成形する他、ドアミラーステイやピラーとして使用できるのであれば、例えば後記する一体成形体の製造方法等によって、ドアミラーステイとフロントピラーや各ピラーと樹脂ルーフパネルとの一体成形体とすることもできる。
【0060】
本発明の第八は、透明部と不透明部を有する樹脂成形体であって、少なくとも透明部が上記樹脂組成物を含んで成ることを特徴とする樹脂成形体である。本発明の樹脂組成物は、高剛性、高耐熱性を有し、熱時/成形時の寸法安定性、耐薬品性、透明性にも優れるため、透明部と不透明部とを有し、これらを一体に成形した樹脂成形体の用途にも好適に使用できる。このような樹脂成形体を、自動車部品を例に説明する。
【0061】
自動車には、各種ランプ類やカバー、ガラス等の透明な部品と、外板や各種内装部品のような不透明な部品が混在している。これらの部品にはそれぞれ透明性、剛性、耐熱性、低線膨張率、低成形収縮率、耐薬品性等、異なる様々な特性が要求されるため、従来の樹脂材料ではこれら透明な部品と不透明な部品との一体化は難しかった。しかし本発明の樹脂組成物は、射出成形、真空圧空成形などによって容易に成形できるため、本発明の樹脂組成物を透明材として使用して、高剛性、高耐熱性、低線膨張率、低成形収縮率、高耐薬品性を確保しつつ、透明な部分と不透明な部分とを一体成形させ、部品点数及び工程数の削減、部品重量を低下させることができる。また、透明部と不透明部の一体形成により、従来分割されていた外形線が一つの連続するラインで形成できるため、部品外観の向上が図れる。より具体的には、透明性を必要とするヘッドランプはその周囲に存在するバンパ、フロントグリル、フェンダ、フードといった不透明の別の部品と接している。これらを一体成形すると部品点数の削減が可能となり、一体化された部品を組み付ければよいため、組み立て時の工程数も削減できる。特に、本発明の樹脂組成物は耐熱性に優れるため、ランプの熱源が近くて樹脂が溶融するなどの問題もない。従来のヘッドランプはポリカーボネート樹脂製でできているため耐光性が低く、太陽光に暴露されると黄変するため表層コーティングが必要であった。しかしながら、本発明の樹脂組成物を用いるとこのような問題も解決される。
【0062】
このような樹脂組成物の製造方法としては特に制限させるものではない。例えば、透明性が必要とされる部品として自動車用ガラスがあり、ドアに付属するサイドガラス、バックドアガラス、リアフェンダーとルーフに接着してあるリアクウォーターガラス、リアガラス等と称呼されている。サイドガラスやバックドアガラスは、ドアアウターとドアインナーとの間にガラスが配置される構造である。予めドアアウターとドアインナーとを用いて内部に中空部を形成させ、該中空部に本発明の樹脂組成物を流し込むことで、ドアアウター・ドアインナー・ガラスを一体に成形することができる。同様にして、ピラーガーニッシュとリアクウォーターガラスとを一体化することもできる。本発明の樹脂成形体を図6で示すが、上記ピラーガーニッシュとリアクウォーターガラスとを一体化した樹脂成形体に限らず、ランプ・フード・フェンダー一体樹脂成形体(51)、ピラーガーニッシュ・ガラス一体樹脂成形体(52)、ルーフ・フェンダ・ガラス一体樹脂成形体(53)、バックドア・ガラス一体樹脂成形体(54)、ドア・ガラス一体樹脂成形体(55)等がある。なお、ドアロックやワイパーモーター等は後工程で部品の中空部に設置すればよい。
【0063】
更に、自動車用内装材としてインストルメントパネルの場合には、従来から、計器類、その透明なカバー、クラスターリッドが別部品で作られている。しかしながら本発明の樹脂組成物を用いて透明樹脂部と不透明樹脂部とを一体で成形すると、予めインストルメントパネル(61)と計器類のカバー(62)との一体化によってインストルメントパネルに数種の部品を集約させ、部品点数を削減しかつ軽量化を図ることができる。図7にこのようなインストルメントパネルの模式図を示す。
【0064】
また、本発明の樹脂組成物を使用して、樹脂成形体の一部が透明部であり他の部分が不透明である、高強度・高剛性を保持した部材とすることもできる。例えば、ルーフの一部に本発明の樹脂組成物を用いると該部分を透明にすることができ、ガラス製サンルーフを設けなくとも透明なルーフとすることができる。なお、上記樹脂成形体において、不透明部は着色していてもよい。
【0065】
本発明における透明部と不透明部とを有する樹脂成形体において、着色した不透明部の樹脂成形体を得るには、着色した原料樹脂を用いる方法、不透明部に塗装または印刷して着色する方法、または不透明樹脂として着色シートを使用する方法等がある。
【0066】
着色した原料樹脂の調製方法としては、原料樹脂に予め顔料を分散させておく方法の他、原料樹脂ペレットと顔料ペレットを同時に溶融・混練させ、射出成形機を用いて金型内に射出して着色樹脂を得る方法がある。該着色樹脂を用いて本発明の樹脂成形体を製造するには、続いて金型を開き、または溶融樹脂通過経路を新たに作り、別のシリンダを用いて金型の空隙部に透明溶融樹脂を射出すればよい。これによって透明部と着色した不透明部とを有する樹脂成形体を製造することができる。なお、不透明樹脂を先に射出するか透明樹脂を先に射出するかはどちらでも良い。
【0067】
塗装または印刷により着色した不透明部を形成するには、予め透明樹脂を溶融して目的の樹脂成形体を形成し、その後該樹脂成形体の表面または裏面から塗装または印刷を施して着色および不透明性を確保する方法である。溶融樹脂の賦形前に塗装または印刷を施し、その後に賦形することもできる。
【0068】
不透明樹脂として着色シートを使用する場合には、予め着色された不透明シートを予備賦形しておき金型内に配置し、続いて溶融透明樹脂を金型内に注入し、樹脂を冷却固化させ、その後に金型より取り出せば、本発明の樹脂成形体を得ることができる。
【0069】
また、上記方法によれば、例えばルーフ・フェンダ・ガラス一体樹脂成形体として、ガラス部が透明部であり、ルーフとフェンダとが不透明である樹脂成形体に限られず、ガラスの上部とルーフの一部が透明部であり、フェンダとガラスおよびルーフの残部が不透明の樹脂成形体とすることもできる。
【0070】
更に、本発明の透明部と不透明部とが一体成形された樹脂成形体は、本発明の樹脂組成物と顔料とによって構成できるが、本発明の樹脂組成物と他の樹脂とを積層した多層積層体で構成することも可能である。このような多層積層体は少なくとも本発明の樹脂組成物から成る層を一層以上含んでいればよく、好ましくは積層体の最表面層と最下層、更に好ましくは中間層にも該樹脂組成物層を設けることができる。多層積層体とすることで本発明の樹脂組成物のみでは発現できないような付加機能をも付与することが可能となる。なお、多層を構成する他の樹脂の種類や各層の厚さは、樹脂成形体の用途に応じて適宜選択することができる。
【0071】
本発明の第九は、本発明の樹脂組成物を含んで成ることを特徴とする熱線付き樹脂製ウィンドウ、樹脂製ミラー、樹脂製ランプリフレクター、樹脂製エンジンルーム内カバーおよびケース、樹脂製冷却装置部品である。
【0072】
本発明の樹脂組成物は、高剛性、高耐熱性であり、熱時/成形時の寸法安定性、耐薬品性、透明性にも優れるため、例えば樹脂製ウィンドウや樹脂製ミラー、ランプリフレクター、エンジンルーム内カバーおよびケース等の部品の用途に好適であり、部品点数、工程数、重量の低減が可能になる。更に本発明の樹脂組成物を透明材として用いることで、透明性が要求される部品の材料代替が可能になり、防曇性や視界の向上が図られる。例えば、図8に示すリアウィンドウ(73)、ドアウィンドウ(72)、フロントウィンドウ(71)などの樹脂製ウィンドウは、防曇機能を付与するため成形体の内部や表面に加熱可能な熱線ヒータを設けることがある。従来の透明樹脂材料を用いた場合には、熱線ヒータによる樹脂材料の耐熱性や熱膨張が課題となるが、本発明の樹脂組成物を用いるとこれらの問題がない。また、本発明の樹脂組成物は高い剛性を有するので、フロントウィンドウ(71)、ドアウィンドウ(72)、リヤウィンドウ(73)等の大型部品に応用可能で軽量化することができる。尚、熱線ヒータの形成方法としては、例えばフィルム化された熱線部をインサート成形する方法や、室内側表面に熱線部を蒸着・塗布・印刷法等により形成する方法等が挙げられる。また、本発明の透明樹脂を用いて樹脂製サイドミラー(74)(図8参照)を製造すると、従来のガラスや透明樹脂を用いた場合に比べ軽量化ができ、これに熱線ヒータを設ければ防曇機能を付与することも可能になる。図8に示したサイドミラー以外にも車室内のルームミラー等にも適用可能である。
【0073】
また、図9に自動車ランプの横断面図を示す。車体側基体(81)に固定されたアウタ部材(82)の内部にリフレクター(83)が配置され、該リフレクターにはバルブ(84)と光軸調整器(85)が連結し、該アウタ部材ははさらにアウタレンズ(86)が嵌合されている。従来の樹脂材料を用いてリフレクターを構成すると、耐熱性・線膨張率・線膨張異方性に劣る場合があったが、本発明の樹脂組成物を用いるとこれらの問題が解決できる。特に、本発明の樹脂組成物は高い剛性を有するため軽量で高耐熱性が確保でき、かつ寸法安定性と表面平滑性に優れるランプリフレクターとでき、ヘッドランプ、フォグランプ、リアコンビランプ等のリフレクター、またはヘッドランプのサブリフレクター等に好適に使用できる。尚、反射部の形成方法としては、例えば該部材を製造する際に反射膜部をインサート成形する方法や、該部材を射出成形・プレス成形により成形後に、反射部に蒸着膜を形成させる方法等がある。
【0074】
また、本発明の樹脂組成物を使用して、エンジンルーム内カバーおよびケースに応用することができる。エンジンルーム内を図10および図11に示す。本発明の樹脂組成物は透明性、耐熱性、耐薬品性、剛性強度に優れるため、温度条件の厳しいエンジンルーム内において使用可能で、かつ軽量な部品とすることができる。このような部品として、例えばラジエーター(91)、冷却液リザーブタンク(92)、ウオシャータンクインレット(93)、電気部品ハウジング(94)、ブレーキオイルタンク(95)、シリンダーヘッドカバー(96)、エンジンボディー(101)、タイミングチェーン(102)、ガスケット(103)、フロントチェーンケース(104)などがある。しかも、本発明の樹脂組成物は透明であるため、上記ウオッシャータンクインレット、電気部品ハウジング、ブレーキオイルタンク、シリンダーヘッドカバー、タイミングベルトカバー等のタンクあるいはカバー内の視認性を向上させることができる。
【0075】
本発明の樹脂組成物は、耐熱性、耐薬品性、剛性強度に優れたより軽量な部品とすることができることから、自動車エンジンルーム内で冷却水との接触下で使用される部品用途に好適に使用される。このような樹脂製冷却装置部品を図12、13に示す。例えば、図12に示すウォーターパイプ(111)、O−リング(112)、ウォーターポンプハウジング(113)、ウォーターポンプインペラ(114)、ウォーターポンプ(115)、ウォーターポンププーリ(116)、図13に示すウォーターパイプ(121)、サーモスタットハウジング(122)、サーモスタット(123)、ウォーターインレット(124)等のラジエータータンクのトップおよびベースなどのラジエータータンク部品、バルブなどの部品が挙げられる。該樹脂組成物を使用すると軽量化、耐薬品性向上、燃費向上が図られるため、その実用価値が高い。
【0076】
尚、本発明の上記各部品は、本発明の樹脂組成物のみでも構成できるが、例えば本発明の樹脂組成物を他の樹脂材料と積層した多層積層体で構成することも可能である。このような多層積層体は少なくとも本発明の樹脂組成物から成る層を一層以上含んでいればよく、好ましくは積層体の最表面層と最下層、更に好ましくは中間層にも該樹脂組成物層を設けることができる。多層積層体とすることで本発明の樹脂組成物のみでは発現できないような付加機能をも付与することが可能となる。なお、各層を構成する他の樹脂の種類や各層の厚さなどは、使用目的に応じて適宜選択することができる。
【0077】
本発明の第十は、上記樹脂組成物を含んで成る、大気と連通した中空構造および/あるいは密閉された中空構造を有することを特徴とする樹脂一体成形体である。上記のように、本発明の樹脂組成物は、高剛性、高耐熱性であり、熱時/成形時の寸法安定性にも優れるため、例えばドアやルーフ、フード等のような中空構造を有する部品の用途に好適である。自動車の外板および内外装部品は、鋼板と樹脂パネルより構成され、かつ部品内部に補機等を装着する中空構造を有している部品が多い。例えば、側面ドアおよびバックドアは、外側および内側を鋼板で中空構造を構成し、塗装を経て組み立て工程で内側鋼板に樹脂パネルを取り付け、中空構造内に各種補機等を取り付けている。また、ルーフ、フード、トランクリッド、バックドア等は、外板および補強レインホース等を鋼板で構成し、塗装後に内側に樹脂部品を取り付けている。これらの中空構造を有する部品は大型であり、剛性や寸法安定性も要求されるため、従来の樹脂材料では一体成形が難しかった。しかしながら、高剛性、低熱膨張率、低熱収縮率を有する本発明の樹脂組成物を使用すると一体成形が可能となり、これらの部品の部品点数、工程数、重量の低減が可能になる。
【0078】
本発明の樹脂一体成形体は、本発明の樹脂組成物のみでも構成できるが、例えば本発明の樹脂組成物を他の樹脂材料と積層した多層積層体で構成することも可能である。このような多層積層体は少なくとも本発明の樹脂組成物から成る層を一層以上含んでいればよく、好ましくは積層体の最表面層と最下層、更に好ましくは中間層にも該樹脂組成物層を設けることができる。多層積層体とすることで本発明の樹脂組成物のみでは発現できないような付加機能をも付与することが可能となる。多層積層体を構成する他の樹脂の種類や各層の厚さなどは、使用目的に応じて適宜選択することができる。なお、このような多層積層体として、本発明の熱可塑性樹脂積層体を使用することもできる。
【0079】
本発明の樹脂一体成形体は、最表面層に表皮材、意匠印刷層等の加飾層を設けることで意匠性、触感、質感を高め商品性を向上することができる。たとえば起毛シート、エンボス紋様シート、レーザー紋様シート、木目調シート等の表皮材を最表面層に設けた成形体は、ルーフ室内側、ピラーガーニッシュ類、インストルメントパネル等に用いることができる。前述の多層積層体を用いた場合には、意匠印刷層はその中間層に設けてもよく、表層を透明材とすることで光沢感、深み感を高めることができる。
【0080】
また、本発明の中空構造を有する樹脂一体成形体は、中空部に気体、液体、固体あるいはこれらの混合物を封入することで断熱性能、遮音性能を向上させることができる。封入材としては、透明性が要求される場合は窒素、アルゴン、二酸化炭素、空気等の気体が好ましく、透明性が要求されない場合は前述の気体の他、封入時の加熱で液体状を示し封入後の常温では固体状になるパラフィン、ワックス等が好ましい。上記封入材により、夏期には車室内から冷熱の逃げ、外気の高熱の侵入を、冬期には温熱の逃げ、外気の冷熱の侵入を抑制し快適な車室内環境を維持できる。また二重壁で内に中空部を有する構造により、外部からの騒音エネルギーを緩和あるいは吸収し、静粛な車室内環境を確保できる。またフードに本構成体を適用すると、エンジンルームからの放射音、放射熱を低減できる。
【0081】
本発明の中空構造を有する一体成形体の製造方法は特に限定されず、一般的な真空圧空成形法、射出成形法、ブロー成形法、プレス成形法等を用いることができるが、例えば次の方法を好適に用いることができる。
【0082】
一つ目の方法では、まず加圧流体導入経路を備えたホルダーに、本発明の樹脂組成物より成る2枚の樹脂シートを固定し、公知の方法でホルダーをシールして2枚のシート間に密閉空間を形成する。各シートを荷重たわみ温度以上に加熱し開放状態の金型にセットし、次いで軟化したシートの外周部を金型で押圧して溶着する。溶着しつつあるいは溶着後に、2枚のシートの間の密閉空間に加圧流体を注入し、シートを拡張しつつ/または拡張後、金型を閉状態にして成形体が冷却するまで加圧流体圧を保持し中空構造を形成する。好ましくは真空引き孔を設けた金型を用い、シート拡張時に真空吸引を併用し金型面とシートの密着を高める。真空引きを用いると成形体の転写性を向上できる。すなわち、本発明の第十一は、上記樹脂組成物を含んで成る樹脂シート2枚を加熱し、これを開状態の金型に挿入し、シート外周部を押圧し、外周部を溶着する前あるいは溶着後にシート間に加圧流体を注入し、シートを拡張しつつ/または拡張後、金型を閉状態にし、加圧流体圧を保持し中空構造を形成することを特徴とする樹脂一体成形体の製造方法である。
【0083】
二つ目の方法は、閉状態の金型内に溶融した本発明の樹脂組成物を充填しつつ、あるいは充填後に金型を後退しキャビティ容積を拡大しつつ溶融樹脂内部に加圧流体を注入し中空構造を形成する方法である。
【0084】
三つ目の方法は、開状態の金型キャビティ面に本発明の樹脂組成物を含んで成る樹脂シートを1枚もしくは2枚インサートし、金型を閉状態で2枚のシート間もしくは1枚のシート背面に溶融樹脂を充填しつつ/または充填後、キャビティ容積を拡大しつつ加圧流体を溶融樹脂内に注入し中空構造を形成する樹脂一体成形体の製造方法である。開状態の金型片面のキャビティ面に、たとえば本発明の樹脂組成物より成る樹脂シートを1枚インサートし、背面に溶融樹脂を充填しつつ、あるいは充填後に金型を後退しキャビティ容積を拡大しつつ溶融樹脂内部に加圧流体を注入し中空構造を形成する方法、または2枚の樹脂シートを用い金型両面のキャビティ面にシートをインサートし、シート間に溶融樹脂を充填しキャビティ容積を拡大し加圧流体を注入し中空構造を形成する方法である。使用する充填樹脂としては、本発明の樹脂組成物を含んでなるシートと密着する樹脂であればよく、好ましくは本発明の樹脂組成物と溶解度パラメータ(SP値)が近いものが良い。このような充填樹脂としては、上記熱可塑性樹脂積層体において使用する熱可塑性樹脂(D)のいずれか1種以上を使用することができる。
【0085】
本発明の中空構造を有する樹脂一体成形体の適用部品としては、図14、15に示すように、例えばフード(131)、ドア(132)、バックドア(133)、ルーフ(134)、フェンダー(135)、ウィンドウ(136)、トランクリッド(137)、センターコンソールボックス(141)、ピラーガーニッシュ(142)、インストルメントパネル(143)、ヘッドライニング等を挙げることができる。これらの部品はインナー/アウターおよび付帯する部品やレインホース等を同時にかつ一体で成形でき、部品数の低減および工程数を短縮することができる。更に中空部に気体、液体、固体あるいはこれらの混合物を封入することで付加的な機能を付与することができる。例えばフードではレインホースとの一体化や遮音・遮熱機能の付与が可能であり、ルーフではヘッドライニングとの一体化や断熱・遮音機能の付与が可能であり、ドアやフェンダーではインナー/アウターの一体化が可能である。
【0086】
本発明の第十二は、上記樹脂組成物を含んで成る、異なる機能を有する二種類以上の部品を統合し、ひとつの部品に少なくともこれら二種類以上の機能を付与したことを特徴とする一体成形部品である。ここに異なる機能とは、例えば、インストルメントパネルのような表示機能、エアコンダクトなどのような通風機能、ルーフレール等の固定機能などをいう。本発明の樹脂組成物は、高剛性、高耐熱性であり、熱時/成形時の寸法安定性、耐薬品性等の多彩な機能を有するため、種々の機能の確保が期待される部材に応用することができ、これらを一体成形することで異なる機能を有する二種類以上の部品を統合し、ひとつの部品に二種類以上の機能が付与された一体成形部品とすることができる。これによって大型部品の一体化、いわゆるモジュール化やインテグレーション(統合化)に好適であり、高品質を維持しながら部品点数、工程数、重量の低減が可能になる。例えば、大型内装部品である図16に示すインストルメントパネルは、現在、パネル部(151)とエアコンのエアダクトやケース(152)、クロスカービーム(ステアリングクロスメンバー)を別々に作り、これらを車の製造ラインで組み立てている。従来の樹脂材料でパネル部とエアコンのエアダクトやケースを一体成形しようとすると、大型かつ複雑な形状の部品のため成形収縮によるヒケや歪み、熱時の膨張などが課題となるが、本発明の樹脂組成物を用いることでこのような課題が解決可能となる。また、本発明の樹脂組成物は高い剛性を有するので、このような一体成形により部品全体を構造体とすることが可能で、従来スチールが使用されているクロスカービーム(ステアリングクロスメンバー)を廃することが可能である。また本発明の樹脂組成物を用いることでスチールでは後付けする必要があったブラケット等も一体成形可能となる。また一体成形時に金型内に表皮材等の加飾材を投入しインサート成形することにより、加飾材との一体成形も可能になる。同様の効果は例えばドアに適用した場合でも得られる。現在のドアインナーパネルはスチール製が主で、ここにサイドウィンドウ用のガイドレールやレギュレータ、ドアロック、スピーカ等の各種部品が製造ラインで組み付けられる。本発明の樹脂組成物を用いることでドアインナーパネル、ガイドレール、スピーカハウジング等を一体成形することができる。
【0087】
図17に本発明の一体成形部品の他の例を示す。図17に示すように、大型外装部品であるルーフレール(161)を例にすると、前述した本発明の樹脂組成物製のルーフパネル(162)との一体成形が可能となる。ルーフレールは重量がかかり温度的にも厳しい環境で使用されるため、従来の樹脂材料では特に剛性と耐熱性が課題となっていた。しかしながら、本発明の樹脂組成物を用いるとこのような課題が解決可能となる。同様の効果は例えばスポイラーに適用した場合でも得られ、前述した本発明の樹脂組成物製のトランクリッドとの一体成形が可能である。
【0088】
図18に大型車体部品であるラジエーターコアを示す。現在フロントエンドモジュールとして樹脂製のラジエーターコアが世にでつつあるが、本発明の樹脂組成物を用いると、更に耐熱性、耐薬品性、剛性強度に優れたより軽量な部品とすることができ、ファンシュラウドやブラケット等も一体成形することができる。特に、本発明の樹脂組成物を用いると、ラジエーターのリザーバタンク、ヘッドランプカバー等の透明部を一体成形することができ、加えて、従来は別体であったバンパ補強材の一体化も可能となる。また、エンジンルーム内部品であるエアクリーナーやスロットルチャンバー等を例にすると、耐熱性と耐薬品性に優れ低線膨張の本発明の樹脂組成物を用いることで、これらを一体化することができる。従来からこのような一体化は試みられているが、エンジンルーム内は高温かつオイル等の薬品による厳しい環境であり、従来の樹脂材料ではこの対策が課題となっているが、本発明の樹脂組成物を用いるとこのような課題が解決可能となる。同様の効果はインテークマニホールドやシリンダヘッドカバーに適用した場合でも得られ、前述の部品とともに一体成形することも可能である。
【0089】
本発明の一体成形部品は、本発明の樹脂組成物のみでも構成できるが、本発明の樹脂組成物を他の樹脂材料と積層した多層積層体で構成することも可能である。このような多層積層体は少なくとも本発明の樹脂組成物から成る層を一層以上含んでいればよく、好ましくは積層体の最表面層と最下層、更に好ましくは中間層にも該樹脂組成物層を設けることができる。多層積層体とすることで本発明の樹脂組成物のみでは発現できないような付加機能をも付与することが可能となる。このような多層積層体として、上記熱可塑性樹脂積層体がある。
【0090】
本発明の樹脂組成物は、高剛性、高耐熱性であり、熱時/成形時の寸法安定性にも優れるため、一体成形部品とした場合には、例えばスロットルチャンバーのような可動部と非可動部を有する部品の用途に好適である。すなわち、自動車の吸排気系部品やエアコンユニット内には、可動部と非可動部を有する部品が多数用いられている。これらの部品は主に空気などの気体の流れを制御するものであり、気体を流路となる筒状の部品と気体の流れを制御する開閉可能な蓋から構成され、例えばスロットルチャンバーやエアコンユニット内の各ドアが例示できるが、これらの部品では気密性が重要である。従来の樹脂材料を用いてこれらの部品の筒状部分と蓋部分を成形すると、成形収縮率や熱膨張率が大きいため、寸法精度が上げられず、開閉部分の気密性が課題となる。また、特にエンジンルーム内の部品に適用する場合、耐熱性も要求されるため、この点も課題となった。しかし、低熱膨張率、低熱収縮率、高耐熱性を有する本発明の樹脂組成物を用いることで、これらの課題が解決可能となり、気密性に優れた部品とすることができる。更に本発明の樹脂組成物は高剛性なためこれらの部品の軽量化とそれによるレスポンスの向上が可能となる。
【0091】
本発明の可動部と非可動部を有する成形体は、例えば射出成形法を用いて可動部と非可動部を別々に成形した後、これらを組み立ててもよいが、例えば二色成形法等の方法で可動部と非可動部を一体成形することが好ましい。気密性がより向上し、また工程数や部品数の低減が可能になるためである。図19に示すスロットルチャンバーを例に取ると、例えば次の方法で製造することができる。
【0092】
スロットルチャンバーは非可動部である筒状のチャンバー部(181)と可動部である開閉バルブ(182)および開閉バルブ(183)とを有する。まず、二色成形用金型内に、開閉バルブ用金属製シャフトをセットし、次に円筒状のチャンバーを射出成形し、続いて円盤状の開閉バルブを成形するためにスライドコアを後退して円盤状の開閉バルブを射出成形する。このとき金属製シャフトと円盤状の開閉バルブが一体化される。本発明によれば、可動部が気体流動を制御する開閉蓋であり非可動部は流動気体を導入する筒状成形品にも、好ましく応用することができる。
【0093】
本発明の樹脂組成物は、炭化水素系燃料の遮断性、ガスバリア性、耐薬品性に優れるため、炭化水素系燃料を収納する部品または容器、例えば、車両用の燃料タンク等の一連の燃料系部品、灯油容器等家庭用品の用途に好適である。図20に、このような部品や容器である、自動車等の車両における樹脂製燃料タンクを示す。フィラーチューブ(191)を介して炭化水素系燃料であるガソリンが燃料タンク(192)に注入・貯蔵され、ついで当該ガソリンが燃料ポンプ(193)によりエンジン(194)に圧送される形式の燃料系システムとなっている。燃料系部品において本発明の樹脂組成物が適用できる部品としては、燃料タンク(192)、フィラーキャップ(195)、ベントチューブ(196)、フューエルホース(197)、フューエルカットオフバルブ、デリバリーパイプ、エバポチューブ、リターンチューブ、フューエルセンダーモデュール等が挙げられる。燃料タンクはこれら車両の燃料系システム部品の中で最大規模の部品である。近年樹脂化が進み、部品形状の自由度増の効果により金属製に比べ貯蔵燃料量が約10リットルほど増大、かつ重量も25%程度軽減された。この利点から燃料タンクの樹脂化への期待が一層高まっている。ここで燃料タンクの樹脂化の現状と課題について詳述する。
【0094】
従来から、母材樹脂としてオレフィン系のHDPE(高密度ポリエチレン)が使用され、その工法として吹き込み法で成形が行われてきた。これらの材料と工法には大きな変化はなかったが、タンクの層構造は大きく変化した。例えば、当初は単層型燃料タンクであったが、炭化水素の蒸散規制法の施行に伴い、炭化水素の透過低減のため燃料タンクの多層化が余儀なくされた。その結果、現在燃料タンクはHDPE/PA(ポリアミド)またはHDPE/EVOH(エチレン酢酸ビニル共重合体)の両端をHDPEで構成する3種5層からなる多層構造タンクが主流となった。この場合の成形は、従来と同じ吹き込成形である。
【0095】
上記単層型燃料タンクにおいて、タンクから多くの炭化水素系燃料が透過するのは両者の相溶性が良いことが原因と考えられる。相溶の尺度であるSP値はHDPEが7.9、炭化水素系燃料が6〜8であり、両者は同じ領域にある。一方、多層体からなるタンクに用いるPAのSP値は13.6で、炭化水素系燃料とのSP値の開きが大きく、換言すれば相溶性が悪い領域にある。このことから多層体燃料タンクにおけるPA材は、炭化水素系燃料のタンク外への透過を阻止するバリアー層として設置されたのである。しかしながら、該多層体燃料タンクの創出により炭化水素の蒸散規制法を満たす技法が確立されたが、成形工程が煩雑で大幅な価格上昇を招いた。加えて複数の樹脂の積層構造体としたためリサイクルの円滑性が失われ、リサイクル社会という時代の要請に応えがたい新たな課題を残した。
【0096】
これに対し、本発明の樹脂組成物中の改質シリカ組成物はシラノール基を残しているためSP値は11を超え、前述のPAやEVOHに相当する炭化水素系燃料の透過阻止の機能がある。また、本発明の樹脂組成物の主たる成分は、アクリル等の極性基を有するSP値が11以上の樹脂が主体であり、炭化水素系燃料としてのガソリンとは馴染みにくく、換言すれば相溶性が悪い材料構成となり、燃料タンクとしてより望ましい材料である。従って、本発明の樹脂組成物を用いれば、単層型でも炭化水素の蒸散法規制を満たす車両用の燃料タンクを提供することができることが判明した。これによって製造コストの低減が図れ、かつリサイクルの社会的要請に応えることもできるようになった。なお、車両用の燃料タンク以外にも、本発明の樹脂組成物は灯油容器等家庭用品に用いることもできる。これにより灯油の大気への蒸散が軽減され、地球環境の保全に寄与することができる。
【0097】
【実施例】
以下、本発明の実施例により具体的に説明する。本発明はこれによって限定されるものではない。なお、実施例および比較例における各種評価は以下の方法により、特記しない場合には、「部」は質量部を、「%」は質量%を示す。
【0098】
(評価方法:単層透明樹脂組成物)
(1)全光線透過率は、ヘイズメータ(村上色彩研究所製 HM―65)で計測した。75%以上を合格とした。
【0099】
(2)無機微粒子連結体の分散状態は、透過電子顕微鏡(日立製作所(株)製H−800)で観測した。
【0100】
(3)曲げ強度・弾性率は、オートグラフ(島津製作所(株)製 DCS−10T)で計測した。曲げ強度108MPa以上を合格とした。
【0101】
(4)線膨張係数は、熱機械測定装置(セイコー電子工業(株)製 TMA120C)で計測した。
【0102】
(評価方法:積層体)
(1)全光線透過率(%):ヘイズメーター(HM−65 村上色彩研究所製)で測定した。○:≧90、×:<90 として評価した。
【0103】
(2)ロックウエル硬度:ロックウエル硬度計(Mスケール)で測定した。○:≧95、×:<95として評価した。
【0104】
(3)曲げ弾性率:オートグラフ(DCS−10T 島津製作所製)で測定した。○:≧3500MPa、×:<3500MPaとして評価した。
【0105】
(4)耐衝撃性:200×200mmの積層体を180×180mmの枠で全周固定し、JIS−R3212の耐衝撃性試験法相当の鋼球を高さを変え自由落下させ亀裂が発生する高さを測定した。○:≧3m、×:<3mとして評価した。
【0106】
(5)層間の剥離有無:作成した積層体を約90度に折り曲げて層間の剥離有無を目視で判断した。○:剥離無し、×:剥離有りとして評価した。
【0107】
(6)ソリの有無:積層体より100×50mmの試験片を切り出し、110℃オーブン×2H→室温×2H以上放冷のサイクルを10回繰り返した後のソリの有無を目視で判断した(n=3)。○:ソリ無し、×:ソリ有りとして評価した。
【0108】
(実施例1)
ケイ酸ナトリウム(水ガラス)を原料とし、イオン交換によりナトリウムを除去して、核となるゾル(約5nm)を得て、これらの微小粒子を液中で単独で成長させ、太さ5〜10nm、長さ90〜350nmの鎖状シリカを得た。この鎖状シリカに、シリル化剤で処理してアルキル基を付加し、メチルエチルケトンに溶解してシリカ溶液を得た。
【0109】
重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、80℃に加熱し、これに先に調製したシリカ溶液を滴下しながら重合反応させた。約6時間後に凝固用溶剤ヘキサンで沈降させ、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得た。
【0110】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。また球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。
【0111】
(実施例2)
ケイ酸ナトリウム(水ガラス)を原料とし、イオン交換によりナトリウムを除去して、核となるゾル(約5nm)を得て、これらの微小粒子を液中で単独で成長させ、太さ5〜10nm、長さ90〜350nmの鎖状シリカを得た。この鎖状シリカに、シリル化剤で処理してアルキル基を付加し、メチルエチルケトンに溶解してシリカ溶液を得た。
【0112】
重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、80℃に加熱し、徐々に先に調製したシリカ溶液を滴下しながら重合反応させて、約6時間後に凝固用溶剤ヘキサンで沈降させ、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得た。
【0113】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。さらに実施例1の組成物に比べて、線膨張率が小さく、より良好な結果を示した。また、球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。
【0114】
(実施例3)
重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、80℃に加熱し、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ5〜10nm、長さ30〜80nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤ヘキサンで沈降させ、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得た。
【0115】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。しかし、実施例1に示した樹脂組成物に比べて、曲げ強度は低下した。これは、シリカ微粒子連結体の長さが短いからである。しかし、球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。
【0116】
(実施例4)
重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ5〜10nm、長さ350〜500nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤エタノールで沈降させ、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得た。
【0117】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、メタクリルに比べ透明性は劣るが良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。しかし実施例1に比べ、曲げ強度は優れるが、分散性が劣るため透明性は劣り、硬度もやや劣る。これは、シリカ微粒子連結体の長さが、可視光線波長の長さより大きいためである。しかし球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。
【0118】
(実施例5)
重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、80℃に加熱し、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ1〜5nm,長さ90〜350nm,シリカ微粒子長さ7〜50nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤ヘキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得る。
【0119】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。
【0120】
(実施例6)
重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、80℃に加熱し、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ10〜20nm,長さ90〜350nm,シリカ微粒子長さ7〜50nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤へキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得る。
【0121】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。
【0122】
(実施例7)
重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、80℃に加熱し、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ10〜20nm,長さ50〜350nm,シリカ微粒子長さ50〜100nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤へキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得る。
【0123】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。
【0124】
(実施例8)
重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、80℃に加熱し、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ10〜20nm,長さ100〜350nm,シリカ微粒子長さ50〜100nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤へキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得る。
【0125】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表1に示す。
【0126】
(実施例9)
ポリメタクリル酸メチル100部をメチルエチルケトン溶剤に溶解し、この溶液にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ5〜10nm、長さ90〜350nm)を滴下しながら混合させて、その後に凝固用溶剤ヘキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率30/70の混合組成物を得た。
【0127】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、メタクリルに比べ、透明性は劣るが、メタクリル樹脂単独に比べ、表面硬度向上、曲げ強度および曲げ弾性率向上、線膨張率低下を示した。しかし、シリカ微粒子連結体の分散性が悪いため、実施例1の組成物に比べ、透明性、硬度、曲げ強度、曲げ弾性率は劣る。しかし球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表2に示す。
【0128】
(実施例10)
重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ5〜10nm、長さ90〜350nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤ヘキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率10/90の混合組成物を得た。
【0129】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好で、メタクリル樹脂単独に比べ、表面硬度向上、曲げ弾性率向上、線膨張率低下を示した。しかし、実施例1の組成物に比べ、曲げ強度、曲げ弾性率、硬度、および線膨張率の向上は少なかった。これは、シリカ微粒子連結体の配合量が少ないためである。しかし、球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表2に示す。
【0130】
(実施例11)
重合開始剤AIBNをメタクリル酸メチルモノマー(1モル/リットル)に対し0.5モル%添加、徐々にメチルエチルケトン溶剤分散のアルキル基で表面疎水化処理した鎖状のシリカ微粒子連結体(太さ5〜10nm、長さ90〜350nm)を滴下しながら重合反応させて、約6時間後に凝固用溶剤ヘキサンで沈降させると、シリカ微粒子連結体とメタクリル樹脂の組成比率70/30の混合組成物を得た。
【0131】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、メタクリルに比べ、透明性曲げ強度は劣るが、表面硬度向上、曲げ弾性率向上、線膨張率低下を示した。
【0132】
しかし、実施例1の組成物に比較して、透明性や曲げ強度は劣った。これはシリカ微粒子連結体の配合量が多すぎるため、シリカ微粒子連結体の凝集や欠陥が増加するためである。しかし、球状のシリカ微粒子を配合したメタクリル樹脂に比べ、鎖状のシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きい価を示した。この試験片で得られた全光線透過率、透過電顕での分散状態、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表2に示す。
【0133】
(比較例1)
メタクリル酸メチル100部に過酸化ベンゾイル0.5部を混合、90℃に加熱し、徐々にメチルエチルケトン溶剤分散のシリカ微粒子(粒径10〜20nm)を滴下しながら重合反応させて、約1時間後に凝固用溶剤エタノールで沈降させると、シリカ微粒子とメタクリル樹脂の組成比率30/70の混合組成物を得た。
【0134】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。得られた試験片は、透明性良好であるが、実施例1〜7の鎖状のシリカ微粒子連結体配合のメタクリル樹脂に比べ、曲げ弾性率が低い値を示した。この試験片で得られた全光線透過率、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表2に示す。
【0135】
(比較例2)
メタクリル酸メチル100部に過酸化ベンゾイル0.5部を混合、90℃に加熱し、重合反応させて、約1時間後に凝固用溶剤エタノールで沈降させると、メタクリル樹脂を得る。
【0136】
得られた樹脂組成物を乾燥して、加熱プレス成形して試験片を得た。この試験片で得られた全光線透過率、ロックウエル硬度、曲げ強度、曲げ弾性率、線膨張係数の結果を表2に示す。
【0137】
(実施例12)
実施例1の樹脂組成物とポリカーボネート系樹脂(三菱エンジニアリングプラスチックス製のユーピロンE200U)を2台の押し出し機で3つのスリットを持つTダイを使い積層体を調製した。上層はシリカ含有アクリル樹脂層(樹脂(A))、中間層はシリカを含まないポリカーボネート系樹脂層(樹脂(B))、下層は上層と同じシリカ含有アクリル樹脂層(樹脂(A))の3層構造で、各層の厚さは1/3/1mmの構成をもつ積層体を得た。評価結果を表3に示す。
【0138】
(実施例13)
無機微粒子連結体の配合量を1質量%にした以外は、実施例12と同じ条件で積層体を得て評価した。評価結果を表3に示す。
【0139】
(実施例14)
無機微粒子連結体の量を10質量%にした以外は、実施例12と同じ条件で積層体を得て評価した。評価結果を表3に示す。
【0140】
(実施例15)
押し出し機の吐量を下げ、またTダイのスリット間隙を調整し、表層の樹脂(A)厚さをを0.1mmに、中間層の樹脂(B)を0.3mmに、下層の樹脂(A)を0.1mmにした以外は実施例12と同じ条件で積層体を得て評価した。
【0141】
評価結果を表3に示す。
【0142】
(実施例16)
押し出し機の吐量を増し、またTダイのスリット間隙を調整して、表層の樹脂(A)を2mm厚さに、中間層の樹脂(B)を6mm厚さに、下層の樹脂(A)を2mm厚さにした以外は実施例12と同じ条件で積層体を得て評価した。評価結果を表3に示す。
【0143】
(実施例17)
無機微粒子連結体の長さが200〜250nmのものを用い、樹脂への配合量を5質量%にした以外は実施例1と同じ条件で積層体を得て評価した。評価結果を表3に示す。
【0144】
(実施例18)
押し出し機の吐量を調整し、またTダイを5層の積層が可能なTダイにして樹脂(A)と樹脂(B)が交互に積層された5層の積層体得た。樹脂層構成は、A/B/A/B/Aで各層の厚さは、0.7/1.5/0.6/1.5/0.7mmにした以外は、実施例1と同じ条件で積層体を得て評価した。評価結果を表3に示す。
【0145】
(比較例3)
無機微粒子連結体を配合しないアクリル樹脂(以下、樹脂(C)と称する)を用いた以外は実施例12と同じ条件で5mm厚さの3層積層体を得て評価した。評価結果を表3に示す。
【0146】
(結果)
実施例1〜7に係る本発明のシリカ微粒子連結体を配合した樹脂組成物は、可視光線波長よりも小さいシリカ微粒子連結体を凝集することなく、透明な非結晶の樹脂に分散配合することによって、透明樹脂の光線透過率を低減することなく、透明樹脂単独に比べて、剛性向上、熱膨張率低減、表面硬度向上を得ることができた。また、球状のシリカ微粒子を配合したメタクリル樹脂に比べ、本発明に係るシリカ微粒子連結体配合の樹脂組成物は曲げ弾性率が大きかった。
【0147】
また、実施例8〜14に示す様に本発明の樹脂組成物を積層することにより成形体の耐衝撃性を高め、温度によるソリを抑えることができた。
【0148】
このため、この樹脂組成物を用いて、射出成形、押出成形、ブロー成形により上記の特性を持つデザイン自由度の大きい成形品を得ることが可能である。また、無機ガラスの自動車ウィンドウは周囲を機械加工で仕上げることが必要であるが、射出成形でウィンドウを成形すると、周囲の加工は不必要で生産性が向上する。
【0149】
【表1】

Figure 0003862075
【0150】
【表2】
Figure 0003862075
【0151】
【表3】
Figure 0003862075

【図面の簡単な説明】
【図1】 図1は、網目状シリカを分散した無機微粒子連結体の電子顕微鏡で観察した図である。
【図2】 図2は、本発明に係る樹脂組成物(A)の車両用外装部品用途の一例を示す説明図である。
【図3】 図3a、図3bは、本発明に係る樹脂組成物(A)の車両用外板用途の一例を示す説明図である。
【図4】 図4は、本発明に係る樹脂組成物(A)の樹脂ウィンドウ用途の一例を示す説明図である。
【図5】 図5は、本発明に係る樹脂製ワイパーシステの模式図である。
【図6】 図6は、本発明に係る樹脂製ドアミラーステイの車両用外装部品用途の一例を示す説明図である。
【図7】 図7は、本発明に係る透明樹脂部と不透明樹脂部とを一体で成形したインストルメントパネルを示す図である。
【図8】 図8は、本発明に係る樹脂製ミラー、樹脂製ウィンドウを示す図である。
【図9】 図9は、本発明の樹脂製ランプリフレクターを用いたヘッドランプ部を示す横断面図である。
【図10】 図10は、本発明に係る樹脂組成物を用いたエンジンルーム内部品の一例を示す説明図である。
【図11】 図11は、本発明に係る樹脂組成物を用いたエンジンルーム内部品の一例を示す説明図である。
【図12】 図12は、本発明に係る樹脂組成物を用いた樹脂製冷却装置部品の一例を示す図である。
【図13】 図13は、本発明に係る樹脂組成物を用いた樹脂製冷却装置部品の一例を示す図である。
【図14】 図14は、本発明に係る樹脂組成物を用いた中空構造を有する樹脂一体成形体の一例を示す図である。
【図15】 図15は、本発明に係る樹脂組成物を用いた中空構造を有する樹脂一体成形体の一例を示す図である。
【図16】 図16は、本発明に係る樹脂組成物を用いた一体成形部品の一例を示す説明図である。
【図17】 図17は、本発明に係る樹脂組成物を用いた一体成形部品の一例を示す説明図である。
【図18】 図18は、本発明に係る樹脂組成物を用いた一体成形部品の一例を示す説明図である。
【図19】 図19は、本発明に係る樹脂組成物を用いた可動部と非可動部を有する成形体の一例を示す図であり、図19Aは該成形体の横断面図、図19Bは該成形体の上面図である。
【図20】 図20は、本発明に係る樹脂組成物の車両用外装部品用途の一例を示す説明図である。
【符号の説明】
1…ドアモール、2…ドアミラーのフレーム枠、3…ホイールキャップ、4…スポイラー、5…バンパー、6…ウィンカーレンズ、7…ピラーガーニッシュ、8…リアフィニッシャー、21…フロントフェンダー、22…ドアパネル、23…ルーフパネル、31…サイドガラス、32…リアガラス、41…ワイパーアーム、42…ワイパーブレード、43…弾性を有する支持部分、44…軟らかいゴム部分、45…ワイパーアーム固定用ナット穴、51…ランプ・フード・フェンダー一体樹脂成形体、52…ピラーガーニッシュ・ガラス一体樹脂成形体、53…ルーフ・フェンダ・ガラス一体樹脂成形体、54…バックドア・ガラス一体樹脂成形体、55…ドア・ガラス一体樹脂成形体、61…インストルメントパネル、62…計器類のカバー、71…フロントウィンドウ、72…ドアウィンドウ、73…リヤウィンドウ、74…樹脂製サイドミラー、81…車体側基体、82…アウタ部材、83…リフレクター、84…バルブ、85…光軸調整器、86…アウタレンズ、91…ラジエーター、92…冷却液リザーブタンク、93…ウオシャータンクインレット、94…電気部品ハウジング、95…ブレーキオイルタンク、96…シリンダーヘッドカバー、101…エンジンボディー、102…タイミングチェーン、103…ガスケット、104…フロントチェーンケース、111…ウォーターパイプ、112…O−リング、113…ウォーターポンプハウジング、114…ウォーターポンプインペラ、115…ウォーターポンプ、116…ウォーターポンププーリ、121…ウォーターパイプ、122…サーモスタットハウジング、123…サーモスタット、124…ウォーターインレット、131…フード、132…ドア、133…バックドア、134…ルーフ、135…フェンダー、136…ウィンドウ、137…トランクリッド、141…センターコンソールボックス、142…ピラーガーニッシュ、143…インストルメントパネル、151…パネル部、152…エアコンのエアダクトおよびケース、161…ルーフレール、162…ルーフパネル、181…チャンバー部、182…開閉バルブ、183…開閉バルブ、191…フィラーチューブ、192…燃料タンク、193…燃料ポンプ、194…エンジン、195…フィラーキャップ、196…ベントチューブ、197…フューエルホース、198…空気室。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resin composition containing a combination of inorganic fine particles capable of realizing improvement in rigidity, reduction in thermal expansion coefficient and improvement in surface hardness without reducing the light transmittance of a transparent resin, and high rigidity and surface hardness using the same. In addition, the present invention relates to a laminate that can improve the appearance quality by suppressing warpage of a molded product and a manufacturing method thereof, and can be suitably used for automobile window glass, interior and exterior parts, and the like.
[0002]
[Prior art]
Window glass occupies most of the outer area of an automobile and is an important part in terms of operation and appearance. With the advent of various types of bent glass, the degree of freedom in shape has increased, the area of use has increased, and there has been a demand for lighter window windows and improved safety. Accordingly, various investigations have been made on resin-made windows instead of inorganic glass. However, since the elastic modulus is smaller than that of inorganic glass, it is difficult to apply to window glass parts having a large area.
[0003]
In addition, when glass fiber is added to the resin window as a reinforcing material, the rigidity is improved. However, since the glass fiber has a diameter of about 10 μm and a length of about 200 μm, visible light is not transmitted but reflected and becomes opaque. For this reason, it is not suitable for securing the field of view for safety and is difficult to use.
[0004]
In addition, since the resin window has a smaller surface hardness than inorganic glass, it is damaged when rubbed with a wiper and is difficult to apply to a vehicle front window part. On the other hand, there is an example in which a surface curing treatment is performed with an organic silane chemical, but even this treatment is insufficient in surface hardness, scratched when used for a long time, and is difficult to use because of insufficient transparency.
[0005]
In addition, if inorganic glass is laminated to improve the rigidity of the resin window and ensure the surface hardness, the interface will peel off due to the difference in thermal expansion between the resin layer and the inorganic glass layer in the summer, and the visibility will be insufficient, making it difficult to use. It was.
[0006]
In addition, there is an example of silica sputtering for the purpose of surface hardening and rigidity improvement of resin storage desks of recent electronic parts, but this is because silica atoms are attached to the resin substrate surface in a vacuum. It is not applicable to, and productivity is low.
[0007]
In addition, since the resin window is smaller in strength and rigidity than inorganic glass, it needs to be thicker than inorganic glass to be used for a large window glass, and the effect of reducing the weight is reduced. Therefore, it becomes a subject to improve the strength and rigidity of the resin window.
[0008]
As means for solving these problems, JP-A-11-343349 discloses an example in which inorganic silica fine particles are mixed in a transparent resin. However, when these resin materials are applied to products, they are advantageous in that they are lighter and have a higher degree of molding freedom than inorganic materials, but on the other hand, they have low elasticity and low rigidity, and residual stress during molding at high temperatures. There is a problem that the return warp is generated, the appearance quality is deteriorated, and the hardness is low, so that the surface is easily damaged. For this reason, for example, transparent resin materials are used in small parts such as headlamps and sunroofs that are relatively low in rigidity and easy to surface-treat in automobiles. Has not yet fulfilled the specified functions and has not yet been fully adopted.
[0009]
In addition, for automotive exterior resin parts other than window glass or interior resin parts, degradation of external quality such as warping and narrowing of gaps due to return of residual stress at high temperature, impact resistance such as cracking against impact, and fuel efficiency The demand for improved physical properties and cost reductions such as high rigidity, light weight, impact resistance, and deformation at high temperatures, such as the weight reduction of parts used in Japan, is becoming increasingly severe. To meet these requirements for improving physical properties, improvements have been made to single resins, but the number of requirements has been increasing year by year, making it difficult to satisfy all of these requirements. It is being done. This is because by laminating, it is possible to achieve a function suitable for the purpose by effectively combining the characteristics of a plurality of resins, and to produce a high value-added product at a lower cost. In addition, the number of parts can be reduced by integral molding with peripheral parts, and costs can be reduced.
[0010]
As an improvement in physical properties in such a laminate, for example, in JP-A-6-316045, three types of transparent resins are laminated to improve impact resistance. However, in order to maintain transparency, There is a problem that the appearance quality such as unevenness due to expansion of parts or warpage due to expansion does not apply to interior and exterior parts of automobiles that are not formulated with fillers that suppress thermal expansion of There is.
[0011]
Japanese Patent Application Laid-Open No. 11-343349 discloses a resin window in which fine silica having a diameter equal to or smaller than the wavelength of visible light is blended with a transparent resin. However, the resin window is mixed in the resin or applied to the surface layer portion to obtain strength and rigidity. However, due to the single layer structure, the impact resistance against the external impact is insufficient, and problems such as warping of the molded product due to thermal distortion occur.
[0012]
Japanese Patent Laid-Open No. 6-71826 discloses a resin window in which an acrylic resin, a polycarbonate resin, or the like is laminated. In order to maintain the transparency of the resin, as in Japanese Patent Laid-Open No. 6-316045. There is no blending of fillers to suppress thermal expansion, and there is a limit to suppressing thermal expansion. Further, in order to maintain transparency, it is not possible to add a filler for improving the rigidity such as glass fiber, and when trying to improve the rigidity, the plate thickness is increased, resulting in an increase in weight and a reduction in weight.
[0013]
[Problems to be solved by the invention]
The present invention has been made in view of these conventional problems, and an object thereof is to provide a resin composition that can achieve further improvement in rigidity and reduction in thermal expansion coefficient.
[0014]
In addition, since organic resin is less rigid than inorganic materials, it is necessary to increase the thickness when applied to large parts such as automobile window glass, doors, and car body outer plate parts. Although the degree of freedom can be secured, the effect of weight reduction, which is a major aim of resinization, is diminished. Therefore, one object of the present invention is to improve the rigidity and reduce the weight without increasing the thickness of the resin material.
[0015]
In addition, since the resin material releases large residual stress at the time of molding compared to inorganic materials and heat deformation is large, for example, when applying to large parts such as automobile window glass with transparent resin material, It is necessary to design the structure to release the thermal strain from the steel part. When the structure that absorbs elongation due to thermal deformation is not sufficient, there arises a problem that the resin glass surface is wavy or the resin glass itself is broken. For this reason, the second problem of the present invention is to reduce the thermal deformation of the resin material.
[0016]
In addition, resin materials have lower hardness than steel materials, and in order to apply them to parts that are exposed to the outside, such as automotive window glass, outer panels, or interior materials or building materials that can be touched by humans, the resin surface is not easily scratched. It is necessary to improve. There is a need to provide a resin material that can be freely processed into a shape according to design specifications and can be realized at low cost, and a method for manufacturing the resin material, having high rigidity, low thermal expansion, and scratch resistance.
[0017]
[Means for Solving the Problems]
As a result of intensive studies in view of the above-mentioned object, it is a composite resin composition in which inorganic fine particle linked bodies are uniformly dispersed in a resin, and the inorganic fine particle linked body has a plurality of cylindrical inorganic fine particles linked in the length direction. However, the above-described problems have been solved by a resin composition characterized by having a chain-like or network-like shape.
[0018]
【The invention's effect】
According to the resin composition and the method for producing the same according to the present invention, it is possible to provide a resin composition capable of realizing improvement in rigidity without sacrificing transparency and impact strength by dispersing a specific fine silica compound. it can. The resin composition of the present invention is useful for exterior parts and exterior panels for vehicles and for resin windows, and can also be used for housings such as building materials and electronic devices.
[0019]
The present invention is a composite resin composition in which a hydrophobically treated inorganic fine particle conjugate is uniformly dispersed in a resin, and the inorganic fine particle conjugate comprises a plurality of cylindrical inorganic fine particles linked in the length direction thereof. It is a resin composition characterized by a chain or network shape, can be uniformly dispersed in the resin, and imparts high rigidity, low thermal expansion, scratch resistance characteristics and transparency to the resin by blending Can do.
[0020]
The present invention is a thermoplastic resin laminate in which at least one layer of the resin composition (A) and the thermoplastic resin (B) is laminated, the resin composition (A) and the thermoplastic resin (B). Is a thermoplastic resin laminate characterized by being alternately laminated, and by making a laminate containing the resin composition (A), it is particularly excellent in transparency and has high rigidity, low thermal expansion, Scratch resistance is improved, and a laminated body in which warpage is suppressed even at high temperatures is obtained.
[0021]
The present invention is a molded article for interior / exterior parts of a vehicle, a vehicle outer plate or a resin window using the thermoplastic resin laminate, which is excellent in transparency and rigidity and in which warpage is suppressed at high temperatures. By using (A) or the above laminate, it can be used effectively for large and highly rigid vehicle applications, and can also be used effectively as a highly demanding resin window especially for securing a field of view.
[0022]
The resin composition according to any one of claims 1 to 9, wherein the present invention mixes a hydrophobic treated inorganic fine particle assembly dispersed in a solvent and a resin dissolved in the solvent. According to this method, a resin composition (A) excellent in transparency and rigidity in which a specific inorganic fine particle linked body is uniformly dispersed can be easily produced.
[0023]
The present invention is a method for producing the above resin composition, characterized in that, in the process of polymerizing the monomer of the resin, a hydrophobic treated inorganic fine particle dispersion dispersed in a solvent is mixed. The resin composition (A) having excellent transparency and rigidity in which the specific inorganic fine particle linking body is uniformly dispersed can be easily produced.
[0024]
The present invention also relates to a method for producing the thermoplastic resin laminate, characterized in that lamination is performed by thermoforming and / or pressure molding, and the laminate is simply produced by thermoforming and / or pressure molding. Can do.
[0025]
When the laminate is inserted into a mold and the filling resin and the outer periphery of the insert laminate are integrally molded by an injection molding method or a compression molding method, the resin composition and the laminate are excellent in moldability. Inserted into a mold, the filling resin and the outer periphery of the inserted laminate can be integrally molded by injection molding or compression molding, and an automotive interior / exterior component molded body can be obtained without increasing unnecessary processes. Can be manufactured.
[0026]
Resin wiper system, resin door mirror stay, resin pillar, resin window with heat ray, resin mirror, resin lamp reflector, resin engine room inner cover and case, engine room inner cover and Cases and resin cooling device parts can be obtained.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
The first of the present invention is a composite resin composition in which a hydrophobically treated inorganic fine particle linked body is uniformly dispersed in a resin, and the inorganic fine particle linked body has a plurality of cylindrical inorganic fine particles in its length direction. It is a resin composition characterized by being connected and having a chain or network shape. In order to improve the strength and rigidity of resin windows, it is necessary to use high-strength and rigid molecules in view of the molecular structure of the polymer that makes up the resin. When the crystallinity increases, the transparency decreases. For this reason, in order to improve the strength and rigidity of the transparent resin, a means for uniformly dispersing and mixing the hydrophobic fine-particle linked body capable of ensuring transparency in the resin was used.
[0028]
The inorganic fine particle conjugated used in the hydrophobized inorganic fine particle ligated body is one in which a plurality of cylindrical inorganic fine particles are linked in the length direction to form a chain shape or a mesh shape depending on conditions. . In general, according to fiber reinforcement theory, the improvement in tensile strength and elastic modulus is considered to be significant when the ratio of fiber length to thickness is above a certain value, and this effect is significant when the fiber lengths are aligned in the stress direction. Is. Further, in the case of a mesh shape, the same effect as when fibers are arranged in all stress directions is obtained, and the strength characteristics are isotropic.
[0029]
In order to ensure transparency, the inorganic fine particle conjugate used in the present invention preferably has a maximum length of 380 nm or less, which is a visible light wavelength, and more preferably 28 to 350 nm.
[0030]
The inorganic fine particles forming this linking body are cylindrical, and the length (thickness) / (thickness) of the cylinder is preferably 2.5 to 350 in order to improve the strength and elastic modulus. The length is preferably 20 nm and the length is preferably 7 to 200 nm. As the inorganic fine particle conjugate used in the present invention, a material in which a plurality of these inorganic fine particles are chemically bonded in the length direction is suitable. Here, “thickness” represents the diameter of the columnar fine particles forming the connection body, and “length” represents the dimension of the longest portion of the columnar fine particles.
[0031]
As the inorganic fine particles used in the present invention, silica, titania, zirconia, alumina, potassium titanate, whiskers, carbon nanotubes, synthetic mica, and the like can be preferably used. In particular, silica, that is, silicon oxide can be most preferably used. This is because silica has transparency, has a low specific gravity, can easily be modified on its surface, and can interact with the resin. In order to produce such an inorganic fine particle conjugate, for example, sodium silicate (Na 2 O ・ SiO 2 : Water glass) as a raw material, sodium is removed by ion exchange to obtain a core sol (about 5 nm), and these fine particles are grown alone in the liquid to form a chain silica of 10 to 100 nm. At this time, reticulated silica is also obtained in the process of growing the fine particles. By concentrating this solution, a colloidal silica having a network or chain of linked inorganic fine particles can be obtained. Commercially available products can be used as the inorganic fine particles. For example, chain silica such as SNOWTEX-UP manufactured by Nissan Chemical Co., Ltd. and SNOWTEX OUP from which sodium is removed by ion exchange can be preferably used. FIG. 1 shows an electron micrograph of chain silica at 200,000 times.
[0032]
In the present invention, a hydrophobically treated inorganic fine particle linked body is used. However, the hydrophobic treatment is not particularly limited. For example, the inorganic fine particle linked with a silicone compound such as trimethylchlorosilane or t-butyldimethylchlorosilane. There is a method of alkylating the body. For example, when the inorganic fine particle conjugate is made of silica, the hydroxyl group of silica is treated with a silylating agent such as trimethylchlorosilane or t-butyldimethylchlorosilane to introduce an alkyl group. Hydrochloric acid is generated by the silylating agent, and the reaction proceeds. At this time, if amine is added, hydrochloric acid can be converted into hydrochloride to promote the reaction.
[0033]
As described above, when an inorganic fine particle conjugate having an alkyl group on the surface is used by hydrophobic treatment, the interaction with a functional group of a resin (for example, polymethyl methacrylate) is improved, and the dispersibility of the inorganic fine particle conjugate is excellent. The obtained resin composition can improve properties such as transparency and rigidity. The inorganic fine particle conjugated body can introduce an optimal alkyl group or other hydrophobic group onto its surface by appropriately selecting the type of the hydrophobizing agent used.
[0034]
In the present invention, as the resin for dispersing the hydrophobic treated inorganic fine particle conjugate, transparent organic polymer oligomers such as acrylic resins, polycarbonate resins, polystyrene resins, polyolefin resins, and polymer resins and co-polymers can be used. A polymerized resin is preferred. This is because they are highly transparent and can be suitably used, for example, for resin window applications.
[0035]
The resin composition of this invention is good in the compounding ratio of the inorganic fine particle coupling body with respect to this resin being 1-99 mass%. When the amount is less than 1% by mass, the effect of blending the inorganic fine particle conjugate is small. On the other hand, when the amount exceeds 99% by mass, the inorganic fine particle conjugate is aggregated, and the resulting resin composition may be opaque.
[0036]
Although there is no restriction | limiting in particular as a manufacturing method of the resin composition of this invention, it can manufacture by mixing the inorganic fine particle coupling body which carried out the hydrophobization process disperse | distributed to the solvent, and the resin melt | dissolved in the solvent. That is, the second of the present invention is the method for producing a resin composition as described above, characterized in that a hydrophobically treated inorganic fine particle assembly dispersed in a solvent is mixed with a resin dissolved in the solvent. is there. In obtaining the resin composition of the present invention, if the inorganic fine particle linking body is kneaded with a molten resin in a powder form, aggregation occurs and the resulting resin composition becomes opaque. Therefore, the solvent-dispersed inorganic fine particle conjugate is mixed with a transparent resin dissolved in a solvent, and a coagulating solvent is added to obtain a mixed composition of both.
[0037]
Examples of the solvent for dispersing the inorganic fine particle conjugate include paraffinic hydrocarbons such as pentane, hexane, heptane, and octane; cycloparaffinic hydrocarbons such as cyclobutane, cyclopentane, and cyclohexane; methyl ethyl ketone, toluene, xylene, and acetone. And aromatic hydrocarbons such as benzene. Although there is no restriction | limiting in particular as a density | concentration in the solution of this inorganic fine particle coupling body, It is preferable that it is 10-45 mass% from the point of the uniformity of mixing and operativity.
[0038]
In addition, the solvent for the resin solution can be appropriately selected depending on the type of the resin. For example, in the case of a (meth) acrylic polymer material containing methyl methacrylate as the main component of the monomer, acetone, aniline, etc. Aromatic and ketone organic solvents such as xylene, ethyl acetate, methyl acetate, butyl acetate, toluene, and methyl ethyl ketone can be preferably used. In the present invention, the resin composition can be prepared by kneading the resin solution and the inorganic fine particle conjugate and then removing the solvent. Examples of the coagulation solvent include alcohols such as ethanol, methanol, and butanol.
[0039]
As another preferred production method, there is a method in which the solvent-dispersed inorganic fine particle conjugate is mixed in the course of resin polymerization to obtain a mixed composition of the inorganic fine particle conjugate and resin with a coagulation solvent. That is, the third aspect of the present invention is the production of the resin composition as described above, characterized in that, during the process of polymerizing the monomer of the resin, a hydrophobic treated inorganic fine particle conjugate dispersed in a solvent is mixed. Is the method. Specifically, the inorganic fine particle linking body is mixed in the polymerization process of the resin, and a mixed composition of the inorganic fine particle linking body and the resin is obtained with a coagulation solvent. According to this production method, a hydrophobic part such as an alkyl group of an inorganic fine particle conjugate and a functional group of a resin (for example, polymethylmethacrylate) interact, and the inorganic fine particle conjugate and the resin are dissolved and mixed in a solvent. This is because the dispersibility of the inorganic fine particle conjugate is better than those of the conventional one, and the required properties are also better. The polymerization reaction may be any of suspension polymerization, solution polymerization, emulsion polymerization, bulk polymerization, and precipitation polymerization. However, in the case of precipitation polymerization, it is necessary to select a solvent that does not dissolve the polymerized polymer. For example, the solvent used in the above-mentioned various production methods is a dispersion of the inorganic fine particle conjugate and a synthetic raw material monomer such as an acrylic resin, a polycarbonate resin, a styrene resin, a polyolefin resin, and / or a solvent for each polymer. . In addition, when the surface of the fine particle linked body has an alkyl group, a good resin composition that satisfies the required items can be obtained by using an organic solvent in which the inorganic fine particle linked body is well dispersed and the monomer and polymer are dissolved. Can be obtained.
[0040]
In the resin composition of the present invention, various additives that do not inhibit transparency as necessary, for example, antistatic agents, antioxidants, heat stabilizers, ultraviolet absorbers, antioxidants, energy quenchers, flame retardants Pigments, colorants and the like may be added.
[0041]
A fourth aspect of the present invention is a thermoplastic resin laminate obtained by laminating at least one layer of the above resin composition (hereinafter also referred to as resin composition (A)) and a thermoplastic resin (B), This thermoplastic resin laminate is characterized in that the resin composition (A) and the thermoplastic resin (B) are alternately laminated. When each resin layer is bonded with an adhesive, etc., the properties of the single layer are buffered or absorbed by the adhesive layer, reducing the effect on the adjacent resin layer, and spreading the properties of the single layer to the entire laminate. I can't. However, the laminate of the present invention is one in which each resin layer is thermally welded and covers the shortcomings of the single layer, such as thermal deformation, by taking advantage of the properties such as rigidity of the single layer to improve the rigidity of the laminate. Further, warpage caused by residual stress of each layer at a high temperature can be suppressed in the entire laminated body.
[0042]
In such a laminate, the laminate can be provided with various characteristics by combining layers in which the blending amount of the inorganic fine particle conjugate of the resin composition (A) is changed. For example, the scratch resistance can be improved by providing a layer having a high blending amount of the inorganic fine particle linking body on the outermost layer of the laminate. Also, by increasing the amount of the inorganic fine particle linking body in the uppermost layer and the lowermost layer, the rigidity can be increased and the upper layer and the lower layer can be restrained to suppress thermal deformation due to residual stress at high temperatures. . Further, by increasing the blending amount of the inorganic fine particle linking body in the intermediate layer, the rigidity can be increased and the thermal deformation inhibiting force can be further increased. In addition, the amount of inorganic fine particle conjugates in the upper layer is increased, and the amount of inorganic fine particle conjugates in the lower layer is reduced to provide a gradient in the amount of inorganic fine particle conjugates in the laminate. The direction of warping due to thermal deformation can be controlled by changing the distribution, and it is also possible to reduce the blending amount of the inorganic fine particle conjugate in the upper layer. That is, the resin composition (A) and the thermoplastic resin (B) are thermally welded to obtain a laminate, thereby drawing out the characteristics of each single layer and increasing the elastic modulus of the laminate and increasing the rigidity. Scratch resistance can be increased by increasing the amount of inorganic fine particle conjugates in the outermost layer and adjacent layers, and thermal deformation can be suppressed by forming a layer having binding force. Unevenness on the surface due to warping and deformation can be eliminated, and appearance quality can be improved. Furthermore, by blending the inorganic fine particle linking body, the thermal expansion of each resin layer can be suppressed low, and the thermal expansion of the laminate itself can be achieved. If the resin layers are joined together with an adhesive or the like without thermal welding, the properties of the single layer are buffered or absorbed by the adhesive layer and the effect on the adjacent resin layer is reduced, and the properties of the single layer are propagated throughout the entire laminate. I can't let you.
[0043]
The inorganic fine particle linking body can be blended in each layer of the laminate or in a part of the resin layer such as only the surface layer or the lower layer. It is more preferable to blend in each layer from the viewpoint of improving the rigidity of the laminate. A blending amount gradient can be provided from the upper layer to the lower layer according to the application. In any case, a thermoplastic resin laminate in which at least one layer of the resin composition (A) and the thermoplastic resin (B) is laminated, the resin composition (A) and the thermoplastic resin (B). Are alternately laminated, high rigidity, low thermal expansion, scratch resistance are improved, and a laminate in which warpage is suppressed even at high temperatures is obtained.
[0044]
As the thermoplastic resin (B), polycarbonate resin, styrene resin, poly-4-methylpentene-1, thermoplastic polyurethane resin, and the like can be laminated, and it is particularly preferable to use polycarbonate resin. . Here, the polycarbonate-based resin is a polymer derived from a divalent phenol-based compound typified by bisphenol A, and may be produced by any of the phosgene method, the transesterification method, and the solid-phase polymerization method. Furthermore, in addition to the conventional polycarbonate resin, a polycarbonate resin polymerized by a transesterification method may be used.
[0045]
The thickness of the laminate is 0.5 to 10 mm, more preferably 1 to 5 mm. If it is less than 0.5 mm, it may be difficult to maintain the shape after shaping even if the blending amount of the inorganic fine particle conjugate is increased. On the other hand, if it exceeds 10 mm, the intermediate layer cannot be constrained and warping occurs at a high temperature, which may deteriorate the appearance quality. In addition, the thickness of each resin layer of a laminated body can select suitable thickness within the said range with a use and required performance.
[0046]
Although there is no restriction | limiting in particular as a manufacturing method of the laminated body of this invention, It is preferable to manufacture a laminated body by thermoforming or pressure molding. That is, the fifth aspect of the present invention is a method for producing a laminate as described above, wherein lamination is performed by heat molding and / or pressure molding.
[0047]
For example, as such a first method, an extruder according to the type of the resin composition (A), the thermoplastic resin (B), or the like is used, and a molten resin obtained by heating and melting these is co-extruded and the number of layers is determined. This is a method of forming a sheet with a T-die provided with a slit and thermally welding adjacent resin layers. When the temperature of the extruder and the T-die is maintained at substantially the same temperature and the sheets made of the resins (B) or the resin composition (A) are merged to form a laminate, the bonding surfaces of the sheets are extremely small. Although a thin solidified film is formed, the joined surface is remelted by heat inside the resin after joining, and a mixed layer in which the resin composition (A) and the resin (B) are diffused is formed on the joined surface. A laminated body in which the layers are firmly bonded to each other is obtained.
[0048]
In the second method, the resin composition (A) or the single layer sheet of the resin (B) or the laminate produced by the first method is heated using a press having a heating plate, and then This is a method for producing a laminate by compression molding. The laminate of the present invention can be produced by compressing and molding a plurality of the single-layer sheets. In the second method, it is preferable to insert a detachable panel heater on the surface corresponding to the joining surface, raise the surface temperature of the joining surface to bring the surface into a molten state, and then take out the panel heater and perform compression molding.
[0049]
The third method uses a mold that can move the mold back and forth with a two-color injection molding machine and can change the cavity volume, and immediately after the single-layer sheet of the resin composition (A) is injection molded, Retreat and fill the cavity space formed by retraction with resin (B) during or immediately after retraction. A very thin solidified film is formed on the surface layer of the resin composition (A). By filling the resin (B) thereon, a molten resin (B) filled with the resin composition (A) solidified film on the bonding surface is formed. ) Is re-melted with heat to form a layer in which the resin composition (A) and the resin (B) are diffusively mixed on the joint surface, thereby forming a strong joint surface. This process is repeated to form a laminated body having a predetermined laminated structure. When the mold temperature and the resin temperature to be injected are set 20 to 50 ° C. higher than that of normal injection molding, a heat-welded laminate can be obtained. A suitable method can be selected from the above production methods from the size of the laminate, the number of layers, and the like.
[0050]
Various additives that do not impair the transparency of the resin composition (A) or resin (B) constituting the laminate, for example, an antistatic agent, an antioxidant, a heat stabilizer, and an ultraviolet absorber as necessary. , Antioxidants, energy extinguishing agents, flame retardants, etc. can be added to make a laminate having these characteristics, and the lower layer of the laminate is a colored layer containing a pigment or colorant, transparent to this It is also possible to form a laminate having a colored layer and a transparent layer by laminating layers.
[0051]
A sixth aspect of the present invention is a vehicle interior / exterior part molded body, a vehicle outer plate and a resin window using the resin composition or thermoplastic resin laminate described above.
[0052]
Since the resin composition or laminate of the present invention is excellent in transparency and rigidity and has little warpage at high temperatures, it is suitable for use in exterior parts for vehicles and outer panels for vehicles. For example, as shown in FIG. 2, such as door molding 1, door mirror frame 2, wheel cap 3, spoiler 4, bumper 5, blinker lens 6, pillar garnish 7, rear finisher 8, head lamp cover (not shown), etc. Vehicle exterior parts molded body, as shown in FIGS. 3A and 3B, vehicle outer plates such as a front fender 21, a door panel 22, a roof panel 23, a hood panel 24, a trunk lid 25, and a back door panel (not shown) are provided. Can be mentioned. For example, the present invention can be applied to a vehicle windshield (not shown), a side glass 31, a rear glass 32, and the like as shown in FIG.
[0053]
As described above, in the present invention, a colorant such as a pigment can be further kneaded into the resin composition (A), or a colored layer can be inserted into the laminate to obtain a part having a desired color tone. . The laminate of the present invention may be a transparent laminate containing no colorant, or a laminate comprising a transparent layer and a colored layer. For this reason, in addition to the automobiles described above, appearance quality such as aesthetics, smoothness, and transparency is required, and applications that require high rigidity and surface scratch resistance, such as building exterior materials, interior materials, and railway vehicles. It can also be used for interior materials.
[0054]
As a method of manufacturing various members including such vehicle parts and building interior materials, injection molding, vacuum / pressure forming, etc. may be appropriately selected according to the parts. A general glass fiber reinforced resin has glass fibers broken due to repeated shearing stress, so that its physical properties are gradually lowered and recyclability is low. However, the resin composition (A) of the present invention has the above-mentioned inorganic fine particle conjugate. Since it is used, it is difficult to receive shear stress, and the deterioration of physical properties can be suppressed.
[0055]
In addition, by using the laminate of the present invention, it is formed by a known resin molding method such as vacuum molding, vacuum pressure method, heat compression method, blow molding method, etc., resin glass, exterior parts such as automotive outer panels, Alternatively, interior parts for automobiles can be formed. Further, the laminated body can be inserted into a mold, and the filling resin and the outer peripheral portion of the inserted laminated body can be integrally molded by an injection molding method or a compression molding method to produce an automotive interior / exterior component molded body. . According to the integral molding, a target member can be obtained without requiring a complicated process.
[0056]
A seventh aspect of the present invention is a resin wiper system, a resin door mirror stay, and a resin pillar characterized by comprising the resin composition. The resin composition of the present invention has high rigidity and high heat resistance, and is excellent in dimensional stability during heat / molding and transparency, so that it is required to improve visibility such as a wiper system or a pillar. Suitable for parts application.
[0057]
Conventional wiper systems are composed of steel with black paint finish and black rubber, which may impede visibility during low-speed operation. In addition, the conventional door mirror stay is made of a resin having the same color as that of the outer plate or a black paint finish, and the visibility at the time of turning left and right may be hindered. In addition, the conventional pillar is made of steel, and the front pillar and the center pillar may be obstructed during normal driving or turning left and right, and the rear pillar may be obstructed during backward movement or backward confirmation. In this case, if a transparent resin material is used for these parts, the field of view is improved, but it is difficult to satisfy high rigidity, heat resistance, and dimensional stability during heat / molding. It was difficult to solve the problem. However, the resin composition of the present invention is a transparent material having high rigidity, a low coefficient of thermal expansion, and a low coefficient of thermal shrinkage, and the above problems have been solved by using the resin composition. Moreover, the transparency of the parts can contribute not only to the improvement of visibility but also to the improvement of design.
[0058]
As an example, FIG. 5 shows a schematic diagram of a wiper system. The wiper system includes a wiper arm (41) and a wiper blade (42), and operates so as to draw a semi-arc around the nut hole (45) for fixing the wiper arm. The wiper blade (42) is generally composed of an elastic support portion (43) and a soft rubber portion (44). In the wiper system of the present invention, at least one of a wiper arm, a wiper blade, and a wiper blade support portion is provided. The resin composition of the present invention is used as a transparent material. In the wiper system of the present invention, it is preferable to use silicon rubber or the like having high durability and relatively high transparency as the rubber portion. Moreover, you may prepare as a support part of a wiper blade using the resin composition which added the appropriate quantity of acrylic rubber components to the resin composition of this invention. This is because moderate elasticity can be imparted to the support portion of the wiper blade. As such a resin composition, for example, an acrylic rubber (ethyl acrylate, butyl acrylate or a copolymer thereof, for example, NipolAR31 manufactured by Nippon Zeon Co., Ltd. is used with respect to 100 parts by mass of the resin composition of the present invention. .) Is added to 1 to 30 parts by mass.
[0059]
As the door mirror stay and resin pillar of the present invention, the resin composition of the present invention is formed as a transparent material into a door mirror stay and a pillar, and a multilayer laminate in which the resin composition of the present invention is laminated with other resins. May be. Such a multilayer laminate may contain at least one layer composed of the resin composition of the present invention, preferably the outermost layer and the lowermost layer of the laminate, and more preferably the resin composition layer also in the intermediate layer. Is provided. By setting it as a multilayer laminated body, other addition functions other than the resin composition of this invention can be added. As the thickness of each layer when using a multilayer laminate, an optimum thickness can be selected from the thickness of the final molded product and the number of laminated layers. Other resins in the case of such a multilayer laminate include polycarbonate, polystyrene, and styrene / methyl methacrylate copolymer. In addition, the thermoplastic resin laminate of the present invention can also be used as the multilayer laminate. A method for producing a door mirror stay or a resin pillar using the resin composition of the present invention or the multilayer laminate is not particularly limited. In addition to molding the door mirror stay and pillar as individual parts, if the door mirror stay and pillar can be used, the door mirror stay and the front pillar, each pillar and the resin roof can be used, for example, by a method of manufacturing an integrally molded body described later. It can also be formed as an integral molded body with the panel.
[0060]
The eighth aspect of the present invention is a resin molded body having a transparent part and an opaque part, wherein at least the transparent part comprises the resin composition. The resin composition of the present invention has high rigidity and high heat resistance, and has excellent dimensional stability during heating / molding, chemical resistance, and transparency, and thus has a transparent part and an opaque part. Can also be suitably used for applications of a resin molded body integrally molded. Such a resin molded body will be described by taking an automobile part as an example.
[0061]
In automobiles, transparent parts such as various lamps, covers and glass, and opaque parts such as outer plates and various interior parts are mixed. These parts are required to have various different characteristics such as transparency, rigidity, heat resistance, low linear expansion rate, low molding shrinkage rate, chemical resistance, etc. Integration with other parts was difficult. However, since the resin composition of the present invention can be easily molded by injection molding, vacuum pressure molding, or the like, the resin composition of the present invention is used as a transparent material to provide high rigidity, high heat resistance, low linear expansion coefficient, low The transparent part and the opaque part can be integrally formed while ensuring the molding shrinkage ratio and high chemical resistance, and the number of parts and the number of processes can be reduced and the weight of the parts can be reduced. Further, by integrally forming the transparent portion and the opaque portion, the contour line that has been conventionally divided can be formed by one continuous line, so that the appearance of the component can be improved. More specifically, a headlamp that requires transparency is in contact with other opaque parts such as a bumper, a front grille, a fender, and a hood around the headlamp. If these are integrally molded, the number of parts can be reduced, and the integrated parts can be assembled, so that the number of processes during assembly can also be reduced. In particular, since the resin composition of the present invention is excellent in heat resistance, there is no problem that the heat source of the lamp is close and the resin melts. Conventional headlamps are made of polycarbonate resin and thus have low light resistance. When exposed to sunlight, they turn yellow and require a surface coating. However, such a problem is solved when the resin composition of the present invention is used.
[0062]
It does not restrict | limit especially as a manufacturing method of such a resin composition. For example, there is a glass for automobiles that requires transparency, and it is called side glass attached to a door, back door glass, rear water glass bonded to a rear fender and a roof, rear glass, and the like. Side glass and back door glass have a structure in which glass is disposed between a door outer and a door inner. A door outer and a door inner are formed in advance using a door outer and a door inner, and the resin composition of the present invention is poured into the hollow portion, whereby the door outer, the door inner and the glass can be integrally formed. Similarly, the pillar garnish and the reactive water glass can be integrated. The resin molded body of the present invention is shown in FIG. 6, but is not limited to the resin molded body in which the pillar garnish and the reactor water glass are integrated, but the lamp / hood / fender integrated resin molded body (51), the pillar garnish / glass integrated. There are a resin molded body (52), a roof / fender / glass integrated resin molded body (53), a back door / glass integrated resin molded body (54), a door / glass integrated resin molded body (55), and the like. In addition, what is necessary is just to install a door lock, a wiper motor, etc. in the hollow part of components by a post process.
[0063]
Furthermore, in the case of instrument panels as interior materials for automobiles, instruments, their transparent covers, and cluster lids have conventionally been made as separate parts. However, when the transparent resin portion and the opaque resin portion are integrally molded using the resin composition of the present invention, several types of instrument panels are previously formed by integrating the instrument panel (61) and the instrument cover (62). These parts can be integrated, the number of parts can be reduced, and the weight can be reduced. FIG. 7 shows a schematic diagram of such an instrument panel.
[0064]
In addition, the resin composition of the present invention can be used to form a member having high strength and high rigidity in which a part of the resin molded body is a transparent part and the other part is opaque. For example, when the resin composition of the present invention is used for a part of the roof, the part can be made transparent, and a transparent roof can be obtained without providing a glass sunroof. In the resin molded body, the opaque portion may be colored.
[0065]
In the resin molded body having a transparent part and an opaque part in the present invention, in order to obtain a resin molded body having a colored opaque part, a method using a colored raw resin, a method of coloring by coating or printing on an opaque part, or There is a method of using a colored sheet as an opaque resin.
[0066]
As a method of preparing the colored raw material resin, in addition to a method in which the pigment is dispersed in advance in the raw material resin, the raw material resin pellet and the pigment pellet are simultaneously melted and kneaded and injected into a mold using an injection molding machine. There is a method for obtaining a colored resin. In order to produce the resin molded body of the present invention using the colored resin, the mold is subsequently opened or a molten resin passage is newly formed, and a transparent molten resin is formed in the mold cavity using another cylinder. Can be injected. Thereby, a resin molded body having a transparent portion and a colored opaque portion can be produced. Either the opaque resin or the transparent resin may be injected first.
[0067]
In order to form an opaque portion colored by painting or printing, a transparent resin is previously melted to form a desired resin molded body, and then painted or printed from the front or back surface of the resin molded body to be colored and opaque. It is a method to ensure. It is also possible to perform coating or printing before shaping the molten resin, and then shaping.
[0068]
When using colored sheets as opaque resin, pre-colored opaque sheet is pre-shaped and placed in the mold, then molten transparent resin is injected into the mold, and the resin is cooled and solidified. Then, if it is taken out from the mold, the resin molded body of the present invention can be obtained.
[0069]
Further, according to the above method, for example, as a roof / fender / glass integrated resin molded body, the glass portion is not limited to a resin molded body having a transparent portion and the roof and the fender are opaque. The part may be a transparent part, and the fender, the glass, and the remaining part of the roof may be an opaque resin molded body.
[0070]
Furthermore, the resin molded body in which the transparent portion and the opaque portion of the present invention are integrally molded can be constituted by the resin composition of the present invention and a pigment, but a multilayer in which the resin composition of the present invention and another resin are laminated. It is also possible to form a laminate. Such a multilayer laminate may contain at least one layer composed of the resin composition of the present invention, preferably the outermost layer and the lowermost layer of the laminate, and more preferably the resin composition layer also in the intermediate layer. Can be provided. By using a multilayer laminate, it is possible to impart additional functions that cannot be expressed only by the resin composition of the present invention. In addition, the kind of other resin which comprises a multilayer, and the thickness of each layer can be suitably selected according to the use of a resin molding.
[0071]
According to a ninth aspect of the present invention, there is provided a resin window with a heat ray, a resin mirror, a resin lamp reflector, a resin engine room inner cover and case, and a resin cooling device comprising the resin composition of the present invention. It is a part.
[0072]
The resin composition of the present invention has high rigidity and high heat resistance, and is excellent in dimensional stability during heating / molding, chemical resistance, and transparency. For example, a resin window, a resin mirror, a lamp reflector, It is suitable for the use of parts such as engine room covers and cases, and the number of parts, the number of processes, and the weight can be reduced. Furthermore, by using the resin composition of the present invention as a transparent material, it becomes possible to substitute materials for parts that require transparency, and antifogging properties and visibility are improved. For example, resin windows such as a rear window (73), a door window (72), and a front window (71) shown in FIG. 8 are provided with heat ray heaters that can heat the inside and the surface of the molded body in order to provide an antifogging function. May be provided. When a conventional transparent resin material is used, the heat resistance and thermal expansion of the resin material by a heat wire heater become problems, but these problems do not occur when the resin composition of the present invention is used. Further, since the resin composition of the present invention has high rigidity, it can be applied to large parts such as the front window (71), the door window (72), the rear window (73), and the weight can be reduced. In addition, as a formation method of a heat ray heater, the method of insert-molding the heat ray part formed into a film, the method of forming a heat ray part in a room inner surface by vapor deposition, application | coating, printing method etc. are mentioned, for example. Further, when the resin side mirror (74) (see FIG. 8) is manufactured using the transparent resin of the present invention, the weight can be reduced as compared with the case of using conventional glass or transparent resin, and a heat wire heater is provided for this. It is also possible to provide an antifogging function. In addition to the side mirror shown in FIG.
[0073]
FIG. 9 shows a cross-sectional view of the automobile lamp. A reflector (83) is arranged inside an outer member (82) fixed to the vehicle body side base (81), and a valve (84) and an optical axis adjuster (85) are connected to the reflector, and the outer member is Further, an outer lens (86) is fitted. When a reflector is formed using a conventional resin material, heat resistance, linear expansion coefficient, and linear expansion anisotropy may be inferior, but these problems can be solved by using the resin composition of the present invention. In particular, since the resin composition of the present invention has high rigidity, it can be light and secure high heat resistance, and can be a lamp reflector excellent in dimensional stability and surface smoothness, such as a reflector such as a headlamp, fog lamp, rear combination lamp, or the like. It can be suitably used for a headlamp sub-reflector and the like. As a method for forming the reflective portion, for example, a method of insert molding the reflective film portion when manufacturing the member, a method of forming a vapor deposition film on the reflective portion after the member is molded by injection molding / press molding, etc. There is.
[0074]
In addition, the resin composition of the present invention can be used for engine room covers and cases. FIG. 10 and FIG. 11 show the inside of the engine room. Since the resin composition of the present invention is excellent in transparency, heat resistance, chemical resistance, and rigidity, it can be used in an engine room having severe temperature conditions and can be a lightweight part. Examples of such parts include a radiator (91), a coolant reserve tank (92), a washer tank inlet (93), an electric parts housing (94), a brake oil tank (95), a cylinder head cover (96), and an engine body. (101), timing chain (102), gasket (103), front chain case (104), and the like. Moreover, since the resin composition of the present invention is transparent, it is possible to improve visibility in the tank or cover such as the washer tank inlet, the electrical component housing, the brake oil tank, the cylinder head cover, and the timing belt cover.
[0075]
Since the resin composition of the present invention can be made into a lighter component having excellent heat resistance, chemical resistance, and rigidity and strength, it is suitable for use in components used in contact with cooling water in an automobile engine room. used. Such resin cooling device parts are shown in FIGS. For example, the water pipe (111), O-ring (112), water pump housing (113), water pump impeller (114), water pump (115), water pump pulley (116) shown in FIG. 12, shown in FIG. Examples include radiator tank parts such as a top and base of a radiator tank such as a water pipe (121), a thermostat housing (122), a thermostat (123), and a water inlet (124), and parts such as valves. When the resin composition is used, the practical value is high because weight reduction, chemical resistance improvement, and fuel consumption improvement are achieved.
[0076]
In addition, although each said component of this invention can be comprised only with the resin composition of this invention, it is also possible to comprise with the multilayer laminated body which laminated | stacked the resin composition of this invention with the other resin material, for example. Such a multilayer laminate may contain at least one layer composed of the resin composition of the present invention, preferably the outermost layer and the lowermost layer of the laminate, and more preferably the resin composition layer also in the intermediate layer. Can be provided. By using a multilayer laminate, it is possible to impart additional functions that cannot be expressed only by the resin composition of the present invention. In addition, the kind of other resin which comprises each layer, the thickness of each layer, etc. can be suitably selected according to the intended purpose.
[0077]
According to a tenth aspect of the present invention, there is provided a resin integrated molded body having a hollow structure communicating with the atmosphere and / or a sealed hollow structure, comprising the resin composition. As described above, the resin composition of the present invention has high rigidity, high heat resistance, and excellent dimensional stability during heat / molding, and thus has a hollow structure such as a door, roof, hood, etc. Suitable for parts application. Automobile outer plates and interior / exterior components are composed of steel plates and resin panels, and many components have a hollow structure in which an auxiliary machine or the like is mounted. For example, the side door and the back door have a hollow structure made of steel plates on the outside and inside, a resin panel is attached to the inner steel plate in the assembly process after painting, and various auxiliary machines are attached in the hollow structure. In addition, the roof, hood, trunk lid, back door, etc. are made of steel plates for the outer plate and the reinforced rain hose, and the resin parts are attached to the inside after painting. Since these parts having a hollow structure are large and require rigidity and dimensional stability, it has been difficult to perform integral molding with conventional resin materials. However, when the resin composition of the present invention having high rigidity, low thermal expansion coefficient, and low thermal shrinkage ratio is used, integral molding becomes possible, and the number of parts, the number of processes, and the weight of these parts can be reduced.
[0078]
The resin integrated molded body of the present invention can be composed of only the resin composition of the present invention, but it can also be composed of, for example, a multilayer laminate obtained by laminating the resin composition of the present invention with other resin materials. Such a multilayer laminate may contain at least one layer composed of the resin composition of the present invention, preferably the outermost layer and the lowermost layer of the laminate, and more preferably the resin composition layer also in the intermediate layer. Can be provided. By using a multilayer laminate, it is possible to impart additional functions that cannot be expressed only by the resin composition of the present invention. The kind of other resin constituting the multilayer laminate, the thickness of each layer, and the like can be appropriately selected according to the purpose of use. In addition, the thermoplastic resin laminated body of this invention can also be used as such a multilayer laminated body.
[0079]
The resin-integrated molded article of the present invention can improve the designability, touch and texture, and improve the merchantability by providing a decorative layer such as a skin material or a design printing layer on the outermost surface layer. For example, a molded body provided with a skin material such as a brushed sheet, an embossed pattern sheet, a laser pattern sheet, and a woodgrain sheet on the outermost surface layer can be used for the roof interior side, pillar garnishes, instrument panels, and the like. When the above multilayer laminate is used, the design print layer may be provided in the intermediate layer, and glossiness and depth can be enhanced by using a transparent material for the surface layer.
[0080]
Moreover, the resin integrated molded body having a hollow structure of the present invention can improve heat insulation performance and sound insulation performance by enclosing gas, liquid, solid or a mixture thereof in the hollow portion. As the encapsulant, gases such as nitrogen, argon, carbon dioxide, and air are preferred when transparency is required, and when transparency is not required, the gas is encapsulated by heating at the time of encapsulation in addition to the aforementioned gases. Paraffin and wax that become solid at room temperature later are preferable. With the above-mentioned encapsulating material, it is possible to maintain a comfortable vehicle interior environment by suppressing the escape of cold heat and intrusion of high temperature outside air in the summer and suppressing the escape of heat and air intrusion in the winter. In addition, the double wall structure having a hollow portion can mitigate or absorb noise energy from the outside and ensure a quiet vehicle interior environment. Moreover, if this structure is applied to a hood, the radiated sound and radiant heat from the engine room can be reduced.
[0081]
The manufacturing method of the integrally molded body having a hollow structure of the present invention is not particularly limited, and a general vacuum / pressure forming method, injection molding method, blow molding method, press molding method, etc. can be used. Can be suitably used.
[0082]
In the first method, first, two resin sheets made of the resin composition of the present invention are fixed to a holder having a pressurized fluid introduction path, and the holder is sealed by a known method. To form a sealed space. Each sheet is heated above the deflection temperature under load and set in an open mold, and then the outer periphery of the softened sheet is pressed and welded with the mold. While welding or after welding, pressurizing fluid is injected into the sealed space between the two sheets, and after expanding / extending the sheet, the pressurizing fluid is cooled until the mold is cooled by closing the mold The pressure is maintained and a hollow structure is formed. Preferably, a mold provided with a vacuum hole is used, and vacuum suction is used together with the sheet expansion to enhance the adhesion between the mold surface and the sheet. When vacuuming is used, the transferability of the molded product can be improved. That is, the eleventh aspect of the present invention is to heat two resin sheets comprising the above resin composition, insert them into an open mold, press the outer peripheral portion of the sheet, and weld the outer peripheral portion. Alternatively, a resin-integrated molding is characterized by injecting a pressurized fluid between sheets after welding and expanding the sheet and / or expanding, then closing the mold and maintaining a pressurized fluid pressure to form a hollow structure. It is a manufacturing method of a body.
[0083]
The second method is to inject a pressurized fluid into the molten resin while filling the molten resin composition of the present invention in a closed mold, or retreating the mold and expanding the cavity volume after filling. This is a method of forming a hollow structure.
[0084]
The third method is to insert one or two resin sheets containing the resin composition of the present invention into the open mold cavity surface, and between the two sheets or one sheet with the mold closed. This is a method for producing a resin integrated molded body in which a pressurized fluid is injected into the molten resin while expanding the cavity volume while filling the back surface of the sheet with molten resin and / or after filling. For example, one resin sheet made of the resin composition of the present invention is inserted into the cavity surface on one side of the mold in an open state, and the cavity volume is expanded by filling the molten resin on the back surface or retracting the mold after filling. While injecting pressurized fluid inside the molten resin to form a hollow structure, or using two resin sheets, insert a sheet into the cavity surface on both sides of the mold and fill the molten resin between the sheets to expand the cavity volume Then, a pressurized fluid is injected to form a hollow structure. The filling resin to be used may be any resin that is in close contact with the sheet comprising the resin composition of the present invention, and preferably has a solubility parameter (SP value) close to that of the resin composition of the present invention. As such a filling resin, any one or more of the thermoplastic resins (D) used in the thermoplastic resin laminate can be used.
[0085]
14 and 15, for example, a hood (131), a door (132), a back door (133), a roof (134), a fender ( 135), window (136), trunk lid (137), center console box (141), pillar garnish (142), instrument panel (143), headlining and the like. These parts can be molded simultaneously and integrally with inner / outer and accompanying parts, rain hoses, etc., and the number of parts and the number of processes can be reduced. Furthermore, an additional function can be provided by enclosing gas, liquid, solid, or a mixture thereof in the hollow portion. For example, a hood can be integrated with a rain hose and can be provided with sound insulation and heat insulation functions, a roof can be integrated with a head lining and insulation and sound insulation functions can be provided, and a door and fender can be provided with inner / outer Integration is possible.
[0086]
The twelfth aspect of the present invention is an integrated structure characterized by integrating two or more types of parts having different functions, each comprising at least two types of functions, comprising the resin composition. It is a molded part. Here, the different functions include, for example, a display function such as an instrument panel, a ventilation function such as an air conditioner duct, and a fixing function such as a roof rail. The resin composition of the present invention has high rigidity and high heat resistance, and has various functions such as heat / molding dimensional stability, chemical resistance, and the like. It can be applied, and by integrally molding these, two or more types of parts having different functions can be integrated to form an integrally molded part in which two or more types of functions are given to one part. This is suitable for integration of large parts, so-called modularization and integration (integration), and it is possible to reduce the number of parts, the number of processes and the weight while maintaining high quality. For example, the instrument panel shown in FIG. 16, which is a large interior part, is currently made separately from the panel part (151), the air duct and case (152) of the air conditioner, and the cross car beam (steering cross member). It is assembled on the production line. When trying to integrally mold a panel part and an air duct or case of an air conditioner with a conventional resin material, sinks and distortion due to molding shrinkage, expansion during heating, etc. are problems because of large and complicated parts, Such a problem can be solved by using the resin composition. In addition, since the resin composition of the present invention has high rigidity, the entire part can be made into a structural body by such integral molding, and the cross car beam (steering cross member) that conventionally uses steel is eliminated. Is possible. Further, by using the resin composition of the present invention, it is possible to integrally form a bracket or the like that has to be retrofitted with steel. In addition, by molding a decorative material such as a skin material into the mold during integral molding and insert molding, integral molding with the decorative material becomes possible. The same effect can be obtained even when applied to a door, for example. The current door inner panel is mainly made of steel, and various parts such as side window guide rails, regulators, door locks and speakers are assembled on the production line. By using the resin composition of the present invention, a door inner panel, a guide rail, a speaker housing, and the like can be integrally formed.
[0087]
FIG. 17 shows another example of the integrally molded part of the present invention. As shown in FIG. 17, when the roof rail (161), which is a large exterior component, is taken as an example, it can be integrally formed with the roof panel (162) made of the resin composition of the present invention described above. Since the roof rail is heavy and is used in a severe environment in terms of temperature, the conventional resin materials have particularly had problems of rigidity and heat resistance. However, such a problem can be solved by using the resin composition of the present invention. The same effect can be obtained even when applied to a spoiler, for example, and can be integrally formed with the trunk lid made of the resin composition of the present invention described above.
[0088]
FIG. 18 shows a radiator core, which is a large body part. Currently, resin-made radiator cores are emerging as front-end modules. However, when the resin composition of the present invention is used, it can be made into a lighter component with excellent heat resistance, chemical resistance, and rigidity and strength. A shroud, a bracket, and the like can be integrally formed. In particular, when the resin composition of the present invention is used, transparent parts such as a reservoir tank of a radiator and a headlamp cover can be integrally formed, and in addition, a bumper reinforcing material that has been separately provided can be integrated. It becomes. In addition, when an air cleaner, a throttle chamber, or the like, which is a part in the engine room, is used as an example, these can be integrated by using the resin composition of the present invention having excellent heat resistance and chemical resistance and low linear expansion. . Conventionally, such integration has been attempted, but the engine room is in a harsh environment due to high temperatures and chemicals such as oil, and this countermeasure has been an issue with conventional resin materials. Such a problem can be solved by using an object. The same effect can be obtained even when applied to an intake manifold or a cylinder head cover, and can be integrally formed with the aforementioned parts.
[0089]
The integrally molded part of the present invention can be composed of only the resin composition of the present invention, but can also be composed of a multilayer laminate in which the resin composition of the present invention is laminated with other resin materials. Such a multilayer laminate may contain at least one layer composed of the resin composition of the present invention, preferably the outermost layer and the lowermost layer of the laminate, and more preferably the resin composition layer also in the intermediate layer. Can be provided. By using a multilayer laminate, it is possible to impart additional functions that cannot be expressed only by the resin composition of the present invention. An example of such a multilayer laminate is the thermoplastic resin laminate.
[0090]
Since the resin composition of the present invention has high rigidity and high heat resistance and excellent dimensional stability during heat / molding, when it is formed as an integrally molded part, for example, a movable part such as a throttle chamber is not It is suitable for applications of parts having a movable part. That is, many parts having a movable part and a non-movable part are used in an intake / exhaust system part and an air conditioner unit of an automobile. These parts mainly control the flow of gas such as air, and are composed of a cylindrical part that serves as a flow path for gas and a lid that can be opened and closed to control the flow of gas. For example, a throttle chamber or an air conditioner unit Each door can be illustrated, but airtightness is important in these parts. When the cylindrical portion and the lid portion of these parts are molded using a conventional resin material, the molding shrinkage rate and the thermal expansion rate are large, so that the dimensional accuracy cannot be increased and the airtightness of the opening / closing portion becomes a problem. In addition, particularly when applied to parts in the engine room, heat resistance is also required, which is also a problem. However, these problems can be solved by using the resin composition of the present invention having a low thermal expansion coefficient, a low thermal shrinkage ratio, and a high heat resistance, and a component having excellent airtightness can be obtained. Furthermore, since the resin composition of the present invention is highly rigid, it is possible to reduce the weight of these parts and thereby improve the response.
[0091]
The molded body having a movable part and a non-movable part of the present invention may be assembled after separately molding the movable part and the non-movable part using, for example, an injection molding method. It is preferable to integrally mold the movable part and the non-movable part by a method. This is because airtightness is further improved and the number of processes and parts can be reduced. Taking the throttle chamber shown in FIG. 19 as an example, it can be manufactured by the following method, for example.
[0092]
The throttle chamber has a cylindrical chamber part (181) which is a non-movable part, and an open / close valve (182) and an open / close valve (183) which are movable parts. First, set the metal shaft for the open / close valve in the two-color molding die, then injection mold the cylindrical chamber, and then retract the slide core to form the disc-shaped open / close valve. A disk-like open / close valve is injection molded. At this time, the metal shaft and the disc-shaped on-off valve are integrated. According to the present invention, the movable portion is an open / close lid that controls the gas flow, and the non-movable portion can be preferably applied to a cylindrical molded product that introduces a flowing gas.
[0093]
Since the resin composition of the present invention is excellent in the barrier property, gas barrier property, and chemical resistance of hydrocarbon fuels, it is a series of fuel systems such as parts or containers for storing hydrocarbon fuels, for example, fuel tanks for vehicles. It is suitable for parts and household goods such as kerosene containers. FIG. 20 shows a resin fuel tank in a vehicle such as an automobile, which is such a component or container. A fuel system in which gasoline, which is a hydrocarbon fuel, is injected and stored in a fuel tank (192) through a filler tube (191), and then the gasoline is pumped to an engine (194) by a fuel pump (193). It has become. The fuel system parts to which the resin composition of the present invention can be applied include a fuel tank (192), a filler cap (195), a vent tube (196), a fuel hose (197), a fuel cut-off valve, a delivery pipe, and an evaporator. Tubes, return tubes, fuel sender modules and the like. The fuel tank is the largest component among the fuel system components of these vehicles. In recent years, resinization has progressed, and the amount of stored fuel has increased by about 10 liters and the weight has been reduced by about 25% due to the effect of increasing the degree of freedom of part shape. Due to this advantage, the expectation for the plasticization of the fuel tank is further increased. Here, the present state and problems of the resinization of the fuel tank are described in detail.
[0094]
Conventionally, olefinic HDPE (high density polyethylene) has been used as a base material resin, and molding has been performed by a blowing method. Although there was no significant change in these materials and construction methods, the layer structure of the tank changed significantly. For example, it was initially a single-layer fuel tank, but with the enforcement of the hydrocarbon transpiration regulation law, multiple fuel tanks were forced to reduce hydrocarbon permeation. As a result, the current fuel tank is mainly a multi-layered tank composed of three types and five layers in which both ends of HDPE / PA (polyamide) or HDPE / EVOH (ethylene vinyl acetate copolymer) are composed of HDPE. The molding in this case is the same blow molding as the conventional one.
[0095]
In the single-layer fuel tank, a large amount of hydrocarbon fuel permeates from the tank because the compatibility between the two is good. The SP value, which is a measure of compatibility, is 7.9 for HDPE and 6-8 for hydrocarbon fuels, and both are in the same region. On the other hand, the SP value of PA used for a tank made of a multilayer body is 13.6, and the difference in SP value with a hydrocarbon fuel is large. In other words, it is in a region where the compatibility is poor. Therefore, the PA material in the multilayer fuel tank is installed as a barrier layer that prevents the permeation of hydrocarbon fuel to the outside of the tank. However, the creation of the multi-layer fuel tank has established a technique that satisfies the hydrocarbon transpiration regulation law, but the molding process is complicated and has led to a significant price increase. In addition, the laminated structure of multiple resins has lost the smoothness of recycling, leaving a new issue that is difficult to meet the demands of an era of recycling society.
[0096]
On the other hand, the modified silica composition in the resin composition of the present invention has a silanol group, so that the SP value exceeds 11, and has a function of preventing permeation of hydrocarbon fuels corresponding to the aforementioned PA and EVOH. is there. Further, the main component of the resin composition of the present invention is mainly a resin having an SP value of 11 or more having a polar group such as acrylic, and is not easily compatible with gasoline as a hydrocarbon-based fuel, in other words, compatible. It is a poor material composition and is a more desirable material for a fuel tank. Therefore, it has been found that by using the resin composition of the present invention, it is possible to provide a vehicle fuel tank that satisfies the regulations for the transpiration of hydrocarbons even in a single layer type. This has made it possible to reduce manufacturing costs and meet social demands for recycling. In addition to the fuel tank for vehicles, the resin composition of the present invention can also be used for household items such as kerosene containers. This reduces the transpiration of kerosene into the atmosphere and can contribute to the preservation of the global environment.
[0097]
【Example】
Hereinafter, examples of the present invention will be described in detail. The present invention is not limited thereby. In addition, various evaluation in an Example and a comparative example is the following method, and unless otherwise specified, "part" shows a mass part and "%" shows the mass%.
[0098]
(Evaluation method: single-layer transparent resin composition)
(1) The total light transmittance was measured with a haze meter (HM-65 manufactured by Murakami Color Research Laboratory). More than 75% was accepted.
[0099]
(2) The dispersion state of the inorganic fine particle conjugate was observed with a transmission electron microscope (H-800, manufactured by Hitachi, Ltd.).
[0100]
(3) The bending strength and elastic modulus were measured by an autograph (DCS-10T manufactured by Shimadzu Corporation). A bending strength of 108 MPa or more was accepted.
[0101]
(4) The linear expansion coefficient was measured with a thermomechanical measurement device (TMA120C manufactured by Seiko Electronics Industry Co., Ltd.).
[0102]
(Evaluation method: Laminate)
(1) Total light transmittance (%): Measured with a haze meter (HM-65, manufactured by Murakami Color Research Laboratory). ○: ≧ 90, x: <90
[0103]
(2) Rockwell hardness: Measured with a Rockwell hardness meter (M scale). ○: Evaluation was made as ≧ 95 and X: <95.
[0104]
(3) Flexural modulus: measured with an autograph (DCS-10T, manufactured by Shimadzu Corporation). ○: Evaluation was made as ≧ 3500 MPa and ×: <3500 MPa.
[0105]
(4) Impact resistance: A 200 × 200 mm laminated body is fixed all around with a 180 × 180 mm frame, and a steel ball equivalent to the impact resistance test method of JIS-R3212 is changed in height and freely dropped to cause cracks. Height was measured. (Circle): It evaluated as ≧ 3m and x: <3m.
[0106]
(5) Presence or absence of delamination: The prepared laminate was bent at about 90 degrees, and the presence or absence of delamination was visually determined. ◯: No peeling, ×: With peeling
[0107]
(6) Presence / absence of warp: A test piece of 100 × 50 mm was cut out from the laminate, and the presence / absence of warp after repeating a 110 ° C. oven × 2H → room temperature × 2H or more cooling cycle 10 times was visually judged (n = 3). ◯: No warpage, ×: Warpage was evaluated.
[0108]
Example 1
Sodium silicate (water glass) is used as a raw material, sodium is removed by ion exchange to obtain a core sol (about 5 nm), and these microparticles are grown alone in the liquid and have a thickness of 5 to 10 nm. A chain silica having a length of 90 to 350 nm was obtained. This chain silica was treated with a silylating agent to add an alkyl group, and dissolved in methyl ethyl ketone to obtain a silica solution.
[0109]
The polymerization initiator AIBN was added at 0.5 mol% to methyl methacrylate monomer (1 mol / liter) and heated to 80 ° C., and the polymerization reaction was carried out while dropping the silica solution prepared earlier. After about 6 hours, the mixture was precipitated with a coagulation solvent hexane to obtain a mixed composition having a composition ratio of 30/70 of a silica fine particle conjugate and a methacrylic resin.
[0110]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece was excellent in transparency and exhibited improved surface hardness, improved bending strength and bending elastic modulus, and decreased linear expansion coefficient compared with methacrylic resin alone. In addition, a resin composition containing a chain-like silica fine particle conjugate showed a value with a large flexural modulus compared to a methacrylic resin containing spherical silica fine particles. Table 1 shows the results of the total light transmittance, dispersion state by transmission electron microscope, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0111]
(Example 2)
Sodium silicate (water glass) is used as a raw material, sodium is removed by ion exchange to obtain a core sol (about 5 nm), and these microparticles are grown alone in the liquid and have a thickness of 5 to 10 nm. A chain silica having a length of 90 to 350 nm was obtained. This chain silica was treated with a silylating agent to add an alkyl group, and dissolved in methyl ethyl ketone to obtain a silica solution.
[0112]
The polymerization initiator AIBN was added in an amount of 0.5 mol% with respect to the methyl methacrylate monomer (1 mol / liter), heated to 80 ° C., and the polymerization reaction was carried out while gradually dropping the previously prepared silica solution for about 6 hours. Thereafter, the mixture was precipitated with a coagulation solvent hexane to obtain a mixed composition having a composition ratio of 30/70 of the silica fine particle conjugate and the methacrylic resin.
[0113]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece was excellent in transparency and exhibited improved surface hardness, improved bending strength and bending elastic modulus, and decreased linear expansion coefficient compared with methacrylic resin alone. Furthermore, compared with the composition of Example 1, the linear expansion coefficient was small, and a better result was shown. In addition, the resin composition containing the chain-like silica fine particle conjugate showed a higher bending elastic modulus than the methacrylic resin containing the spherical silica fine particles. Table 1 shows the results of the total light transmittance, dispersion state by transmission electron microscope, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0114]
Example 3
Addition of 0.5 mol% of polymerization initiator AIBN to methyl methacrylate monomer (1 mol / l), heating to 80 ° C, and gradually connecting to chain silica fine particles that have been surface-hydrophobized with alkyl groups dispersed in methyl ethyl ketone solvent The polymer (thickness 5 to 10 nm, length 30 to 80 nm) was dropped while being polymerized, and after about 6 hours, the mixture was precipitated with a coagulation solvent hexane, and the composition ratio of silica fine particle and methacrylic resin was mixed at 30/70. A composition was obtained.
[0115]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece was excellent in transparency and exhibited improved surface hardness, improved bending strength and bending elastic modulus, and decreased linear expansion coefficient compared with methacrylic resin alone. However, the bending strength was lower than that of the resin composition shown in Example 1. This is because the length of the silica fine particle coupled body is short. However, the resin composition containing the chain-like silica fine particle conjugate showed a higher bending elastic modulus than the methacrylic resin containing the spherical silica fine particles. Table 1 shows the results of the total light transmittance, dispersion state by transmission electron microscope, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0116]
Example 4
Polymeric initiator AIBN is added in an amount of 0.5 mol% with respect to methyl methacrylate monomer (1 mol / liter), and a chain-like silica fine particle linked body (having a thickness of 5 to 5) which has been subjected to surface hydrophobization treatment with an alkyl group dispersed in a methyl ethyl ketone solvent gradually. 10 nm, 350 to 500 nm in length) was added dropwise to cause a polymerization reaction, and after about 6 hours, the mixture was precipitated with a coagulation solvent ethanol to obtain a mixed composition of a silica fine particle conjugate and a methacrylic resin composition ratio of 30/70.
[0117]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece was inferior in transparency compared with methacryl but was good, and showed improved surface hardness, improved bending strength and flexural modulus, and decreased linear expansion coefficient compared with methacrylic resin alone. However, compared with Example 1, although bending strength is excellent, since dispersibility is inferior, transparency is inferior and hardness is also inferior somewhat. This is because the length of the silica fine particle coupled body is larger than the length of the visible light wavelength. However, compared with a methacrylic resin containing spherical silica fine particles, a resin composition containing a chain-like silica fine particle conjugate showed a value with a large flexural modulus. Table 1 shows the results of the total light transmittance, dispersion state by transmission electron microscope, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0118]
(Example 5)
Addition of 0.5 mol% of polymerization initiator AIBN to methyl methacrylate monomer (1 mol / l), heating to 80 ° C, and gradually connecting to chain silica fine particles that have been surface-hydrophobized with alkyl groups dispersed in methyl ethyl ketone solvent When a polymer (thickness 1 to 5 nm, length 90 to 350 nm, silica fine particle length 7 to 50 nm) is dropped and precipitated with a hexane coagulation solvent hexane after about 6 hours, the silica fine particle conjugate and methacryl A mixed composition having a resin composition ratio of 30/70 is obtained.
[0119]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece was excellent in transparency and exhibited improved surface hardness, improved bending strength and bending elastic modulus, and decreased linear expansion coefficient compared with methacrylic resin alone. Table 1 shows the results of the total light transmittance, dispersion state by transmission electron microscope, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0120]
(Example 6)
Addition of 0.5 mol% of polymerization initiator AIBN to methyl methacrylate monomer (1 mol / l), heating to 80 ° C, and gradually connecting to chain silica fine particles that have been surface-hydrophobized with alkyl groups dispersed in methyl ethyl ketone solvent When a polymer (thickness 10 to 20 nm, length 90 to 350 nm, silica fine particle length 7 to 50 nm) is dropped and precipitated, and precipitated with hexane in a coagulation solvent after about 6 hours, A mixed composition having a methacrylic resin composition ratio of 30/70 is obtained.
[0121]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece was excellent in transparency and exhibited improved surface hardness, improved bending strength and bending elastic modulus, and decreased linear expansion coefficient compared with methacrylic resin alone. Table 1 shows the results of the total light transmittance, dispersion state by transmission electron microscope, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0122]
(Example 7)
Addition of 0.5 mol% of polymerization initiator AIBN to methyl methacrylate monomer (1 mol / l), heating to 80 ° C, and gradually connecting to chain silica fine particles that have been surface-hydrophobized with alkyl groups dispersed in methyl ethyl ketone solvent When a polymer (thickness 10 to 20 nm, length 50 to 350 nm, silica fine particle length 50 to 100 nm) is dropped and precipitated in about 6 hours with hexane in a coagulation solvent, A mixed composition having a methacrylic resin composition ratio of 30/70 is obtained.
[0123]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece was excellent in transparency and exhibited improved surface hardness, improved bending strength and bending elastic modulus, and decreased linear expansion coefficient compared with methacrylic resin alone. Table 1 shows the results of the total light transmittance, dispersion state by transmission electron microscope, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0124]
(Example 8)
Addition of 0.5 mol% of polymerization initiator AIBN to methyl methacrylate monomer (1 mol / l), heating to 80 ° C, and gradually connecting to chain silica fine particles that have been surface-hydrophobized with alkyl groups dispersed in methyl ethyl ketone solvent When a polymer (thickness 10 to 20 nm, length 100 to 350 nm, silica fine particle length 50 to 100 nm) is dropped while being precipitated, and precipitated with hexane in a coagulation solvent after about 6 hours, A mixed composition having a methacrylic resin composition ratio of 30/70 is obtained.
[0125]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece was excellent in transparency and exhibited improved surface hardness, improved bending strength and bending elastic modulus, and decreased linear expansion coefficient compared with methacrylic resin alone. Table 1 shows the results of the total light transmittance, dispersion state by transmission electron microscope, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0126]
Example 9
100 parts of poly (methyl methacrylate) is dissolved in a methyl ethyl ketone solvent, and a chain-like silica fine particle assembly (thickness 5 to 10 nm, length 90 to 350 nm) subjected to surface hydrophobization treatment with an alkyl group dispersed in methyl ethyl ketone is dropped into this solution. The mixture was then mixed with the coagulation solvent hexane to obtain a mixed composition having a composition ratio of silica fine particles and methacrylic resin of 30/70.
[0127]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece was inferior in transparency compared with methacryl, but exhibited improved surface hardness, improved bending strength and flexural modulus, and decreased linear expansion coefficient compared with methacrylic resin alone. However, since the dispersibility of the silica fine particle assembly is poor, the transparency, hardness, bending strength, and bending elastic modulus are inferior to those of the composition of Example 1. However, compared with a methacrylic resin containing spherical silica fine particles, a resin composition containing a chain-like silica fine particle conjugate showed a value with a large flexural modulus. Table 2 shows the results of the total light transmittance, dispersion state by transmission electron microscope, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0128]
(Example 10)
Polymeric initiator AIBN is added in an amount of 0.5 mol% with respect to methyl methacrylate monomer (1 mol / liter), and a chain-like silica fine particle linked body (having a thickness of 5 to 5) which has been subjected to surface hydrophobization treatment with alkyl groups dispersed in methyl ethyl ketone solvent 10 nm and a length of 90 to 350 nm) was dropped, and after about 6 hours, the mixture was precipitated with a coagulation solvent hexane to obtain a mixed composition of a silica fine particle conjugate and a methacrylic resin composition ratio of 10/90. .
[0129]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece was excellent in transparency and exhibited improved surface hardness, improved flexural modulus, and decreased linear expansion coefficient compared to methacrylic resin alone. However, compared with the composition of Example 1, there was little improvement in bending strength, bending elastic modulus, hardness, and linear expansion coefficient. This is because there are few compounding quantities of a silica fine particle coupling body. However, the resin composition containing the chain-like silica fine particle conjugate showed a higher bending elastic modulus than the methacrylic resin containing the spherical silica fine particles. Table 2 shows the results of the total light transmittance, dispersion state by transmission electron microscope, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0130]
(Example 11)
Polymeric initiator AIBN is added in an amount of 0.5 mol% with respect to methyl methacrylate monomer (1 mol / liter), and a chain-like silica fine particle linked body (having a thickness of 5 to 5) which has been subjected to surface hydrophobization treatment with alkyl groups dispersed in methyl ethyl ketone solvent 10 nm and a length of 90 to 350 nm) was dropped, and after about 6 hours, the mixture was precipitated with a coagulation solvent hexane to obtain a mixed composition having a composition ratio of 70/30 of a silica fine particle conjugate and a methacrylic resin. .
[0131]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece showed inferior transparency bending strength compared with methacryl, but improved surface hardness, improved flexural modulus, and decreased linear expansion coefficient.
[0132]
However, compared with the composition of Example 1, transparency and bending strength were inferior. This is because the amount of the silica fine particle linking body is too large, and the aggregation and defects of the silica fine particle linking body increase. However, the resin composition containing the chain-like silica fine particle conjugate showed a higher bending elastic modulus than the methacrylic resin containing the spherical silica fine particles. Table 2 shows the results of the total light transmittance, the dispersion state with a transmission electron microscope, the Rockwell hardness, the bending strength, the bending elastic modulus, and the linear expansion coefficient obtained with this test piece.
[0133]
(Comparative Example 1)
0.5 parts of benzoyl peroxide are mixed with 100 parts of methyl methacrylate, heated to 90 ° C., and gradually subjected to a polymerization reaction while dropping silica fine particles (particle size: 10 to 20 nm) dispersed in methyl ethyl ketone solvent. After about 1 hour When precipitated with a coagulation solvent ethanol, a mixed composition having a composition ratio of silica fine particles and methacrylic resin of 30/70 was obtained.
[0134]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. The obtained test piece had good transparency, but showed a lower flexural modulus than the methacrylic resin containing the chain silica fine particle combination of Examples 1 to 7. Table 2 shows the results of the total light transmittance, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0135]
(Comparative Example 2)
When 100 parts of methyl methacrylate is mixed with 0.5 part of benzoyl peroxide, heated to 90 ° C., polymerized, and precipitated with a coagulation solvent ethanol after about 1 hour, a methacrylic resin is obtained.
[0136]
The obtained resin composition was dried and subjected to hot press molding to obtain a test piece. Table 2 shows the results of the total light transmittance, Rockwell hardness, bending strength, bending elastic modulus, and linear expansion coefficient obtained with this test piece.
[0137]
(Example 12)
A laminate was prepared using the resin composition of Example 1 and a polycarbonate resin (Iupilon E200U manufactured by Mitsubishi Engineering Plastics) using two extruders and a T-die having three slits. The upper layer is a silica-containing acrylic resin layer (resin (A)), the intermediate layer is a polycarbonate-based resin layer (resin (B)) not containing silica, and the lower layer is the same silica-containing acrylic resin layer (resin (A)) as the upper layer. A laminated body having a layer structure in which the thickness of each layer was 1/3/1 mm was obtained. The evaluation results are shown in Table 3.
[0138]
(Example 13)
A laminate was obtained and evaluated under the same conditions as in Example 12 except that the blending amount of the inorganic fine particle conjugate was 1% by mass. The evaluation results are shown in Table 3.
[0139]
(Example 14)
A laminate was obtained and evaluated under the same conditions as in Example 12 except that the amount of the inorganic fine particle conjugate was 10% by mass. The evaluation results are shown in Table 3.
[0140]
(Example 15)
Lower the discharge rate of the extruder and adjust the slit gap of the T-die, the surface resin (A) thickness is 0.1 mm, the intermediate resin (B) is 0.3 mm, the lower resin ( A laminate was obtained and evaluated under the same conditions as in Example 12 except that A) was 0.1 mm.
[0141]
The evaluation results are shown in Table 3.
[0142]
(Example 16)
Increase the discharge rate of the extruder and adjust the slit gap of the T die to make the surface layer resin (A) 2 mm thick, the intermediate layer resin (B) 6 mm thick, and the lower layer resin (A) A laminated body was obtained and evaluated under the same conditions as in Example 12 except that the thickness was 2 mm. The evaluation results are shown in Table 3.
[0143]
(Example 17)
A laminate was obtained and evaluated under the same conditions as in Example 1 except that the inorganic fine particle linked body having a length of 200 to 250 nm was used and the blending amount in the resin was changed to 5% by mass. The evaluation results are shown in Table 3.
[0144]
(Example 18)
The discharge amount of the extruder was adjusted, and the T die was changed to a T die capable of stacking five layers to obtain a five-layer laminate in which the resin (A) and the resin (B) were alternately laminated. The resin layer structure is the same as in Example 1 except that A / B / A / B / A and the thickness of each layer is 0.7 / 1.5 / 0.6 / 1.5 / 0.7 mm. A laminate was obtained and evaluated under the conditions. The evaluation results are shown in Table 3.
[0145]
(Comparative Example 3)
A 5-layer laminate having a thickness of 5 mm was obtained and evaluated under the same conditions as in Example 12 except that an acrylic resin (hereinafter referred to as “resin (C)”) containing no inorganic fine particle conjugate was used. The evaluation results are shown in Table 3.
[0146]
(result)
The resin composition containing the silica fine particle conjugate of the present invention according to Examples 1 to 7 is dispersed and compounded in a transparent amorphous resin without agglomerating the silica fine particle conjugate smaller than the visible light wavelength. As a result, it was possible to obtain improved rigidity, reduced thermal expansion coefficient, and improved surface hardness as compared with the transparent resin alone, without reducing the light transmittance of the transparent resin. Further, the resin composition containing the silica fine particle conjugate according to the present invention had a higher flexural modulus than the methacrylic resin containing the spherical silica fine particles.
[0147]
Moreover, as shown in Examples 8 to 14, by laminating the resin composition of the present invention, it was possible to increase the impact resistance of the molded body and to suppress warping due to temperature.
[0148]
For this reason, using this resin composition, it is possible to obtain a molded product having a high degree of design freedom having the above-described characteristics by injection molding, extrusion molding, or blow molding. In addition, it is necessary to finish the periphery of an automobile window made of inorganic glass by machining, but if the window is formed by injection molding, the surrounding processing is unnecessary and productivity is improved.
[0149]
[Table 1]
Figure 0003862075
[0150]
[Table 2]
Figure 0003862075
[0151]
[Table 3]
Figure 0003862075

[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a view of an inorganic fine particle conjugated body in which reticulated silica is dispersed, observed with an electron microscope.
FIG. 2 is an explanatory view showing an example of a vehicle exterior part application of the resin composition (A) according to the present invention.
FIGS. 3a and 3b are explanatory views showing an example of a vehicle outer plate application of the resin composition (A) according to the present invention.
FIG. 4 is an explanatory view showing an example of a resin window application of the resin composition (A) according to the present invention.
FIG. 5 is a schematic view of a resin wiper system according to the present invention.
FIG. 6 is an explanatory view showing an example of a vehicle exterior part application of the resin door mirror stay according to the present invention.
FIG. 7 is a view showing an instrument panel obtained by integrally molding a transparent resin portion and an opaque resin portion according to the present invention.
FIG. 8 is a view showing a resin mirror and a resin window according to the present invention.
FIG. 9 is a cross-sectional view showing a headlamp unit using the resin lamp reflector of the present invention.
FIG. 10 is an explanatory view showing an example of an engine compartment component using the resin composition according to the present invention.
FIG. 11 is an explanatory view showing an example of an engine compartment component using the resin composition according to the present invention.
FIG. 12 is a view showing an example of a resin cooling device part using the resin composition according to the present invention.
FIG. 13 is a view showing an example of a resin cooling device component using the resin composition according to the present invention.
FIG. 14 is a view showing an example of a resin integrated molded body having a hollow structure using the resin composition according to the present invention.
FIG. 15 is a view showing an example of a resin integrated molded body having a hollow structure using the resin composition according to the present invention.
FIG. 16 is an explanatory view showing an example of an integrally molded part using the resin composition according to the present invention.
FIG. 17 is an explanatory view showing an example of an integrally molded part using the resin composition according to the present invention.
FIG. 18 is an explanatory view showing an example of an integrally molded part using the resin composition according to the present invention.
FIG. 19 is a view showing an example of a molded body having a movable part and a non-movable part using the resin composition according to the present invention, FIG. 19A is a transverse sectional view of the molded body, and FIG. It is a top view of this molded object.
FIG. 20 is an explanatory view showing an example of a vehicle exterior part application of the resin composition according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Door molding, 2 ... Frame frame of door mirror, 3 ... Wheel cap, 4 ... Spoiler, 5 ... Bumper, 6 ... Winker lens, 7 ... Pillar garnish, 8 ... Rear finisher, 21 ... Front fender, 22 ... Door panel, 23 ... Roof panel, 31 ... side glass, 32 ... rear glass, 41 ... wiper arm, 42 ... wiper blade, 43 ... elastic support part, 44 ... soft rubber part, 45 ... nut hole for fixing wiper arm, 51 ... lamp hood, Fender integrated resin molded body, 52 ... pillar garnish / glass integrated resin molded body, 53 ... roof / fender / glass integrated resin molded body, 54 ... back door / glass integrated resin molded body, 55 ... door / glass integrated resin molded body, 61 ... instrument panel, 62 ... instrument cover , 71 ... Front window, 72 ... Door window, 73 ... Rear window, 74 ... Resin side mirror, 81 ... Car body side base, 82 ... Outer member, 83 ... Reflector, 84 ... Valve, 85 ... Optical axis adjuster, 86 ... Outer lens, 91 ... Radiator, 92 ... Coolant reserve tank, 93 ... Washer tank inlet, 94 ... Electrical component housing, 95 ... Brake oil tank, 96 ... Cylinder head cover, 101 ... Engine body, 102 ... Timing chain, 103 ... Gasket, 104 ... Front chain case, 111 ... Water pipe, 112 ... O-ring, 113 ... Water pump housing, 114 ... Water pump impeller, 115 ... Water pump, 116 ... Water pump pulley, 121 ... Wo Turpipe, 122 ... Thermostat housing, 123 ... Thermostat, 124 ... Water inlet, 131 ... Hood, 132 ... Door, 133 ... Back door, 134 ... Roof, 135 ... Fender, 136 ... Window, 137 ... Trunk lid, 141 ... Center console Box 142 142 Pillar garnish 143 Instrument panel 151 Panel unit 152 Air conditioner air duct and case 161 Roof rail 162 Roof panel 181 Chamber part 182 Open / close valve 183 Open / close valve 191: Filler tube, 192 ... Fuel tank, 193 ... Fuel pump, 194 ... Engine, 195 ... Filler cap, 196 ... Vent tube, 197 ... Fuel hose, 198 ... Air chamber .

Claims (46)

疎水化処理した無機微粒子連結体を樹脂中に均一に分散した複合樹脂組成物であって、該樹脂は、ポリメチルメタクリレートであり、該無機微粒子連結体は円柱状の無機微粒子がその長さ方向に複数個連結し、鎖状または網目状の形状であることを特徴とする樹脂組成物。A composite resin composition in which a hydrophobic treated inorganic fine particle conjugate is uniformly dispersed in a resin, wherein the resin is polymethylmethacrylate, and the inorganic fine particle conjugate has columnar inorganic fine particles in its length direction. A resin composition characterized in that a plurality of them are connected to each other to form a chain or network shape. 該無機微粒子連結体の最大長さが380nm以下であることを特徴とする、請求項1記載の樹脂組成物。  2. The resin composition according to claim 1, wherein the maximum length of the inorganic fine particle conjugate is 380 nm or less. 該無機微粒子連結体を構成する無機微粒子は、(長さ)/(太さ)が2.5〜350であることを特徴とする、請求項1または2記載の樹脂組成物。  The resin composition according to claim 1 or 2, wherein the inorganic fine particles constituting the inorganic fine particle linked body have (length) / (thickness) of 2.5 to 350. 該無機微粒子は、太さが1〜20nmであることを特徴とする請求項1〜3のいずれかに記載の樹脂組成物。  The resin composition according to any one of claims 1 to 3, wherein the inorganic fine particles have a thickness of 1 to 20 nm. 該無機微粒子は、長さが7〜200nmであることを特徴とする請求項1〜4のいずれかに記載の樹脂組成物。  The resin composition according to any one of claims 1 to 4, wherein the inorganic fine particles have a length of 7 to 200 nm. 該樹脂に対する無機微粒子連結体の配合率が、1〜99質量%であることを特徴とする、請求項1〜5のいずれかに記載の樹脂組成物。  The resin composition according to any one of claims 1 to 5, wherein a blending ratio of the inorganic fine particle conjugate to the resin is 1 to 99% by mass. 該無機微粒子連結体は、表面にアルキル基を有することを特徴とする、請求項1〜6のいずれかに記載の樹脂組成物。  The resin composition according to claim 1, wherein the inorganic fine particle conjugate has an alkyl group on the surface. 該無機微粒子が、酸化ケイ素からなることを特徴とする、請求項1〜7のいずれかに記載の樹脂組成物。  The resin composition according to claim 1, wherein the inorganic fine particles are made of silicon oxide. 請求項1〜のいずれかに記載の樹脂組成物(A)と熱可塑性樹脂(B)とを少なくとも1層づつ積層した熱可塑性樹脂積層体であって、該樹脂組成物(A)と該熱可塑性樹脂(B)とが交互に積層されていることを特徴とする熱可塑性樹脂積層体。A thermoplastic resin laminate obtained by laminating at least one layer of the resin composition (A) according to any one of claims 1 to 8 and the thermoplastic resin (B), the resin composition (A) and the thermoplastic resin laminate A thermoplastic resin laminate, wherein the thermoplastic resin (B) is alternately laminated. 該透明樹脂組成物(A)の層と該熱可塑性樹脂(B)の層とが熱溶着されていることを特徴とする請求項記載の熱可塑性樹脂積層体。The thermoplastic resin laminate according to claim 9, wherein the layer of the transparent resin composition (A) and the layer of the thermoplastic resin (B) are thermally welded. 該熱可塑性樹脂(B)が、ポリカーボネート系樹脂であることを特徴とする請求項9または10に記載の熱可塑性樹脂積層体。The thermoplastic resin laminate according to claim 9 or 10 , wherein the thermoplastic resin (B) is a polycarbonate-based resin. 積層数が3層以上の奇数の場合において、該積層体の最上層と最下層とが共に該樹脂組成物(A)で、または該熱可塑性樹脂(B)で構成されていることを特徴とする請求項9〜11のいずれかに記載の熱可塑性樹脂積層体。When the number of layers is an odd number of 3 or more, the uppermost layer and the lowermost layer of the laminate are both composed of the resin composition (A) or the thermoplastic resin (B). The thermoplastic resin laminate according to any one of claims 9 to 11 . 請求項1〜12のいずれかに記載の樹脂組成物または熱可塑性樹脂積層体を用いた車両用内外装部品成形体、車両用外板または樹脂ウィンドウ。A vehicle interior / exterior component molded body, vehicle exterior plate or resin window using the resin composition or thermoplastic resin laminate according to any one of claims 1 to 12 . 溶剤に分散させた疎水化処理した無機微粒子連結体と、溶剤に溶解させた樹脂とを混合することを特徴とする、請求項1〜のいずれかに記載の樹脂組成物の製造方法。The method for producing a resin composition according to any one of claims 1 to 8 , characterized in that a hydrophobically treated inorganic fine particle assembly dispersed in a solvent and a resin dissolved in the solvent are mixed. 樹脂のモノマーを重合させる過程中に、溶剤に分散させた疎水化処理した無機微粒子連結体を混合することを特徴とする、請求項1〜のいずれかに記載の樹脂組成物の製造方法。The method for producing a resin composition according to any one of claims 1 to 8 , wherein, in the process of polymerizing the monomer of the resin, a hydrophobic treated inorganic fine particle dispersion dispersed in a solvent is mixed. 加熱成形および/または加圧成形により積層することを特徴とする請求項9〜12のいずれかに記載の熱可塑性樹脂積層体の製造方法。The method for producing a thermoplastic resin laminate according to any one of claims 9 to 12 , wherein lamination is performed by heat molding and / or pressure molding. 請求項9〜12のいずれかに記載の熱可塑性樹脂積層体を金型に挿入し、射出成形法または圧縮成形法で充填樹脂と該挿入積層体の外周部とを一体で成形することを特徴とする、車両用内外装部品成形体の製造方法。The thermoplastic resin laminate according to any one of claims 9 to 12 is inserted into a mold, and a filling resin and an outer peripheral portion of the insert laminate are integrally molded by an injection molding method or a compression molding method. The manufacturing method of the interior / exterior part molded body for vehicles. 請求項1〜記載の樹脂組成物を含んで成ることを特徴とする樹脂製ワイパーシステム。Resinous wiper system, characterized in that it comprises the claim 1-8, wherein the resin composition. 請求項1〜記載の樹脂組成物を含んで成ることを特徴とする樹脂製ドアミラーステイ。Resinous door mirror stay, characterized in that it comprises the claim 1-8, wherein the resin composition. 請求項1〜記載の樹脂組成物を含んで成ることを特徴とする樹脂製ピラー。Resin pillars, characterized in that it comprises the claim 1-8, wherein the resin composition. 透明部と不透明部を有する樹脂成形体において、少なくとも透明部が請求項1〜記載の樹脂組成物を含んで成ることを特徴とする樹脂成形体。In the resin molded body having a transparent portion and an opaque portion, the resin molded body wherein at least the transparent portion comprises a resin composition according to claim 1-8, wherein. 透明部と不透明部が一体成形されたことを特徴とする請求項21記載の樹脂成形体。The resin molded body according to claim 21, wherein the transparent portion and the opaque portion are integrally molded. 不透明部が樹脂中に分散した顔料により着色され形成されることを特徴とする請求項21または22記載の樹脂成形体。The resin molded body according to claim 21 or 22, wherein the opaque portion is formed by being colored with a pigment dispersed in the resin. 上記樹脂成形部品の不透明部が成形前あるいは成形後に塗装もしくは印刷され形成されることを特徴とする請求項21または22記載の樹脂成形体。The resin molded body according to claim 21 or 22, wherein the opaque portion of the resin molded part is formed by painting or printing before molding or after molding. 上記樹脂成形部品の不透明部が着色シートを用いて形成されることを特徴とする請求項21または22記載の樹脂成形体。The resin molded body according to claim 21 or 22 , wherein the opaque part of the resin molded part is formed using a colored sheet. 請求項1〜記載の樹脂組成物を含んで成ることを特徴とする熱線付き樹脂製ウィンドウ。Hot wire with plastic window, characterized in that it comprises the claim 1-8, wherein the resin composition. 請求項1〜記載の樹脂組成物を含んで成ることを特徴とする樹脂製ミラー。Resin mirror, characterized in that it comprises the claim 1-8, wherein the resin composition. 請求項1〜記載の樹脂組成物を含んで成ることを特徴とする樹脂製ランプリフレクター。Resin lamp reflector, characterized in that it comprises the claim 1-8, wherein the resin composition. 請求項1〜記載の樹脂組成物を含んで成ることを特徴とする樹脂製エンジンルーム内カバーおよびケース。Resin engine compartment cover and the case, characterized in that it comprises the claim 1-8, wherein the resin composition. 透明であることを特徴とする請求項29記載のエンジンルーム内カバーおよびケース。30. The engine compartment cover and case according to claim 29 , wherein the cover and the case are transparent. 請求項1〜記載の樹脂組成物を含んで成ることを特徴とする樹脂製冷却装置部品。Resinous cooler part, characterized in that it comprises the claim 1-8, wherein the resin composition. 請求項1〜記載の樹脂組成物を含んで成る、大気と連通した中空構造および/あるいは密閉された中空構造を有することを特徴とする樹脂一体成形体。Claim 1 comprising 8 wherein the resin composition, the resin molded body characterized by having a hollow structure and / or closed hollow structure communicating with the atmosphere. 中空構造が、気体または液体または固体あるいはこれらの混合物が充填され封入されていることを特徴とする請求項32記載の樹脂一体成形体。33. The resin integrated molded body according to claim 32 , wherein the hollow structure is filled and sealed with gas, liquid, solid, or a mixture thereof. 一体成形体の最表層が、加飾材で構成されていることを特徴とする請求項32または33記載の樹脂一体成形体。 34. The resin integrated molded body according to claim 32 or 33 , wherein the outermost layer of the integrally molded body is made of a decorating material. 樹脂一体成形体は、自動車の外板あるいは内外装部品であることを特徴とする請求項32〜34記載の樹脂一体成形体。 35. The resin integrated molded body according to claim 32 , wherein the resin integrated molded body is an outer plate or interior / exterior part of an automobile. 請求項1〜記載の樹脂組成物を含んで成る樹脂シート2枚を加熱し、これを開状態の金型に挿入し、シート外周部を押圧し、外周部を溶着する前あるいは溶着後にシート間に加圧流体を注入し、シートを拡張しつつ/または拡張後、金型を閉状態にし、加圧流体圧を保持し中空構造を形成することを特徴とする請求項32〜35記載の樹脂一体成形体の製造方法。Heating the two resin sheets comprising the claims 1-8, wherein the resin composition, and insert it into a mold in an open state, the sheet after before or welding presses the sheet periphery portion, welding the outer peripheral portion the pressurized fluid is injected between, after expansion and being / or expanded sheets, the mold is closed, according to claim 32 to 35, wherein forming a hollow structure holding the pressurized fluid pressure Manufacturing method of resin integrated molded body. 閉状態の金型内に溶融した請求項1〜記載の樹脂組成物を充填しつつ/または充填後、キャビティ容積を拡大しつつ加圧流体を溶融樹脂内に注入し中空構造を形成する請求項32〜35記載の樹脂一体成形体の製造方法。Claims for filling a molten resin in a closed mold and / or filling a molten resin into the melted resin while expanding the cavity volume after filling the resin composition according to claims 1 to 8 to form a hollow structure. Item 36. A method for producing a resin-integrated molded article according to Items 32-35 . 開状態の金型キャビティ面に請求項1〜記載の樹脂組成物を含んで成る樹脂シートを1枚もしくは2枚インサートし、金型を閉状態で2枚のシート間もしくは1枚のシート背面に溶融樹脂を充填しつつ/または充填後、キャビティ容積を拡大しつつ加圧流体を溶融樹脂内に注入し中空構造を形成する請求項32〜35のいずれかに記載の樹脂一体成形体の製造方法。One or two resin sheets containing the resin composition according to any one of claims 1 to 8 are inserted into the mold cavity surface in an open state, and the mold is closed between two sheets or the back of one sheet. 36. The resin integrated molded body according to claim 32 , wherein a hollow structure is formed by injecting a pressurized fluid into the molten resin while expanding the cavity volume while filling the molten resin into / or after filling. Method. 請求項1〜記載の樹脂組成物を含んで成る、異なる機能を有する二種類以上の部品を統合し、ひとつの部品に少なくともこれら二種類以上の機能を付与したことを特徴とする一体成形部品。Comprising the claims 1-8, wherein the resin composition, different functions to integrate two or more components having the integrally molded component, characterized in that the applying at least these two or more functions in one component . 請求項1〜記載の樹脂組成物を含んで成ることを特徴とする可動部と非可動部を有する成形体。Molded body having a movable and unmovable portions, characterized in that it comprises the claim 1-8, wherein the resin composition. 二色成形により可動部と非可動部が一体で得られることを特徴とする請求項40記載の成形体。41. The molded article according to claim 40, wherein the movable part and the non-movable part are obtained integrally by two-color molding. 可動部が気体流動を制御する開閉蓋で、非可動部は流動気体を導入する筒状成形品であることを特徴とする請求項40または41記載の成形体。42. The molded body according to claim 40 or 41 , wherein the movable portion is an open / close lid that controls the gas flow, and the non-movable portion is a cylindrical molded product that introduces the flowing gas. 請求項1〜記載の樹脂組成物を含んで成ることを特徴とする炭化水素系燃料を収納する部品あるいは容器。Part or vessel for containing hydrocarbon fuel, characterized in that it comprises the claim 1-8, wherein the resin composition. 車両用の一連の燃料系部品であることを特徴とする請求項43記載の炭化水素系燃料収納部品。44. The hydrocarbon-based fuel storage component according to claim 43, which is a series of fuel-based components for a vehicle. 車両用の燃料タンクであることを特徴とする請求項43または44記載の炭化水素系燃料収納部品。 45. The hydrocarbon-based fuel storage component according to claim 43 or 44, which is a fuel tank for a vehicle. 吹き込み成形法で成形された車両用の燃料タンクであることを特徴とする請求項45記載の炭化水素系燃料収納部品。46. The hydrocarbon-based fuel storage component according to claim 45, which is a fuel tank for a vehicle formed by a blow molding method.
JP2002188416A 2001-10-31 2002-06-27 RESIN COMPOSITION, LAMINATE USING SAME, AUTOMOBILE PARTS AND METHOD FOR PRODUCING THEM Expired - Fee Related JP3862075B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002188416A JP3862075B2 (en) 2001-10-31 2002-06-27 RESIN COMPOSITION, LAMINATE USING SAME, AUTOMOBILE PARTS AND METHOD FOR PRODUCING THEM
US10/284,179 US20030108704A1 (en) 2001-10-31 2002-10-31 Resin composition, laminate and vehicular parts using same composition and production methods of them

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001334591 2001-10-31
JP2001-334591 2001-10-31
JP2002188416A JP3862075B2 (en) 2001-10-31 2002-06-27 RESIN COMPOSITION, LAMINATE USING SAME, AUTOMOBILE PARTS AND METHOD FOR PRODUCING THEM

Publications (2)

Publication Number Publication Date
JP2003201405A JP2003201405A (en) 2003-07-18
JP3862075B2 true JP3862075B2 (en) 2006-12-27

Family

ID=26624242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002188416A Expired - Fee Related JP3862075B2 (en) 2001-10-31 2002-06-27 RESIN COMPOSITION, LAMINATE USING SAME, AUTOMOBILE PARTS AND METHOD FOR PRODUCING THEM

Country Status (2)

Country Link
US (1) US20030108704A1 (en)
JP (1) JP3862075B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589871B1 (en) 2015-05-06 2016-01-28 김기일 The manufacturing method of the uncoated exterior for car and the uncoated exterior made by the method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004156585A (en) * 2002-09-09 2004-06-03 Usui Kokusai Sangyo Kaisha Ltd Egr gas cooling device and its cooling method
JP3791502B2 (en) * 2003-03-11 2006-06-28 日産自動車株式会社 Resin composition and method for producing resin composition
WO2004099074A1 (en) * 2003-05-12 2004-11-18 Catalysts & Chemicals Industries Co., Ltd. Applying fluid for forming transparent coating film and base material with transparent coating film, and display device
JP4945888B2 (en) 2003-10-09 2012-06-06 富士ゼロックス株式会社 Composite and production method thereof
JP5082255B2 (en) * 2006-02-16 2012-11-28 日産自動車株式会社 Resin composition containing long / short inorganic particle composite and method for producing the same
CN101121791B (en) 2006-08-09 2010-12-08 清华大学 Method for preparing carbon nano-tube/polymer composite material
CN101138896B (en) * 2006-09-08 2010-05-26 清华大学 Carbon nano-tube/ polymer composite material
US8092884B2 (en) * 2009-07-02 2012-01-10 Basf Se Single layer fuel tank
US9916704B1 (en) * 2016-09-15 2018-03-13 Ford Global Technologies, Llc Vehicle decal
EP3639998A1 (en) * 2018-10-15 2020-04-22 FCA Italy S.p.A. Forming process to manufacture a finishing/covering element for a component in a vehicle passenger compartment, and finishing/covering element manufactured by means of said process
WO2021130159A1 (en) * 2019-12-25 2021-07-01 Volvo Truck Corporation Bumper lens unit of a vehicle
FR3123300A1 (en) * 2021-05-31 2022-12-02 Psa Automobiles Sa Adaptable device for shaping a bodywork element.

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2786042A (en) * 1951-11-23 1957-03-19 Du Pont Process for preparing sols of colloidal particles of reacted amorphous silica and products thereof
US2870108A (en) * 1954-05-06 1959-01-20 Monsanto Chemicals Novel silica products and silicone rubber containing same coated silica aerogel, silicone rubber reinforced therewith and method of making
US4046951A (en) * 1976-11-01 1977-09-06 Ppg Industries, Inc. Laminated transparent assembly with edge sealing means
IT1202805B (en) * 1977-12-15 1989-02-09 Broadhurst J C SELF-SEALING FLEXIBLE WALL ELEMENT FOR CONTAINERS
US4818829A (en) * 1987-07-09 1989-04-04 Duralith Corporation Integrally molded composites of silicone rubber
US5316564A (en) * 1991-04-23 1994-05-31 Shin-Etsu Quartz Co., Ltd. Method for preparing the base body of a reflecting mirror
US5153238A (en) * 1991-11-12 1992-10-06 Dow Corning Corporation Storage stable organosiloxane composition and method for preparing same
US5641831A (en) * 1992-08-26 1997-06-24 Jmk International, Inc. Anti-hazing silicone rubber article composition and process for making same
US5312860A (en) * 1992-09-10 1994-05-17 Shin-Etsu Chemical Co., Ltd. Heat-curable silicone rubber composition and cured product thereof
US5708069A (en) * 1997-02-24 1998-01-13 Dow Corning Corporation Method for making hydrophobic silica gels under neutral conditions
JPH11209735A (en) * 1998-01-28 1999-08-03 Dow Corning Toray Silicone Co Ltd Film-like silicone rubber adhesive and bonding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589871B1 (en) 2015-05-06 2016-01-28 김기일 The manufacturing method of the uncoated exterior for car and the uncoated exterior made by the method

Also Published As

Publication number Publication date
US20030108704A1 (en) 2003-06-12
JP2003201405A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
JP4186002B2 (en) RESIN COMPOSITION, THERMOPLASTIC RESIN LAMINATE USING SAME, AND METHOD FOR PRODUCING THEM
JP3791502B2 (en) Resin composition and method for producing resin composition
JP4135881B2 (en) Resin composition and molded body and parts using the same
JP6636232B2 (en) Seamless tailgate
JP3862075B2 (en) RESIN COMPOSITION, LAMINATE USING SAME, AUTOMOBILE PARTS AND METHOD FOR PRODUCING THEM
JP2003201114A (en) Modified silica composition, transparent resin composition, thermoplastic resin laminated body using these, automobile parts and method for manufacturing these
JP2003268246A (en) Resin composition and its production method
CN106457634A (en) Method for producing plastic vehicle part
JP4456798B2 (en) Nano-composite transparent resin composition, molded article using the same, automotive part, and production method thereof
JP2010254276A (en) Laminated body for automobile exterior and automobile horizontal outer panel component
JP2004331883A (en) Intermediate of composite resin composition, composite resin composition, method for producing intermediate of composite resin composition and method for producing composite resin composition
US6988305B1 (en) Method and apparatus for blow molding large reinforced plastic parts
JP2004155942A (en) Resin composition, manufacturing method therefor, molded article therewith, and automobile part
JP2004292698A (en) Resin composition, filler, and method for manufacturing resin composition
JP2004182826A (en) Thermoplastic resin composition
JP2004099865A (en) Resin composition, molded article and part using the same, and method for producing them
KR101643060B1 (en) Pillar covering for motor vehicles
JP2004002605A (en) Nano composite transparent resin composition and method for manufacturing the same, and molded article and component using the same
JP2005015519A (en) Resin composition and method for producing the same
JP4059117B2 (en) Compound, resin, method for producing compound, method for producing resin, and molded article
CA2355642C (en) Method and apparatus for blow molding large reinforced plastic parts
CN104039464A (en) Polymer workpiece for flow coating
JP2005023226A (en) Method for producing resin composition, and resin composition
KR20120113425A (en) Plastic glazing for vehicle glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060811

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees