JP3861825B2 - 直噴火花点火式内燃機関 - Google Patents

直噴火花点火式内燃機関 Download PDF

Info

Publication number
JP3861825B2
JP3861825B2 JP2003034867A JP2003034867A JP3861825B2 JP 3861825 B2 JP3861825 B2 JP 3861825B2 JP 2003034867 A JP2003034867 A JP 2003034867A JP 2003034867 A JP2003034867 A JP 2003034867A JP 3861825 B2 JP3861825 B2 JP 3861825B2
Authority
JP
Japan
Prior art keywords
fuel
spray
cylinder
piston
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003034867A
Other languages
English (en)
Other versions
JP2003262129A (ja
Inventor
雅司 的場
輝行 伊東
明裕 飯山
章彦 角方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003034867A priority Critical patent/JP3861825B2/ja
Publication of JP2003262129A publication Critical patent/JP2003262129A/ja
Application granted granted Critical
Publication of JP3861825B2 publication Critical patent/JP3861825B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリンダ内に直接燃料を噴射する火花点火式内燃機関(ガソリン機関)、すなわち直噴火花点火式内燃機関の改良に関し、特に、燃料によるオイル希釈、スモークの発生、燃焼の悪化などを改善する技術に関する。
【0002】
【従来の技術】
従来の直噴火花点火式内燃機関として、特開平5−240047号公報に開示されているようなものがある。また、特開平6−81651号公報がある。更に特開平6−207542号公報に示すようなものもある。
【0005】
【発明が解決しようとする課題】
しかしながら、このような従来の直噴火花点火式内燃機関にあっては、シリンダ内の縦渦の向きが、ピストン上死点付近でピストン頂面に沿って点火プラグ側へ噴出する燃料噴霧の方向と同一であって、燃料噴霧にとっては追い風となり、燃料噴霧が蒸発しないで点火プラグに到達しやすくなり、点火プラグの濡れやくすぶり、及びその周辺のシリンダヘッド下面への燃料の付着により、スモークの発生が懸念される構成となっていたため、ピストン上死点付近での燃料噴射時にスモークの発生が懸念される他、高速高負荷域など吸気行程噴射時のスモークが発生しやすくなる惧れがあった。
【0006】
また、ピストン頂面に設けられた凹部と隆起部とが交わって形成される稜線の位置によっては燃料が点火プラグに付着し易くなってくすぶりや失火等を招き燃焼安定性が低下してしまうという惧れもあった。
【0009】
本発明は、このような従来の実情に鑑みなされたもので、直噴火花点火式内燃機関において、燃料噴射系とピストン頂面形状の最適化を図る等すると共に、燃料噴霧を要求に見合った適正な状態に設定する等することにより、ピストン冠面やシリンダ壁面や点火プラグへの過度の燃料付着を防止し、以って直噴火花点火式内燃機関の運転性能,排気性能,スモーク排出性能,オイルダイリューション等の問題を解決することを目的とする。
【0018】
【課題を解決するための手段】
このため、請求項1に記載の発明に係る直噴火花点火式内燃機関は、シリンダ内に直接燃料を噴射する火花点火式内燃機関であって、吸入空気が対向する排気弁下側のシリンダ壁面に衝突してピストン頂面方向に下方に曲げられて縦渦を形成するような形状の吸気ポートと、吸気ポートのシリンダヘッド燃焼室開口部とシリンダボアとの間で吸気ポート下側の燃焼室壁面に噴口が開口して燃料を噴射し、噴射された燃料噴霧の上縁線が、前記噴口を通りシリンダ中心軸と直交する線より下側に位置するように配置された燃料噴射弁と、吸気弁と排気弁との間で略シリンダ中心に配置される点火プラグと、吸気弁に対応する側が凹面をなし、排気弁側に滑らかに盛り上がって、点火プラグよりも排気弁側でシリンダヘッド側に凸の稜線を両端がピストンの外周部まで延びるように有し、この稜線から直線的に燃焼室ペントルーフ天井に沿って傾斜する平面を有する冠面形状をもつピストンと、を含んで構成するようにした。
【0019】
かかる構成によれば、稜線による燃料噴霧のせき止め効果と、稜線より排気弁側での燃料噴射方向とは逆向きに生じる縦渦により、燃料噴霧が排気弁側へ進むのが抑制されて、シリンダ壁面への燃料付着が防止され、燃料によるオイル希釈を抑制できる。
【0020】
更に、燃料噴霧がシリンダ内の縦渦に対向して点火プラグ側へ進むので、微粒化や蒸発が促進されて、点火に適した燃料蒸気塊が形成されると共に、点火プラグへの過度の燃料付着が防止され、スモークの発生を低減できる。
特にピストンについて、吸気弁に対応する側が凹面をなし、排気弁側に滑らかに盛り上がって、点火プラグよりも排気弁側でシリンダヘッド側に両端がピストンの外周部まで延びる凸の稜線を有し、この稜線から直線的に燃焼室ペントルーフ天井に沿って傾斜する平面を設けることにより、シリンダヘッド下面との間で上昇気流をつくり易くなり、この気流により燃料噴霧の排気弁側への進行をより効果的に阻止できる。
また、燃料噴霧の上縁線が、噴口を通りシリンダ中心軸と直交する線より下側に位置するように配置したことにより、シリンダヘッドの下面(燃焼室壁の上面壁)へ燃料噴霧が付着し、燃費,HC,スモーク等が悪化するのを防止できる。
【0021】
請求項2に記載の発明では、特にピストンの外周部が凹面よりも高く上死点位置でシリンダヘッドと微小な間隙で相対するフラットな面である構成とする。
【0022】
このような外周部を設けることにより、シリンダヘッド下面との間で燃料を巻き上げて、シリンダ壁面への燃料付着をより効果的に防止できる。
請求項3に記載の発明では、前記稜線の最高部の高さは、上死点位置で燃料噴射弁の噴口部以上の高さとする。
また、請求項4に記載の発明では、ピストン周縁部に凹面より高い外周部を有する場合に、前記稜線の最高部の高さは、前記外周部よりも高く、上死点位置で燃料噴射弁の噴口部以上の高さとする。
【0023】
これらによって、燃料噴霧のせき止め効果をより完全に機能させることができる。
【0031】
【発明の効果】
請求項1に記載の発明に係る直噴火花点火式内燃機関によれば、燃料噴射時期のいかんにかかわらず、シリンダ壁面への燃料付着や、点火プラグへの過度の燃料付着を防止して、燃料によるオイル希釈の抑制、スモークの発生の抑制、更には燃焼安定性の確保等を実現できるという効果が得られ、ピストンの稜線より排気弁側に傾斜した平面を設けることにより、シリンダヘッド下面との間で上昇気流をつくり易くなり、この気流により燃料噴霧の排気弁側への進行をより効果的に阻止できる。
【0032】
請求項2に係る発明によれば、ピストンの周縁部に凹面よりも高く上死点位置でシリンダヘッドと微小な間隙で相対するフラットな面の外周部を設けることにより、シリンダヘッド下面との間で燃料を巻き上げて、シリンダ壁面への燃料付着をより効果的に防止できる。
請求項3又は請求項4に係る発明によれば、稜線の最高部の高さを適切なものとすることにより、燃料噴霧のせき止め効果をより完全にできる。
【0034】
【発明の実施の形態】
以下に、本発明の実施の形態を添付の図面に基づいて説明する。
図1に示すように、本発明の第1の実施形態に係る直噴火花点火式内燃機関(ここでは、4弁式の内燃機関を例にして説明してある)では、点火プラグ1を燃焼室3の略中心に配設してある。そして、シリンダ中心軸線からオフセットさせて一側側に吸気ポート5を2つ備えるようにすると共に、当該吸気ポート5のシリンダ開口部下方或いはその付近で、燃料を噴射するための噴口4aが2つの吸気ポート5の間から燃焼室3内に臨むように、燃料噴射弁4を配設するようになっている。
【0035】
燃料噴射弁4は、シリンダヘッド2へ俯角θ=35°(後述するように、θ=35°±10°とするのが好ましい。)で取り付けられると共に、噴口4aから噴射される燃料の噴霧円錐角αが70°(後述するように、α=70°±20°とするのが好ましい。)になるように設定されている。これにより、燃料噴射弁4から噴射される燃料噴霧8は、燃料噴霧8の上縁線8aにおいても、噴口4aを通りシリンダ中心軸と直交する線(シリンダが垂直配置される場合は、即ち、水平線である)より下側(ピストン側)に位置するように設定されることになる。即ち、シリンダヘッド2の下面(燃焼室壁3の上面壁3a)へ燃料噴霧8が付着し、燃費,HC,スモーク等が悪化するのを防止すべく、燃料噴霧8を、噴口4aを通りシリンダ中心軸と直交する線より上方(シリンダヘッド側)に向けて進行させないようにしてある。
【0036】
ピストン7の冠面(頂面)の吸気側には、上死点付近において、燃料噴霧8の概ね全てを受けるような凹曲面9が形成されており、排気側には燃焼室壁面3aと干渉しない程度のシリンダヘッド側に凸の傾斜を持つ平面部(斜面)10が形成されている。なお、前記凹曲面9と平面部10とが交わって形成される稜線11が、点火プラグ1から適切な距離だけ排気側にオフセットされるように、前記凹曲面9と平面部10とは形成される。
【0037】
ここで、上記構成を有する本実施形態に係る直噴火花点火式内燃機関において奏せられる作用について説明する。
一般に、直噴火花点火式内燃機関においては、低回転・低負荷域、特にアイドル運転領域等の燃料供給量が少ない領域での燃焼安定性を改善することが重要な課題の一つであるが、図2に示すように、燃料終了噴時期が上死点付近である場合が最も燃焼安定度が高いため、最小限、この上死点付近での燃料噴霧の管理が重要となってくる。
【0038】
本実施形態における燃料噴射弁4によれば、図3(A)に示すように、シリンダ12内に噴射された燃料の噴霧8は、吸・排気方向の断面視における燃料噴霧8の上縁線8aが、噴口4aを通るシリンダ中心軸直交軸(シリンダが垂直配置される場合は、即ち水平線である)よりも下方(ピストン側)に向くので、燃料噴霧8は概ね噴口4aの位置よりも上方(燃焼室3の上面壁3a側)へは直接噴射(衝突或いは進行)されない。なお、噴射終了期間が上死点付近からずれ、ピストン位置が下方となっても、噴霧の到達距離が急激に短くなるため(噴霧貫徹力が小さくなるため)、燃焼室3の壁面3aや排気側シリンダ内壁12bへの噴霧8の衝突は避けることができるものである。一方、燃料噴霧8の下縁線8bは、噴口4aを通りシリンダ中心軸に平行な線よりも排気側に傾くので、燃料噴霧8が直接吸気側シリンダ内壁12aに衝突することは概ね避けることができる。
【0039】
ピストン7の冠面上に形成された前記稜線11は、上死点付近において、燃料噴霧8の概ね全てを凹曲面9で受けられるような高さ及び位置に設置してあるため、燃料噴霧8は当該稜線11により規制され、燃料の燃焼室壁3aやシリンダ12の内壁12a,12bへの付着が極力抑制されることになるので、当該燃料の付着による悪影響、例えばスモークやHCの増加や潤滑油の希釈等の悪影響を極力抑制することができる。
【0040】
なお、図4に示すように、噴射された燃料噴霧8は、凹曲面9に衝突することによって、微粒化されつつ燃料粒子速度を落として巻き上がってシリンダ内に浮遊するため、吸気との混合が促進されることとなり、従来に比べ燃焼改善を図ることができる。更に、稜線11が点火プラグ1から適切な距離だけ排気側にオフセットされているので、気化された燃料が点火プラグ1の周囲に集まり易くなっており、これにより着火性を大幅に改善することができる。
【0041】
また、高負荷運転時において、ピストン7の冠面形状を本実施形態のように形成することによるスモーク低減効果が大きいのは、図5の実験結果に示されるように、燃料噴射終了時期が上死点から上死点後120°CA(クランク角度)付近の範囲である。当該スモーク低減効果が大きいクランク角度範囲は、ピストン7が比較的燃料噴射弁4の近くにある場合或いはピストン摺動速度が速くシリンダ12内のガス流動が大きい場合に相当し、噴射終了時期が上死点後120°CA前後というのは、まさしく後者の影響が強い場合である。
【0042】
そのため、高負荷運転時のスモーク低減を図るためには、上死点後120°CA付近の噴射時期において、燃料噴霧中心が、燃料噴射弁4から最も遠いピストン7の冠面上の最排気側点に向くのが〔図6(A)等参照〕、燃料の壁面付着を考慮した際には最適であり、それを達成できる燃料噴射弁4の取付角度はエンジンの寸法によって異なるが、概ね俯角θ=35°±10°であり、そのため本実施形態では前述したように、燃料噴射弁4のシリンダヘッド2への取付角度を俯角θ=35°としているのである。そして、俯角θを35°とした際には、燃料噴霧8の外延(詳しくは上縁線)が、噴口4aを通りシリンダ中心軸線と直交する線より下方となるようにするためには、燃料の噴霧円錐角の最大値は、70°となるのである。なお、同様に、燃料噴射弁4の取付角度の幅が25°〜45°(即ち、35°±10°)であれば、噴霧円錐角は50°〜90°(即ち70°±20°)となる。
【0043】
なお、例えば、噴霧錐角αを70°とし、燃料噴射弁4の取り付け俯角θを変化させた場合(吸気行程噴射)の燃焼安定性と未燃燃料(HC)排出量の変化の様子を、図21に示しておく。かかる実験結果からも、噴霧円錐角αを約70°とした場合には、燃料噴射弁4の取付角度が、約35°〜約45°であることが好ましいことが解る。
【0044】
このように、本実施形態によれば、直接火花点火式内燃機関の燃料供給の応答性が高いことによる過渡運転状態での応答性の向上や、層状燃焼とすることで希薄燃焼が可能となることによる燃費の向上等の効果を奏することができるのは勿論のこと、
更に、燃料噴射弁4の噴口4aを、吸気ポート5のシリンダ開口部下方或いはその付近でシリンダ外周近傍に臨ませて燃料噴射弁4を(俯角35°±10°で)取り付けると共に、燃料噴霧8の噴霧円錐角αを70°(±20°)に設定することで、燃料噴霧8が噴口4aを通りシリンダ中心軸線に直行する線より下側に向けて噴射されるようにし、かつ、ピストン7の冠面の吸気側に上死点付近の噴射時期で燃料噴霧8の概ね全てを受けるような凹曲面9を形成し、ピストン7の冠面の排気側には燃焼室壁3aと干渉しない程度にシリンダヘッド側に向けて凸の傾斜を持つ平面部10を形成し、前記凹曲面9と前記平面部10との稜線11を、点火プラグ1から適切な距離だけ排気側にオフセットさせるようにしたので、上死点付近の噴射時期では燃料が燃焼室壁やシリンダ内壁に付着することが最大限抑制できるため、スモークの増加や潤滑油の燃料による希釈等を抑制することができると共に、凹曲面9との衝突により微粒化されつつ巻き上げられ気化促進された燃料により燃焼改善を図ることができると同時に、前記気化促進された燃料が点火プラグ1の周囲に集められるため、着火性を大幅に改善することができる。
【0045】
なお、第1の実施形態によれば、稜線11の位置が、比較的限定されていないので設計自由度が高いという効果もある。
次に、第2の実施形態について説明する。
この第2の実施形態では、図6(A),図6(B)に示すように、稜線11の位置を、上死点後120°CA前後の噴射時期(ピストン位置)において、燃料噴霧8の外縁線8d(下方外延)と交差できるような排気側の位置としている。その他の構成は、第1の実施形態と同様であるので説明は省略する。
【0046】
本実施形態によれば、第1の実施形態と同様の効果を奏した上で、更に加えて、高速高負荷運転時等の燃料噴射期間が長い場合においても、ピストン7の冠面上の凹曲面9に燃料噴霧8を衝突させることが可能となるので、これにより微粒化や巻き上げによる混合促進や気化促進を図ることができ、以ってスモークの発生を抑制することが可能となる。
【0047】
なお、上記各実施形態では、4弁式の内燃機関について説明したが、これに限らず2弁式或いは吸気2弁・排気1弁の3弁式等の他の弁数の内燃機関にも適用することができるものである。
また、上記各実施形態では、凹曲面9を備えるようにして説明したが、凹曲面9を備えずとも、即ち、ピストン冠面の吸気側の形状にとらわれることなく、ピストン冠面の排気側にピストン外方からピストン中心へ向けて徐々に隆起されシリンダヘッド側に凸に傾斜する平面部10を設け、この平面部10の最大隆起部に相当する稜線11を、排気側に所定量オフセットさせるようにすると共に、適切な高さとなるように調整しておけば、燃焼室内の渦流TFを促進させることができ燃焼改善を十分図れると同時に、燃料噴霧8の進行方向がピストン側(下方)を向くと共に、上死点付近の燃料噴射時期において、燃料噴霧8の進行が、前記隆起された稜線11により規制されるため、燃料噴霧8が直接燃焼室壁3aやシリンダ内壁12a,12bに付着することが最大限抑制できるため、スモークの増加や潤滑油の燃料による希釈等を抑制することができる。そして、ピストン7の冠面上に設けた前記稜線11より吸気側のピストン冠面に燃料噴霧8を衝突せられ気化された燃料は、前記隆起された稜線11により規制され点火プラグの周囲に集められるので、着火性を大幅に改善することができる。
【0048】
この場合において、更に、少なくとも燃料噴射開始から上死点後120°CA付近までの燃料噴射時期において、燃料噴霧8の下方外縁線8dが当該稜線11よりシリンダ下方を通過するように形成すれば、高速高負荷運転時等の燃料噴射期間が長い場合(上死点後120°CA付近で燃料噴射が終了するような場合)においても、ピストン7の冠面上に設けた前記稜線11より吸気側の冠面に燃料噴霧を確実に衝突させることが可能となるので、これにより微粒化や巻き上げによる混合促進や気化促進を図ることができ、以ってスモークの発生を極力抑制することが可能となる。
【0049】
続けて、第3の実施形態について説明する。
第3の実施形態は、図1で説明した内燃機関のピストン7の頂面形状などをより詳細に説明するものである。なお、第3の実施形態において、図1に示す吸気ポート5は、吸入空気が対向する排気弁下側のシリンダ壁面に衝突してピストン7頂面方向に下方に曲げられて、シリンダ内に、図中時計回り方向に、縦渦を形成するような形状となっている。その他の部分は、第1,第2の実施形態において既に説明したと同様であるので、説明は省略する。
【0050】
即ち、第3の実施形態におけるピストン7は、図7(A),図7(B)に示すような冠面形状を有する。
吸気弁16(図8等参照)側に、凹曲面9が設けられている。
この凹曲面9は、吸気弁16下側のスキッシュ部19から滑らかに形成され始め、排気弁17(図8等参照)側に行くに従って平らな底部を過ぎてから滑らかに盛り上がって、点火プラグ1よりも、すなわちシリンダ中心よりも排気弁17側の距離Lの位置で最高となり、シリンダヘッド2側に凸の稜線11を形成する。
【0051】
凹曲面9は、ピストン7の頂面上で吸気弁16側から排気弁17側へ向かう方向と略直角方向(クランク軸と平行な方向)に同一高さの概略円筒面である。
稜線11の最高部の高さは、上死点位置で燃料噴射弁4の噴口部以上の高さである。従って、上死点付近で噴射された場合、燃料噴霧のほとんど全てがこの稜線11によりせき止められ、上方に曲げられて、対向する排気弁17下側のシリンダボア面に直接到達することが抑制される。
【0052】
稜線11からは、排気弁17側に、直線的に燃焼室ペントルーフ天井に沿って傾斜する斜面13が形成されて、排気弁17下側のスキッシュ部14に連なっている。
更に、ピストン7の周縁部には、凹曲面9よりも高く、上死点位置でシリンダヘッド2と微小な間隙で相対するフラットな面の外周部15が形成されている。尚、稜線11は外周部15よりも高く形成され、外周部15と交差する位置まで延びている。
【0053】
次に作用を説明する。
図8に示すように、ピストン7が吸気上死点付近にあるときに燃料が噴射される場合は、燃料がピストン7の凹曲面9に沿って進むが、稜線11によるせき止め効果と、斜面13とシリンダヘッド下面とで囲まれる燃焼室内で形成される時計回り方向の小さな縦渦21による稜線11の付近での上昇気流とにより、排気弁17側へ進むことが抑制される。
【0054】
また同時に、図示していないが、凹曲面9を取り囲む外周部15及びスキッシュ部11,14により燃料は巻き上げられ、直接シリンダボアに付着することが抑制される。
従って、燃料が直接対向するシリンダ壁面へ衝突付着することがほぼ全面的に避けられる。これにより、図13の実験結果から明らかなように、フラットピストンに比べて、噴射時期が吸気上死点付近のときの潤滑オイル希釈ガソリン量を大幅に低減できる。尚、潤滑オイル希釈ガソリン量は、燃料噴射量から、排気組成分析により求めた排気出口側での燃料量を減算して得たものであり、この差分が潤滑オイル中に混入したものと推定した。また、図13中のMPIレベルとは吸気系にて燃料を噴射するマルチポイントインジェクションタイプの場合の潤滑オイル希釈ガソリン量である。
【0055】
更に、図14の実験結果から明らかなように、各種の噴霧角を有する燃料噴射弁に対しても、フラットピストンに比べて、所定の凹面を設けた本発明によるピストンは、潤滑オイル希釈ガソリン量の点で有利である。従って、本発明では、より狭い噴霧角、すなわち、貫徹力の大きな噴霧に対しても潤滑オイル希釈ガソリン量を低減でき、燃料噴射弁の設定可能な噴霧角の範囲を大きく拡大できる。
【0056】
図9には吸気行程前半に噴射された場合の噴霧を示す。吸気流により、縦渦22と23とが形成される。これは、本発明の特徴で、既述した従来例では実現できない。
この2つの縦渦22,23により、燃料噴霧が2つの渦に分散され、特に、縦渦22に取り込まれた燃料は、点火プラグ1に直接衝突することを縦渦23により抑制されるため、点火プラグ1周りに過度に燃料が付着する問題が解決され、吸気行程前半で噴射した場合のスモークの発生を、図15の実験結果に示すように大幅に低減できる。無論、凹曲面9による燃料噴射弁4と衝突壁面との距離拡大によるピストン7の頂面での衝突噴霧の濡れ厚さ低減も上記スモーク低減の一要因である。
【0057】
一方、ピストン7がその後下降し上昇する際に、稜線11の付近では、縦渦22で上側に吹き上げられる噴霧と縦渦23で対向され減速する噴霧とでちょうど燃料の塊の保存部分24が図10に示すように観察され、ピストン7が圧縮上死点付近の点火時期に近づくと、図11に示すように、燃料の塊24はちょうど点火プラグ1の付近にくる。これにより、燃料噴射時期がある程度早い場合は、この稜線11に燃料蒸気塊が形成される特徴により、図16の実験結果に示すように燃料の安定度が高くなる効果がある。
【0058】
更に、図12に示すように、点火時期付近に燃料を噴射する場合は、本発明のピストンでは、燃料噴霧がシリンダ内の縦渦25に対向してピストン凹曲面9表面を点火プラグ1側に進むので、微粒化や蒸発が促進されて、点火に適した燃料蒸気塊が形成されると共に、過度の燃料の点火プラグ1周りへの付着やそれに起因する点火プラグ1のくすぶりや濡れの問題を未然に防止できる。このとき、斜面13の上で形成されるもう1つの微小な縦渦26は、燃料が稜線11を越えて排気弁17下のシリンダボアに直接付着してオイルを希釈しない作用をもつ。かくして、本発明による内燃機関では、圧縮行程時の燃料噴射時も安定した燃焼を実現できる。
【0059】
図17(A),図17(B)には、第4の実施形態を示す。
図7(A),図7(B)に示したものでは、ピストン7の凹曲面9の底部は平面に近いものであったが、当該第4の実施形態では、ピストン7の凹曲面9’をより真の円筒面に近づけている。但し、凹曲面9’の最底部の外周部15からの深さは前述の実施形態の凹曲面9の深さと同一にしている。
【0060】
従って、凹部の容積を小さくできるので、圧縮比を高くとることが可能となる。すなわち、基本的効果については、図13と図16の斜線内で略同一でありながら、圧縮比を高くとれる。
更に続けて、本発明の第5の実施形態について説明する。
基本構成としては、第1,第2の実施形態で説明した図1と略同様であるが、当該第5の実施形態は、燃料噴射弁4の取付角度などを詳細に例示するものである。
【0061】
つまり、第5の実施形態では、燃料噴射弁4は、該燃料噴射弁4から噴射される燃料噴霧の円錐角をαとしたとき、該噴霧の中心軸のシリンダヘッド1下面に対する角度 (燃料噴射弁のシリンダヘッドへの取り付け俯角。以下適宜噴霧軸方向角度という) θが、α/2≦θ≦90°−α/2となるように取付け方向を設定する。
【0062】
そして、前記燃料噴霧の円錐角αが、70°±20° (50°≦α≦90°) に設定され、より好ましくは65°±5° (60°≦α≦70°) の範囲に設定され、該設定された噴霧円錐角αの範囲内にあることにより、該燃料噴射弁9から斜め下方を指向する噴霧が燃焼室3内に供給され、例えば60°≦α≦70°の円錐角αを持つ噴霧は、その上縁線8a及び下縁線8bに挟まれた範囲に大部分の燃料噴霧が含まれる。
【0063】
以下詳細に説明すると、前記のように円錐角α及び噴霧軸方向角度θを設定することにより、燃料はシリンダヘッド下面3aや、燃料噴射弁4の噴孔直下側のシリンダの壁面12a及び噴孔と対向する壁面12bに直接衝突することがなく、また、燃料噴射期間を主として吸気行程中に設定することにより、吸気上死点近傍を除いてピストン7の冠面にも直接衝突することがない。
【0064】
吸気上死点近傍では、ピストン7の冠面が燃料噴射弁4の噴孔4aに最も近い位置にあり、燃料噴霧のペネトレーション (貫徹力) がいかに短くとも噴霧はピストン冠面に衝突する。しかし、噴霧円錐角αが大きいと、冠面との衝突によっても冠面上に形成される液膜はスモークを発生させないことは後述するが図18に示されるとおりである。これは、燃料噴射弁4の燃料噴射圧力が5MPa±1MPaという高圧に設定されているため、衝突後の噴霧がピストン冠面で反射し空間に広く散布されるためである。また、シリンダ12は隠れていて、噴霧が直接当たることはない。
【0065】
図18には、ピストン冠面が平らな場合の、噴霧円錐角αと燃料噴射終了時期が吸気上死点TDC及び30°、60°、90°ATDCにおけるスモーク濃度との相関線を概念的に示したものである。即ち、噴霧円錐角αが大きければ、スモーク濃度は低減するという非常に強い相関があることである。
この相関線の横軸即ち噴霧円錐角との交点はスモーク濃度ゼロの要求噴霧円錐角である。この値はおおよそ50°から90°好ましくは60°から70° (軸対称噴霧で±30°から35°) となる。
【0066】
例えば、この噴霧円錐角αが70°の場合、燃焼室に前述した角度θを35°≦θ≦55°に設定すると、噴霧稜線の下縁線8bはシリンダヘッド2下面に対して70°から90°となり、角度θ=55°の場合、同90°と殆どシリンダ2壁面に平行に近くなり、円錐角を取り巻く微粒子噴霧群はシリンダ壁面に衝突する。したがって、これ以上大きい値の噴霧円錐角αはシリンダ壁面を濡らすために使用できない。一方、噴霧稜線の上縁線8aは点火プラグ1を指向し、角度θが35°≦θ≦55°の場合、噴霧円錐角70°の場合では、水平線に対し、0°から20°下方となる。したがって、点火プラグ1を有する燃焼室3頂壁側へは噴霧を行かせないようにすることができる。
【0067】
さらに、このような広噴霧円錐角化の要求は、ペネトレーションとよぶ噴霧貫徹力を小さくできる効果があり、ペネトレーションを短くできると燃料の壁面への到達が回避できる。
図19には、噴霧円錐角αとペネトレーションの相関を示す。噴霧円錐角αが大きくなると、直線的にペネトレーションは短くなり、シリンダボア径よりも短くなると、シリンダ壁面への衝突は回避できる。噴霧円錐角αに対して前述のスモーク濃度ゼロを達成できる噴霧角αを60°から70°とした場合ではペネトレーションは90mmから80mm (噴孔からの噴霧到達距離) となり、ほぼシリンダ内壁面に衝突しない長さとなる。
【0068】
さらに、噴霧円錐角αとシリンダ内壁面への燃料付着による潤滑油希釈の量を示す値 (縦軸) との相関を図20に示す。この潤滑油希釈燃料量がMPi (マルチポイントインジェクション方式) の値相当の要求噴霧円錐角は70°である。したがって、60°〜70°という噴霧円錐角αの値は、2つの要求、即ち、スモーク発生を抑制すると共に、噴霧の壁衝突を回避できることにより潤滑不良を回避できるという直噴火花点火式内燃機関の2つの大きな問題を同時に対策できる。
【0069】
この場合、燃料噴射弁の噴霧軸方向の角度θをα/2≦θ≦90°−α/2とする制約は、円錐角の噴霧8の上縁線8aが点火プラグ1を直撃する方向へいくのを回避するために必要である。即ち、噴霧の下縁線8bがシリンダ内壁面へ衝突することを回避するのと同じように噴霧の上縁線8aは、点火プラグ1のある燃焼室3上部空間へ向かって点火プラグ1を直撃することが無いようにしないようにしなければならない。これは、液滴を含む噴霧が点火プラグ1を直撃すると燃料液膜を形成し、拡散燃焼を発生することにより、すすが発生し、点火プラグ1がすすによりくすぶってスパークギャップ間で火花が飛ばなくなり、失火する原因になることから絶対に回避しなければならないからである。
【0070】
以上のことから、燃料噴射弁4を吸気ポート5底部に設置する場合、広噴霧円錐角50°≦α≦90°好ましくは60°≦α≦70°との兼ね合いにより、噴霧軸方向の角度θはα/2≦θ≦90°−α/2とすることが必須となる。
このような噴霧軸方向角度θと噴霧円錐角αとの組み合わせにより、燃料噴射終了時期が吸気行程において、吸気上死点から上死点後120°までの間、高負荷運転ではスモークの発生がゼロであり、低温実験時では潤滑油を希釈する衝突燃料も少なくできるので、当該第5の実施形態によっても、図13及び図15等と同様の結果を得ることができるものである。
【0071】
また、燃料噴射弁4を吸気ポート5の底部に取り付けることで、従来の4弁内燃機関 (ガソリン機関) の本体構造をそのまま使用でき、コストアップを回避できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る直噴火花点火式内燃機関の構成を示す断面図。
【図2】直噴火花点火式内燃機関の燃焼安定性を説明するための図。
【図3】(A)は、同上実施形態における直噴火花点火式内燃機関のピストン上死点付近での燃焼室内の状態を説明するための断面図。(B)は、(A)に示された燃焼室の上方矢視図(燃料噴霧の衝突範囲8cと稜線11との位置関係を説明する図)。
【図4】同上実施形態における燃料噴霧の巻き上がりの状態を説明する図。
【図5】同上実施形態におけるスモークの低減効果を説明する図(高負荷運転時)。
【図6】(A)は、第2の実施形態における上死点後120°CA前後の噴射時期(ピストン位置)での燃焼室内の状態を説明するための断面図。(B)は、(A)に示された燃焼室の上方矢視図(燃料噴霧の衝突範囲8dと稜線11との位置関係を説明する図)。
【図7】本発明の第3の実施形態のピストン冠面形状を示す平面図及び縦断面図。
【図8】同上実施形態における吸気上死点付近で噴射した場合の噴霧を示す図。
【図9】同上実施形態における吸気行程前半で噴射した場合の噴霧を示す図。
【図10】同上実施形態における燃料塊の保存部分を示す図
【図11】同上実施形態における燃料塊の保存部分を示す図
【図12】同上実施形態における点火時期付近で噴射した場合の噴霧を示す図。
【図13】潤滑オイル希釈ガソリン量の噴射時期特性図。
【図14】潤滑オイル希釈ガソリン量の噴霧角特性図。
【図15】スモークの噴射時期特性図。
【図16】安定度の噴射時期特性図。
【図17】本発明の第4の実施形態のピストン冠面形状を示す平面図及び縦断面図。
【図18】本発明の第5の実施形態における噴霧円錐角αに対するスモーク濃度の関係を示す図。
【図19】噴霧円錐角αに対するペネトレーションの関係を示す図。
【図20】噴霧円錐角αに対する潤滑油希釈燃料量の関係を示す図。
【図21】燃料噴射弁の取り付け俯角に対する燃焼安定度,HC排出量の関係を示す図。
【符号の説明】
1 点火プラグ
2 シリンダヘッド
3 燃焼室
4 燃料噴射弁
5 吸気ポート
7 ピストン
8 燃料噴霧
8a 噴霧稜線の上縁線
8b 噴霧稜線の下縁線
9,9’ 凹曲面
10 平面部(斜面)
11 稜線
12 シリンダ
13 斜面
14 スキッシュ部
15 外周部
16 吸気弁
17 排気弁
19 スキッシュ部
α 噴霧円錐角
θ 噴霧軸方向角度

Claims (4)

  1. シリンダ内に直接燃料を噴射する火花点火式内燃機関であって、
    吸入空気が対向する排気弁下側のシリンダ壁面に衝突してピストン頂面方向に下方に曲げられて縦渦を形成するような形状の吸気ポートと、
    吸気ポートのシリンダヘッド燃焼室開口部とシリンダボアとの間で吸気ポート下側の燃焼室壁面に噴口が開口して燃料を噴射し、噴射された燃料噴霧の上縁線が、前記噴口を通りシリンダ中心軸と直交する線より下側に位置するように配置された燃料噴射弁と、
    吸気弁と排気弁との間で略シリンダ中心に配置される点火プラグと、
    吸気弁に対応する側が凹面をなし、排気弁側に滑らかに盛り上がって、点火プラグよりも排気弁側でシリンダヘッド側に凸の稜線を両端がピストンの外周部まで延びるように有し、この稜線から直線的に燃焼室ペントルーフ天井に沿って傾斜する平面を有する冠面形状をもつピストンと、
    を含んで構成される直噴火花点火式内燃機関。
  2. 前記ピストンの外周部が、前記凹面よりも高く上死点位置でシリンダヘッドと微小な間隙で相対するフラットな面であることを特徴とする請求項1に記載の直噴火花点火式内燃機関。
  3. 前記稜線の最高部の高さは、上死点位置で燃料噴射弁の噴口部以上の高さであることを特徴とする請求項1または請求項2に記載の直噴火花点火式内燃機関。
  4. 前記稜線の最高部の高さは、前記外周部よりも高く、上死点位置で燃料噴射弁の噴口部以上の高さであることを特徴とする請求項3に記載の直噴火花点火式内燃機関。
JP2003034867A 1995-09-11 2003-02-13 直噴火花点火式内燃機関 Expired - Lifetime JP3861825B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034867A JP3861825B2 (ja) 1995-09-11 2003-02-13 直噴火花点火式内燃機関

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP23213495 1995-09-11
JP23213595 1995-09-11
JP23213395 1995-09-11
JP7-232133 1995-09-11
JP7-232135 1995-09-11
JP7-232134 1995-09-11
JP2003034867A JP3861825B2 (ja) 1995-09-11 2003-02-13 直噴火花点火式内燃機関

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24048296A Division JP4115549B2 (ja) 1995-09-11 1996-09-11 直噴火花点火式内燃機関

Publications (2)

Publication Number Publication Date
JP2003262129A JP2003262129A (ja) 2003-09-19
JP3861825B2 true JP3861825B2 (ja) 2006-12-27

Family

ID=29219821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034867A Expired - Lifetime JP3861825B2 (ja) 1995-09-11 2003-02-13 直噴火花点火式内燃機関

Country Status (1)

Country Link
JP (1) JP3861825B2 (ja)

Also Published As

Publication number Publication date
JP2003262129A (ja) 2003-09-19

Similar Documents

Publication Publication Date Title
US5720253A (en) Direct-injection type spark-ignition internal combustion engine
EP0839997B1 (en) Combustion chamber structure having piston cavity
US7231901B2 (en) Direct-injection engine, method of controlling the same, piston used in the same and fuel injection valve used in the same
EP1770256B1 (en) Direct injection spark ignition engine and method of operating it
US6684848B2 (en) Direct-injection spark-ignition engine
US6286477B1 (en) Combustion chamber for direct-injected spark-ignited engines with swirl airflows
JP3362690B2 (ja) 筒内噴射式火花点火内燃機関
JPH10131757A (ja) 筒内噴射式エンジン
JP2001207854A (ja) 火花点火式往復動型エンジン
US6267096B1 (en) Three-valve cylinder head system
JP2000248945A (ja) 筒内直接噴射エンジン
JP4115549B2 (ja) 直噴火花点火式内燃機関
JP3861825B2 (ja) 直噴火花点火式内燃機関
EP1088972B1 (en) In-cylinder direct-injection spark-ignition engine
JP2001059423A (ja) 筒内噴射式火花点火内燃機関
JP5006905B2 (ja) 筒内噴射式火花点火内燃機関
JPH04166612A (ja) 筒内噴射式内燃機関
JP5136255B2 (ja) 火花点火式直噴エンジン
JP2770376B2 (ja) エンジンのピストン
JP3838346B2 (ja) 筒内噴射式火花点火内燃機関
JP2560337B2 (ja) 直噴式ディ−ゼル機関
JP3280431B2 (ja) 筒内燃料噴射式エンジン
JP2936806B2 (ja) 筒内噴射式内燃機関
JP2906665B2 (ja) 筒内噴射式内燃機関
JP2867772B2 (ja) 筒内噴射式内燃機関

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

EXPY Cancellation because of completion of term