JP3860388B2 - Connection structure of resistance wire and external connection terminal, and surge resistant thin resistor having this connection structure - Google Patents

Connection structure of resistance wire and external connection terminal, and surge resistant thin resistor having this connection structure Download PDF

Info

Publication number
JP3860388B2
JP3860388B2 JP2000115672A JP2000115672A JP3860388B2 JP 3860388 B2 JP3860388 B2 JP 3860388B2 JP 2000115672 A JP2000115672 A JP 2000115672A JP 2000115672 A JP2000115672 A JP 2000115672A JP 3860388 B2 JP3860388 B2 JP 3860388B2
Authority
JP
Japan
Prior art keywords
resistance wire
resistor
external connection
flat
surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000115672A
Other languages
Japanese (ja)
Other versions
JP2001307901A (en
Inventor
芳彦 山下
Original Assignee
タイ アサヒ デンキ コーポレーション リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タイ アサヒ デンキ コーポレーション リミテッド filed Critical タイ アサヒ デンキ コーポレーション リミテッド
Priority to JP2000115672A priority Critical patent/JP3860388B2/en
Publication of JP2001307901A publication Critical patent/JP2001307901A/en
Application granted granted Critical
Publication of JP3860388B2 publication Critical patent/JP3860388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Details Of Resistors (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Thermistors And Varistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐サージ薄型抵抗器および抵抗器における抵抗線と外部接続端子の接続構造に関し、より詳しくは、サージ電圧に対する耐久性の向上と抵抗器のコンパクト化に貢献することができる、耐サージ薄型抵抗器および抵抗器における抵抗線と外部接続端子の接続構造に関する。
【0002】
【従来の技術】
従来より各種電子機器において利用されている耐サージ抵抗器は、落雷や静電気あるいは電源ノイズ等に起因するサージ電流から電子機器を保護するものとして欠くことのできないものとなっている。また、電子機器業界においては、部品のコンパクト化が推し進められているため、近年、耐サージ抵抗器を薄型に構成したいわゆる耐サージ薄型抵抗器が採用されつつある。なお、耐サージ薄型抵抗器とは、その実用性から鑑みるに、抵抗器(外部接続端子を除く)の厚みと高さの比が0.7程度以下のものを指すと思われる。
従来の耐サージ薄型抵抗器について説明する。従来の耐サージ薄型抵抗器は、例えば以下のようにして構成されていた。すなわち、抵抗線を波形状に屈曲させるか、もしくは抵抗板を波形状となるようにせん断加工することによって屈曲抵抗体を形成し、この屈曲抵抗体の両端部に外部接続端子を固定した後、屈曲抵抗体をセラミックケース内に収容し、該セラミックケース内にセメント等の充填材を充填し、この充填材を加熱して固化させることにより構成されていた。
【0003】
【発明が解決しようとする課題】
一般に、抵抗器の耐サージ特性は、抵抗体の長さつまり電流経路の長さが長い程良好であり、また抵抗体の断面積が大きい程良好であることが知られている。このような条件とすることにより、高サージ電圧の印加前後における抵抗値変化が少なくなり、また、サージ電圧の繰り返しによる破断が生じにくくなって耐久性が向上する。
ところで、耐サージ抵抗器は、抵抗器として或る程度の抵抗値を確保していなければならないが、上記した従来の耐サージ薄型抵抗器における屈曲抵抗体は、一平面内で波形状に形成されたものであるため、充分な長さを確保することができなかった。このため、或る程度の抵抗値を確保するには抵抗体の断面積を小さくしなければならず、これによって耐サージ特性が悪くなっていた。
【0004】
なお、抵抗体の長さを長くすれば、耐サージ特性は向上するが、従来の耐サージ抵抗器は上述の如く抵抗体を一平面内で波形状に形成したものであるため、抵抗体の長さを長くしようとすれば、抵抗器を大きくせざるをえなかった。このような理由により、従来の耐サージ薄型抵抗器は、コンパクト化とサージ特性の向上を両立させることが難しく、電子機器業界の要求を満たすことができなかった。
【0005】
本出願人は、このような実情に鑑みて鋭意研究を続けた結果、全体形状が扁平となるように抵抗線を巻回して扁平抵抗素子を構成し、この扁平抵抗素子から耐サージ薄型抵抗器を作製することにより、コンパクト化とサージ特性の向上の双方を達成できることを見い出し、本発明に係る耐サージ薄型抵抗器を完成するに至った。
【0006】
なお、抵抗器のコンパクト化とサージ特性の向上の双方の達成をより確実なものとするには、リード端子と称される外部接続端子の構造および該外部接続端子と抵抗線の接続構造の改良も必要である。つまり、抵抗線の性能が向上するとその性能アップに見合った電流・電圧の印加が見込まれるため、抵抗線の周辺構造すなわち抵抗線に接続される外部接続端子およびその接続構造にも改良を加える必要があるのである。
従来の耐サージ薄型抵抗器では、抵抗体の両端部に各々、リード端子と称される外部接続端子が接続されているが、この外部接続端子は従来、板状に形成されていることが多く、このことが、抵抗器の更なる薄型化を妨げる一因となっていた。
【0007】
そこで、本出願人は、線状の外部接続端子を用いることで抵抗器を更に薄くすることを考えた。図14は、その外部接続端子と抵抗体の接続構造を示す図である。ここでは、接続構造の一例としてテレビ受像機等のディスプレイ装置用耐サージ抵抗器における接続構造を挙げている。
【0008】
この接続構造は、図15に示す如く、外部接続端子(20)の基部(21)を、例えば厚さ(t)が0.65mm、幅(w)が1.4mm(厚さ(t)と幅(w)の比(t/w)が0.46)となるように扁平加工し、この扁平加工された基部(21)を折り曲げて挟持部(23),(23)を形成し、この挟持部(23),(23)の先端側に抵抗線(22)の端部を挟み込み(図16参照)、挟持部(23),(23)を抵抗線(22)の端部に圧着溶接する(図14参照)ことにより構成されていた。
【0009】
ところが、この接続構造は、外部接続端子(20)の基部(21)の厚さ(t)と幅(w)の比(t/w)が上記したように0.46とされている(以下、比(t/w)を厚幅比と称する)。
このような厚幅比の基部(21)は、機械的強度が大き過ぎるため、抵抗線(22)に圧力を加えた際に抵抗線(22)が大きく変形することがあった。この場合、その変形部分で抵抗線(22)の強度が低下し、サージ電圧を繰り返し与えたときに比較的早い段階で抵抗線(22)が破断してしまう恐れがあった。
また、この接続構造は、抵抗線(22)を挟持部(23)の先端側すなわち屈曲点に近い所に挟み込んでいたので、抵抗線(22)に圧力を加えた際、抵抗線(22)の前記屈曲点に近い側とその反対側とで圧力に大きな違いが生じることになっていた。このため、抵抗線(22)は断面的に歪に変形することになり、抵抗線(22)の強度を更に低下させることになっていた。また、このような位置に挟み込むことにより、挟持部(23),(23)に圧力を加えても、図14に示す如く、挟持部(23),(23)同士の間に隙間ができて圧着が不充分になることがあった。
【0010】
また、上記したような厚幅比の基部(21)は、溶接を行う際に、電流が幅方向に分散し易く、抵抗線(22)に直接流れる電流が小さくなっていた。このため、基部(21)と抵抗線(22)の接合強度が不充分になる恐れがあった。
また、抵抗線(22)を挟持部(23),(23)の先端側に挟み込んでいたので、抵抗線(22)を介して挟持部(23)の先端側とその反対側とで溶接電流に不均衡が生じ、挟持部(23),(23)同士の接合強度が先端側と反対側とで異なるという問題があった。これにより、接続部の強度が低下し、抵抗器のサージ電圧に対する耐久性を悪くすることになっていた。
【0011】
本出願人は、このような実情に鑑みて鋭意研究を続けた結果、線状の外部接続端子の基部を扁平加工し、この扁平加工された基部を折り曲げて挟持部を形成し、この挟持部の軸方向中央部に抵抗線の端部を挟み込み、前記挟持部を前記端部に圧着させ及び/又は溶接することにより、抵抗器のコンパクト化と耐サージ特性の向上の両立に貢献できることを見い出し、本発明に係る抵抗線と外部接続端子の接続構造を完成するに至った。
【0012】
請求項1記載の発明は、耐サージ薄型抵抗器における抵抗線と線状の外部接続端子の接続構造であって、前記外部接続端子の基部を、扁平加工後における基部の厚さ(t)と幅(w)の比(t/w)が0.26〜0.4となるように扁平加工し、この扁平加工された基部を折り曲げて挟持部を形成し、この挟持部の軸方向中央部に抵抗線の端部を挟み込み、この端部を挟持部間の中央部で、及び相対向する前記挟持部同士を全面に亘って、それぞれ圧着し及び/又は溶接してなることを特徴とする抵抗線と外部接続端子の接続構造である。
【0013】
請求項2記載の発明は、抵抗線の径より薄い厚さを有する扁平空間を内部に設けられるように巻回されて形成される全体形状が扁平となるように抵抗線を巻回してなる扁平抵抗素子と、この扁平抵抗素子を収容する扁平孔を備えた薄形の絶縁ケースと、前記扁平孔内に充填された絶縁性充填材と、前記抵抗線の両端部に夫々接続される線状の外部接続端子を備え、前記外部接続端子の基部を、扁平加工後における基部の厚さ(t)と幅(w)の比(t/w)が0.26〜0.4となるように扁平加工し、この扁平加工された基部を折り曲げて挟持部を形成し、この挟持部の軸方向中央部に抵抗線の端部を挟み込み、この端部を挟持部間の中央部で、及び相対向する前記挟持部同士を全面に亘って、それぞれ圧着し及び/又は溶接してなることを特徴とする耐サージ薄型抵抗器である。
【0014】
【発明の実施の形態】
本発明の実施の形態について、図面を参照しつつ説明する。
まず、本発明に係る耐サージ薄型抵抗器について、図面を参照しつつ説明する。
図1乃至図3は、本発明に係る耐サージ薄型抵抗器の一例を示す図である。なお、これらの図においては、絶縁性充填材の図示を省略している。
この耐サージ薄型抵抗器(13)は、扁平抵抗素子(9)と、抵抗素子収容孔(7)を有する絶縁性ケース(6)と、抵抗素子収容孔(7)内に充填された絶縁性充填材(図示せず)とを備えてなるものであり、抵抗素子収容孔(7)は扁平孔とされたものである。
以下、これら構成要素について、順次、詳説する。
【0015】
扁平抵抗素子(9)は、図1および図3に示すように、全体形状が扁平となるように抵抗線(5)を巻回することにより構成される。このように、全体形状が扁平となるように抵抗線(5)を巻回することにより、径の大きな抵抗線(5)であってもその長さを充分に長くとり、これを薄くて小さいスペースに収めることができる。
【0016】
そして、抵抗線(5)の長さを長くしまた径を大きくすることにより、耐サージ特性を向上させることができる。更に、このような抵抗線(5)を薄くて小さいスペースに収容することにより、耐サージ特性の向上と抵抗器のコンパクト化の両方を達成することができる。
【0017】
扁平抵抗素子(9)は、図5に示す如く、抵抗線(5)を絶縁性芯板(11)の周囲に巻回して構成されてもよいし、図4に示すように絶縁性芯板を設けずに巻回して構成されてもよい。なお、図5に示す如く、抵抗線(5)を絶縁性芯板(11)の周りに巻き付けて構成すれば、抵抗線(5)の隣り合う部分同士(コイルの幅方向)が接触してその部分で導通状態となるのを防止することができる。また、扁平形状となるように抵抗線(5)を巻回する作業が容易となる。絶縁性芯板(11)の材質は特に限定されないが、例えば、各種セラミックス、マイカ等を採用することができる。
また、この絶縁性芯板(11)の長手方向に沿った両側縁には、抵抗線(5)の位置決めを行う切欠き係合部(図示せず)を形成することが望ましい。この切欠き係合部を形成することにより、抵抗線(5)は同係合部に引っ掛かるので、抵抗線(5)の隣り合う部分同士(コイルの軸方向)の接触を確実に防止することができる。また、抵抗線(5)の巻回作業が容易となる。
【0018】
また、扁平抵抗素子(9)の両端部には、それぞれ、線状の外部接続端子(1)が接続されている。この外部接続端子(1)と抵抗線(5)との接続構造は、特に限定されるものではないが、例えば、後述する接続構造(図9参照)を採用することができる。後述の接続構造は、耐サージ特性に優れるとともに、容易かつコンパクトに構成できる点で優れている。
【0019】
絶縁性ケース(6)の一例を図6乃至図8に示す。
絶縁性ケース(6)は、扁平抵抗素子(9)を収容保護するものである。この絶縁性ケース(6)の材質は、絶縁性で且つある程度の機械的強度と耐熱性を有するものであれば特に限定されないが、例えば、各種セラミックスを採用することができる。
また、絶縁性ケース(6)は、扁平抵抗素子(9)を収容するための抵抗素子収容孔(7)を有している。この抵抗素子収容孔(7)は扁平孔とされており、扁平抵抗素子(9)より若干大きい程度に形成されている。
【0020】
絶縁性充填材(図示せず)は、絶縁性ケース(6)の抵抗線収容孔(7)内に充填されるものである。この絶縁性充填材の種類は特に限定されないが、例えば、セメント、シリコン系の熱硬化性樹脂を採用することができる。この絶縁性充填材は、抵抗線(5)が発するジュール熱を効率よく吸収し、ジュール熱が外部接続端子(1)を介して基板(図示せず)へ伝わるのを防止することができる。
【0021】
次に、本発明に係る抵抗線と外部接続端子の接続構造について説明する。
図9は、本発明に係る抵抗線と外部接続端子の接続構造を示す図である。図10および図11は、この接続構造を構成する際の工程を示す図である。
【0022】
本発明に係る抵抗線と外部接続端子の接続構造は、各種抵抗器において採用することができるが、特に、大きな電圧変化に対する耐久性が要求される耐サージ抵抗器において好適に採用することができ、中でも薄型化が要求される耐サージ薄型抵抗器において最も好適に採用できるものである。
この接続構造は、外部接続端子(1)(図10参照)の基部(2)を扁平加工し、この扁平加工された基部(2)を折り曲げて挟持部(3),(3)を形成し、この挟持部(3),(3)の軸方向中央部(4),(4)に抵抗線(5)の端部を挟み込み(図11参照)、挟持部(3),(3)を同端部に圧着させ及び/又は溶接する(図9参照)ことにより構成されるものである。
以下、この接続構造およびこれを構成する手順について詳説する。
【0023】
外部接続端子(1)は、リード端子であって線状に形成されている。端子を線状に形成することによって、該端子を薄形でコンパクトな絶縁性ケース(6)(図1乃至3参照)内に確実に引き込むことができる。
【0024】
外部接続端子(1)の基部(2)は、図9に示すように、抵抗線(5)に固定される部分である。この基部(2)は、上記したようにあらかじめ扁平加工される。
扁平加工後における基部(2)の厚さ(t)と幅(w)の比(t/w)を厚幅比と称することにすると、厚幅比(t/w)は、抵抗器の容量すなわち抵抗器の定格負荷または最大負荷にもよるが、0.26〜0.4程度に設定されることが好ましい。このような厚幅比(t/w)に加工すると、抵抗線(5)に対して加圧溶接を行う際に、抵抗線(5)に大きな変形を与えることなく、抵抗線(5)との接合を強固に行うことができる。
これに対し、基部(2)の厚幅比(t/w)が0.4より大きいと、機械的強度が必要以上に大きくなり、抵抗線(5)へ必要以上に大きな加圧力を与えてこれを大きく変形させてしまうことがある。また、溶接を行う際に、溶接電流が基部(2)内で幅方向へ分散し易くなり、基部(2)と抵抗線(5)の溶接が不充分になる可能性がある。
【0025】
一方、基部(2)の厚幅比(t/w)が0.26より小さいと、機械的強度が小さくなり過ぎ、折り曲げて挟持部(3),(3)を形成した際に屈曲部の強度が弱くなり、サージ電圧に対する耐久性を低下させてしまう。
【0026】
基部(2)をこのような厚幅比に扁平加工したら、図10に示す如く、基部(2)を2つに折り曲げる。これにより、挟持部(3),(3)が形成される。この挟持部(3),(3)は、抵抗線(5)の端部を挟持する部分である。挟持部(3)の軸方向長さ(L2)は、抵抗線(5)と確実に圧着または溶接できる程度の長さとされる。
【0027】
挟持部(3),(3)を形成したら、抵抗線(5)の端部を挟持部(3),(3)の軸方向中央部(4),(4)に挟み込む。抵抗線(5)を軸方向中央部(4),(4)に挟み込むことにより、挟持部(3),(3)と抵抗線(5)を圧着する際に、抵抗線(5)の表面に略均等に圧力が加わる。従って、抵抗線(5)はその断面において部分的に偏って変形することがなく、変形したとしても左右対称に変形することになり、抵抗線(5)の強度を加圧前の状態に維持することができる。また、圧着した際に、基部(2)の屈曲部内側と抵抗線(5)の間に隙間が形成されないので、強固に接合することができる。
【0028】
また、抵抗線(5)を挟持部(3),(3)の軸方向中央部(4),(4)に挟み込むことにより、抵抗線(5)を介して挟持部(3)の先端側とその反対側とで均等に溶接電流が流れ、均等に溶接を行うことができる。従って、相対向する挟持部(3),(3)(図9参照)同士の接合強度が挟持部(3)の先端側とその反対側とで等しくなる。これにより、抵抗線(5)と挟持部(3)を強固に接合することができ、抵抗器のサージ電圧に対する耐久性を向上させることができる。
【0029】
挟持部(3),(3)に抵抗線(5)の端部を挟み込んだら、挟持部(3),(3)の外側から圧力を加え、挟持部(3),(3)に抵抗線(5)を圧着させ、さらに挟持部(3),(3)同士を圧着させる。
なお、この圧着作業に代えて溶接作業を行い、挟持部(3)と抵抗線(5)を接合することも可能である。また、これら圧着作業と溶接作業の両方を行って、接合強度を一層確実なものとすることもできる。
この接続構造においては、基部(2)の厚幅比や抵抗線(5)の挟み込み位置が上記したように設定されているので、基部(2)と抵抗線(5)の接合強度を確実に高めることができるとともに、抵抗線(5)の機械的強度を接合前の状態に維持して、耐サージ特性を良好なものとすることができる。
【0030】
【実施例】
次に、本発明に係る耐サージ薄型抵抗器の実施例を紹介することにより、同抵抗器の効果をより明確にする。なお、本発明に係る耐サージ薄型抵抗器は、以下の例に何ら限定されるものではない。
〔実施例の構成〕
<実施例1>
抵抗線としてニクロム線を用い、その径をφ0.38mmとした。この抵抗線を、長辺の長さ17mm、短辺の長さ13mm、厚さ0.2mmのセラミック製絶縁性芯板の周囲に巻回して、扁平抵抗素子を形成した。扁平抵抗素子の長さ(図4及び図5で言えばL1に相当)は22mmであり、抵抗線の抵抗値は0.68Ωであった。
この扁平抵抗素子の両端部にそれぞれ、線状の外部接続端子を取付けた。
【0031】
この扁平抵抗素子を、図6乃至図8に示す形状の絶縁性ケース内に収容した。絶縁性ケースは、厚み(奥行き)5.0mm、高さ18mm、長さ26mmであった。外部接続端子は、その中途部から先端側を絶縁性ケースから突出させた状態とした。
その後、絶縁性ケースの扁平孔内にセメントを充填し、このセメントを加熱固化することにより、実施例1の耐サージ薄型抵抗器を作製した。
【0032】
<実施例2>
抵抗線の径をφ0.55mm(長さは抵抗値が0.68Ωとなるように調整)とした以外は、上記実施例1と同様とし、これにより実施例2の耐サージ薄型抵抗器を作製した。
【0033】
<比較例1>
抵抗線の径をφ0.35mm(長さは抵抗値が0.68Ωとなるように調整)とした以外は、上記実施例1と同様とし、これにより比較例1の耐サージ薄型抵抗器を作製した。
【0034】
<比較例2>
抵抗板を波形状となるようにせん断加工することによって屈曲抵抗体を形成した。屈曲抵抗体は、厚み0.14mm、帯幅0.69mmであった。また、屈曲抵抗体の両端部間の距離は22mmであり、その抵抗値は0.18Ωであった。
この屈曲抵抗体の両端部に線状の外部接続端子を固定した後、該屈曲抵抗体を実施例1と同じ形状・大きさの絶縁性ケース内に収容した。その後、絶縁性ケースの扁平孔内にセメントを充填し、このセメントを加熱固化することにより、比較例2の耐サージ薄型抵抗器を作製した。
【0035】
〔試験方法1〕
実施例1及び2、比較例1及び2のそれぞれについて、両外部接続端子間にサージ電圧を抵抗線が破断するまで繰り返し印加した。その1回当たりの印加時間は約2(s)であり、これを10(s)おきに繰り返した。なお、サージ電流の瞬間最大値は60(A)であり、その立ち上がり時間は40(ms)以上であった。
この試験を、温度25(°C)、湿度90(%)の雰囲気中で行った。
【0036】
〔試験結果1〕
試験方法1による試験結果は、以下の通りであった。
実施例1:約50,000回で破断、実施例2:約57,000回で破断
比較例1:約33,000回で破断、比較例2:約1,800回で破断
【0037】
〔考察1〕
試験結果1からわかるように、断面積が大きい程、サージ電圧に対する耐久性に優れていることがわかる。また、抵抗線を巻回してなる扁平抵抗素子は、抵抗板を波形状にせん断加工してなる屈曲抵抗体よりも、格段に耐久性に優れていることがわかる。
近年、テレビ受像機等のディスプレイ装置は、待機電流の停止・起動をリモコン操作で行うことが多い。このため、その停止・起動時に発生する初期UP電圧に対する耐久性が、最近の耐サージ抵抗器の課題とされている。テレビ受像機等のディスプレイ装置は、その耐用年数からみて50,000回程度のサージ電圧の繰り返し負荷が見込まれているが、上記したように、比較例1及び2ではその繰り返し負荷に耐えることができない。
一方、実施例1及び2は、双方ともその繰り返し負荷に耐えることができ、耐サージ特性が非常に良好であると言える。しかも、実施例1及び2は、上記したように非常にコンパクトに作製することができるから、耐サージ薄型抵抗器のコンパクト化と耐サージ特性の向上の双方を達成することができる。
【0038】
〔試験方法2〕
上記実施例2及び比較例1の耐サージ薄型抵抗器をそれぞれ図12に示す如く、回路基板(30)に実装した。次いで、各耐サージ薄型抵抗器ついて、両外部接続端子間に定格電力5Wの50%、100%、150%の電力をそれぞれ一定時間印加し、絶縁性ケースの底板部表面(点A)の温度、同ケースの側板部表面(点B)の温度、外部接続端子の先端部(点C)の温度を測定した。その測定結果を図13に示す。
【0039】
〔考察2〕
図13に基づいて考察する。各測定点において、実施例2は比較例1よりも温度が20%程度低くなることがわかる。これは、抵抗線の断面積が大きい程、ジュール熱の発生を抑えて、他の実装部品に与える熱の影響を小さくし、また熱によるはんだの融解を防止できることを意味する。
【0040】
【発明の効果】
請求項1記載の抵抗線と外部接続端子の接続構造は、線状外部接続端子の基部を扁平加工し、この扁平加工された基部を折り曲げて挟持部を形成し、この挟持部の軸方向中央部に抵抗線を挟み込むことにより構成されるので、線状外部接続端子と抵抗線の接合強度を確実に高めることができるとともに、抵抗線の機械的強度を接合前の状態に維持して、耐サージ特性を良好なものとすることができる。また、線状の外部接続端子によって抵抗器のコンパクト化に大いに貢献することができる。
【0041】
請求項2記載の耐サージ抵抗器は、全体形状が扁平となるように抵抗線を巻回してなる扁平抵抗素子と、この扁平抵抗素子を収容する扁平孔を備えた薄形の絶縁性ケースと、前記扁平孔内に充填された絶縁性充填材と、前記抵抗線の両端部に夫々接続される線状の外部接続端子を備え、前記外部接続端子の基部を扁平加工し、この扁平加工された基部を折り曲げて挟持部を形成し、この挟持部の軸方向中央部に前記抵抗線の端部を挟み込み、前記挟持部を前記端部に圧着させ及び/又は溶接してなるので、線状外部接続端子と抵抗線の接合強度を確実に高めることができるとともに、抵抗線の機械的強度を接合前の状態に維持して、耐サージ特性を良好なものとすることができる。また、線状の外部接続端子によって抵抗器のコンパクト化に大いに貢献することができる。又更に、全体形状が扁平となるように抵抗線を巻回してなる扁平抵抗素子と、この扁平抵抗素子を収容する扁平孔を備えた薄形の絶縁性ケースと、前記扁平孔内に充填された絶縁性充填材とを備えてなるので、抵抗器のコンパクト化と耐サージ特性の向上の双方を達成することができる。
【図面の簡単な説明】
【図1】本発明に係る耐サージ薄型抵抗器の一例を示す平面図である。
【図2】図1に示す耐サージ薄型抵抗器の部分断面正面図である。
【図3】図1に示す耐サージ薄型抵抗器の部分断面側面図である。
【図4】本発明に係る耐サージ薄型抵抗器の扁平抵抗素子と外部接続端子の接続状態を示す図であり、絶縁性芯板を設けない場合を示す正面図である。
【図5】本発明に係る耐サージ薄型抵抗器の扁平抵抗素子と外部接続端子の接続状態を示す図であり、絶縁性芯板を設けた場合を示す正面図である。
【図6】本発明における抵抗器用絶縁性ケースの一例を示す平面図である。
【図7】図6に示す抵抗器用絶縁性ケースの正面図である。
【図8】図6に示す抵抗器用絶縁性ケースの側面図である。
【図9】本発明に係る抵抗線と外部接続端子の接続構造の一例を示す側面図である。
【図10】図9に示す接続構造の構成過程を示す図であり、(a)はその側面図、(b)はその平面図である。
【図11】図9に示す接続構造の構成過程を示す側面図である。
【図12】耐サージ薄型抵抗器の試験(試験方法2)状況を示す図である。
【図13】耐サージ薄型抵抗器の試験(試験方法2)結果を示すグラフである。
【図14】従来の抵抗線と外部接続端子の接続構造の一例を示す側面図である。
【図15】図14に示す接続構造の構成過程を示す図であり、(a)はその側面図、(b)はその平面図である。
【図16】図14に示す接続構造の構成過程を示す側面図である。
【符号の説明】
1・・・・・外部接続端子
2・・・・・基部
3・・・・・挟持部
4・・・・・軸方向中央部
5・・・・・抵抗線
6・・・・・絶縁性ケース
7・・・・・抵抗線収容孔(扁平孔)
8・・・・・端子保持部
9・・・・・扁平抵抗素子
11・・・・・絶縁性芯板
13・・・・・耐サージ薄型抵抗器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surge resistant thin-type resistor and a connection structure between a resistance wire and an external connection terminal in the resistor, and more specifically, surge resistance that can contribute to improvement of durability against surge voltage and downsizing of the resistor. The present invention relates to a thin resistor and a connection structure of a resistance wire and an external connection terminal in the resistor.
[0002]
[Prior art]
2. Description of the Related Art Surge resistant resistors conventionally used in various electronic devices are indispensable for protecting electronic devices from surge currents caused by lightning strikes, static electricity, power supply noise, and the like. Further, in the electronic equipment industry, since the parts are being made more compact, so-called surge resistant thin resistors in which the surge resistant resistors are formed thin have been adopted in recent years. In addition, in view of its practicality, the surge resistant thin resistor is considered to indicate a resistor having a thickness to height ratio of about 0.7 or less (excluding external connection terminals).
A conventional surge resistant thin resistor will be described. Conventional surge-resistant thin resistors have been configured as follows, for example. That is, after bending the resistance wire into a wave shape or forming a bending resistor by shearing the resistor plate into a wave shape, and fixing the external connection terminals to both ends of the bending resistor, The bending resistor is accommodated in a ceramic case, and the ceramic case is filled with a filler such as cement, and the filler is heated and solidified.
[0003]
[Problems to be solved by the invention]
In general, it is known that the surge resistance characteristics of a resistor are better as the length of the resistor, that is, the length of the current path is longer, and as the cross-sectional area of the resistor is larger. By setting such a condition, a change in resistance value before and after application of a high surge voltage is reduced, and breakage due to repeated surge voltage is less likely to occur, and durability is improved.
By the way, the anti-surge resistor must have a certain resistance value as a resistor, but the bending resistor in the above-described conventional anti-surge thin resistor is formed in a wave shape in one plane. Therefore, a sufficient length could not be secured. For this reason, in order to secure a certain resistance value, the cross-sectional area of the resistor has to be reduced, and this has deteriorated the surge resistance.
[0004]
If the length of the resistor is increased, the surge resistance is improved. However, as described above, the conventional surge resistor is formed in a wave shape in one plane as described above. If you tried to increase the length, you had to increase the resistor. For these reasons, it is difficult for conventional surge-resistant thin resistors to achieve both compactness and improved surge characteristics, and cannot meet the demands of the electronic equipment industry.
[0005]
As a result of continual research in view of such circumstances, the present applicant has configured a flat resistance element by winding a resistance wire so that the overall shape becomes flat, and the surge resistance thin resistor is formed from this flat resistance element. As a result, it was found that both compactness and improved surge characteristics can be achieved, and the surge resistant thin-film resistor according to the present invention has been completed.
[0006]
In addition, in order to ensure the achievement of both the compactness of the resistor and the improvement of surge characteristics, the structure of the external connection terminal referred to as a lead terminal and the improvement of the connection structure of the external connection terminal and the resistance wire Is also necessary. In other words, if the performance of the resistance wire is improved, it is expected that current and voltage will be applied in accordance with the improvement in performance. Therefore, it is necessary to improve the peripheral structure of the resistance wire, that is, the external connection terminal connected to the resistance wire and its connection structure. There is.
In conventional surge-resistant thin resistors, external connection terminals called lead terminals are connected to both ends of the resistor, respectively, but these external connection terminals are conventionally formed in a plate shape in many cases. This is one of the factors that hinder further thinning of the resistor.
[0007]
Therefore, the present applicant has considered to further reduce the thickness of the resistor by using a linear external connection terminal. FIG. 14 is a diagram showing a connection structure between the external connection terminal and the resistor. Here, as an example of the connection structure, a connection structure in a surge resistant resistor for a display device such as a television receiver is cited.
[0008]
In this connection structure, as shown in FIG. 15, the base part (21) of the external connection terminal (20) has a thickness (t) of 0.65 mm and a width (w) of 1.4 mm (thickness (t)). The width (w) is flattened so that the ratio (t / w) is 0.46), and the flattened base (21) is bent to form sandwiched portions (23), (23). The end portion of the resistance wire (22) is sandwiched between the end portions of the sandwiching portions (23) and (23) (see FIG. 16), and the sandwiching portions (23) and (23) are crimp-welded to the end portions of the resistance wire (22). (See FIG. 14).
[0009]
However, in this connection structure, the ratio (t / w) of the thickness (t) to the width (w) of the base (21) of the external connection terminal (20) is set to 0.46 as described above (hereinafter referred to as the following). The ratio (t / w) is referred to as the thickness-width ratio).
The base portion (21) having such a thickness-width ratio has a mechanical strength that is too high, and thus the resistance wire (22) may be greatly deformed when pressure is applied to the resistance wire (22). In this case, the strength of the resistance wire (22) decreases at the deformed portion, and the resistance wire (22) may break at a relatively early stage when a surge voltage is repeatedly applied.
Further, in this connection structure, since the resistance wire (22) is sandwiched between the distal end side of the sandwiching portion (23), that is, near the bending point, when the pressure is applied to the resistance wire (22), the resistance wire (22) There was a large difference in pressure between the side close to the bending point and the opposite side. For this reason, the resistance wire (22) is deformed into a strain in cross section, and the strength of the resistance wire (22) is further reduced. Further, by sandwiching at such a position, even if pressure is applied to the sandwiching portions (23) and (23), a gap is formed between the sandwiching portions (23) and (23) as shown in FIG. In some cases, the crimping was insufficient.
[0010]
Further, in the base (21) having the thickness-width ratio as described above, when welding is performed, the current is easily dispersed in the width direction, and the current directly flowing through the resistance wire (22) is small. For this reason, there existed a possibility that the joining strength of a base part (21) and a resistance wire (22) might become inadequate.
In addition, since the resistance wire (22) is sandwiched between the distal ends of the sandwiching portions (23) and (23), the welding current is generated between the distal end side of the sandwiching portion (23) and the opposite side via the resistance wire (22). There is a problem that the unbalance is caused and the bonding strength between the sandwiching portions (23) and (23) is different between the tip side and the opposite side. Thereby, the intensity | strength of a connection part fell and durability with respect to the surge voltage of a resistor was made worse.
[0011]
As a result of continuing intensive research in view of such circumstances, the applicant of the present invention flattened the base portion of the linear external connection terminal, bent the flattened base portion to form a sandwiched portion, and this sandwiched portion. It is found that the resistance wire can be made compact and the surge resistance can be improved by sandwiching the end portion of the resistance wire in the axial central portion of the wire and crimping and / or welding the clamping portion to the end portion. The connection structure between the resistance wire and the external connection terminal according to the present invention has been completed.
[0012]
  The invention described in claim 1Surge resistant thin resistorsIn the connection structure of the resistance wire and the linear external connection terminal in FIG.The ratio (t / w) of the thickness (t) to the width (w) of the base after flattening is 0.26 to 0.4.Flattened, bent the flat processed base to form a sandwiched portion, sandwiched the end of the resistance wire in the axial center of the sandwiched portion, and this end at the center between the sandwiched portions and relative It is a connection structure of a resistance wire and an external connection terminal, characterized in that the holding parts facing each other are respectively crimped and / or welded over the entire surface.
[0013]
  According to the second aspect of the present invention, the resistance wire is wound so that the entire shape formed by winding the flat space having a thickness smaller than the diameter of the resistance wire becomes flat. A resistance element, a thin insulating case having a flat hole for accommodating the flat resistance element, an insulating filler filled in the flat hole, and a linear shape connected to both ends of the resistance wire External connection terminal, and the base of the external connection terminalThe ratio (t / w) of the thickness (t) to the width (w) of the base after flattening is 0.26 to 0.4.Flattened, bent the flat processed base to form a sandwiched portion, sandwiched the end of the resistance wire in the axial center of the sandwiched portion, and this end at the center between the sandwiched portions and relative The surge-resistant thin-type resistor is characterized in that the holding portions facing each other are respectively crimped and / or welded over the entire surface.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
First, a surge resistant thin resistor according to the present invention will be described with reference to the drawings.
1 to 3 are diagrams showing an example of a surge resistant thin resistor according to the present invention. In these drawings, the illustration of the insulating filler is omitted.
The surge resistant thin resistor (13) includes a flat resistive element (9), an insulating case (6) having a resistive element accommodating hole (7), and an insulating property filled in the resistive element accommodating hole (7). A filling material (not shown) is provided, and the resistance element accommodation hole (7) is a flat hole.
Hereinafter, these components will be described in detail.
[0015]
As shown in FIGS. 1 and 3, the flat resistance element (9) is configured by winding a resistance wire (5) so that the overall shape is flat. In this way, by winding the resistance wire (5) so that the overall shape is flat, even the resistance wire (5) having a large diameter is sufficiently long and thin and small. Can fit in space.
[0016]
The surge resistance can be improved by increasing the length of the resistance wire (5) and increasing the diameter. Furthermore, by accommodating such a resistance wire (5) in a thin and small space, it is possible to achieve both improvement of surge resistance and compactness of the resistor.
[0017]
The flat resistance element (9) may be configured by winding the resistance wire (5) around the insulating core plate (11) as shown in FIG. 5, or the insulating core plate as shown in FIG. It may be constituted by winding without providing. As shown in FIG. 5, when the resistance wire (5) is wound around the insulating core plate (11), adjacent portions of the resistance wire (5) (coil width direction) are in contact with each other. It is possible to prevent the portion from being in a conductive state. Moreover, the operation | work which winds a resistance wire (5) so that it may become a flat shape becomes easy. Although the material of an insulating core board (11) is not specifically limited, For example, various ceramics, mica, etc. are employable.
Moreover, it is desirable to form a notch engaging portion (not shown) for positioning the resistance wire (5) on both side edges along the longitudinal direction of the insulating core plate (11). By forming the notch engaging portion, the resistance wire (5) is hooked on the engaging portion, so that contact between adjacent portions of the resistance wire (5) (in the axial direction of the coil) is surely prevented. Can do. Moreover, the winding operation of the resistance wire (5) is facilitated.
[0018]
Moreover, the linear external connection terminal (1) is connected to the both ends of the flat resistive element (9), respectively. The connection structure between the external connection terminal (1) and the resistance wire (5) is not particularly limited. For example, a connection structure (see FIG. 9) described later can be employed. The connection structure described later is excellent in that it has excellent surge resistance and can be easily and compactly configured.
[0019]
An example of the insulating case (6) is shown in FIGS.
The insulating case (6) accommodates and protects the flat resistance element (9). The material of the insulating case (6) is not particularly limited as long as it is insulating and has some mechanical strength and heat resistance. For example, various ceramics can be used.
The insulating case (6) has a resistance element accommodation hole (7) for accommodating the flat resistance element (9). This resistance element accommodation hole (7) is a flat hole, and is formed to be slightly larger than the flat resistance element (9).
[0020]
An insulating filler (not shown) is filled in the resistance wire accommodating hole (7) of the insulating case (6). The type of the insulating filler is not particularly limited, and for example, cement or silicon-based thermosetting resin can be employed. This insulating filler can efficiently absorb Joule heat generated by the resistance wire (5) and prevent Joule heat from being transmitted to the substrate (not shown) via the external connection terminal (1).
[0021]
Next, the connection structure of the resistance wire and the external connection terminal according to the present invention will be described.
FIG. 9 is a diagram showing a connection structure between a resistance wire and an external connection terminal according to the present invention. FIG. 10 and FIG. 11 are diagrams showing steps in configuring this connection structure.
[0022]
The connection structure of the resistance wire and the external connection terminal according to the present invention can be used in various resistors, and can be preferably used particularly in a surge resistant resistor that requires durability against a large voltage change. In particular, it can be most suitably employed in a surge resistant thin-film resistor that is required to be thin.
In this connection structure, the base portion (2) of the external connection terminal (1) (see FIG. 10) is flattened, and the flattened base portion (2) is bent to form the clamping portions (3) and (3). The end of the resistance wire (5) is sandwiched between the axially central portions (4) and (4) of the sandwiching portions (3) and (3) (see FIG. 11), and the sandwiching portions (3) and (3) are inserted. It is comprised by crimping | bonding to the same edge part and / or welding (refer FIG. 9).
Hereinafter, this connection structure and the procedure which comprises this are explained in full detail.
[0023]
The external connection terminal (1) is a lead terminal and is formed in a linear shape. By forming the terminal in a linear shape, the terminal can be reliably pulled into the thin and compact insulating case (6) (see FIGS. 1 to 3).
[0024]
The base part (2) of the external connection terminal (1) is a part fixed to the resistance wire (5) as shown in FIG. The base (2) is flattened in advance as described above.
If the ratio (t / w) between the thickness (t) and the width (w) of the base (2) after flattening is referred to as the thickness-width ratio, the thickness-width ratio (t / w) is the capacitance of the resistor. That is, although it depends on the rated load or maximum load of the resistor, it is preferably set to about 0.26 to 0.4. When processed to such a thickness-width ratio (t / w), when pressure welding is performed on the resistance wire (5), the resistance wire (5) and the resistance wire (5) are not greatly deformed. Can be firmly joined.
On the other hand, when the thickness width ratio (t / w) of the base (2) is larger than 0.4, the mechanical strength becomes unnecessarily large, and an unnecessarily large pressure is applied to the resistance wire (5). This may be greatly deformed. Further, when welding is performed, the welding current is easily dispersed in the width direction in the base (2), and the welding of the base (2) and the resistance wire (5) may be insufficient.
[0025]
On the other hand, if the thickness ratio (t / w) of the base portion (2) is smaller than 0.26, the mechanical strength becomes too small, and the bent portions (3) and (3) are formed when bent to form the sandwiched portions (3) and (3). The strength becomes weak and the durability against surge voltage is lowered.
[0026]
When the base (2) is flattened to such a thickness-width ratio, the base (2) is folded in two as shown in FIG. Thereby, clamping part (3), (3) is formed. These clamping parts (3) and (3) are parts that clamp the end of the resistance wire (5). The axial length (L2) of the clamping part (3) is set to such a length that can be reliably crimped or welded to the resistance wire (5).
[0027]
When the clamping portions (3) and (3) are formed, the end portion of the resistance wire (5) is sandwiched between the axially central portions (4) and (4) of the clamping portions (3) and (3). By sandwiching the resistance wire (5) between the axially central portions (4) and (4), the surface of the resistance wire (5) is crimped when the clamping portions (3) and (3) are crimped to the resistance wire (5). The pressure is applied almost evenly. Therefore, the resistance wire (5) is not partially biased and deformed in the cross section, and even if it is deformed, the resistance wire (5) is deformed symmetrically, and the strength of the resistance wire (5) is maintained in the state before pressurization. can do. In addition, since no gap is formed between the inner side of the bent portion of the base portion (2) and the resistance wire (5) when crimped, it can be firmly joined.
[0028]
Further, by sandwiching the resistance wire (5) between the axially central portions (4) and (4) of the clamping portions (3) and (3), the distal end side of the clamping portion (3) via the resistance wire (5) And the welding current flows evenly on the opposite side, and welding can be performed evenly. Therefore, the joining strength between the sandwiching portions (3) and (3) (see FIG. 9) facing each other is equal between the tip side of the sandwiching portion (3) and the opposite side. Thereby, a resistance wire (5) and a clamping part (3) can be joined firmly, and durability with respect to the surge voltage of a resistor can be improved.
[0029]
When the end of the resistance wire (5) is sandwiched between the sandwiching portions (3) and (3), pressure is applied from outside the sandwiching portions (3) and (3), and resistance wires are applied to the sandwiching portions (3) and (3). (5) is crimped, and the clamping portions (3) and (3) are crimped together.
In addition, it can replace with this crimping | compression-bonding operation | work and can also weld a clamping part (3) and a resistance wire (5). Further, both the crimping operation and the welding operation can be performed to further ensure the bonding strength.
In this connection structure, since the thickness ratio of the base portion (2) and the sandwiching position of the resistance wire (5) are set as described above, the bonding strength between the base portion (2) and the resistance wire (5) is ensured. While being able to raise, the mechanical strength of resistance wire (5) can be maintained in the state before joining, and a surge-proof characteristic can be made favorable.
[0030]
【Example】
Next, the effect of the resistor will be clarified by introducing an example of the surge resistant thin resistor according to the present invention. Note that the surge resistant thin-film resistor according to the present invention is not limited to the following examples.
[Configuration of Example]
<Example 1>
Nichrome wire was used as the resistance wire, and its diameter was φ0.38 mm. This resistance wire was wound around a ceramic insulating core plate having a long side length of 17 mm, a short side length of 13 mm, and a thickness of 0.2 mm to form a flat resistance element. The length of the flat resistance element (corresponding to L1 in FIGS. 4 and 5) was 22 mm, and the resistance value of the resistance wire was 0.68Ω.
Linear external connection terminals were attached to both ends of the flat resistance element, respectively.
[0031]
This flat resistance element was accommodated in an insulating case having the shape shown in FIGS. The insulating case had a thickness (depth) of 5.0 mm, a height of 18 mm, and a length of 26 mm. The external connection terminal was in a state where the tip end side protruded from the insulating case from the midway part.
Thereafter, the flat hole of the insulating case was filled with cement, and the cement was heated and solidified to produce the surge resistant thin resistor of Example 1.
[0032]
<Example 2>
Except that the diameter of the resistance wire is φ0.55 mm (the length is adjusted so that the resistance value is 0.68Ω), it is the same as that of the above-mentioned Example 1, thereby producing the surge resistant thin resistor of Example 2. did.
[0033]
<Comparative Example 1>
Except that the diameter of the resistance wire is φ0.35 mm (the length is adjusted so that the resistance value becomes 0.68Ω), it is the same as that of the above-mentioned Example 1, and thereby the surge resistant thin resistor of Comparative Example 1 is manufactured. did.
[0034]
<Comparative example 2>
A bending resistor was formed by shearing the resistor plate into a wave shape. The bending resistor had a thickness of 0.14 mm and a band width of 0.69 mm. The distance between both ends of the bending resistor was 22 mm, and the resistance value was 0.18Ω.
After fixing the linear external connection terminals to both ends of the bending resistor, the bending resistor was accommodated in an insulating case having the same shape and size as in Example 1. Thereafter, the flat hole of the insulating case was filled with cement, and the cement was heated and solidified to produce a surge resistant thin resistor of Comparative Example 2.
[0035]
[Test Method 1]
For each of Examples 1 and 2 and Comparative Examples 1 and 2, a surge voltage was repeatedly applied between both external connection terminals until the resistance wire broke. The application time per one time was about 2 (s), and this was repeated every 10 (s). The instantaneous maximum value of the surge current was 60 (A), and the rise time was 40 (ms) or more.
This test was performed in an atmosphere having a temperature of 25 (° C.) and a humidity of 90 (%).
[0036]
[Test result 1]
The test results by Test Method 1 were as follows.
Example 1: Fracture at about 50,000 times, Example 2: Fracture at about 57,000 times
Comparative Example 1: rupture after about 33,000 times, Comparative Example 2: rupture after about 1,800 times
[0037]
[Discussion 1]
As can be seen from Test Result 1, it can be seen that the larger the cross-sectional area, the better the durability against surge voltage. Further, it can be seen that a flat resistance element formed by winding a resistance wire has a much higher durability than a bending resistor formed by shearing a resistance plate into a wave shape.
In recent years, display devices such as television receivers often stop / start standby current by remote control operation. For this reason, durability with respect to the initial UP voltage generated at the time of stopping / starting is regarded as a problem of recent surge resistant resistors. A display device such as a television receiver is expected to have a repetitive load of about 50,000 surge voltages in view of its useful life, but as described above, Comparative Examples 1 and 2 can withstand the repetitive load. Can not.
On the other hand, both Examples 1 and 2 can withstand the repeated load, and can be said to have very good surge resistance. Moreover, since the first and second embodiments can be manufactured very compactly as described above, it is possible to achieve both compactness of the surge resistant thin resistor and improvement of surge resistance characteristics.
[0038]
[Test method 2]
The surge resistant thin resistors of Example 2 and Comparative Example 1 were each mounted on a circuit board (30) as shown in FIG. Next, 50%, 100%, and 150% of the rated power of 5 W are applied between the external connection terminals for a certain period of time for each anti-surge thin film resistor, and the temperature of the bottom plate surface (point A) of the insulating case The temperature of the side plate part surface (point B) of the case and the temperature of the tip part (point C) of the external connection terminal were measured. The measurement results are shown in FIG.
[0039]
[Discussion 2]
Consideration is based on FIG. It can be seen that at each measurement point, the temperature of Example 2 is about 20% lower than that of Comparative Example 1. This means that the larger the cross-sectional area of the resistance wire, the more the generation of Joule heat can be suppressed, the influence of heat on other mounting parts can be reduced, and the melting of solder due to heat can be prevented.
[0040]
【The invention's effect】
  The connection structure of the resistance wire and the external connection terminal according to claim 1 is formed by flattening a base portion of the linear external connection terminal, bending the flat processed base portion to form a sandwiching portion, and the axial center of the sandwiching portion. Since the resistance wire is sandwiched between the two parts, the bonding strength between the linear external connection terminal and the resistance wire can be reliably increased, and the mechanical strength of the resistance wire can be maintained in the state before the bonding, and the resistance can be improved. Surge characteristics can be improved. Further, the linear external connection terminal can greatly contribute to the downsizing of the resistor.
[0041]
  The surge resistor according to claim 2 is:A flat resistance element formed by winding a resistance wire so that the entire shape is flat, a thin insulating case having a flat hole for accommodating the flat resistance element, and an insulating property filled in the flat hole A filler and linear external connection terminals respectively connected to both ends of the resistance wire are provided, the base portion of the external connection terminal is flattened, and the sandwiched portion is formed by bending the flattened base portion, Since the end portion of the resistance wire is sandwiched between the axially central portions of the sandwiching portion and the sandwiching portion is crimped and / or welded to the end portion, the bonding strength between the linear external connection terminal and the resistance wire is ensured. In addition, the mechanical strength of the resistance wire can be maintained in the state before joining, and the surge resistance can be improved. Further, the linear external connection terminal can greatly contribute to the downsizing of the resistor. Further, a flat resistance element formed by winding a resistance wire so that the overall shape is flat, a thin insulating case having a flat hole for accommodating the flat resistance element, and the flat hole are filled. Therefore, both the compactness of the resistor and the improvement of surge resistance can be achieved.
[Brief description of the drawings]
FIG. 1 is a plan view showing an example of a surge resistant thin resistor according to the present invention.
FIG. 2 is a partial cross-sectional front view of the surge resistant thin resistor shown in FIG. 1;
FIG. 3 is a partial cross-sectional side view of the surge resistant thin resistor shown in FIG. 1;
FIG. 4 is a view showing a connection state between a flat resistance element and an external connection terminal of a surge resistant thin resistor according to the present invention, and is a front view showing a case where an insulating core plate is not provided.
FIG. 5 is a view showing a connection state between a flat resistive element and an external connection terminal of the surge resistant thin resistor according to the present invention, and is a front view showing a case where an insulating core plate is provided.
FIG. 6 is a plan view showing an example of an insulating case for resistors in the present invention.
7 is a front view of the insulating case for resistors shown in FIG. 6. FIG.
8 is a side view of the insulating case for resistors shown in FIG. 6. FIG.
FIG. 9 is a side view showing an example of a connection structure of a resistance wire and an external connection terminal according to the present invention.
10 is a diagram showing a configuration process of the connection structure shown in FIG. 9, wherein (a) is a side view thereof and (b) is a plan view thereof. FIG.
11 is a side view showing a configuration process of the connection structure shown in FIG. 9;
FIG. 12 is a diagram showing a test (test method 2) situation of a surge resistant thin resistor.
FIG. 13 is a graph showing the results of a test (test method 2) for a surge resistant thin-film resistor.
FIG. 14 is a side view showing an example of a connection structure between a conventional resistance wire and an external connection terminal.
15 is a diagram showing a configuration process of the connection structure shown in FIG. 14, wherein (a) is a side view thereof and (b) is a plan view thereof.
16 is a side view showing a configuration process of the connection structure shown in FIG. 14;
[Explanation of symbols]
1 ... External connection terminal
2 ... Base
3 ... clamping part
4 ... Axial center
5 ... resistance wire
6. Insulating case
7: Resistance wire receiving hole (flat hole)
8: Terminal holding part
9: Flat resistance element
11. Insulating core plate
13 ... Surge-resistant thin resistors

Claims (2)

耐サージ薄型抵抗器における抵抗線と線状の外部接続端子の接続構造であって、前記外部接続端子の基部を、扁平加工後における基部の厚さ(t)と幅(w)の比(t/w)が0.26〜0.4となるように扁平加工し、この扁平加工された基部を折り曲げて挟持部を形成し、この挟持部の軸方向中央部に抵抗線の端部を挟み込み、この端部を挟持部間の中央部で、及び相対向する前記挟持部同士を全面に亘って、それぞれ圧着し及び/又は溶接してなることを特徴とする抵抗線と外部接続端子の接続構造。A connection structure of a resistance wire and a linear external connection terminal in a surge resistant thin-type resistor , wherein the base portion of the external connection terminal is a ratio of the thickness (t) and the width (w) of the base portion after flattening (t / W) is flattened so as to be 0.26 to 0.4, the flat base is bent to form a sandwiched portion, and the end of the resistance wire is sandwiched between the axially central portions of the sandwiched portion The connection between the resistance wire and the external connection terminal is characterized in that this end portion is crimped and / or welded at the center portion between the sandwiching portions and across the entire opposing sandwiching portions. Construction. 抵抗線の径より薄い厚さを有する扁平空間を内部に設けられるように巻回されて形成される全体形状が扁平となるように抵抗線を巻回してなる扁平抵抗素子と、この扁平抵抗素子を収容する扁平孔を備えた薄形の絶縁ケースと、前記扁平孔内に充填された絶縁性充填材と、前記抵抗線の両端部に夫々接続される線状の外部接続端子を備え、前記外部接続端子の基部を、扁平加工後における基部の厚さ(t)と幅(w)の比(t/w)が0.26〜0.4となるように扁平加工し、この扁平加工された基部を折り曲げて挟持部を形成し、この挟持部の軸方向中央部に抵抗線の端部を挟み込み、この端部を挟持部間の中央部で、及び相対向する前記挟持部同士を全面に亘って、それぞれ圧着し及び/又は溶接してなることを特徴とする耐サージ薄型抵抗器。A flat resistance element formed by winding a resistance wire so that the entire shape formed by winding a flat space having a thickness smaller than the diameter of the resistance wire is flat, and the flat resistance element A thin insulating case having a flat hole for accommodating the insulating filler, an insulating filler filled in the flat hole, and linear external connection terminals respectively connected to both ends of the resistance wire, The base portion of the external connection terminal is flattened so that the ratio (t / w) of the thickness (t) to the width (w) of the base portion after flattening is 0.26 to 0.4. The holding portion is bent to form a holding portion, and the end portion of the resistance wire is sandwiched in the axial central portion of the holding portion, and this end portion is the central portion between the holding portions, and the opposing holding portions are entirely covered. Over which a surge resistance is characterized by being crimped and / or welded. Resistor.
JP2000115672A 2000-04-17 2000-04-17 Connection structure of resistance wire and external connection terminal, and surge resistant thin resistor having this connection structure Expired - Fee Related JP3860388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000115672A JP3860388B2 (en) 2000-04-17 2000-04-17 Connection structure of resistance wire and external connection terminal, and surge resistant thin resistor having this connection structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000115672A JP3860388B2 (en) 2000-04-17 2000-04-17 Connection structure of resistance wire and external connection terminal, and surge resistant thin resistor having this connection structure

Publications (2)

Publication Number Publication Date
JP2001307901A JP2001307901A (en) 2001-11-02
JP3860388B2 true JP3860388B2 (en) 2006-12-20

Family

ID=18627263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000115672A Expired - Fee Related JP3860388B2 (en) 2000-04-17 2000-04-17 Connection structure of resistance wire and external connection terminal, and surge resistant thin resistor having this connection structure

Country Status (1)

Country Link
JP (1) JP3860388B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968615B1 (en) * 2007-11-13 2010-07-08 동아전기부품 주식회사 Manufacturing Method of Resistor for Controlling Motor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200450758Y1 (en) * 2008-04-28 2010-10-29 푸타바 일렉트릭 코., 엘티디. Anti-burst resistor
JP5397631B2 (en) * 2010-05-19 2014-01-22 独立行政法人産業技術総合研究所 Method for manufacturing highly stable resistor element and highly stable resistor
CN103887024B (en) * 2012-12-19 2018-01-09 上海吉泰电阻器有限公司 A kind of embedding resistance for high pressure electrical power trans mission/distribution system
JP6334138B2 (en) * 2013-11-12 2018-05-30 ミクロン電気株式会社 Resistive element and resistor using the same
EP3096332A4 (en) * 2014-01-17 2017-09-13 First Resistor Condenser Co., Ltd. Surge-resistant wire-wound resistor and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968615B1 (en) * 2007-11-13 2010-07-08 동아전기부품 주식회사 Manufacturing Method of Resistor for Controlling Motor

Also Published As

Publication number Publication date
JP2001307901A (en) 2001-11-02

Similar Documents

Publication Publication Date Title
JP3820143B2 (en) Surface mount type small fuse
WO1988009556A1 (en) Surge absorbing device
JP2021101463A (en) Resistor
JP3860388B2 (en) Connection structure of resistance wire and external connection terminal, and surge resistant thin resistor having this connection structure
JP2022506773A (en) How to make an open cavity fuse using sacrificial material
TWI269338B (en) Dielectric barrier discharge type low-pressure discharge lamp
KR100689021B1 (en) Surface-mounted small fuse and manufacturing method of the same
JP4372399B2 (en) Surface mount type choke coil
JP2004103862A (en) Wound coil component, and method of connecting coil conductor and metal terminal
KR100929822B1 (en) Surface-Mount Small Fuses
JP2009117288A (en) Fuse resistor
JP5316020B2 (en) surge absorber
JP4872593B2 (en) Planar heating element
JP2000040623A (en) Chip inductor and manufacture thereof
JP2001313214A (en) Surface-mounting small transformer
JPH04121985A (en) Heater and heating device
JP3145895U (en) Winding shaft structure of transformer
JP2006047111A (en) Shunt for current measurement
US6432747B1 (en) Repair method for broken or missing microcircuit package terminal lead
JP2889200B2 (en) Method of manufacturing high voltage resistance pack
JP3390674B2 (en) Positive characteristic thermistor for degaussing
JP2023037376A (en) Coil component
JPH0749784Y2 (en) Electromagnetic device
JP3376359B2 (en) High voltage resistance pack
JP2022129428A (en) Battery and method of manufacturing battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060419

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees