JP3859958B2 - Outer layer material of composite roll for centrifugal casting - Google Patents

Outer layer material of composite roll for centrifugal casting Download PDF

Info

Publication number
JP3859958B2
JP3859958B2 JP2000353313A JP2000353313A JP3859958B2 JP 3859958 B2 JP3859958 B2 JP 3859958B2 JP 2000353313 A JP2000353313 A JP 2000353313A JP 2000353313 A JP2000353313 A JP 2000353313A JP 3859958 B2 JP3859958 B2 JP 3859958B2
Authority
JP
Japan
Prior art keywords
roll
carbide
present
centrifugal casting
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000353313A
Other languages
Japanese (ja)
Other versions
JP2002161331A (en
Inventor
典之 藤田
和則 上宮田
Original Assignee
日鉄住金ロールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄住金ロールズ株式会社 filed Critical 日鉄住金ロールズ株式会社
Priority to JP2000353313A priority Critical patent/JP3859958B2/en
Publication of JP2002161331A publication Critical patent/JP2002161331A/en
Application granted granted Critical
Publication of JP3859958B2 publication Critical patent/JP3859958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遠心鋳造製圧延用複合ロールに関するものであり、特に耐摩耗性及び耐肌荒れ性に優れた熱間、または冷間圧延用の遠心鋳造製複合ロール外層材の材質に関するものである。
【0002】
【従来の技術】
近年、鉄鋼圧延分野においては、鋼板の板厚精度向上や表面品質向上の要求が高く、圧延用ロールに対しても、高い耐摩耗性と耐肌荒れ性が求められている。これらの高品質要求に対応するロール材質としては、従来、高合金グレン鋳鉄材や高クロム鋳鉄材等が用いられて来たが、最近では、例えば特開平8−60289号公報に開示されているような、さらに耐摩耗性に優れたハイスロール材が適用されて来ている。
【0003】
このハイスロール材は、Cr,Mo,V,W等の合金を多量に含有させ、非常に硬い炭化物を晶析出させて、優れた耐摩耗性を発揮させたものであるが、単に合金を高含有させただけでは、硬質な炭化物が不均一に晶析出するため、極低炭素鋼(C:0.01%以下)等の難圧延材を圧延する際に、炭化物が集まった部分で微小な欠け落ちが発生し、それが成長してロール表面全体の肌荒れに至っていた。そこで、ハイスロール材の炭化物を微細に晶析出させる方法については、例えば特開平10−68041号公報に開示されているような、Al,Ti,ZrやBを用いる方法が示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記公報に開示の方法では晶析出する炭化物の形状は多角形で、そのために、圧延中に欠け落ちしやすい形状となっており、圧延用ロール材として、耐肌荒れ性および耐摩耗性が充分なものではない。かかる背景に鑑み、本発明は、ハイスロール材に晶析出する炭化物の内、最も硬質なMC炭化物に注目し、このMC炭化物を欠け落ちしにくい球状形状とすること、及び微細均一に晶出させることにより、耐肌荒れ性を向上させると共に、Cuによりその耐摩耗性をも向上させ優れた性能を持つ遠心鋳造製圧延用複合ロールの外層材を提供するものである。
【0005】
【課題を解決するための手段】
本発明は上述した問題を解消したもので、その発明の要旨とするところは、
(1)質量%で、C:0.7〜3.6%、Si:0.2〜2.5%、Mn:0.2〜2.0%、Cr:2.0〜10%、Mo:0.2〜10%、V:2.0〜10%、B:0.001〜0.50%、Al:0.001〜0.50%、Ti:0.001〜0.50%、Zr:0.001〜0.50%、Cu:0.001〜0.50%、Mg:0.001〜0.50%、Ca:0.001〜0.50%、N:1000ppm以下、O:500ppm以下、を含有し、残部Fe及び不可避的不純物からなることを特徴とする遠心鋳造製圧延用複合ロールの外層材。
(2)さらに、質量%で、Ni:0.1〜10%、W:0.2〜10%、Nb:0.2〜10%、Co:0.2〜10%、の1種または2種以上含有する請求項1記載の遠心鋳造製圧延用複合ロールの外層材にある。
【0006】
以下、本発明について詳細に説明する。
ハイスロール材のミクロ組織は、一般的に硬質のVCを主体としたMC炭化物とM2 C、M6 CもしくはM7 3 炭化物及び適度な熱処理を施してマルテンサイトとなったマトリックス組織で構成されている。本発明は、この内、最も硬質なMC炭化物に注目し、MgおよびCaを複合で含有させることにより、MgOやCaOの酸化物を生成させ、これを核として溶湯中から直接、MC炭化物を微細均一かつ球状に晶出させたミクロ組織を得ること。さらには、Cuの添加により基地組織を強化し、耐摩耗性を向上させ、このハイスロール材を遠心鋳造法によって製造する圧延用複合ロールの外層材に適用し、耐肌荒れ性や耐摩耗性を大幅に向上させるものである。
【0007】
【発明の実施の形態】
以下に、本発明に係る各化学成分の限定理由について述べる。
C:0.7〜3.6%
Cは主として、マトリックス中に固溶されマルテンサイト相を生成する。また、さらに、Fe,Cr,Mo,V,W等と結合して種々の炭化物を形成する。しかし、0.7%未満であると炭化物量が少なく、耐摩耗性が得られない。また、逆に3.6%を超えると、粗大な炭化物が形成され、靱性の低下や肌荒れの原因となる。従って、その範囲を0.7〜3.6%とする。
【0008】
Si:0.2〜2.5%
Siは脱酸作用を目的として添加する。しかし、0.2%未満であるとその効果が不十分であり、逆に、2.5%を超える添加は靱性を低下させるため、その範囲を0.2〜2.5%とする。
Mn:0.2〜2.0%
Mnは脱酸、脱硫作用を目的として添加する。しかし、0.2%未満であるとその効果が不十分であり、また、2.0%を超えると靱性を低下させるため、その範囲を0.2〜2.0%とする。
【0009】
Cr:2.0〜10%
Crはマトリックス中に固溶されて焼入れ性を高めると共に、Cと結合して炭化物を形成する。しかし、2%未満だと炭化物量が少なく、耐摩耗性が低下し、逆に、10%を超えると、粗大な炭化物が形成され、靱性の低下や肌荒れを招く。従って、その範囲を2.0〜10%とする。
【0010】
Mo:0.2〜10%
MoもCrと同様に、マトリックス中に固溶されて基地を強化すると共に、Cと結合して炭化物を形成する。従って、基地強化のためには、最低0.2%以上の含有が必要であるが、10%を超えると粗大炭化物が形成され靱性が低下する。また、遠心鋳造法で10%を超えた場合、層状偏析が発生する。従って、その範囲を0.2〜10%とする。
【0011】
V:2.0〜10%
VはCと結合してMC炭化物を形成する重要な元素である。しかし、2.0%未満では炭化物量が不十分で耐摩耗性が確保できず、10%を超えると、MC炭化物が粗大化し過ぎてやはり靱性の低下に繋がる。また、本発明の遠心鋳造法で製造する場合にはVC炭化物の比重が溶湯よりも軽いために分離して偏析の原因となる。従って、その範囲を2.0〜10%とする。
【0012】
B:0.001〜0.50%
Bは、0.001%以上で、焼入れ性が高まり、また、靱性の低下を防ぐことができる。しかし、過剰になると、靱性が低下するため0.50%以下に抑える必要がある。
Al,Ti,Zr:0.001〜0.50%
Al,Ti,Zrは、溶湯中で酸化物を生成して、溶湯中の酸素含有量を低下させ、製品の健全性を向上させると共に、生成した酸化物が結晶核として、作用するために凝固組織の微細化に効果がある。0.001%でその効果があるが、余り多く含有されると、介在物となって製品中に残存することになるため、その上限は、各々0.50%とした。
【0013】
Cu:0.001〜0.50%
Cuは、基地組織を強化し高温硬度を向上させるため、後述する本発明のMg,Caと共に主要な化学成分である。しかし、0.001%未満ではその効果がなく、一方0.50%を超えると、耐摩耗性、耐クラック性が低下すると共にロールの表面性状が劣化するため、その上限を0.50%とした。
【0014】
Mg,Ca:0.001〜0.50%
Mg,Caは、本発明の圧延用ロールの耐肌荒れ性向上に最も寄与する元素である。Mg及びCaは、脱酸や脱硫作用の強い元素であり、MgOやCaOの酸化物を生成し、これが溶湯中に懸濁されて核となり、MC炭化物を微細均一に晶出させる。また、その理由は明らかでないが、球状黒鉛鋳鉄の黒鉛がこれらの元素の添加によって球状化されるのと同様の現象と予測される作用によって、晶出するMC炭化物が球状となることを見出した。Mg,Caの量は各々0.001%以上でその効果が認められる。しかし、0.50%を超えてはその効果が飽和すると共に、Mg合金やCa合金の大量の添加は溶湯との反応が激しいために作業的に危険である。従って、Mg,Caの範囲を0.001〜0.50%とする。
【0015】
N:1000ppm以下
Nは、耐肌荒れ性を低減のために、1000ppm以下とする。すなわち、1000ppm以下とすることにより、炭化物に対する核生成効果が抑制され粗大な初晶炭化物の量が減り、そのかわり、細長く微細な共晶炭化物が増加し、VC炭化物が微細、均一に分散する。それにより耐肌荒れ性が低減する。しかし、1000ppmを超えると、その効果がなくなるため、その上限を1000ppmとした。なお、望ましくは、500ppm以下、より望ましくは、300ppmとする。低減の方法としては、ロールの原材料となっているロール屑や、スクラップ材などにおいて、N量の少ないものの使用、溶解炉内をAr等の不活性ガス雰囲気にして、原材料を溶解することも有効である。
【0016】
O:500ppm以下
Oは、非金属介在物となって材質の清浄化を低下させるため多量に含有すると、鋳造割れが発生しやすくなる。従って、低減量は、500ppm以下になるようにする。なお、望ましくは、300ppm以下、より望ましくは、100ppmとなるようにする。低減の方法としては、例えば、溶解炉内をAr等の不活性ガス雰囲気にして、原材料を溶解することが有効である。
P,Sは、原材料より、不可避的に混入するものであり、材質の脆くするので少ないほど好ましく、P:0.2%以下、S:0.1%以下にすると良い。
【0017】
本発明材の基本成分は、上記の通りであるが、適用を対象とするロールのサイズ、要求されるロールの使用特性等により、その他の化学成分として、上記した本発明の化学成分に加えて、さらに、以下の成分を適宜選択添加するとよい。
W:0.2〜10%
Wは、Moと同様にマトリックス中に固溶されて基地を強化すると共に、Cと結合して炭化物を形成する。基地強化のためには、最低0.2%以上の含有が必要であるが、10%を超えると粗大炭化物が形成され靱性が低下する。また、本発明の遠心鋳造法では、10%を超えた場合、層状偏析が発生する。なお、Wの添加有無の選択については、例えば使用特性上の耐摩耗性や耐クラック性等を考慮し、適宜判断するとよい。
【0018】
Ni:0.1〜10%
また、本発明材は上記した化学成分に加えて、さらにNiを0.1〜10%含有してもよい。Niはマトリックス中に固溶され、基地のオーステナイトを安定化して焼入れ性を向上する。そのため、0.1%以上の少量を含有させるが、10%を超える含有させた場合、オーステナイトが安定化しすぎてオーステナイトの残留を来して、硬度の確保が困難になったり、圧延使用中の変形等を起こすことがある。なお、前記Ni添加の選択有無については、例えば製造を対象とする圧延ロールのサイズ、硬度等を考慮し、その添加の要否を適宜判断するとよい。
【0019】
Nb:0.2〜10%
また、本発明材は上記した化学成分に加えて、さらにNbを0.2〜10%含有してもよい。NbはVと同様にCと結合して高硬度のMC炭化物を形成する。また、本発明の遠心鋳造法で製造する場合には、VC炭化物の偏析を軽減させる効果をもっている。0.2%未満ではその効果は不十分であり、10%を超える含有させた場合、MC炭化物が粗大化しすぎて靱性の低下に繋がる。Nb添加の選択有無については、例えば、遠心鋳造する際のVの添加量に応じた内面偏析の軽減等を考慮し、その添加の要否を適宜判断するとよい。
【0020】
Co:0.2〜10%
また、本発明材は上記した化学成分に加えて、さらにCoを0.2〜10%含有してもよい。Coはその殆どがマトリックス中に固溶され基地を強化する。そのため、高温での硬度及び強度を向上させる作用を有している。しかし、0.2%未満ではその効果は不十分であり、10%を超えるはその効果が飽和するため、経済性の観点からも10%以下が望ましい。Co添加の選択有無については、例えば、使用特性上の高温硬度や摩擦係数低減等を考慮し、その添加の要否を適宜判断するとよい。
【0021】
【実施例】
以下、本発明の実施例を従来材及び比較例と共に説明する。
(実施例1)
高周波誘導炉にて溶解した後、前溶湯を、外径250mm、内径180mm、長さ300mmの円筒金型を遠心鋳造試験機で高速回転させながら金型内に注入し、表1に示す化学成分の外径174mm、肉厚35mm、長さ300mmのスリーブを鋳造した。なお、前記試験材の製造において、表1に示す本発明例であるA〜N材及び比較例であるS〜V材についての溶湯へのCa,Mgの添加については、炉から出湯後の溶湯に、取鍋にてCa−Si合金やFe−Si−Mg合金を添加した。このようにして製造されたスリーブを1000℃からの焼入れ処理とさらに500〜550℃の焼戻し処理を施した後、図1に示す要領で、各組成(A〜V)で各々複数個のミクロ組織試験片及び回転摩耗試験片を採取した。
【0022】
【表1】

Figure 0003859958
【0023】
表1に示す化学組成としては、A〜Nは本発明例であり、O〜Rは従来例であり、また、S〜Vは比較例である。その各試験材でのミクロ組織の結果を図2によって模式図をもって示す。すなわち、図2(a)に示すように、スリーブ表面より10mm深さ位置のミクロ組織を本発明例(代表例としてC材)と図2(b)に示す従来例(代表例としてQ材)で比較して示した。この図2(b)から従来例の組成Q材の化学成分のものでは、そのミクロ組織は、最も硬質なMC炭化物が結晶粒界のみに殆ど晶出し、全体的な均一化が図られていないことが明らかである。また、一部にマトリックス内にも一部のその晶出が認められるが、形状は不規則な多角形となっている。これに対して、本発明例のC材のものは、MC炭化物がマトリックス内も含め均一に晶出しており、かつ、その形状も角張った所がなく、球状に近い形状で晶出していることが明らかである。
【0024】
次に、図3に示す回転摩耗試験機を用いて、比較試験を行った。すなわち、
相手材:SUS304
試験温度:常温
線荷重:60N/mm
すべり率:10%
回転数:5×104
の条件で試験を行い、試験前後の摩耗減量及び試験後の表面粗度を測定した。
【0025】
図4は本発明材、従来材及び比較材の常温での回転摩耗試験による摩耗減量の測定結果を示す図である。また、図5は前記回転摩耗試験後の試験材の表面粗度の測定結果を示す図である。この図4及び図5から明らかなように、本発明材のA〜Nは従来材O〜Rに比較し、いずれもその摩耗減量が少なく、また、耐肌荒れ性の評価の指標となる表面粗度も小さくなっている。また、比較材S〜Vの化学成分は、本発明材の特徴とするCa、MgおよびCuの量が本発明材より高いものであり、本発明材と同等の摩耗減量と表面粗度になっているが、いずれも本発明材を超える結果は得られず、効果が飽和してきている。このように、高いCa、Mgの添加は、添加時の安全性確保の点から好ましくない。
【0026】
(実施例2)
次に、図7に示す熱間回転摩耗試験機を用いて、上記の比較試験を実施した。なお、熱間回転摩耗試験機としては、図7に示すような加熱片および試験片10を接触状態で回転させる転動装置11と、加熱片および試験片10を囲み、これを加熱する高周波誘導加熱コイル12と冷却装置13と、放射温度計14とを備えたディスク対ディスクタイプの試験機を使用した。その時の試験条件は、両ディスク間の最大接触応力は約250N/mm2 で、試験片の周速度(回転数)は、720rpmとし、両ディスク間のすべり率は、4.5%で行った。また、圧延材に相当する加熱片の温度は960℃とし、試験片の温度は650℃として500回転動させ、試験片の摩耗量を測定した。その後さらに、該摩耗試験後の試験片の表面粗度を各々測定した。
【0027】
図8は、本発明材A〜N材、従来材O〜Rおよび比較材S〜Vの熱間回転摩耗試験による摩耗減量の測定結果を示す図である。また、図9は、本発明材、従来材および比較材の熱間回転摩耗試験後の試験片の表面粗度の測定結果を示す図である。この図8および図9から明らかなように、本発明材A〜N材は、従来材O〜Rに比較し、いずれもその摩耗減量が少なく、また、耐肌荒れ性の評価の指標となる表面粗度も小さくなっている。また、比較材S〜Vの化学成分は、本発明材の特徴とするCa,MgおよびCuの量が本発明材A〜N材よりも高いものであり、本発明材と同等の摩耗減量と表面粗度になっているが、いずれも本発明材を超える結果は得られず、効果が飽和してきている。このように、高いCa,Mgの添加は、添加時の安全性確保の点から好ましくない。
以上の各種の試験結果により、本発明材は、冷間および熱間での実際の圧延用複合ロールの外層材に適用した場合、その目的とする耐摩耗性と耐肌荒れ性の作用・効果を十分に奏することが明らかとなった。続いて、実際の圧延ロールに適用した結果について説明する。
【0028】
(実施例3)
低周波誘導炉を用いて溶解した外層溶湯に、出湯後取鍋にてFe−Si−Mg合金を添加して、表2に示す本発明の化学組成のものを、熱間圧延用複合ロールの用途として、下記の通り製造した。すなわち、上記化学組成の溶湯を傾斜角20度の遠心鋳造機に組み込んだ内径800mm、長さ2000mmの回転鋳型内に注入した。さらに、適正な待ち時間を経た後、内層用材料として表2に示す化学組成のダクタイル鋳鉄を数度に分けて注入した。次に、このロールを冷却・遠心鋳造鋳型から解体後、粗削加工を行い、1000℃の焼入れと500〜550℃で数回の焼き戻し処理を実施した後、仕上げ加工を行った。その後、超音波探傷を行い、欠陥のない健全なロールであることを確認した。また、ロール胴部の表面ミクロ組織を確認し、図6に本発明の実施により製造したロールの胴部中央における金属組織の顕微鏡写真(100倍)を示す。この図からも、硬質なMC炭化物が球状で微細均一に晶出されていることが確認できる。
【0029】
【表2】
Figure 0003859958
【0030】
なお、前記の実施例3で製造した圧延用ロールは、外層材とロールの軸材とが溶着一体化した複合ロールであるが、本発明の用途としては、これに限定されるものではない。例えば、遠心鋳造法により、本発明の化学成分からなるスリーブを製作し、その後別途作製した。例えば鋼製のロール軸に取付け、一体型の圧延用ロールとすることも可能である。さらに、特開平5−311316号公報に記載のように、遠心鋳造機に本発明の化学成分からなる外層用の溶湯を注入後、適正な待ち時間を経た後中間層となる溶湯を注入し、さらに、適正な待ち時間を経た後、内層用材料としてダクタイル鋳鉄または黒鉛鋼等の溶湯を数度に分けて注入して作製する3層構造のロールにも同様に適用できる。なお、前記複合ロールの内層材については、ロールの使用用途(圧延条件)によって異なり、圧延条件が、厳しくない場合には、外層との溶着性に優れるFC材、ダクタイル材が望ましく、一方圧延条件が厳しい場合は黒鉛などの鋳鋼材質とするように適宜選択するとよい。
【0031】
【発明の効果】
以上述べたように、本発明の組成からなる材料を外層材として遠心鋳造製圧延用複合ロールを使用することにより、硬質のMC炭化物の球状化と微細均一化により、耐肌荒れ性と耐摩耗性の大幅な向上が可能となり、圧延ロールの長寿命化が図れる。また、ロール性能の向上による圧延製品の品質改善にも大幅に寄与する効果がある。
【図面の簡単な説明】
【図1】遠心鋳造試験機で製造したスリーブから、金属組織試験片および回転摩耗試験片を採取する要領を示す図である。
【図2】遠心鋳造試験機で製造したスリーブから採取した材料の金属組織の模式図である。
【図3】常温での回転摩耗試験機の構成を示す図である。
【図4】本発明材、従来材および比較材の常温での回転摩耗試験による摩耗減量を示す図である。
【図5】本発明材、従来材および比較材の常温での回転摩耗試験後の表面粗度を示す図である。
【図6】本発明の実施例3により製造した実機ロールの胴部中央における金属組織の顕微鏡写真(100倍)である。
【図7】熱間での回転摩耗試験機の概要構成を示す説明図である。
【図8】本発明材、従来材および比較材の熱間での回転摩耗試験による摩耗減量を示す図である。
【図9】本発明材、従来材および比較材の熱間での回転摩耗試験後の表面粗度を示す図である。
【符号の説明】
1 スリーブ
2 ミクロ組織試験片
3 回転摩耗試験片
4 基地(マルテンサイト)
5 MC炭化物
6 M7 3 炭化物
7 相手片(SUS304)
8、10 試験片
9 加熱片
11 転動装置
12 高周波誘導加熱コイル
13 冷却装置
14 放射温度計[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a composite roll for centrifugal casting and, more particularly, to a material for an outer layer material of a centrifugal cast composite roll for hot or cold rolling excellent in wear resistance and rough skin resistance.
[0002]
[Prior art]
In recent years, in the steel rolling field, there are high demands for improving the plate thickness accuracy and surface quality of steel plates, and high wear resistance and rough skin resistance are also required for rolling rolls. Conventionally, as a roll material corresponding to these high quality requirements, a high alloy grain cast iron material, a high chromium cast iron material or the like has been used, but recently, for example, disclosed in JP-A-8-60289. Such a high-speed roll material excellent in wear resistance has been applied.
[0003]
This high-roll material contains a large amount of an alloy such as Cr, Mo, V, W, etc., and crystallizes very hard carbides to exhibit excellent wear resistance. Since the hard carbides crystallize non-uniformly only by the inclusion, when rolling difficult-to-roll materials such as ultra-low carbon steel (C: 0.01% or less), the carbides are very small at the gathered portions. Occurrence of chipping occurred, which grew and resulted in rough skin on the entire roll surface. Therefore, as a method for finely crystallizing the carbide of the high-roll material, a method using Al, Ti, Zr or B as disclosed in, for example, JP-A-10-68041 is shown.
[0004]
[Problems to be solved by the invention]
However, in the method disclosed in the above-mentioned publication, the shape of the carbide precipitated in a polygon is polygonal. Therefore, the shape is easy to chip during rolling, and the roll material for rolling has rough skin resistance and wear resistance. Not enough. In view of such a background, the present invention pays attention to the hardest MC carbide among the carbides crystallized on the high-roll material, and makes the MC carbide have a spherical shape that is difficult to chip, and crystallizes finely and uniformly. Accordingly, the outer layer material of the composite roll for rolling by centrifugal casting having improved performance is provided by improving the rough surface resistance and improving the wear resistance by Cu.
[0005]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and the gist of the invention is that
(1) By mass%, C: 0.7-3.6%, Si: 0.2-2.5%, Mn: 0.2-2.0%, Cr: 2.0-10%, Mo : 0.2 to 10%, V: 2.0 to 10%, B: 0.001 to 0.50%, Al: 0.001 to 0.50%, Ti: 0.001 to 0.50%, Zr: 0.001 to 0.50%, Cu: 0.001 to 0.50%, Mg: 0.001 to 0.50%, Ca: 0.001 to 0.50%, N: 1000 ppm or less, O The outer layer material of a composite roll for rolling made by centrifugal casting, characterized by comprising : 500 ppm or less, and the balance being Fe and inevitable impurities.
(2) Further, by mass%, Ni: 0.1 to 10%, W: 0.2 to 10%, Nb: 0.2 to 10%, Co: 0.2 to 10%, or 1 or 2 It exists in the outer-layer material of the composite roll for centrifugal-casting rolling of Claim 1 which contains seed | species or more.
[0006]
Hereinafter, the present invention will be described in detail.
The microstructure of high-roll material is generally composed of MC carbide mainly composed of hard VC, M 2 C, M 6 C or M 7 C 3 carbide, and matrix structure that has become martensite after appropriate heat treatment. Has been. The present invention pays attention to the hardest MC carbide among them, and by containing Mg and Ca in a composite, oxides of MgO and CaO are generated, and this is used as a core to directly refine the MC carbide from the melt. To obtain a microstructure that is crystallized uniformly and spherically. Furthermore, by adding Cu, the base structure is strengthened and wear resistance is improved, and this high-speed roll material is applied to the outer layer material of a composite roll for rolling produced by centrifugal casting to provide rough skin resistance and wear resistance. This is a significant improvement.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Below, the reason for limitation of each chemical component which concerns on this invention is described.
C: 0.7-3.6%
C is mainly dissolved in the matrix to form a martensite phase. Furthermore, it combines with Fe, Cr, Mo, V, W, etc. to form various carbides. However, if it is less than 0.7%, the amount of carbide is small and wear resistance cannot be obtained. On the other hand, if it exceeds 3.6%, coarse carbides are formed, which causes toughness deterioration and rough skin. Therefore, the range is set to 0.7 to 3.6%.
[0008]
Si: 0.2-2.5%
Si is added for the purpose of deoxidation. However, if the content is less than 0.2%, the effect is insufficient. Conversely, addition exceeding 2.5% lowers the toughness, so the range is made 0.2 to 2.5%.
Mn: 0.2 to 2.0%
Mn is added for the purpose of deoxidation and desulfurization. However, if it is less than 0.2%, the effect is insufficient, and if it exceeds 2.0%, the toughness is lowered, so the range is made 0.2 to 2.0%.
[0009]
Cr: 2.0 to 10%
Cr is dissolved in the matrix to enhance the hardenability, and combines with C to form a carbide. However, if it is less than 2%, the amount of carbide is small and the wear resistance is reduced. Conversely, if it exceeds 10%, coarse carbide is formed, resulting in a decrease in toughness and rough skin. Therefore, the range is made 2.0 to 10%.
[0010]
Mo: 0.2 to 10%
Mo, like Cr, is solid-solved in the matrix to strengthen the matrix and combine with C to form carbides. Therefore, in order to strengthen the base, it is necessary to contain at least 0.2%, but if it exceeds 10%, coarse carbides are formed and the toughness is lowered. Moreover, when it exceeds 10% by the centrifugal casting method, layered segregation occurs. Therefore, the range is made 0.2 to 10%.
[0011]
V: 2.0 to 10%
V is an important element that combines with C to form MC carbide. However, if the amount is less than 2.0%, the amount of carbide is insufficient and the wear resistance cannot be ensured. If the amount exceeds 10%, the MC carbide is excessively coarsened, which leads to a decrease in toughness. Moreover, when manufacturing by the centrifugal casting method of this invention, since the specific gravity of VC carbide is lighter than a molten metal, it isolate | separates and causes segregation. Therefore, the range is made 2.0 to 10%.
[0012]
B: 0.001 to 0.50%
When B is 0.001% or more, the hardenability is improved and the toughness can be prevented from being lowered. However, if it is excessive, the toughness is lowered, so it is necessary to keep it to 0.50% or less.
Al, Ti, Zr: 0.001 to 0.50%
Al, Ti, and Zr generate oxides in the molten metal, reduce the oxygen content in the molten metal, improve the soundness of the product, and solidify because the generated oxides act as crystal nuclei. It is effective for refining the tissue. The effect is 0.001%, but if it is contained too much, it becomes an inclusion and remains in the product, so the upper limit was made 0.50%.
[0013]
Cu: 0.001 to 0.50%
Cu is a main chemical component together with Mg and Ca of the present invention, which will be described later, in order to strengthen the base structure and improve the high temperature hardness. However, if it is less than 0.001%, the effect is not obtained. On the other hand, if it exceeds 0.50%, the wear resistance and crack resistance are deteriorated and the surface properties of the roll are deteriorated. did.
[0014]
Mg, Ca: 0.001 to 0.50%
Mg and Ca are elements that contribute the most to the improvement in rough skin resistance of the rolling roll of the present invention. Mg and Ca are elements having a strong deoxidation and desulfurization action, and produce oxides of MgO and CaO, which are suspended in the molten metal to become nuclei and crystallize MC carbide finely and uniformly. Moreover, although the reason is not clear, it was found that the MC carbide crystallized into a spherical shape due to the same phenomenon as that of the spheroidal graphite cast iron graphite spheroidized by the addition of these elements. . The effect is recognized when the amount of Mg and Ca is 0.001% or more, respectively. However, if it exceeds 0.50%, the effect is saturated, and addition of a large amount of Mg alloy or Ca alloy is dangerous in terms of work because the reaction with the molten metal is intense. Therefore, the range of Mg and Ca is set to 0.001 to 0.50%.
[0015]
N: 1000 ppm or less N is set to 1000 ppm or less in order to reduce the rough skin resistance. That is, by setting it to 1000 ppm or less, the nucleation effect on the carbide is suppressed and the amount of coarse primary crystal carbide is reduced. Instead, the elongated and fine eutectic carbide is increased, and the VC carbide is finely and uniformly dispersed. Thereby, the rough skin resistance is reduced. However, since the effect is lost when it exceeds 1000 ppm, the upper limit was set to 1000 ppm. Desirably, it is 500 ppm or less, and more desirably 300 ppm. As a reduction method, it is also effective to use roll scraps and scrap materials that are raw materials for rolls with a small amount of N, and to dissolve the raw materials in an inert gas atmosphere such as Ar in the melting furnace. It is.
[0016]
O: 500 ppm or less O is a non-metallic inclusion and reduces the cleaning of the material. If it is contained in a large amount, casting cracks are likely to occur. Therefore, the reduction amount is set to 500 ppm or less. Desirably, the concentration is 300 ppm or less, and more desirably 100 ppm. As a reduction method, for example, it is effective to melt the raw material by setting the inside of the melting furnace to an inert gas atmosphere such as Ar.
P and S are inevitably mixed in from the raw materials, and are preferably as small as possible because the material becomes brittle. P: 0.2% or less and S: 0.1% or less are preferable.
[0017]
The basic components of the material of the present invention are as described above, but in addition to the above-described chemical components of the present invention as other chemical components, depending on the size of the roll to be applied, the required usage characteristics of the roll, etc. Furthermore, the following components may be appropriately selected and added.
W: 0.2 to 10%
W is dissolved in a matrix like Mo and strengthens the matrix, and combines with C to form a carbide. In order to strengthen the base, the content of at least 0.2% is necessary, but if it exceeds 10%, coarse carbides are formed and the toughness is lowered. Further, in the centrifugal casting method of the present invention, when it exceeds 10%, layered segregation occurs. The selection of whether or not W is added may be appropriately determined in consideration of, for example, wear resistance and crack resistance in terms of use characteristics.
[0018]
Ni: 0.1 to 10%
In addition to the chemical components described above, the material of the present invention may further contain 0.1 to 10% of Ni. Ni is dissolved in the matrix to stabilize the base austenite and improve the hardenability. Therefore, a small amount of 0.1% or more is included, but when it exceeds 10%, austenite is overstabilized and austenite remains, making it difficult to ensure hardness, or during rolling use Deformation may occur. In addition, about the selection presence or absence of the said Ni addition, it is good to judge the necessity of the addition suitably, for example considering the size, hardness, etc. of the rolling roll intended for manufacture.
[0019]
Nb: 0.2 to 10%
In addition to the above chemical components, the material of the present invention may further contain 0.2 to 10% of Nb. Nb, like V, combines with C to form a hard MC carbide. Moreover, when manufacturing with the centrifugal casting method of this invention, it has the effect of reducing the segregation of VC carbide. If the content is less than 0.2%, the effect is insufficient, and if the content exceeds 10%, the MC carbide is excessively coarsened, leading to a decrease in toughness. Regarding the selection of Nb addition, for example, considering the reduction of internal segregation according to the addition amount of V at the time of centrifugal casting, the necessity of the addition may be appropriately determined.
[0020]
Co: 0.2 to 10%
In addition to the chemical components described above, the material of the present invention may further contain 0.2 to 10% of Co. Most of the Co is dissolved in the matrix and strengthens the matrix. Therefore, it has the effect | action which improves the hardness and intensity | strength in high temperature. However, if it is less than 0.2%, the effect is insufficient, and if it exceeds 10%, the effect is saturated. Therefore, 10% or less is desirable from the viewpoint of economy. As for the presence or absence of selection of Co addition, for example, considering the high temperature hardness and the friction coefficient reduction in use characteristics, it is preferable to appropriately determine the necessity of the addition.
[0021]
【Example】
Examples of the present invention will be described below together with conventional materials and comparative examples.
Example 1
After melting in the high-frequency induction furnace, the pre-molten metal is injected into the mold while rotating at a high speed with a centrifugal mold tester using a cylindrical mold having an outer diameter of 250 mm, an inner diameter of 180 mm, and a length of 300 mm. A sleeve having an outer diameter of 174 mm, a wall thickness of 35 mm, and a length of 300 mm was cast. In addition, in manufacture of the said test material, about the addition of Ca and Mg to the molten metal about A-N material which is an example of this invention shown in Table 1, and S-V material which is a comparative example, it is a molten metal after tapping from a furnace. In addition, a Ca—Si alloy or a Fe—Si—Mg alloy was added in a ladle. After the sleeve manufactured in this way is subjected to quenching treatment from 1000 ° C. and further tempering treatment from 500 to 550 ° C., a plurality of microstructures are formed for each composition (A to V) in the manner shown in FIG. Test pieces and rotating wear test pieces were collected.
[0022]
[Table 1]
Figure 0003859958
[0023]
As chemical compositions shown in Table 1, A to N are examples of the present invention, O to R are conventional examples, and S to V are comparative examples. The result of the microstructure in each test material is shown schematically in FIG. That is, as shown in FIG. 2A, the microstructure at a depth of 10 mm from the sleeve surface is an example of the present invention (C material as a representative example) and the conventional example shown in FIG. 2B (Q material as a representative example). In comparison with. From FIG. 2B, in the chemical composition of the composition Q material of the conventional example, the microstructure of the hardest MC carbide crystallizes almost only at the crystal grain boundaries, and the overall uniformity is not achieved. It is clear. In addition, a part of the crystallization is observed in the matrix, but the shape is an irregular polygon. On the other hand, in the C material of the present invention example, MC carbide is crystallized uniformly including in the matrix, and the shape is not angular, and crystallized in a nearly spherical shape. Is clear.
[0024]
Next, a comparative test was performed using the rotary wear tester shown in FIG. That is,
Mating material: SUS304
Test temperature: Room temperature line load: 60 N / mm
Slip rate: 10%
The test was conducted under the conditions of the number of revolutions: 5 × 10 4 times, and the weight loss before and after the test and the surface roughness after the test were measured.
[0025]
FIG. 4 is a diagram showing the measurement results of wear loss of the present invention material, the conventional material, and the comparative material by a rotational wear test at room temperature. FIG. 5 is a diagram showing the measurement results of the surface roughness of the test material after the rotational wear test. As is apparent from FIGS. 4 and 5, the materials A to N of the present invention have less wear loss compared to the conventional materials O to R, and the surface roughness is an index for evaluating the rough skin resistance. The degree is getting smaller. In addition, the chemical components of the comparative materials S to V have higher Ca, Mg, and Cu amounts than the present invention material, which is a feature of the present invention material, and wear loss and surface roughness equivalent to the present invention material. However, in any case, the result exceeding the material of the present invention is not obtained, and the effect is saturated. Thus, the addition of high Ca and Mg is not preferable from the viewpoint of ensuring safety during the addition.
[0026]
(Example 2)
Next, the above comparative test was performed using a hot rotating wear tester shown in FIG. As the hot rotary abrasion tester, a rolling device 11 for rotating the heating element 9 and the test piece 10 as shown in FIG. 7 in a contact state, surrounds the heating strip 9 and the test piece 10, to heat it A disk-to-disk type testing machine equipped with a high-frequency induction heating coil 12 , a cooling device 13, and a radiation thermometer 14 was used. The test conditions at that time were such that the maximum contact stress between the two disks was about 250 N / mm 2 , the peripheral speed (rotational speed) of the test piece was 720 rpm, and the sliding rate between the two disks was 4.5%. . Further, the temperature of the heated piece corresponding to the rolled material was 960 ° C., the temperature of the test piece was 650 ° C., and the sample was rotated 500 times, and the wear amount of the test piece was measured. Thereafter, the surface roughness of the test piece after the wear test was measured.
[0027]
FIG. 8 is a diagram showing the measurement results of wear loss by the hot rotational wear test of the inventive materials A to N, the conventional materials O to R, and the comparative materials S to V. Moreover, FIG. 9 is a figure which shows the measurement result of the surface roughness of the test piece after the hot rotation abrasion test of this invention material, a conventional material, and a comparison material. As apparent from FIGS. 8 and 9, the materials A to N of the present invention have less wear loss compared to the conventional materials O to R, and the surface is an index for evaluating the rough skin resistance. The roughness is also reduced. Further, the chemical components of the comparative materials S to V are those in which the amounts of Ca, Mg and Cu, which are the characteristics of the material of the present invention, are higher than those of the materials A to N of the present invention. Although the surface roughness is reached, none of the results exceeds the present invention material, and the effect is saturated. Thus, the addition of high Ca and Mg is not preferable from the viewpoint of ensuring safety during the addition.
Based on the above various test results, when the material of the present invention is applied to the outer layer material of a composite roll for actual rolling in cold and hot conditions, the intended action and effect of wear resistance and rough skin resistance are achieved. It became clear that it played well. Then, the result applied to the actual rolling roll is demonstrated.
[0028]
Example 3
Add the Fe-Si-Mg alloy to the molten outer layer melted using the low frequency induction furnace in the ladle after pouring, and use the chemical composition of the present invention shown in Table 2 of the composite roll for hot rolling. As a use, it manufactured as follows. That is, the molten metal having the above chemical composition was poured into a rotary mold having an inner diameter of 800 mm and a length of 2000 mm incorporated in a centrifugal casting machine having an inclination angle of 20 degrees. Further, after an appropriate waiting time, ductile cast iron having a chemical composition shown in Table 2 was injected in several degrees as an inner layer material. Next, the roll was disassembled from the cooling / centrifugal casting mold, followed by rough cutting, and after quenching at 1000 ° C. and several tempering treatments at 500 to 550 ° C., finishing was performed. Thereafter, ultrasonic flaw detection was performed, and it was confirmed that the roll had no defects. Further, the surface microstructure of the roll body portion was confirmed, and FIG. 6 shows a micrograph (100 times) of the metal structure in the center of the body portion of the roll manufactured according to the present invention. Also from this figure, it can be confirmed that the hard MC carbide is crystallized spherically and finely uniformly.
[0029]
[Table 2]
Figure 0003859958
[0030]
In addition, although the roll for rolling manufactured in the said Example 3 is a composite roll by which the outer layer material and the shaft material of the roll were welded and integrated, the use of the present invention is not limited to this. For example, a sleeve made of the chemical component of the present invention was manufactured by centrifugal casting, and then manufactured separately. For example, it can be attached to a steel roll shaft to form an integral rolling roll. Furthermore, as described in JP-A-5-313116, after injecting a melt for the outer layer made of the chemical component of the present invention into a centrifugal casting machine, after injecting a melt that becomes an intermediate layer after an appropriate waiting time, Furthermore, it can be similarly applied to a roll having a three-layer structure in which a molten metal such as ductile cast iron or graphite steel is injected in several degrees as an inner layer material after an appropriate waiting time. The inner layer material of the composite roll differs depending on the use application (rolling conditions) of the roll, and when the rolling conditions are not severe, FC materials and ductile materials having excellent weldability with the outer layer are desirable, while the rolling conditions are If it is severe, it may be appropriately selected so as to use a cast steel material such as graphite.
[0031]
【The invention's effect】
As described above, by using a composite roll for centrifugal casting made of a material comprising the composition of the present invention as an outer layer material, roughening and fine wear resistance of hard MC carbide is realized by spheroidizing and fine uniformizing hard MC carbide. Can be greatly improved, and the life of the rolling roll can be extended. In addition, it has the effect of greatly contributing to quality improvement of rolled products by improving roll performance.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a procedure for collecting a metal structure test piece and a rotating wear test piece from a sleeve manufactured by a centrifugal casting test machine.
FIG. 2 is a schematic view of a metal structure of a material collected from a sleeve manufactured by a centrifugal casting test machine.
FIG. 3 is a diagram showing a configuration of a rotary wear tester at room temperature.
FIG. 4 is a graph showing wear loss of the present invention material, the conventional material, and the comparative material by a rotational wear test at room temperature.
FIG. 5 is a diagram showing the surface roughness after a rotational wear test at normal temperature of the material of the present invention, the conventional material, and the comparative material.
FIG. 6 is a micrograph (100 times) of a metallographic structure in the center of the trunk of an actual roll manufactured according to Example 3 of the present invention.
FIG. 7 is an explanatory diagram showing a schematic configuration of a hot rotating wear tester.
FIG. 8 is a diagram showing wear loss by hot rotating wear test of the present invention material, the conventional material and the comparative material.
FIG. 9 is a diagram showing the surface roughness of the present invention material, the conventional material, and the comparative material after a hot rotational wear test.
[Explanation of symbols]
1 Sleeve 2 Microstructure specimen 3 Rotating wear specimen 4 Base (Martensite)
5 MC carbide 6 M 7 C 3 carbide 7 Counterpiece (SUS304)
8, 10 Test piece 9 Heating piece 11 Rolling device 12 High frequency induction heating coil 13 Cooling device 14 Radiation thermometer

Claims (2)

質量%で、
C:0.7〜3.6%、
Si:0.2〜2.5%、
Mn:0.2〜2.0%、
Cr:2.0〜10%、
Mo:0.2〜10%、
V:2.0〜10%、
B:0.001〜0.50%、
Al:0.001〜0.50%、
Ti:0.001〜0.50%、
Zr:0.001〜0.50%、
Cu:0.001〜0.50%、
Mg:0.001〜0.50%、
Ca:0.001〜0.50%、
N:1000ppm以下、
O:500ppm以下、
を含有し、残部Fe及び不可避的不純物からなることを特徴とする遠心鋳造製圧延用複合
ロールの外層材。
% By mass
C: 0.7 to 3.6%
Si: 0.2 to 2.5%
Mn: 0.2 to 2.0%,
Cr: 2.0 to 10%
Mo: 0.2 to 10%,
V: 2.0-10%,
B: 0.001 to 0.50%,
Al: 0.001 to 0.50%,
Ti: 0.001 to 0.50%,
Zr: 0.001 to 0.50%,
Cu: 0.001 to 0.50%,
Mg: 0.001 to 0.50%,
Ca: 0.001 to 0.50%,
N: 1000 ppm or less,
O: 500 ppm or less,
An outer layer material of a composite roll for rolling made by centrifugal casting, characterized in that it comprises the balance Fe and inevitable impurities.
さらに、質量%で、
Ni:0.1〜10%、
W:0.2〜10%、
Nb:0.2〜10%、
Co:0.2〜10%、
の1種または2種以上含有する請求項1記載の遠心鋳造製圧延用複合ロールの外層材。
Furthermore, in mass%,
Ni: 0.1 to 10%,
W: 0.2 to 10%
Nb: 0.2 to 10%,
Co: 0.2 to 10%,
The outer layer material of the composite roll for centrifugal casting made according to claim 1, comprising one or more of the above.
JP2000353313A 2000-11-20 2000-11-20 Outer layer material of composite roll for centrifugal casting Expired - Fee Related JP3859958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000353313A JP3859958B2 (en) 2000-11-20 2000-11-20 Outer layer material of composite roll for centrifugal casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000353313A JP3859958B2 (en) 2000-11-20 2000-11-20 Outer layer material of composite roll for centrifugal casting

Publications (2)

Publication Number Publication Date
JP2002161331A JP2002161331A (en) 2002-06-04
JP3859958B2 true JP3859958B2 (en) 2006-12-20

Family

ID=18826093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000353313A Expired - Fee Related JP3859958B2 (en) 2000-11-20 2000-11-20 Outer layer material of composite roll for centrifugal casting

Country Status (1)

Country Link
JP (1) JP3859958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326288A (en) * 2017-05-27 2017-11-07 苏州铭晟通物资有限公司 A kind of corrosion resistant metallic materials

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075892A (en) * 2004-09-13 2006-03-23 Hitachi Metals Ltd Rolling roll made by centrifugal casting
JP5862526B2 (en) * 2012-09-13 2016-02-16 Jfeスチール株式会社 Roll outer layer material for hot rolling and composite roll for hot rolling
US9815098B2 (en) * 2013-09-25 2017-11-14 Hitachi Metals, Ltd. Centrifugally cast, hot-rolling composite roll
JP5950048B2 (en) 2013-09-25 2016-07-13 日立金属株式会社 Composite roll for hot rolling made by centrifugal casting
CN106521323B (en) * 2016-12-08 2017-12-19 江苏双星特钢有限公司 A kind of middle chromium alloy lining plate and preparation method thereof
CN114015941B (en) * 2021-11-03 2022-10-11 攀钢集团攀枝花钢铁研究院有限公司 Continuous casting composite rolling steel rail and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700591B2 (en) * 1992-04-27 1998-01-21 川崎製鉄株式会社 Centrifugal casting composite roll
JPH06145886A (en) * 1992-11-11 1994-05-27 Kawasaki Steel Corp Material for rolling roll excellent in wear resistance
JP3751433B2 (en) * 1998-02-13 2006-03-01 株式会社クボタ High-speed cast iron material with excellent wear resistance at high temperatures
JP3482349B2 (en) * 1998-12-08 2003-12-22 新日本製鐵株式会社 Hot working tool materials
JP2002161332A (en) * 2000-11-20 2002-06-04 Nippon Steel Corp Composite roll for hot rolling made with continuous hardfacing by casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107326288A (en) * 2017-05-27 2017-11-07 苏州铭晟通物资有限公司 A kind of corrosion resistant metallic materials

Also Published As

Publication number Publication date
JP2002161331A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP4366475B2 (en) High-alloy glen cast iron material for hot rolling rolls made by centrifugal casting
CN103890208B (en) Roll surface-layer material for hot rolling with excellent fatigue resistance produced by centrifugal casting, and composite roll for hot rolling produced through centrifugal casting
JP7400718B2 (en) Centrifugal casting composite roll for rolling and its manufacturing method
JP2002161332A (en) Composite roll for hot rolling made with continuous hardfacing by casting
JP3859958B2 (en) Outer layer material of composite roll for centrifugal casting
JP3766202B2 (en) Graphite crystallized high-speed cast iron material with excellent resistance to rough skin
JP4372364B2 (en) Single layer sleeve roll for hot rolling made by centrifugal casting
JP3927347B2 (en) Outer layer material of composite roll for rolling
JP2007029968A (en) Method for manufacturing compound roll for hot rolling, and compound roll for hot rolling
JP2003073767A (en) Outer layer material of roll for hot rolling and composite roll for hot rolling
JP2006281301A (en) Composite rolling roll
JP3892141B2 (en) High-speed cast iron material with graphite and iron phosphide
JP3919092B2 (en) Composite roll for hot rolling
JP3729178B2 (en) Centrifuge cast composite work roll for cold rolling
JP2002161334A (en) Adamite roll for hot rolling
JP3729177B2 (en) Centrifugal casting composite intermediate roll
JP2004162104A (en) Roll external layer material for hot rolling and composite roll for hot rolling
JPS5810982B2 (en) High hardness chrome roll for cold rolling
JP2002285277A (en) Composite roll for rolling made by centrifugal casting
JP2002317237A (en) Composite roll for rolling made by centrifugal casting
JP2002161333A (en) Composite roll for cold rolling made with continuous hardfacing by casting
JP4650734B2 (en) Composite roll for rolling
JP4650729B2 (en) Composite roll for rolling
JPH0338325B2 (en)
JPH09170041A (en) Roll made by centrifugal casting and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Ref document number: 3859958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees